Oral N-acetyl-L-cysteine is a safe and effective precursor of cysteine 1

Size: px
Start display at page:

Download "Oral N-acetyl-L-cysteine is a safe and effective precursor of cysteine 1"

Transcription

1 Published December 8, 2014 Oral N-acetyl-L-cysteine is a safe and effective precursor of cysteine 1 R. N. Dilger and D. H. Baker 2 Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana ABSTRACT: Relative bioavailability and toxicity of N-acetyl-L-Cys (NAC) were evaluated in 9-d chick growth assays. The bioavailability of NAC relative to Cys was determined by feeding young chicks a highly purified crystalline AA diet singly deficient in Cys. Bioavailability estimates were obtained using standard slope-ratio methodology. N-Acetyl-L-cysteine was shown to be as effective as Cys in supporting chick growth, and was assigned a relative bioavailability value of 100%. To assess toxicity, a nutritionally adequate corn-soybean meal diet was supplemented with graded concentrations of NAC (isomolar to 10, 20, 30, or 40 g/kg of Cys, as-fed). When NAC supplied 10 or 20 g/kg of Cys, chick growth performance was unaffected, but NAC supplying 30 or 40 g/kg of Cys reduced (P < 0.05) BW gain by 13 and 34%, respectively, relative to the unsupplemented control diet. Only plasma-free NAC was substantially increased (P < 0.05) because of excess dietary NAC; plasma-free Cys was unaltered. We concluded that dietary NAC is efficacious in supplying Cys in support of chick growth, and only large excesses of NAC are growth depressing. Hence, the human clinical benefits of oral NAC likely result from its ability to deliver Cys safely and effectively to the portal circulation. Key words: N-acetyl-L-cysteine, bioavailability, chick, cysteine, toxicity 2007 American Society of Animal Science. All rights reserved. J. Anim. Sci : doi: /jas INTRODUCTION The use of crystalline AA as dietary supplements in human and animal nutrition has gained popularity in the United States (Frost and Sullivan, 2006). This includes the sulfur AA (SAA) Cys, which participates in a variety of metabolic pathways involving Met, glutathione, CoA, and taurine (Stipanuk, 2004). Studies suggest that Cys should be considered a conditionally indispensable AA (Shoveller et al., 2006), contingent on Met status of the animal. However, dietary supplementation of Cys is complicated because its free sulfhydryl group is capable of spontaneous oxidation, resulting in product instability. Moreover, the oxidized form, cystine (Cys-Cys), is relatively insoluble, making both forms poor candidates for enteral or parenteral nutritional formulas. Recent studies suggest that excess dietary Cys may be deleterious to animal growth and feed consumption in various species 1 Presented in part in abstract form at Experimental Biology 06, May 2006, San Francisco, California [Dilger, R. N., and D. H. Baker Relative effects of excessive sulfur amino acid intake in the chick. FASEB J. 20:A1042 (Abstr.)]. 2 Corresponding author: dhbaker@uiuc.edu Received December 22, Accepted March 13, (Dilger et al., 2007). Therefore, safe and functional alternative Cys precursor products have been sought. N-Acetyl-L-cysteine (NAC) serves as a precursor for Cys because the α-amino nitrogen is protected by an acetyl group, and most tissues possess the ability to remove this acetyl group and thus furnish Cys. For this reason, NAC has been studied extensively as both a therapeutic agent and a direct Cys precursor. Oral administration of NAC remains a primary treatment for acetaminophen overdose (Vale and Proudfoot, 1995), and NAC has also been shown to positively affect overall antioxidant status (Ahola et al., 1999). In this regard, NAC serves as a direct antioxidant per se and as a precursor for Cys, the availability of which is rate limiting for hepatic glutathione synthesis. However, early pharmacokinetic studies suggested that oral NAC bioavailability was low (Borgström et al., 1986; Olsson et al., 1988; De Caro et al., 1989), between 6 and 10%, because of low blood concentrations of NAC. These studies did not account for the deacetylation of NAC to form Cys during normal absorptive processes in the gut. Additionally, a paucity of information exists regarding the toxicity of dietary NAC. Such evidence is increasingly necessary considering the growing interest in dietary supplemental AA in preventive healthcare (Frost and Sullivan, 2006). The primary objectives of the studies herein were to 1) determine the bioavailability of NAC relative to 1712

2 N-acetyl-L-cyseine bioavailability and toxicity 1713 Cys in support of growth and 2) evaluate the toxicity of NAC when supplied in excess of the dietary Cys requirement. MATERIALS AND METHODS General Procedures All experimental procedures were approved by the University of Illinois Animal Care and Use Committee. Three studies were conducted using male chicks (New Hampshire male Columbian female) obtained from the University of Illinois Poultry Farm. Chicks were housed in thermostatically controlled starter batteries with raised-wire flooring, in an environmentally controlled room with continuous lighting. From hatch to d 7 posthatch, chicks were fed a typical corn-soybean meal starter diet that provided 230 g/kg of CP (as-fed basis) and was adequate in all dietary nutrients (NRC, 1994). After an overnight fast, the chicks were weighed, wing-banded, and randomized to dietary treatments on d 8, such that average initial pen weights and weight distributions were similar across treatments. Three bioassays were conducted, and 4 replicate pens of 3 chicks were assigned to each dietary treatment in each of the assays. The experimental basal diets (Table 1) were fed for a 9-d period (d 8 to 17 posthatch) during each bioassay. Experimental diets and tap water were freely available to chicks at all times. Body weights of individual chicks and pen feed intakes were measured at the termination of each bioassay. Body weight gain, feed intake, and efficiency of gain (G:F) were calculated for each replicate pen. The purified basal diet used in assays 1 and 2 was analyzed for both Met and cyst(e)ine, where cyst(e)ine refers to Cys + Cys-Cys (total of reduced plus oxidized forms) contained in the diet. Duplicate diet samples were preoxidized with performic acid (300 g/l of hydrogen peroxide, 800 g/l of formic acid) and then subjected to a 22-h acid hydrolysis (6 mol/l of HCl) under nitrogen gas at 100 C. Hydrolysates were assayed for Met and cyst(e)ine by ion-exchange chromatography (Model 119 CL Amino Acid Autoanalyzer, Beckman Instruments, Palo Alto, CA), as described by Chung and Baker (1992). The diet contained 1.2 g/kg of Met and 0.5 g/kg of cyst(e)ine (as-fed basis), making it severely deficient in both Met and cyst(e)ine relative to dietary requirements of 3 g/kg of digestible Met and 3 g/kg of digestible Cys (NRC, 1994). Other AA in the purified diet were in excess of the true digestible AA requirements of young chicks (NRC, 1994). When fully fortified with SAA, the experimental diet used in assays 1 and 2 has been shown to allow growth rates similar to those obtained with a typical corn-soybean meal diet providing 230 g/kg of CP (unpublished data). Assay 1. The objective of this assay was to quantify the Met requirement of chicks fed a purified crystalline AA diet containing more than adequate dietary cyst(e)- Table 1. Composition of experimental basal diets, asfed basis Cys and Met N-Acetyl-L-Cys deficiency (NAC) toxicity Ingredient, g/kg studies 1 study 2 Cornstarch Corn (82 g/kg of CP) Soybean meal (480 g/kg of CP) Soy protein isolate (824 g/kg of CP) 40.0 Casein (848 g/kg of CP) 25.0 AA mixture Soybean oil Solka-Floc Complete mineral mix Limestone (CaCO 3 ) 13.0 NaCl 4.0 Dicalcium phosphate 18.0 Trace-mineral mix Vitamin mix Choline chloride NaHCO Ethoxyquin (125 mg/kg) + DL-α-Tocopheryl acetate (20 mg/kg) + DL-Met 1.5 Bacitracin premix L-Cys, L-Cys-Cys, NAC, or L-Met were substituted for dietary cornstarch to accomplish the experimental objectives in assays 1 and 2. The basal diet contained, by analysis, 1.2 g/kg of Met and 0.5 g/kg of cyst(e)ine. The plus sign (+) means this ingredient was added to the diet at the concentration specified (i.e., 125 mg/kg). 2 NAC was substituted for dietary cornstarch to accomplish the experimental objectives in assay 3. The basal diet contained an estimated 5.1 g/kg of Met and 3.8 g/kg of cyst(e)ine. 3 The AA mixture provided the following (g/kg of diet): Arg, 9.5; Lys, 8.9; His, 3.3; Phe, 5.0; Tyr, 4.5; Trp, 1.5; Thr, 6.5; Leu, 10.0; Ile, 6.0; Val, 6.9; Gly, 10.0; Pro, 4.0; and Glu, FS&D Corp., Urbana, OH. 5 The complete mineral mix provided the following (per kg of diet): CaCO 3,3g;Ca 3 (PO 4 ) 2,28g;K 2 HPO 4, 9 g; NaCl, 8.8 g; CuSO 4 5H 2 O, 20 mg; ZnCO 3, 100 mg; MgSO 4 7H 2 O, 3.5 g; Fe 6 C 6 O 7 H 2 O, 500 mg; MnSO 4 H 2 O, 650 mg; H 3 BO 3, 9 mg; NaMoO 4 2H 2 O, 9 mg; KI, 40 mg; CoSO 4 7H 2 O, 1 mg; and Na 2 SeO 3, 0.22 mg. 6 The trace mineral mix provided the following (per kg of diet): Fe, 75 mg (FeSO 4 H 2 O); Zn, 75 mg (ZnO); Mn, 75 mg (MnO); Cu, 5 mg (CuSO 4 5H 2 O); I, 0.75 mg (ethylenediamine dihydroiodide); and Se, 0.1 mg (Na 2 SeO 3 ). 7 The vitamin mix for the purified diets used for graded dosing of Met (assay 1) and Cys or NAC (assay 2) provided the following (per kg of diet): thiamin HCl, 20 mg; niacin, 50 mg; riboflavin, 10 mg; D- calcium pantothenate, 30 mg; vitamin B-12, 0.04 mg; pyridoxine HCl, 6 mg; D-biotin, 0.6 mg; folic acid, 4 mg; menadione dimethylpyrimidinol bisulfate, 2 mg; ascorbic acid, 250 mg; cholecalciferol, 15 g; and retinyl acetate, 1.8 mg. 8 Dilger et al. (2007). 9 Provided 55 mg/kg of bacitracin. ine. Supplemental dietary Met concentrations of 0.5, 1.0, 1.5, 2.0, and 2.5 g/kg were added (as-fed basis) to the basal diet fortified with 3.5 g/kg of Cys-Cys, and the supplemental Met requirement was based on chick growth performance. Assay 2. The bioavailability of NAC was evaluated relative to Cys, as measured by chick growth performance. The purified basal diet (Table 1) was supplemented with 2.0 g/kg of Met, (i.e., the dietary Met concentration from assay 1 deemed to be slightly above

3 1714 Dilger and Baker the minimal Met requirement). Dietary Cys was supplemented at 0, 0.35, 0.70, 1.05, and 2.50 g/kg (as-fed basis) to the cyst(e)ine-deficient basal diet. The first 4 Cys doses were expected to produce a linear growth response, and the fifth (greatest) supplemental Cys concentration was designed to provide Cys at the estimated dietary requirement of 3 g/kg, thereby serving as a positive control. N-Acetyl-L-cysteine was supplemented at 0.47 and 0.95 g/kg (as-fed basis), isomolar to 0.35 and 0.70 g/kg of Cys, respectively, and evaluated for its ability to serve as a Cys source by standard slope-ratio methodology. Assay 3. The toxicity of excess dietary NAC was evaluated using a corn-soybean meal basal diet (Table 1) adequate in all nutrients for chicks of this age (NRC, 1994). Dietary NAC was supplemented at 0, 13.47, 26.94, 40.41, and g/kg (as-fed basis) (isomolar to 0, 10, 20, 30, and 40 g/kg of Cys), and toxicity was evaluated after a 9-d feeding period by chick growth performance and plasma-free SAA concentrations. Blood was collected (cardiac puncture) from each of the chicks in 3 of the 4 replicate pens (selected randomly), pooled by pen replicate, and processed as described by Dilger et al. (2007). Simultaneous chromatographic separation of plasma-free SAA (Met, Cys, Cys-Cys, and NAC) was performed using a previously described HPLC procedure (Dilger et al., 2007). Statistical Analysis All data were subjected to ANOVA using the GLM procedure (SAS Inst. Inc., Cary, NC). Data were analyzed using pen means, with procedures appropriate for a completely randomized design. Data are presented as mean values with pooled SEM. In all cases, separation of means was carried out using the LSD multiple-comparison procedure of SAS, assuming an α level of 0.05 unless otherwise stated. Linear and quadratic responses were also evaluated using single df contrasts. In assay 1, BW gain data were fitted to a 1-slope broken-line regression model (Robbins et al., 1979; Robbins et al., 2006) to estimate the minimal Met requirement of chicks fed a purified diet containing surfeit dietary Cys. In assay 2, relative bioavailability of NAC was evaluated using standard slope-ratio methodology (Sasse and Baker, 1973). This evaluation did not include data from chicks that received 2.5 g/kg of supplemental Cys because this treatment served to validate the maximal growth response to Cys in the purified diet used herein. Body weight gain (dependent variable) was regressed on supplemental Cys intake (independent variable) from Cys (X 1 ) or NAC (X 2 )in a multiple linear regression analysis using the GLM procedure of SAS. Relative bioavailability of NAC was evaluated using the ratio of slopes [(X 2 /X 1 ) 100] obtained from the multiple linear regression analysis. Table 2. Methionine requirement of chicks fed diets containing excess dietary cyst(e)ine (assay 1) 1 BW Feed G:F, 3 Dietary addition 2 gain, 3 g intake, 3 g g/kg 1. None 35 e 122 c 284 e 2. As g/kg of Cys-Cys 56 d 127 c 439 d 3. As g/kg of Met 120 c 194 b 621 c 4. As g/kg of Met 158 b 219 a 723 b 5. As g/kg of Met 176 a 231 a 764 ab 6. As g/kg of Met 187 a 236 a 795 a 7. As g/kg of Met 188 a 236 a 795 a Pooled SEM a e Within a column, means without a common superscript letter differ (P < 0.05). 1 Values are means of 4 replicate pens of 3 male chicks during the feeding period 8- to 17-d posthatch; average initial BW was 80 ± 0.15 g. 2 The basal diet (Table 1) was devoid of both supplemental Met and cyst(e)ine, and contained 1.2 g/kg of Met and 0.5 g/kg of cyst(e)ine. 3 Quadratic response (P < 0.01). Assay 1 RESULTS Chick BW gain increased (P < 0.05) because of Cys- Cys supplementation, indicating the basal diet was first limiting in Cys (Table 2). In the presence of excess dietary cyst(e)ine, Met supplementation resulted in a quadratic (P < 0.01) response in BW gain, feed intake, and G:F. The fitted 1-slope broken-line regression of either chick BW gain (Figure 1) or G:F over the 9-d assay suggested a minimal supplemental Met requirement of 1.2 g/kg for chicks fed the cyst(e)ine-adequate purified diet used here. Nonetheless, for assay 2, a supplemental concentration of 2.0 g/kg of Met was selected to provide more than adequate Met without furnishing significant excess Met from which Cys could be produced via the transsulfuration pathway. Assay 2 Supplementation of the basal diet with Cys (diets 1 to 4) or NAC (diets 1, 6, and 7) resulted in a linear increase (P < 0.05) in BW gain, feed intake, and G:F (Table 3), suggesting the basal diet for this assay (containing 2.0 g/kg of supplemental Met) was markedly deficient in cyst(e)ine. Efficiency of gain, but not BW gain, was improved (P < 0.05) by 2.5 g/kg of supplemental Cys compared with Cys at 1.05 g/kg. Slope-ratio methodology provided a NAC bioavailability estimate of 106% relative to Cys when BW gain was regressed on supplemental Cys intake. Assay 3 No decreases in BW gain, feed intake, or G:F were observed with supplementation of NAC up to g/ kg (isomolar to 20 g/kg of Cys; Table 4). However,

4 N-acetyl-L-cyseine bioavailability and toxicity 1715 plemental NAC. No chick mortality was observed during this assay. Plasma-free SAA concentrations resulting from ingestion of excess levels of NAC are shown in Table 4. Plasma Met and Cys-Cys increased (P < 0.05) because of excess NAC, but the effect showed no consistent pattern. Although not unexpected, excess NAC had no effect on plasma-free Cys. However, graded excesses of NAC did increase (P < 0.05) plasma-free NAC from an undetectable concentration to 240 mol/l. DISCUSSION Figure 1. Body weight gain of young chicks (4 replicate pens of 3 chicks each) fed graded concentrations of supplemental Met in a purified crystalline AA diet containing more than adequate dietary cyst(e)ine (assay 1). A 1-slope broken-line regression was fitted to the data according to procedures described by Robbins et al. (2006); this model provided an estimated supplemental Met requirement of 1.21 ± 0.07 g/kg. X LR denotes X when less than the requirement or break point. Error bars represent pooled SEM. ingestion of and g/kg of NAC resulted in decreased (P < 0.05) growth performance. Overall, quadratic (P < 0.01) decreases in BW gain, feed intake, and G:F occurred with increased concentrations of sup- Table 3. Bioavailability of N-acetyl-L-Cys (NAC) relative to Cys for chicks fed a cyst(e)ine-deficient purified diet (assay 2) 1 BW Feed G:F, 3 Dietary addition 2 gain, 3,4 g intake, 3 g g/kg 1. None 135 d 223 b 606 f 2. As g/kg of Cys 161 bc 245 a 655 de 3. As g kg of Cys 171 bc 247 a 691 c 4. As g/kg of Cys 200 a 266 a 751 b 5. As g/kg of Cys 204 a 248 a 819 a 6. As g/kg of NAC 160 c 245 a 650 e 7. As g/kg of NAC 179 b 261 a 686 cd Pooled SEM a f Within a column, means without a common superscript letter differ (P < 0.05). 1 Values are means of 4 replicate pens of 3 male chicks during the feeding period 8- to 17-d posthatch; average initial BW was 90 ± 0.09 g. 2 The basal diet (Table 1) contained 2 g/kg of supplemental Met (3.2 g/kg total of Met) and no supplemental cyst(e)ine (0.5 g/kg of cyst(e)ine total). The NAC concentrations of 0.47 and 0.95 g/kg were isomolar to 0.35 and 0.70 g/kg of Cys, respectively. 3 Linear (P < 0.01) response to both Cys (diets 1 to 4) and NAC (diets 1, 6, and 7). 4 Multiple, linear regression of BW gain (g) on supplemental Cys intake (mg) from Cys (X 1 ) or NAC (X 2 ) was Y = 138.9(± 6.324) (± 0.335)X (± 0.494)X 2,r 2 = 0.81 for all diets, except diet 5. Slope-ratio methodology predicted a bioavailability value of 106% for NAC relative to Cys. N-Acetyl-L-cysteine was as effective as Cys in supporting chick growth performance and was therefore assigned a relative bioavailability value of 100%, suggesting the young chick is able to completely metabolize NAC to Cys when delivered orally. This finding was previously suggested using enteral administration in the rat (Baker and Han, 1993) and parenteral administration in the pig (Shoveller et al., 2006), but to our knowledge no studies have estimated the oral bioavailability of NAC using a standard slope-ratio growth assay. In addition, ingestion of dietary NAC isomolar to 40 g/kg of Cys resulted in no chick mortality and only a 34% reduction in BW gain. Therefore, excess dietary Cys provided by NAC resulted in relatively minor effects as compared with the pernicious outcome of feeding an isosulfurous concentration of excess dietary Cys (Dilger et al., 2007). The first bioassay was conducted to establish the required level of Met in our purified diet that contained surfeit cyst(e)ine. We deemed this important for 2 reasons. First, by having Met at its required level, Cys would be singly limiting such that the responses to graded dosing of Cys or NAC in assay 2 would not be limited by Met deficiency anywhere on the response curve. Second, we wanted Met to be at, but not in great excess of, its minimal requirement because excess Met would furnish Cys via transsulfuration, and thereby possibly confound interpretation of the Cys and NAC responses. Establishing a supplemental Met requirement as such (Table 2; Figure 1) is an essential, and often overlooked, step in estimating the relative bioavailability of NAC. Although Met was included at 2.0 g/kg (in slight excess of the minimal Met requirement determined in assay 1), the data clearly showed a growth response to supplemental Cys (as NAC or Cys) in assay 2, confirming that our first 4 Cys doses were within the linear response range. It is apparent that considerable confusion exists with regard to the meaning of the term NAC bioavailability. Previous pharmacokinetic studies (Borgström et al., 1986; Olsson et al., 1988; De Caro et al., 1989) have focused on the amount of an oral NAC dose that reaches the bloodstream as NAC itself. Little emphasis has been placed on the chemical modification of NAC (i.e., deacetylation) within the gut lumen and enterocyte during absorption. Therefore, pharmacokinetic

5 1716 Dilger and Baker Table 4. Growth performance 1 and plasma-free sulfur AA (SAA) concentrations 2 of chicks fed excess N-acetyl-L-Cys (NAC; assay 3) Plasma-free SAA, mol/l BW Feed G:F, 4 Dietary addition 3 gain, 4 g intake, 4 g g/kg Met 5 Cys Cys-Cys NAC 4,5 1. None 203 a 306 a 663 a 99.2 b b 0.0 c 2. As g/kg of NAC 208 a 314 a 662 a ab ab 92.0 b 3. As g/kg of NAC 203 a 298 ab 684 a a a a 4. As g/kg of NAC 176 b 280 b 631 b ab ab a 5. As g/kg of NAC 133 c 231 c 574 c a ab a Pooled SEM a c Within a column, means without a common superscript differ (P < 0.05). 1 Values are means of 4 replicate pens of 3 male chicks during the feeding period 8- to 17-d posthatch; average initial BW was 93 ± 0.43 g. 2 Values are means of 3 replicate pens of 3 male chicks from which blood was collected (fed state, cardiac puncture) and pooled per pen after the 9-d feeding period. 3 The basal diet (Table 1) was a typical corn-soybean meal starter diet (230 g/kg of CP) containing 1.52 g/kg of supplemental DL-Met. The estimated levels of total dietary Met and cyst(e)ine were 5.1 and 3.8 g/ kg, respectively. Diets 1 to 5 provided 0, 10, 20, 30, and 40 g/kg of Cys from NAC. 4 Quadratic (P < 0.01) response. 5 Linear (P < 0.05) response. studies suggesting that less than 10% of oral NAC is absorbed into portal blood as NAC per se are misleading. Our approach, however, was based on the assumption that beneficial effects of NAC do not result from NAC itself, but rather from NAC delivering Cys for in vivo functions (e.g., glutathione synthesis). Thus, the ability of NAC (the test precursor) to provide Cys relative to Cys itself (the standard nutrient) was assessed in assay 2. The results of this study (Table 3) clearly showed that oral NAC was 100% effective as a Cys precursor. Deacetylation of NAC via the enzyme aminoacylase I (EC ) occurs in various tissues not limited to the liver, kidney, lung, and intestine (Sjödin et al., 1989; Yamauchi et al., 2002). The gut most likely plays a significant role in positively affecting the portal flux of Cys, especially when considering the large mass of intestine and the extensive first-pass Cys metabolism that likely occurs in intestinal tissue (Stipanuk and Rotter, 1984; Bos et al., 2003; Shoveller et al., 2005). Studies evaluating whether NAC influences circulating Cys concentrations (Ahola et al., 1999; Shoveller et al., 2006) have typically supplied NAC intravenously to simulate parenteral nutrient provision. Sjödin et al. (1989) clearly showed that dietary NAC was hydrolyzed to Cys in almost stoichiometric amounts in rat, mouse, and human tissues. However, although many tissues possess aminoacylase I activity, the importance of first-pass intestinal metabolism should not be overlooked. Observations in our chick model and in the pig (Shoveller et al., 2006) strongly support the efficient conversion of NAC into Cys. Therefore, the role of NAC in supplying Cys for metabolic and physiologic purposes should be considered a primary function. On establishing the efficient utilization of NAC as a Cys precursor, we focused on the safety of dietary NAC when supplied to chicks in great excess of the dietary Cys requirement. Assay 3 clearly showed that oral provision of NAC supplying up to 20 g/kg of Cys was completely innocuous to chick growth performance. These toxicity data are in stark contrast to previous studies that compared the relative toxicities of Met, Cys, and Cys-Cys (Dilger et al., 2007). Excess dietary NAC providing 10 or 20 g/kg of Cys had no effect on growth, whereas NAC providing 30 or 40 g/ kg of Cys depressed BW gain similar to that of excess Cys-Cys (Dilger et al., 2007). However, unlike Cys, excess dietary NAC caused no chick mortality after a 9-d feeding period. Ingestion of NAC caused no change in plasma-free Cys and only small but variable changes in plasmafree Met and Cys-Cys. We previously observed a similar outcome (Dilger et al., 2007) when feeding excesses of either Cys or Cys-Cys. Thus, it seems that plasmafree Cys remains fairly constant in the chick after acclimation to dietary SAA excesses for a period of 9 d. Shoveller et al. (2006), in newborn piglets, and Ahola et al. (1999), in preterm infants, infused NAC intravenously and observed no change in plasma cyst(e)ine. Additionally, Stabler et al. (2000), using a baboon model of severe prematurity, showed that postdelivery concentrations of plasma cyst(e)ine could not be maintained by direct infusion of Cys. Overall, these studies suggest that strict control of plasma cyst(e)ine concentrations exists in various species. Shoveller et al. (2006) suggested that NAC may be providing a reserve pool of Cys via glutathione biosynthesis, or perhaps by replacing Cys in mixed disulfides or by binding to plasma albumin. No free NAC was detected in the plasma of chicks receiving unsupplemented diets, but plasma-free NAC reached a concentration of 240 mol/l when chicks ingested 40 g/kg of NAC. However, our plasma NAC results do not allow a quantitative estimate of the quantity of Cys absorbed from the gut as NAC vs.

6 N-acetyl-L-cyseine bioavailability and toxicity 1717 Cys itself. Regardless, the free NAC that reaches the bloodstream is theoretically available to serve as a direct antioxidant, or it may be deacetylated to Cys for eventual incorporation into glutathione. Our results in the chick suggest a high tolerance for excess dietary NAC. A similar conclusion was reported previously (Baker, 2006), which suggests that NAC may be a safer over-the-counter nutritional supplement than Cys. Previous research has suggested that Cys may act as an endogenous excitotoxin (Olney and Ho, 1970). In this regard, Cys has been shown to selectively activate N-methyl-D-aspartate receptors and cause brain damage similar to Glu (Olney et al., 1990; Puka-Sundvall et al., 1995). However, supplementation of excess Cys as NAC does not result in the pernicious effects observed by feeding Cys directly (Dilger et al., 2007). Explanation for why NAC is less toxic than Cys itself is perplexing but may result from 1) a slower rate of Cys absorption when provided as NAC or 2) preferential use of NAC over Cys for as yet undefined purposes within the enterocyte. Data in support of these hypotheses are lacking. Therefore, future investigations of NAC pharmacokinetics are warranted. Such studies should consider not only conversion processes of dietary NAC into Cys, but also the location where the free-sulfhydryl group of NAC is metabolized. Work in various animal species suggests NAC is a safe and functional precursor of Cys. In this regard, NAC has several advantages over Cys (unstable) or Cys-Cys (insoluble) for use as a dietary supplement. If used as a dietary supplement, the amino group of NAC (but not of Cys or Cys-Cys) would be protected from Maillard destruction (Baker, 1979; Boebel and Baker, 1982). Moreover, unlike Cys-Cys, NAC is soluble and therefore suitable for liquid formulations. Our data suggest dietary NAC is 100% bioavailable compared with Cys in terms of supporting BW gain. Additionally, it is apparent that a considerable tolerance exists for NAC, because excess supplemental NAC concentrations (up to g/kg, equivalent to 20 g/kg of Cys) caused no untoward effects. This finding is intriguing considering that the provision of 20 g/kg of Cys was 7-fold greater than the estimated dietary requirement for digestible Cys ( 3 g/kg) in the purified diet used herein (Table 4). For these reasons, it seems warranted to consider NAC as a safe and efficacious dietary precursor of Cys. In conclusion, the use of crystalline AA as dietary supplements in human and animal nutrition has gained popularity in the United States. Ingestion of excess dietary L-Cys, L-cystine, or both was previously shown to cause pernicious effects, including mortality, in both rats and chicks. Therefore, safe and functional alternative L-Cys precursor products have been sought. N-Acetyl-L-cysteine serves as a precursor for L-Cys because the α-amino nitrogen is protected by an acetyl group, and most tissues in the animal body possess the ability to remove this acetyl group, thus furnishing L-Cys. In the assays described herein, NAC was shown to be as effective as L-Cys in supporting chick growth, and it was less toxic than L-Cys in terms of growth depression, absence of elevated plasma sulfur AA concentrations, and lack of mortality. Thus, NAC was deemed to be a safe and effective precursor for L-Cys. LITERATURE CITED Ahola, T., V. Fellman, R. Laaksonen, J. Laitila, R. Lapatto, P. J. Neuvonen, and K. O. Raivio Pharmacokinetics of intravenous N-acetylcysteine in pre-term new-born infants. Eur. J. Clin. Pharmacol. 55: Baker, D. H Efficacy of the D- and L-isomers of N-acetylmethionine for chicks fed diets containing either crystalline amino acids or intact protein. J. Nutr. 109: Baker, D. H Comparative species utilization and toxicity of sulfur amino acids. J. Nutr. 136:1670S 1675S. Baker, D. H., and Y. Han Bioavailable level and source of cysteine determine protein quality of a commercial enteral product: Adequacy of tryptophan but deficiency of cysteine for rats fed an enteral product prepared fresh or stored beyond shelf life. J. Nutr. 123: Boebel, K. P., and D. H. Baker Efficacy of methionine peptides as determined by chick bioassay. J. Nutr. 112: Borgström, L., B. Kågedal, and O. Paulsen Pharmacokinetics of N-acetylcysteine in man. Eur. J. Clin. Pharmacol. 31: Bos, C., B. Stoll, H. Fouillet, C. Gaudichon, X. Guan, M. A. Grusak, P. J. Reeds, D. Tome, and D. G. Burrin Intestinal lysine metabolism is driven by the enteral availability of dietary lysine in piglets fed a bolus meal. Am. J. Physiol. Endocrinol. Metab. 285:E1246 E1257. Chung, T. K., and D. H. Baker Efficiency of dietary methionine utilization by young pigs. J. Nutr. 122: De Caro, L., A. Ghizzi, R. Costa, A. Longo, G. P. Ventresca, and E. Lodola Pharmacokinetics and bioavailability of oral acetylcysteine in healthy volunteers. Arzneimittelforschung 39: Dilger, R. N., S. Toue, T. Kimura, R. Sakai, and D. H. Baker Excess dietary L-cysteine, but not L-cystine, is lethal for chicks but not for rats or pigs. J. Nutr. 137: Frost and Sullivan Strategic Analysis of the U.S. Markets for Amino Acids. F Frost and Sullivan, Mountain View, CA. NRC (National Research Council) Nutrient Requirements of Poultry. 9th ed. National Academies Press, Washington, DC. Olney, J. W., and O. L. Ho Brain damage in infant mice following oral intake of glutamate, aspartate or cysteine. Nature 227: Olney, J. W., C. Zorumski, M. T. Price, and J. Labruyere L- Cysteine, a bicarbonate-sensitive endogenous excitotoxin. Science 248: Olsson, B., M. Johansson, J. Gabrielsson, and P. Bolme Pharmacokinetics and bioavailability of reduced and oxidized N- acetylcysteine. Eur. J. Clin. Pharmacol. 34: Puka-Sundvall, M., P. Eriksson, M. Nilsson, M. Sandberg, and A. Lehmann Neurotoxicity of cysteine: Interaction with glutamate. Brain Res. 705: Robbins, K. R., H. W. Norton, and D. H. Baker Estimation of nutrient requirements from growth data. J. Nutr. 109: Robbins, K. R., A. M. Saxton, and L. L. Southern Estimation of nutrient requirements using broken-line regression analysis. J. Anim. Sci. 84(E. Suppl.):E155 E165. Sasse, C. E., and D. H. Baker Availability of sulfur amino acids in corn and corn gluten meal for growing chicks. J. Anim. Sci. 37: Shoveller, A. K., J. A. Brunton, O. Brand, P. B. Pencharz, and R. O. Ball N-Acetylcysteine is a highly available precursor

7 1718 Dilger and Baker for cysteine in the neonatal piglet receiving parenteral nutrition. J. Parenter. Enteral Nutr. 30: Shoveller, A. K., B. Stoll, R. O. Ball, and D. G. Burrin Nutritional and functional importance of intestinal sulfur amino acid metabolism. J. Nutr. 135: Sjödin, K., E. Nilsson, A. Hallberg, and A. Tunek Metabolism of N-acetyl-L-cysteine. Some structural requirements for the deacetylation and consequences for the oral bioavailability. Biochem. Pharmacol. 38: Stabler, S. P., R. L. Morton, S. L. Winski, R. H. Allen, and C. W. White Effects of parenteral cysteine and glutathione feeding in a baboon model of severe prematurity. Am. J. Clin. Nutr. 72: Stipanuk, M. H Sulfur amino acid metabolism: Pathways for production and removal of homocysteine and cysteine. Annu. Rev. Nutr. 24: Stipanuk, M. H., and M. A. Rotter Metabolism of cysteine, cysteinesulfinate and cysteinesulfonate in rats fed adequate and excess levels of sulfur-containing amino acids. J. Nutr. 114: Vale, J. A., and A. T. Proudfoot Paracetamol (acetaminophen) poisoning. Lancet 346: Yamauchi, A., N. Ueda, S. Hanafusa, E. Yamashita, M. Kihara, and S. Naito Tissue distribution of and species differences in deacetylation of N-acetyl-L-cysteine and immunohistochemical localization of acylase I in the primate kidney. J. Pharm. Pharmacol. 54:

Dietary guanidino acetic acid is an efficacious replacement for arginine for young chicks 1

Dietary guanidino acetic acid is an efficacious replacement for arginine for young chicks 1 Dietary guanidino acetic acid is an efficacious replacement for arginine for young chicks 1 R. N. Dilger,* 2 K. Bryant-Angeloni,* 3 R. L. Payne, A. Lemme, and C. M. Parsons * * Department of Animal Sciences,

More information

EFFECTS OF REPLACING WHEY PROTEIN CONCENTRATE WITH CRYSTALLINE AMINO ACIDS ON WEANLING PIG PERFORMANCE

EFFECTS OF REPLACING WHEY PROTEIN CONCENTRATE WITH CRYSTALLINE AMINO ACIDS ON WEANLING PIG PERFORMANCE EFFECTS OF REPLACING WHEY PROTEIN CONCENTRATE WITH CRYSTALLINE AMINO ACIDS ON WEANLING PIG PERFORMANCE 1999 Animal Science Research Report Authors: Story in Brief Pages 258-265 J. Chung, S.D. Carter,C.V.

More information

EFFECTS OF AMINO ACID SUBSTITUTIONS FOR WHEY PROTEIN CONCENTRATE ON WEANLING PIG PERFORMANCE. Authors: J. Chung, S.D. Carter and J.C.

EFFECTS OF AMINO ACID SUBSTITUTIONS FOR WHEY PROTEIN CONCENTRATE ON WEANLING PIG PERFORMANCE. Authors: J. Chung, S.D. Carter and J.C. EFFECTS OF AMINO ACID SUBSTITUTIONS FOR WHEY PROTEIN CONCENTRATE ON WEANLING PIG PERFORMANCE 1999 Animal Science Research Report Authors: Story in Brief Pages 266-272 J. Chung, S.D. Carter and J.C. Whisenhunt

More information

Tryptophan Bioavailability in Soybean Meal for Young Pigs

Tryptophan Bioavailability in Soybean Meal for Young Pigs Introduction Tryptophan Bioavailability in Soybean Meal for Young Pigs O. Adeola Department of Animal Sciences Several studies have been conducted to determine the bioavailability of amino acids for young

More information

Protein Dispersibility Index as an Indicator of Adequately Processed Soybean Meal

Protein Dispersibility Index as an Indicator of Adequately Processed Soybean Meal Dispersibility Index as an Indicator of Adequately Processed Soybean Meal A. B. Batal, M. W. Douglas, A. E. Engram, and C. M. Parsons 1 Department of Animal Sciences, University of Illinois, Urbana, Illinois

More information

Key words: crystalline amino acids, dispensable amino acid, pig, protein source, valine

Key words: crystalline amino acids, dispensable amino acid, pig, protein source, valine Evaluation of standardized ileal digestible valine:lysine, total lysine:crude protein, and replacing fish meal, meat and bone meal, and poultry byproduct meal with crystalline amino acids on growth performance

More information

Threonine Is More Limiting Than Valine in Diets of Lactating Sows with High Rates of Body Protein Loss

Threonine Is More Limiting Than Valine in Diets of Lactating Sows with High Rates of Body Protein Loss Threonine Is More Limiting Than Valine in Diets of Lactating Sows with High Rates of Body Protein Loss Kevin T. Soltwedel, Robert A. Easter, and James E. Pettigrew Department of Animal Sciences University

More information

Nutritional value of soybean meal produced from conventional, high-protein, or low-oligosaccharide varieties of soybeans and fed to broiler chicks 1

Nutritional value of soybean meal produced from conventional, high-protein, or low-oligosaccharide varieties of soybeans and fed to broiler chicks 1 Nutritional value of soybean meal produced from conventional, high-protein, or low-oligosaccharide varieties of soybeans and fed to broiler chicks 1 K. M. Baker, P. L. Utterback, C. M. Parsons, and H.

More information

The Effect of Citric Acid on the Calcium and Phosphorus Requirements of Chicks Fed Corn-Soybean Meal Diets

The Effect of Citric Acid on the Calcium and Phosphorus Requirements of Chicks Fed Corn-Soybean Meal Diets The Effect of Citric Acid on the Calcium and Phosphorus Requirements of Chicks Fed Corn-Soybean Meal Diets S. D. Boling-Frankenbach, 1 J. L. Snow, C. M. Parsons, 2 and D. H. Baker Department of Animal

More information

Recent Developments in Zinc Bioavailability Research

Recent Developments in Zinc Bioavailability Research Recent Developments in Zinc Bioavailability Research Hardy M. Edwards, III, Ph.D. Zacky Farms INTRODUCTION Zinc bioavailability estimates in common feed ingredients are very limited (Baker and Ammerman,

More information

Growth Performance of Broilers Using a Phase-Feeding Approach with Diets Switched Every Other Day from Forty-Two to Sixty-Three Days of Age 1

Growth Performance of Broilers Using a Phase-Feeding Approach with Diets Switched Every Other Day from Forty-Two to Sixty-Three Days of Age 1 Growth Performance of Broilers Using a Phase-Feeding Approach with Diets Switched Every Other Day from Forty-Two to Sixty-Three Days of Age 1 T. Pope, L. N. Loupe, J. A. Townsend, and J. L. Emmert 2 Department

More information

Department of Animal Sciences, University of Florida, Gainesville, Florida 32611

Department of Animal Sciences, University of Florida, Gainesville, Florida 32611 Performance of Commercial Laying Hens when Six Percent Corn Oil Is Added to the Diet at Various Ages and with Different Levels of Tryptophan and Protein 1 R. S. Antar, R. H. Harms, 2 M. Shivazad, 3 D.

More information

METABOLISM AND NUTRITION

METABOLISM AND NUTRITION METABOLISM AND NUTRITION Effects of Reducing Dietary Protein, Methionine, Choline, Folic Acid, and Vitamin B 12 During the Late Stages of the Egg Production Cycle on Performance and Eggshell Quality 1

More information

THE ESSENTIAL FATTY ACID REQUIREMENTS OF BROILERS 1

THE ESSENTIAL FATTY ACID REQUIREMENTS OF BROILERS 1 2001 Poultry Science Association, Inc. THE ESSENTIAL FATTY ACID REQUIREMENTS OF BROILERS 1 W. O. ZORNIG, G. M. PESTI 2, and R. I. BAKALLI Department of Poultry Science The University of Georgia Athens,

More information

Lysine Requirement of Broiler Chickens Fed Low-density Diets under Tropical Conditions

Lysine Requirement of Broiler Chickens Fed Low-density Diets under Tropical Conditions 939 Asian-Aust. J. Anim. Sci. Vol. 20, No. 6 : 939-943 June 2007 www.ajas.info Lysine Requirement of Broiler Chickens Fed Low-density Diets under Tropical Conditions Usama Aftab*, Muhammad Ashraf, Abdul

More information

Effect of Ash Content on Protein Quality of Meat and Bone Meal

Effect of Ash Content on Protein Quality of Meat and Bone Meal Effect of Ash Content on Protein Quality of Meat and Bone Meal R. B. Shirley 1 and C. M. Parsons 2 Department of Animal Sciences, University of Illinois, Urbana, Illinois 61801 ABSTRACT The effect of ash

More information

Exp Research Report. Digestibility of energy and concentration of digestible and metabolizable energy in high

Exp Research Report. Digestibility of energy and concentration of digestible and metabolizable energy in high Exp. 582 Research Report Digestibility of energy and concentration of digestible and metabolizable energy in high protein and conventional DDGS fed to growing pigs. C. D. Espinosa and H. H. Stein University

More information

Use of Distiller s s Dried Grains plus Solubles in Poultry Feeding Trials at the University of Georgia. University of Georgia

Use of Distiller s s Dried Grains plus Solubles in Poultry Feeding Trials at the University of Georgia. University of Georgia Use of Distiller s s Dried Grains plus Solubles in Poultry Feeding Trials at the University of Georgia Amy B. Batal Poultry Science Department University of Georgia Introduction Distillers dried grains

More information

Effect of Protein and Energy Sources and Bulk Density of Diets on Growth Performance of Chicks 1

Effect of Protein and Energy Sources and Bulk Density of Diets on Growth Performance of Chicks 1 Effect of Protein and Energy Sources and Bulk Density of Diets on Growth Performance of Chicks 1 J. L. Shelton, D. W. Dean, L. L. Southern, and T. D. Bidner 2 Department of Animal Sciences, Louisiana State

More information

Studies on the Riboflavin, Pantothenic Acid, Nicotinic Acid, and Choline Requirements of Young Embden Geese

Studies on the Riboflavin, Pantothenic Acid, Nicotinic Acid, and Choline Requirements of Young Embden Geese Studies on the Riboflavin, Pantothenic Acid, Nicotinic Acid, and Choline Requirements of Young Embden Geese J. A. SERAFIN Patuxent Wildlife Research Center, US Fish and Wildlife Service, Laurel, Maryland

More information

Two experiments were conducted to determine the influence of synthetic lysine

Two experiments were conducted to determine the influence of synthetic lysine 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 RUNNING TITLE: METHIONINE+CYSTEINE/LYSINE RATIO TITLE: Effects of Added Synthetic Lysine on Second Cycle Commercial Leghorns While Maintaining

More information

Apparent and standardized ileal digestibility of amino acids in gelatin-based diets by growing pigs

Apparent and standardized ileal digestibility of amino acids in gelatin-based diets by growing pigs Animal Feed Science and Technology 119 (2005) 107 115 Apparent and standardized ileal digestibility of amino acids in gelatin-based diets by growing pigs G.I. Petersen, M.R. Smiricky-Tjardes 1, H.H. Stein

More information

Lysine and Arginine Requirements of Broiler Chickens at Twoto Three-Week Intervals to Eight Weeks of Age

Lysine and Arginine Requirements of Broiler Chickens at Twoto Three-Week Intervals to Eight Weeks of Age Lysine and Arginine Requirements of Broiler Chickens at Twoto Three-Week Intervals to Eight Weeks of Age M. C. Labadan, Jr., 1 K.-N. Hsu, and R. E. Austic 2 Department of Animal Science, Cornell University,

More information

Effects of Dietary Standardized Ileal Digestible Isoleucine:Lysine Ratio on Nursery Pig Performance

Effects of Dietary Standardized Ileal Digestible Isoleucine:Lysine Ratio on Nursery Pig Performance Kansas Agricultural Experiment Station Research Reports Volume 2 Issue 8 Swine Day Article 12 January 2016 Effects of Dietary Standardized Ileal Digestible Isoleucine:Lysine Ratio on Nursery Pig Performance

More information

Protein and Amino Acid Quality of Meat and Bone Meal

Protein and Amino Acid Quality of Meat and Bone Meal Protein and Amino Acid Quality of Meat and Bone Meal C. M. PARSONS,1 F. CASTANON, and Y. HAN Department of Animal Sciences, University of Illinois, Urbana, Illinois 61801 ABSTRACT The in vivo protein quality

More information

Effect of High Available Phosphorus Corn and Elevated Fat and Protein. Corn on Nutrient Digestibility and Excretion in Finishing Pigs

Effect of High Available Phosphorus Corn and Elevated Fat and Protein. Corn on Nutrient Digestibility and Excretion in Finishing Pigs Effect of High Available Phosphorus Corn and Elevated Fat and Protein Introduction Corn on Nutrient Digestibility and Excretion in Finishing Pigs S. L. Hankins, A. L. Sutton and B. T. Richert Department

More information

DETERMINING THE DIGESTIBLE LYSINE AND LYSINE: THREONINE RATIOS FOR GROWING TURKEYS

DETERMINING THE DIGESTIBLE LYSINE AND LYSINE: THREONINE RATIOS FOR GROWING TURKEYS DETERMINING THE DIGESTIBLE LYSINE AND LYSINE: THREONINE RATIOS FOR GROWING TURKEYS M.S. Lilburn Department of Animal Sciences OARDC/ Ohio State University Wooster, OH 4469 Phone: 330-63-399 FAX: 330-63-3949

More information

Efficacy of Phase-Feeding in Supporting Growth Performance of Broiler Chicks During the Starter and Finisher Phases 1

Efficacy of Phase-Feeding in Supporting Growth Performance of Broiler Chicks During the Starter and Finisher Phases 1 Efficacy of Phase-Feeding in Supporting Growth Performance of Broiler Chicks During the Starter and Finisher Phases 1 W. A. Warren and J. L. Emmert 2 Department of Poultry Science, University of Arkansas,

More information

Use of Dried Distillers Grains with Solubles in Growing-finishing Diets of Turkey Hens

Use of Dried Distillers Grains with Solubles in Growing-finishing Diets of Turkey Hens International Journal of Poultry Science (6): 389-393, 003 Asian Network for Scientific Information 003 Use of Dried Distillers Grains with Solubles in Growing-finishing Diets of Turkey Hens Kevin D. Roberson

More information

Supplementation of Low-Calcium and Low-Phosphorus Diets with Phytase and Cholecalciferol

Supplementation of Low-Calcium and Low-Phosphorus Diets with Phytase and Cholecalciferol Supplementation of Low-Calcium and Low-Phosphorus Diets with Phytase and Cholecalciferol Introduction O. Adeola, T.R. Cline, J.I. Orban, D. Ragland, and A.L. Sutton Department of Animal Sciences Supplementation

More information

AMINO ACID SUBSTITUTION FOR WHEY PROTEIN CONCENTRATE IN THE DIETS OF CONVENTIONALLY WEANED PIGS

AMINO ACID SUBSTITUTION FOR WHEY PROTEIN CONCENTRATE IN THE DIETS OF CONVENTIONALLY WEANED PIGS AMINO ACID SUBSTITUTION FOR WHEY PROTEIN CONCENTRATE IN THE DIETS OF CONVENTIONALLY WEANED PIGS M.E. Davis 2, B.Z. de Rodas 3, C.V. Maxwell 4, E. Broekman 2, and J. Chung 2 Story in Brief A total of 120

More information

Development and Evaluation of a New Precision-Fed Chick Assay for Determining Amino Acid Digestibility and Metabolizable Energy of Feed Ingredients

Development and Evaluation of a New Precision-Fed Chick Assay for Determining Amino Acid Digestibility and Metabolizable Energy of Feed Ingredients Development and Evaluation of a New Precision-Fed Chick Assay for Determining Amino Acid Digestibility and Metabolizable Energy of Feed Ingredients C.M. Parsons University of Illinois 1207 W. Gregory Drive

More information

2-Keto-4-(Methylthio)Butyric Acid (Keto Analog of Methionine) Is a Safe and Efficacious Precursor of L-Methionine in Chicks 1,2

2-Keto-4-(Methylthio)Butyric Acid (Keto Analog of Methionine) Is a Safe and Efficacious Precursor of L-Methionine in Chicks 1,2 The Journal of Nutrition Nutrient Physiology, Metabolism, and Nutrient-Nutrient Interactions 2-Keto-4-(Methylthio)Butyric Acid (Keto Analog of Methionine) Is a Safe and Efficacious Precursor of L-Methionine

More information

The effects of porcine intestinal mucosa protein sources on nursery pig growth performance 1

The effects of porcine intestinal mucosa protein sources on nursery pig growth performance 1 The effects of porcine intestinal mucosa protein sources on nursery pig growth performance 1 A. J. Myers,* R. D. Goodband,* 2 M. D. Tokach,* S. S. Dritz, J. M. DeRouchey,* and J. L. Nelssen* *Department

More information

Evaluation of NutriDense low-phytate corn and added fat in growing and finishing swine diets 1,2

Evaluation of NutriDense low-phytate corn and added fat in growing and finishing swine diets 1,2 Evaluation of NutriDense low-phytate corn and added fat in growing and finishing swine diets 1,2 S. K. Linneen,* J. M. DeRouchey,* 3 R. D. Goodband,* M. D. Tokach,* S. S. Dritz, J. L. Nelssen,* and J.

More information

Calcium and phosphorus requirements for maximized growth in modern market poults. A. M. Pospisil and J. D. Latshaw. Introduction

Calcium and phosphorus requirements for maximized growth in modern market poults. A. M. Pospisil and J. D. Latshaw. Introduction Calcium and phosphorus requirements for maximized growth in modern market poults A. M. Pospisil and J. D. Latshaw Introduction Nutrient requirements are expressed in concentrations of the diet. The concentration

More information

POTENTIAL FOR EGG PROTEIN AND PORCINE SPRAY-DRIED BLOOD AS A REPLACEMENT FOR PLASMA PROTEIN (AP-920) IN EARLY- WEANING PIG DIETS

POTENTIAL FOR EGG PROTEIN AND PORCINE SPRAY-DRIED BLOOD AS A REPLACEMENT FOR PLASMA PROTEIN (AP-920) IN EARLY- WEANING PIG DIETS POTENTIAL FOR EGG PROTEIN AND PORCINE SPRAY-DRIED BLOOD AS A REPLACEMENT FOR PLASMA PROTEIN (AP-920) IN EARLY- WEANING PIG DIETS J. Chung, B.Z. de Rodas 3, C.V. Maxwell 4, M.E. Davis 2 and W.G. Luce 5

More information

The Bioavailability of Lysine and Phosphorus in Distillers Dried Grains with Solubles

The Bioavailability of Lysine and Phosphorus in Distillers Dried Grains with Solubles The Bioavailability of Lysine and Phosphorus in Distillers Dried Grains with Solubles B. S. Lumpkins and A. B. Batal 1 Department of Poultry Science, Poultry Science Building, University of Georgia, Athens,

More information

The Relationship of Calcium Intake, Source, Size, Solubility In Vitro and In Vivo, and Gizzard Limestone Retention in Laying Hens 1

The Relationship of Calcium Intake, Source, Size, Solubility In Vitro and In Vivo, and Gizzard Limestone Retention in Laying Hens 1 The Relationship of Calcium Intake, Source, Size, Solubility In Vitro and In Vivo, and Gizzard Limestone Retention in Laying Hens 1 BINGFAN ZHANG and CRAIG N. COON2 Department of Animal Science, University

More information

Maintenance Sulfur Amino Acid Requirements of Young Chicks and Efficiency of Their Use for Accretion of Whole-Body Sulfur Amino Acids and Protein 1

Maintenance Sulfur Amino Acid Requirements of Young Chicks and Efficiency of Their Use for Accretion of Whole-Body Sulfur Amino Acids and Protein 1 Maintenance Sulfur Amino Acid Requirements of Young Chicks and Efficiency of Their Use for Accretion of Whole-Body Sulfur Amino Acids and Protein 1 HARDY M. EDWARDS, III, and DAVID H. BAKER 2 Department

More information

J.C. Whisenhunt and S.D. Carter. Story in Brief Animal Science Research Report

J.C. Whisenhunt and S.D. Carter. Story in Brief Animal Science Research Report 2000 Animal Science Research Report Pages 147-153 Effects of Providing Amino Acids from Whey Protein Concentrate or Crystalline Amino Acids on The Performance of Conventionally Weaned Pigs J.C. Whisenhunt

More information

Development of Alternative Feeds Specifically for Closed Containment Systems

Development of Alternative Feeds Specifically for Closed Containment Systems Development of Alternative Feeds Specifically for Closed Containment Systems for EAST COAST SALMON CLOSED-CONTAINMENT WORKSHOP October 10 th and 11 th, 2012 Rick Barrows a, Tom Welker a, Ken Overturf a,

More information

Determining the threonine requirement of the high-producing lactating sow. D.R. Cooper, J.F. Patience, R.T. Zijlstra and M.

Determining the threonine requirement of the high-producing lactating sow. D.R. Cooper, J.F. Patience, R.T. Zijlstra and M. 66 Determining the threonine requirement of the high-producing lactating sow D.R. Cooper, J.F. Patience, R.T. Zijlstra and M. Rademacher Introduction There are two steps in the design of a feeding strategy.

More information

Factors Affecting Efficacy of Methionine Hydroxy Analogue for Chicks Fed Amino Acid Diets 1

Factors Affecting Efficacy of Methionine Hydroxy Analogue for Chicks Fed Amino Acid Diets 1 Factors Affecting Efficacy of Hydroxy Analogue for Chicks Fed Amino Acid Diets 1 AEN C. CHRISTENSEN, 2 J. O. ANDERSON, and D. C. DOBSON Animal, Dairy, and Veterinary Science Department, Utah State University,

More information

Added dietary pyridoxine, but not thiamin, improves weanling pig growth performance 1,2

Added dietary pyridoxine, but not thiamin, improves weanling pig growth performance 1,2 Added dietary pyridoxine, but not thiamin, improves weanling pig growth performance 1,2 J. C. Woodworth, R. D. Goodband 3, J. L. Nelssen, M. D. Tokach, and R. E. Musser Department of Animal Sciences and

More information

Effects of Standardized Ileal Digestible Lysine Content in Low Crude Protein Diets on Finishing Pig Performance and Economics from 230 to 280 lb

Effects of Standardized Ileal Digestible Lysine Content in Low Crude Protein Diets on Finishing Pig Performance and Economics from 230 to 280 lb Kansas Agricultural Experiment Station Research Reports Volume 1 Issue 7 Swine Day Article 9 January 2015 Effects of Standardized Ileal Digestible Lysine Content in Low Crude Protein Diets on Finishing

More information

MPRP Annual Report (January 2012)

MPRP Annual Report (January 2012) MPRP Annual Report (January 2012) Further Evaluation of a New Precision-Fed Chick Assay for Determining Amino Acid Digestibility and Metabolizable Energy of Feed Ingredients C.M. Parsons University of

More information

Protein Deposition in Growing and Finishing Pigs

Protein Deposition in Growing and Finishing Pigs 1 Protein Deposition in Growing and Finishing Pigs DETERMINING WHOLE BODY PROTEIN DEPOSITION RATES IN PIGS. Mark L. Lorschy, Doug A. Gillis, John F. Patience and Kees de Lange. Summary There is controversy

More information

Potential for Fish Meal Analog as a Replacement for Fish Meal in Early-Weaned Pig Diets

Potential for Fish Meal Analog as a Replacement for Fish Meal in Early-Weaned Pig Diets Potential for Fish Meal Analog as a Replacement for Fish Meal in Early-Weaned Pig Diets C.V. Maxwell 1, M.E. Davis 1, D.C. Brown 1, P. Bond 2, and Z.B. Johnson 1 Story in Brief A total of 288 pigs (20

More information

Effects of Dietary Vitamin E Level and Source on Sow, Milk, and Piglet Concentrations of α-tocopherol 1

Effects of Dietary Vitamin E Level and Source on Sow, Milk, and Piglet Concentrations of α-tocopherol 1 Effects of Dietary Vitamin E Level and Source on Sow, Milk, and Piglet Concentrations of α-tocopherol N. W. Shelton, J. L. Nelssen, M. D. Tokach, S. S. Dritz 2, R. D. Goodband, J. M. DeRouchey, H. Yang

More information

Comparative effects of inorganic and organic selenium. sources on performance, eggshell quality and egg selenium

Comparative effects of inorganic and organic selenium. sources on performance, eggshell quality and egg selenium Comparative effects of inorganic and organic selenium sources on performance, eggshell quality and egg selenium content of laying hens M. Yousefi* and H. Sari Department of Animal Science, Islamic Azad

More information

Prof Velmurugu Ravindran Massey University, New Zealand

Prof Velmurugu Ravindran Massey University, New Zealand Prof Velmurugu Ravindran Massey University, New Zealand Digestible amino acids in feedstuffs for poultry Sponsored by: Ileal Digestible Amino acids in Feedstuffs for Poultry V. Ravindran Massey University

More information

Lysine Requirements of Native Chicken, Hinai-jidori (Rhode Island

Lysine Requirements of Native Chicken, Hinai-jidori (Rhode Island Lysine Requirements of Native Chicken, Hinai-jidori (Rhode Island Takayuki MURAMOTO*, Shinobu FUJIMURA, Motoni KADOWAKI and Teru ISHIBASHI Graduate School of Science and Technology, Niigata University,

More information

INTRODUCTION MATERIALS AND METHODS. C. Martinez-Amezcua, C. M. Parsons, 1 and D. H. Baker

INTRODUCTION MATERIALS AND METHODS. C. Martinez-Amezcua, C. M. Parsons, 1 and D. H. Baker Effect of Microbial Phytase and Citric Acid on Phosphorus Bioavailability, Apparent Metabolizable Energy, and Amino Acid Digestibility in Distillers Dried Grains with Solubles in Chicks C. Martinez-Amezcua,

More information

Comparative Effects of Dietary Copper, Zinc, Essential Oils, and Chlortetracycline on Nursery Pig Growth Performance 1

Comparative Effects of Dietary Copper, Zinc, Essential Oils, and Chlortetracycline on Nursery Pig Growth Performance 1 Comparative Effects of Dietary Copper, Zinc, Essential Oils, and Chlortetracycline on Nursery Pig Growth Performance J.A. Feldpausch, J.A. DeJong, M.D. Tokach, S.S. Dritz, J.C. Woodworth, R.G. Amachawadi,

More information

Comparison of spray-dried blood meal and blood cells in diets for nursery pigs 1,2

Comparison of spray-dried blood meal and blood cells in diets for nursery pigs 1,2 Comparison of spray-dried blood meal and blood cells in diets for nursery pigs 1,2 J. M. DeRouchey 3, M. D. Tokach, J. L. Nelssen, R. D. Goodband, S. S. Dritz, J. C. Woodworth, and B. W. James Department

More information

EVALUATION OF THE OPTIMAL TRUE-ILEAL-DIGESTIBLE LYSINE AND THREONINE REQUIREMENT FOR NURSERY PIGS

EVALUATION OF THE OPTIMAL TRUE-ILEAL-DIGESTIBLE LYSINE AND THREONINE REQUIREMENT FOR NURSERY PIGS Swine Day 2004 EVALUATION OF THE OPTIMAL TRUE-ILEAL-DIGESTIBLE LYSINE AND THREONINE REQUIREMENT FOR NURSERY PIGS N. A. Lenehan, M. D. Tokach, S. S. Dritz 1, J. L. Usry 2, R. D. Goodband J. M. DeRouchey,

More information

EVALUATION OF DISTILLERS DRIED GRAINS WITH SOLUBLES 701. Table 1. Composition of the phosphorus deficient basal diet 1

EVALUATION OF DISTILLERS DRIED GRAINS WITH SOLUBLES 701. Table 1. Composition of the phosphorus deficient basal diet 1 Phosphorus Bioavailability, True Metabolizable Energy, and Amino Acid Digestibilities of High Protein Corn Distillers Dried Grains and Dehydrated Corn Germ E. J. Kim, C. Martinez Amezcua, P. L. Utterback,

More information

NATIONAL RENDERERS ASSOCIATION, Inc.

NATIONAL RENDERERS ASSOCIATION, Inc. NATIONAL RENDERERS ASSOCIATION, Inc. 22A, Circle Tower, 28 Tang Lung St., Causeway Bay, Hong Kong Tel:(852)2890-2529 Fax:(852)2576-8045 Email:nrahkg@nrahongkong.com.hk Effect of replacement of fish meal

More information

EFFECT OF FEEDING HIGH OR LOW FAT MANUFACTURED LIQUID DIETS TO PIGS WEANED FROM THE SOW AT 10 DAYS OF AGE

EFFECT OF FEEDING HIGH OR LOW FAT MANUFACTURED LIQUID DIETS TO PIGS WEANED FROM THE SOW AT 10 DAYS OF AGE EFFECT OF FEEDING HIGH OR LOW FAT MANUFACTURED LIQUID DIETS TO PIGS WEANED FROM THE SOW AT 10 DAYS OF AGE W.T. Oliver, K.J. Touchette[1], J.A. Brown, S.A. Matthews, J. Odle, and R.J. Harrell Summary Previous

More information

Effects of L-Carnitine in the Diet of Weanling Pigs I. Growth Performance

Effects of L-Carnitine in the Diet of Weanling Pigs I. Growth Performance Effects of L-Carnitine in the Diet of Weanling Pigs I. Growth Performance M.J. Rincker, S.D. Carter, R.W. Fent, B.W. Senne, and K.Q. Owen Story in Brief An experiment was conducted to evaluate the effects

More information

LYSINE REQUIREMENT OF PHASE 2 NURSERY PIGS FED KARL HARD RED WINTER WHEAT BASED DIETS

LYSINE REQUIREMENT OF PHASE 2 NURSERY PIGS FED KARL HARD RED WINTER WHEAT BASED DIETS LYSINE REQUIREMENT OF PHASE 2 NURSERY PIGS FED KARL HARD RED WINTER WHEAT BASED DIETS E.J.A.J. Broekman, B.Z. de Rodas 3, W.G. Luce 4, C.V. Maxwell 5 and J.S. Chung 2 Story in Brief Two experiments involving

More information

TECHNICAL INFORMATION

TECHNICAL INFORMATION MP Biomedicals, LLC 29525 Fountain Parkway Solon, Ohio 44139 TECHNICAL INFORMATION Telephone: 440/337-1200 Toll Free: 800/854-0530 Fax: 440/337-1180 mailto: biotech@mpbio.com web: http://www.mpbio.com

More information

Effect of Formulating Diets to Reduce Excess Amino Acids on Performance of Growing and Finishing Pigs

Effect of Formulating Diets to Reduce Excess Amino Acids on Performance of Growing and Finishing Pigs South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange South Dakota Swine Research Report, 2001 Animal Science Field Day Proceedings and

More information

Grower-Finisher Performance and Carcass Characteristics of Pigs Fed Genetically Modified Bt Corn

Grower-Finisher Performance and Carcass Characteristics of Pigs Fed Genetically Modified Bt Corn Grower-Finisher Performance and Carcass Characteristics of Pigs Fed Genetically Modified Bt Corn Introduction T.E. Weber, B.T. Richert, D.C. Kendall, K.A. Bowers, and C.T. Herr Department of Animal Sciences

More information

An Update on Current Amino Acid Requirements and Energy for Swine K STATE. RESEARCH and EXTENSION. KSUswine.org

An Update on Current Amino Acid Requirements and Energy for Swine K STATE. RESEARCH and EXTENSION. KSUswine.org An Update on Current Amino Acid Requirements and Energy for Swine K STATE RESEARCH and EXTENSION KSUswine.org How do you value synthetic amino acids? When using synthetics amino acids to replace intact

More information

METABOLISM AND NUTRITION. Glycine Supplementation to Low Protein, Amino Acid-Supplemented Diets Supports Optimal Performance of Broiler Chicks 1

METABOLISM AND NUTRITION. Glycine Supplementation to Low Protein, Amino Acid-Supplemented Diets Supports Optimal Performance of Broiler Chicks 1 METABOLISM AND NUTRITION Glycine Supplementation to Low Protein, Amino Acid-Supplemented Diets Supports Optimal Performance of Broiler Chicks 1 D. W. Dean, T. D. Bidner, and L. L. Southern 2 Department

More information

IT HAS become accepted that feed protein(s)

IT HAS become accepted that feed protein(s) METABOLIZABLE ENERGY 333 on the utilization of dietary energy. Poultry Sci. 42: 1325-1332. Sibbald, I. R., and S. J. Slinger, 1963b. A biological assay for metabolizable energy in poultry feed ingredients

More information

Evaluation of Heparin Production By-Products in Nursery Pig Diets 1

Evaluation of Heparin Production By-Products in Nursery Pig Diets 1 Evaluation of Heparin Production By-Products in Nursery Pig Diets A. J. Myers, M. D. Tokach, R. D. Goodband, M.U. Steidinger, S. S. Dritz, J. M. DeRouchey, J. L. Nelssen, B. W. Ratliff, and D. M. McKilligan

More information

*Department of Animal Sciences and Industry and Food Animal Health and Management Center, Kansas State University, Manhattan

*Department of Animal Sciences and Industry and Food Animal Health and Management Center, Kansas State University, Manhattan Effects of increasing L-lysine HCl in corn- or sorghum-soybean meal-based diets on growth performance and carcass characteristics of growing-finishing pigs 1,2 M. De la Llata*, S. S. Dritz 3, M. D. Tokach*,

More information

T.B. Morillo, S.D. Carter, J.S. Park, and J.D. Schneider. Story in Brief. Introduction

T.B. Morillo, S.D. Carter, J.S. Park, and J.D. Schneider. Story in Brief. Introduction Effects of Reducing Metabolizable Energy Concentration in Diets Containing Either Spray-Dried Porcine Plasma or Soy Protein Concentrate on Weanling Pig Performance T.B. Morillo, S.D. Carter, J.S. Park,

More information

BROILER. Nutrition Specifications. An Aviagen Brand

BROILER. Nutrition Specifications. An Aviagen Brand BROILER 708 Nutrition Specifications 2014 An Aviagen Brand Introduction Nutrition specifications for Ross 708 broilers are given in the following tables for a range of production and market situations

More information

Effects of Increasing PEP-NS on Nursery Pig Performance 1

Effects of Increasing PEP-NS on Nursery Pig Performance 1 Effects of Increasing PEP-NS on Nursery Pig Performance A. J. Myers, M. D. Tokach, R. D. Goodband, S. S. Dritz, J. M. DeRouchey, J. L. Nelssen, B. W. Ratliff, D. McKilligan, G. Xu, and J. Moline Summary

More information

Effects of Monosodium Glutamate and AminoGut on Nursery Pig Performance

Effects of Monosodium Glutamate and AminoGut on Nursery Pig Performance Kansas Agricultural Experiment Station Research Reports Volume 3 Issue 7 Swine Day Article 7 07 Effects of Monosodium Glutamate and AminoGut on Nursery Pig Performance A. B. Clark Kansas State University,

More information

Evaluating lysine requirements of nursery pigs fed low protein diets with different sources of nonessential amino acids 1

Evaluating lysine requirements of nursery pigs fed low protein diets with different sources of nonessential amino acids 1 Evaluating lysine requirements of nursery pigs fed low protein diets with different sources of nonessential amino acids 1 C. K. Jones,* M. D. Tokach, J. L. Usry, C. R. Neill, and J. F. Patience# 2 *Department

More information

COMPARISONS OF LYSINE BIOAVAILABILITY IN SPRAY-DRIED BLOOD MEAL, BLOOD CELLS, AND CRYSTALLINE LYSINE IN NURSERY PIGS

COMPARISONS OF LYSINE BIOAVAILABILITY IN SPRAY-DRIED BLOOD MEAL, BLOOD CELLS, AND CRYSTALLINE LYSINE IN NURSERY PIGS Swine Day 2000 Contents COMPARISONS OF LYSINE BIOAVAILABILITY IN SPRAYDRIED BLOOD MEAL, BLOOD CELLS, AND CRYSTALLINE LYSINE IN NURSERY PIGS J. M. DeRouchey, J. L. Nelssen, M. D. Tokach, R. D. Goodband,

More information

Effects of Age on Nutrient Digestibility in Chicks fed Different Diets

Effects of Age on Nutrient Digestibility in Chicks fed Different Diets Effects of Age on Nutrient Digestibility in Chicks fed Different Diets A. B. Batal and C. M. Parsons 1 Department of Animal Sciences, University of Illinois, Urbana, Illinois 61801 ABSTRACT Three experiments

More information

Broiler Nutrition Specifications

Broiler Nutrition Specifications Broiler Nutrition Specifications 2 Introduction 3 Table 1: Nutrition Specifications for As-Hatched Broilers - Target Live Weight

More information

INTRODUCTION. X. G. Luo,*,2 F. Ji, 3 Y. X. Lin,* F. A. Steward, L. Lu,* B. Liu,* and S. X. Yu*

INTRODUCTION. X. G. Luo,*,2 F. Ji, 3 Y. X. Lin,* F. A. Steward, L. Lu,* B. Liu,* and S. X. Yu* Effects of Dietary Supplementation with Copper Sulfate or Tribasic Copper Chloride on Broiler Performance, Relative Copper Bioavailability, and Oxidation Stability of Vitamin E in Feed 1 X. G. Luo,*,2

More information

True Metabolizable Energy and Amino Acid Digestibility of Distillers Dried Grains with Solubles

True Metabolizable Energy and Amino Acid Digestibility of Distillers Dried Grains with Solubles 2006 Poultry Science Association, Inc. True Metabolizable Energy and Amino Acid Digestibility of Distillers Dried Grains with Solubles A. B. Batal 1 and N. M. Dale Department of Poultry Science, University

More information

Evaluation of Distillers Dried Grains with Solubles as a Feed Ingredient for Broilers

Evaluation of Distillers Dried Grains with Solubles as a Feed Ingredient for Broilers Evaluation of Distillers Dried Grains with Solubles as a Feed Ingredient for Broilers B. S. Lumpkins, A. B. Batal, 1 and N. M. Dale Department of Poultry Sciences, University of Georgia, Athens, Georgia

More information

COMPARISON OF INTERNATIONAL PROTEIN CORPORATION 740 FISH MEAL AND SPECIAL SELECT MENHADEN FISH MEAL IN NURSERY PIG DIETS

COMPARISON OF INTERNATIONAL PROTEIN CORPORATION 740 FISH MEAL AND SPECIAL SELECT MENHADEN FISH MEAL IN NURSERY PIG DIETS Swine Day 2001 Contents COMPARISON OF INTERNATIONAL PROTEIN CORPORATION 740 FISH MEAL AND SPECIAL SELECT MENHADEN FISH MEAL IN NURSERY PIG DIETS M. G. Young, M. D. Tokach, R. D. Goodband, J. L. Nelssen,

More information

Growth Performance of Growing Pigs Fed Crude Protein-Adequate or. Deficient, Low Phosphorus Diets with Graded Levels Of Phytase

Growth Performance of Growing Pigs Fed Crude Protein-Adequate or. Deficient, Low Phosphorus Diets with Graded Levels Of Phytase Growth Performance of Growing Pigs Fed Crude Protein-Adequate or Introduction Deficient, Low Phosphorus Diets with Graded Levels Of Phytase O. Adeola and J. S. Sands Department of Animal Sciences Nitrogen

More information

An Evaluation of Peptone Products and Fish Meal on Nursery Pig Performance 1

An Evaluation of Peptone Products and Fish Meal on Nursery Pig Performance 1 An Evaluation of Peptone Products and Fish Meal on Nursery Pig Performance A. J. Myers, M. D. Tokach, R. D. Goodband, S. S. Dritz, J. M. DeRouchey, J. L. Nelssen, J. Moline, G. Xu, B. W. Ratliff, and D.

More information

EFFECTS OF PEPSOYGEN AND DRIED PORCINE SOLUBLES 50 IN NURSERY PIG DIETS 1

EFFECTS OF PEPSOYGEN AND DRIED PORCINE SOLUBLES 50 IN NURSERY PIG DIETS 1 Swine Day 2008 EFFECTS OF PEPSOYGEN AND DRIED PORCINE SOLUBLES 50 IN NURSERY PIG DIETS 1 C. K. Jones, J. M. DeRouchey, J. L. Nelssen, M. D Tokach, S. S. Dritz 2, and R. D. Goodband Summary Two experiments

More information

IMPACT OF PRE-SLAUGHTER WITHDRAWAL OF VITAMIN SUPPLEMENTS ON PIG PERFORMANCE AND MEAT QUALITY. conditions was not addressed in the present study.

IMPACT OF PRE-SLAUGHTER WITHDRAWAL OF VITAMIN SUPPLEMENTS ON PIG PERFORMANCE AND MEAT QUALITY. conditions was not addressed in the present study. IMPACT OF PRE-SLAUGHTER WITHDRAWAL OF VITAMIN SUPPLEMENTS ON PIG PERFORMANCE AND MEAT QUALITY John F. Patience and Doug Gillis SUMMARY Research reported in last year s Annual Report indicated that withdrawal

More information

Effects of Supplemental Pantothenic Acid During All or Part of the Grow- Finish Period on Growth Performance and Carcass Composition

Effects of Supplemental Pantothenic Acid During All or Part of the Grow- Finish Period on Growth Performance and Carcass Composition Effects of Supplemental Pantothenic Acid During All or Part of the Grow- Finish Period on Growth Performance and Carcass Composition Introduction J.S. Radcliffe, B.T. Richert, L. Peddireddi, and S.A. Trapp

More information

Inorganic vs Bioplex trace minerals for broilers: effects on performance and mineral excretion

Inorganic vs Bioplex trace minerals for broilers: effects on performance and mineral excretion Inorganic vs Bioplex trace minerals for broilers: effects on performance and mineral excretion M. LIPPENS (1), G. HUYGHEBAERT (1)* and L. NOLLET (2) (1) The Flemish Community, ILVO-Unit Animal Science,

More information

Key Words: Enzyme, Metabolizable Energy, Pigs

Key Words: Enzyme, Metabolizable Energy, Pigs 2000 Animal Science Research Report Effects of Hemicell Addition to Corn-Soybean Meal Diets on Energy and Nitrogen Balance in Growing Pigs Pages 117-122 L.A. Pettey, S.D. Carter and B.W. Senne Story in

More information

Effect of Dietary Glycine on Reduced Performance by Deficient and Excessive Methionine in Broilers

Effect of Dietary Glycine on Reduced Performance by Deficient and Excessive Methionine in Broilers 81 Effect of Dietary Glycine on Reduced Performance by Deficient and Excessive Methionine in Broilers Yoshlyuki OHTA and Teru ISHIBASHI Animal Nutrition, Graduate School of Science and Technology, Niigata

More information

Metabolizable energy value of dried corn distillers grains and corn distillers grains with solubles for 6-week-old broiler chickens

Metabolizable energy value of dried corn distillers grains and corn distillers grains with solubles for 6-week-old broiler chickens Metabolizable energy value of dried corn distillers grains and corn distillers grains with solubles for 6-week-old broiler chickens O. Adeola1 and H. Zhai Department of Animal Sciences, Purdue University,

More information

Efficacy of a New E. coli-derived Phytase (Expressed in Yeast) for Phosphorus Release in Pigs

Efficacy of a New E. coli-derived Phytase (Expressed in Yeast) for Phosphorus Release in Pigs Efficacy of a New E. coli-derived Phytase (Expressed in Yeast) for Phosphorus Release in Pigs Nathan R. Augspurger*, Douglas M. Webel** and David H. Baker* *Department of Animal Sciences, University of

More information

THE INFLUENCE OF DIETARY FAT LEVEL AND CRYSTALLINE AMINO ACID ADDITIONS ON GROWTH PERFORMANCE OF 25- TO 50-LB PIGS 1

THE INFLUENCE OF DIETARY FAT LEVEL AND CRYSTALLINE AMINO ACID ADDITIONS ON GROWTH PERFORMANCE OF 25- TO 50-LB PIGS 1 Swine Day 2003 Contents THE INFLUENCE OF DIETARY FAT LEVEL AND CRYSTALLINE AMINO ACID ADDITIONS ON GROWTH PERFORMANCE OF 25- TO 50-LB PIGS 1 M.D. Tokach, S.S. Dritz 2, J.M. DeRouchey, R.D. Goodband, J.L.

More information

Emeraid Intensive Care HDN

Emeraid Intensive Care HDN Emeraid Intensive Care HDN Balanced nutrition for critically ill felines Emeraid Intensive Care HDN Feline or Highly Digestible Nutrition is a semi-elemental therapeutic diet developed by veterinarians

More information

Energy utilization of reduced oil-dried distillers grains with solubles (RO-DDGS) in swine

Energy utilization of reduced oil-dried distillers grains with solubles (RO-DDGS) in swine Energy utilization of reduced oil-dried distillers grains with solubles (RO-DDGS) in swine Brian J. Kerr,* Thomas E. Weber,* and Michael E. Persia *USDA-ARS-NLAE, Ames, Iowa 011; and Iowa State University,

More information

Differently processed yeast products and their impact on feed intake and development of intestinal physiology in weaned piglets

Differently processed yeast products and their impact on feed intake and development of intestinal physiology in weaned piglets Differently processed yeast products and their impact on feed intake and development of intestinal physiology in weaned piglets Birgit Keimer R&D Manager Biochem Zusatzstoffe GmbH, Lohne PhD student FU/HU

More information

Effects of Increasing Crystalline Amino Acids in Sorghum- or Corn-based Diets on Finishing Pig Growth Performance and Carcass Composition

Effects of Increasing Crystalline Amino Acids in Sorghum- or Corn-based Diets on Finishing Pig Growth Performance and Carcass Composition Kansas Agricultural Experiment Station Research Reports Volume Issue 7 Swine Day Article January 05 Effects of Increasing Crystalline Amino Acids in Sorghum- or Corn-based Diets on Finishing Pig Growth

More information

The Development of Feedstuff Retainable Phosphorus Values for Broilers

The Development of Feedstuff Retainable Phosphorus Values for Broilers The Development of Feedstuff Retainable Phosphorus Values for Broilers K. Leske and C. Coon 1 Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas 72701 ABSTRACT Presently, phosphorus

More information