SAM Teacher s Guide Four Levels of Protein Structure

Size: px
Start display at page:

Download "SAM Teacher s Guide Four Levels of Protein Structure"

Transcription

1 SAM Teacher s Guide Four Levels of Protein Structure Overview Students explore how protein folding creates distinct, functional proteins by examining each of the four different levels of protein structure. Students interpret how the sequence and properties of amino acids relate to how proteins fold. They identify the characteristic patterns of folding known as secondary structure, final folding of the entire protein chain (tertiary structure), and the coming together of more than one chain to form a functional unit (quaternary structure). Finally, students learn about how tertiary and quaternary structure relate to protein function. Learning Objectives Students will be able to: Recognize that a protein s three-dimensional shape allows it to perform a specific task. Identify the primary structure of a protein as a linear sequence of amino acids. Identify the unique side chains of amino acids that give them their properties. Explore how amino acids interact with water and how that affects the way proteins fold. Differentiate among the common secondary structures of a protein and identify the importance of hydrogen bonding in stabilizing these structures. Identify tertiary structure as the final folding pattern of a protein and infer that mistakes in folding are responsible for many human diseases. Explain that quaternary structure occurs when a protein is composed of more than one protein chain (subunit), and that the subunits come together to achieve the protein s function. Possible Student Pre/Misconceptions Proteins are a straight chain of amino acids that result from translation as seen in previous activities and units. The three-dimensional structure of proteins is less important than the amino acid sequence. Proteins are uniform throughout rather than having different parts for various functions. Models to Highlight and Possible Discussion Questions Page 1 Form and Function Model: Parvalbumin Highlight that the protein is made up of one long amino acid chain that is folded into a specific shape. Emphasize that representing a protein s structure in different styles and colors can illustrate the different, important aspects of its structure. Students will likely need help and feedback on choosing the views for the snapshots of this model. Link to other SAM activities: DNA to Proteins. Remind students that the sequence of amino acids is encoded in the sequence of nucleotides in DNA.

2 Possible Discussion Question: How might a mutation in DNA affect the primary structure of a protein? Page 2 Twenty Amino Acids Model: Twenty Rotatable Amino Acids Highlight that the backbone of all 20 amino acids is the same. It is the side chains that give each amino acid a different personality. The backbone connects to the backbones of other amino acids to form the peptide chain that makes up the protein. Emphasize that each amino acid has a side chain (or R group) that is different and that these side chains determine the polarity of the amino acid. Link to other SAM activities: Intermolecular Attractions and Chemical Bonds. The interactions between amino acids in a protein are affected by unequal sharing of electrons. Possible Discussion Question: What is the difference between polar and non-polar amino acids? What is the difference between a polar amino acid and one that is charged? Page 3 Secondary Structure Model: Protein Kinase Point out the use of the menu to change the way the model is drawn, which is essential for identifying the secondary structures. Highlight that alpha helices and beta sheets are present in the folded protein and ask how they can be identified. Possible Discussion Question: Why do you think different folding patterns happen? Page 4 The Glue in Secondary Structures Model: Protein G Highlight that helices and sheets are stabilized by hydrogen bonds between the backbone atoms common to all amino acids not the side chain atoms. Highlight the use the checkboxes and radio buttons to arrive at images that display different aspects of the secondary structures. Possible Discussion Question: Why are beta sheets and alpha helices common in proteins? Page 5 Water Helps Shape Proteins Model: Protein Folding in Water or Oil Review polarity and link to the importance of how proteins behave (folding, solubility) in water. Emphasize hydrophobic/hydrophilic interactions and how one protein can have regions of both. This will impact folding. Link to other SAM activities: Chemical Bonding. Polarity and electronegativity will influence the type of chemical bonds formed.

3 Possible Discussion Question: How do amino acids interactions with water affect the shape of the protein? Give students a mystery protein and a key with the 20 amino acids. Have students devise a folding pattern that makes sense based on their knowledge thus far of both proteins and chemical bonding/electronegativity. Page 6 Tertiary Structure Model: Lysozyme Note that tertiary structure is the coming together of distinct secondary structures. Emphasize that the stabilizing interactions between (not within) alpha helices and beta sheets (salt bridges, disulfide bonds, and additional side chain interactions) results in the protein having a very specific shape. Possible Discussion Questions: Why is the folded structure of a protein so important for its functionality? Can students think of any examples? Page 7 Protein Function Model: Alcohol Dehydrogenase Highlight how the folds of the protein come together from different parts of the chain to create this site, which will bind only with NAD or a molecule extremely similar to NAD. Highlight that all proteins are very specific in their recognition of partner molecules. Model: Can Proteins Take the Heat? Proteins are destabilized by heat because of the increased molecular motion. Relate the change in the egg whites to the destabilization and unfolding of the secondary and tertiary structures of the protein. Possible Discussion Questions: What are some specific jobs of proteins that require them to have a distinct 3D structure? (Possible answers: enzymes, roles in signal transduction, DNA synthesis, etc.) What types of situations may impact how a protein would function? Generate ideas about temperature, whether it is surrounded by water or oil, etc. Denaturation of proteins happens when proteins are heated, but it also happens when proteins are in acidic or basic environments. How do all of these things cause the same end result? What does denaturation look like at the molecular level?

4 Page 8 Quaternary Structure Model: Homodimer (Alcohol Dehydrogenase) and Heterotrimer (G Protein) Some proteins achieve their function by acting as a complex of multiple subunits (quaternary structure). Highlight that the unique surface of each protein enables it to perform its specific function. Possible Discussion Questions: How do proteins differ? Highlight the differences at primary, secondary, tertiary, quaternary structure. Why is the folded structure of a protein so important for its functionality? Demonstration/Laboratory Ideas: Construct chains or amino acids and physically show folding patterns using beads, children s toys, etc. Use Toobers (inexpensive flexible foam rods) for showing folding and how distant parts of a protein come together to form a binding site or other specialty area. For more information and clear ideas on how to use them, see Use molecular model kits to focus in on bonding within a protein. Use oil and water demonstration to review hydrophobic/ hydrophilic interactions. Link back to the importance of water in living systems (cell membrane review). Use an overhead projector and Petri dish to demonstrate that acid can cause denaturation of egg white proteins. Relate this demonstration to what happens in digestion in the stomach.

5 Connections to Other SAM Activities The focus of this activity is for students to understand the primary, secondary, tertiary and quaternary structures of proteins. This activity is supported by many activities that deal with the attractions between atoms and molecules. First, Electrostatics focuses on the attraction of positive and negative charges. This will play a role in understanding salt bridges, hydrogen bonding and intermolecular attractions. The Intermolecular Attractions activity highlights hydrogen bonding, which plays a role in stabilizing the alpha helices and beta sheets within proteins. In addition, this activity discusses the forces of attraction that are at work on the intramolecular level of proteins as well as the intermolecular level (in the quaternary structure of proteins). Chemical Bonds allows students to make connections between the polar and non-polar nature of bonds and how one part of a molecule could be partially positive or negative due to the uneven sharing of electrons. The Solubility activity highlights the tendencies of globular proteins that have hydrophobic and/or hydrophilic regions and how they will behave, particularly in water. Molecular Geometry explains the specific orientation of atoms within larger molecules. Finally, Proteins and Nucleic Acids introduces the structure and function of amino acids and protein molecules while DNA to Proteins explains where proteins originate. This activity supports three other SAM activities. First, Molecular Recognition builds on student understanding of why structure is so important in protein function. This activity also supports Diffusion, Osmosis, and Active Transport and Cellular Respiration because there are references in both of these activities to larger scale protein complexes.

6 Activity Answer Guide *Sample snapshots: Other snapshots may answer the questions. Page 1: 1. Use the Do It Yourself controls above to create a view that shows how the protein is folded. Use the text tool end of the folded chain. to label each Page 2: 1. Label the ball and stick amino acid models as indicated in the What to do section. 2. Use the link above to open and explore the 20 rotatable 3D amino acids. Then select the Sidechain color scheme. The atoms that are colored gray are the same in every amino acid. What are they called? 2. Create a view that you think best shows the primary structure of parvalbumin. Use the text tool to explain why you chose this way of representing primary structure. (b) 3. On the page of 3D amino acids, find glutamine and histidine. Use the different color schemes to select the true statement(s) below. (More than one statement may be true.) (a)(c)

7 Page 3: 1. Take a snapshot of an alpha helix that shows how it folds. Page 4: 1. Hydrogen bonds stabilizing an alpha helix. Use the arrow tool to point out the hydrogen bonds. There are many alpha helices in the protein. They are easy to recognize using the cartoon or string of beads representations. 2. Hydrogen bonds stabilizing a beta sheet. Use the arrow tool to point out the hydrogen bonds. 2. Take a snapshot of a beta sheet that shows how much space it occupies within the protein. Hint. 3. Hydrogen bonds stabilizing alpha helices and beta sheets form between the atoms of which part(s) of the amino acids involved? (c) There are two beta sheets in the protein, the one above (encompassing approximately amino acids 29-59) and from about Students can find the beta sheets using the cartoon representation, then change to spacefill to show the amount of space occupied by the sheet. This exemplifies the advantages of two different representations.

8 4. Place a snapshot here that illustrates your answer to the previous question. to other polar molecules. The opposite charges on the polar molecules attract each other. There is less attraction between non-polar molecules and water because there is no opposing charge on the non-polar molecules to attract the water. 5. Which solvent(s) leads to folding of the protein? (c) 6. Where do the amino acids with polar side chains end up when the protein chain folds? (c) This image shows a backbone trace of the protein with the hydrogen bonds (purple dotted lines) stabilizing the alpha helix and beta sheet. The side chains are omitted for clarity of view. Page 5: Page 6: 1. Show an interaction that stabilizes two alpha helices to each other. Use the annotation tool to label the type of interaction you are showing. 1. Is water a polar or non-polar molecule? Explain your answer by writing about the bonds in water. The bonds in water are polar covalent bonds. The oxygen pulls the electrons more strongly than the hydrogens do, so the oxygen is slightly negative while the hydrogens are slightly positive. Because the electrons are not evenly shared across the molecule, the molecule is polar. 2. Which type of amino acid is hydrophobic? (b) 3. Which of the following correctly describe the interactions of the amino acids with water? (Check ALL that apply.) (b)(c) 4. Use your knowledge of positive and negative charge to explain why polar molecules attract each other better than nonpolar molecules. Because polar molecules have charge differences on their surfaces, they are attracted

9 2. Create a view that shows both the amino acids at the surface and those that fold into the inside of the protein. Use the annotation tools to label the part that is more attracted to water. Page 8: 1. Does TNF have the quaternary level of structure? Make sure to try different color schemes on the model of TNF above. (a) 2. Explain your answer to the previous question: TNF is made up of three protein chains. This can be seen using the color by subunits selection next to the image of TNF. Page 9: 1. The "primary structure" of a protein refers to: (c) 2. What part of an amino acid has properties (shape, charge) that are different from other amino acids? Page 7: 1. On the left is a different small molecule than NAD. Why wouldn t this molecule bind to alcohol dehydrogenase in place of NAD? (Choose the BEST answer below.) (d) 2. What would you expect to happen to the function of proteins at very high temperatures? (b) 3. Explain your answer to the previous question. If the protein unfolds, it will lose its shape and will be unable to perform its function(s). Proteins are folded into specific shapes that allow them to do their jobs. (a) 3. The protein shown at right has folded in water. Which of the following statements about it is FALSE? (c) 4. Which of the following do hydrogen bonds help to stabilize? (Check ALL that apply.) (b)(c)(d) 5. Select the two correct choices: A protein with quaternary structure (a)(d) 6. Why do defects in protein folding cause disease? Protein folding patterns play a major role in the protein's functionality. If there are defects in the folding the protein may not be able to do its job, such as bonding to the correct substrate.

10 SAM HOMEWORK QUESTIONS Four Levels of Protein Structure Directions: After completing the unit, answer the following questions to review. 1. Below is a picture of a folded protein. A protein is a chain of amino acids. Use an arrow to label the amino acid units shown in this picture. 2. Which part of an amino acid gives it its unique personality? 3. Identify and describe the secondary structure indicated by the arrow in the picture to the left. Be specific. What keeps this secondary structure in this particular shape? 4. The way a protein is folded determines its functionality. How might the exposure of a protein to higher than normal temperatures affect its function? 5. A particular protein has both hydrophobic (water-fearing) and hydrophilic (waterloving) regions. If this protein folded spontaneously in water, which regions would be on the inside and which on the outside? Why?

11 SAM HOMEWORK QUESTIONS Four Levels of Protein Structure With Suggested Answers for Teachers Directions: After completing the unit, answer the following questions to review. 1. Below is a picture of a folded protein. A protein is a chain of amino acids. Use an arrow to label the amino acid units shown in this picture. Sample arrow shown. Each arrow should point to one of the beads, which represent the amino acids in the protein. 2. Which part of an amino acid gives it its unique personality? All amino acids have a part that is unique, called the side chain or R group. 3. Identify and describe the secondary structure indicated by the arrow in the picture to the left. Be specific. What keeps this secondary structure in this particular shape? Picture shows an alpha helix (pink) connected by a loop (white) to a beta sheet (yellow). (Students may not have color version but should be able to identify the alpha helix by the shape.) The arrow points to the alpha helix. An alpha helix is shaped like a long spiral. It is held in this shape by hydrogen bonds that form between the atoms of peptide backbone. 4. The way a protein is folded determines its functionality. How might the exposure of a protein to higher than normal temperatures affect its function? Higher temperatures can cause proteins to denature or unfold. This can alter the shape, and thus, the functionality of a protein. 5. A particular protein has both hydrophobic (water-fearing) and hydrophilic (waterloving) regions. If this protein folded spontaneously in water, which regions would be on the inside and which on the outside? Why? Surrounding water molecules attract polar amino acids to the outside of the protein because they are hydrophilic. Non-polar amino acids are hydrophobic less attracted to the polar water molecule and they tend to move into the interior of the folded protein, forming its core.

Biology 2E- Zimmer Protein structure- amino acid kit

Biology 2E- Zimmer Protein structure- amino acid kit Biology 2E- Zimmer Protein structure- amino acid kit Name: This activity will use a physical model to investigate protein shape and develop key concepts that govern how proteins fold into their final three-dimensional

More information

SAM Teachers Guide Lipids and Carbohydrates

SAM Teachers Guide Lipids and Carbohydrates SAM Teachers Guide Lipids and Carbohydrates Overview Students will explore the structure and function of two of the four major macromolecules, lipids and carbohydrates. They will look specifically at the

More information

7.014 Problem Set 2 Solutions

7.014 Problem Set 2 Solutions 7.014 Problem Set 2 Solutions Please print out this problem set and record your answers on the printed copy. Answers to this problem set are to be turned in at the box outside 68-120 by 11:45 Friday, February

More information

Proteins. (b) Protein Structure and Conformational Change

Proteins. (b) Protein Structure and Conformational Change Proteins (b) Protein Structure and Conformational Change Protein Structure and Conformational Change Proteins contain the elements carbon (C), hydrogen (H), oxygen (O2) and nitrogen (N2) Some may also

More information

paper and beads don t fall off. Then, place the beads in the following order on the pipe cleaner:

paper and beads don t fall off. Then, place the beads in the following order on the pipe cleaner: Beady Pipe Cleaner Proteins Background: Proteins are the molecules that carry out most of the cell s dayto-day functions. While the DNA in the nucleus is "the boss" and controls the activities of the cell,

More information

and hydrophilic and how they relate to solubility.

and hydrophilic and how they relate to solubility. o o o and hydrophilic and how they relate to solubility. o o o o o o o o Page 1: Introduction Page 2: 1. Hydrocarbons are referred to as organic molecules with a "backbone." Take a snapshot of the hydrocarbon

More information

Secondary Structure North 72nd Street, Wauwatosa, WI Phone: (414) Fax: (414) dmoleculardesigns.com

Secondary Structure North 72nd Street, Wauwatosa, WI Phone: (414) Fax: (414) dmoleculardesigns.com Secondary Structure In the previous protein folding activity, you created a generic or hypothetical 15-amino acid protein and learned that basic principles of chemistry determine how each protein spontaneously

More information

Secondary Structure. by hydrogen bonds

Secondary Structure. by hydrogen bonds Secondary Structure In the previous protein folding activity, you created a hypothetical 15-amino acid protein and learned that basic principles of chemistry determine how each protein spontaneously folds

More information

Lecture 10 More about proteins

Lecture 10 More about proteins Lecture 10 More about proteins Today we're going to extend our discussion of protein structure. This may seem far-removed from gene cloning, but it is the path to understanding the genes that we are cloning.

More information

Draw how two amino acids form the peptide bond. Draw in the space below:

Draw how two amino acids form the peptide bond. Draw in the space below: Name Date Period Modeling Protein Folding Draw how two amino acids form the peptide bond. Draw in the space below: What we are doing today: The core idea in life sciences is that there is a fundamental

More information

Biomolecule Stations

Biomolecule Stations AP Biology Biomolecule Stations Names Per. In this two-day activity, you will move through several different stations and learn about the four macromolecules in the biological world. Day 1: Modeling Carbohydrates

More information

Ch5: Macromolecules. Proteins

Ch5: Macromolecules. Proteins Ch5: Macromolecules Proteins Essential Knowledge 4.A.1 The subcomponents of biological molecules and their sequence determine the properties of that molecule A. Structure and function of polymers are derived

More information

1. Describe the difference between covalent and ionic bonds. What are the electrons doing?

1. Describe the difference between covalent and ionic bonds. What are the electrons doing? Exam 1 Review Bio 212: 1. Describe the difference between covalent and ionic bonds. What are the electrons doing? 2. Label each picture either a Carbohydrate, Protein, Nucleic Acid, or Fats(Lipid). a.

More information

Preface for Teachers

Preface for Teachers Teaching DNA, Proteins, and Protein Synthesis with the MIT Edgerton Center Models and Curriculum PART 1: Proteins Protein Booklet 1 January 9, 2018 Preface for Teachers Please read the document Teaching

More information

BIOB111 - Tutorial activity for Session 14

BIOB111 - Tutorial activity for Session 14 BIOB111 - Tutorial activity for Session 14 General topics for week 7 Session 14 Amino acids and proteins Students review the concepts learnt and answer the selected questions from the textbook. General

More information

Biomolecule Stations

Biomolecule Stations AP Biology Biomolecule Stations Names Per. In this two-day activity, you will move through several different stations and learn about the four macromolecules in the biological world. Day 1: Modeling Carbohydrates

More information

Lecture Series 2 Macromolecules: Their Structure and Function

Lecture Series 2 Macromolecules: Their Structure and Function Lecture Series 2 Macromolecules: Their Structure and Function Reading Assignments Read Chapter 4 (Protein structure & Function) Biological Substances found in Living Tissues The big four in terms of macromolecules

More information

Lecture Series 2 Macromolecules: Their Structure and Function

Lecture Series 2 Macromolecules: Their Structure and Function Lecture Series 2 Macromolecules: Their Structure and Function Reading Assignments Read Chapter 4 (Protein structure & Function) Biological Substances found in Living Tissues The big four in terms of macromolecules

More information

The Chemical Building Blocks of Life. Chapter 3

The Chemical Building Blocks of Life. Chapter 3 The Chemical Building Blocks of Life Chapter 3 Biological Molecules Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent

More information

Biological Molecules

Biological Molecules The Chemical Building Blocks of Life Chapter 3 Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent bonds. Carbon may

More information

Lecture Series 2 Macromolecules: Their Structure and Function

Lecture Series 2 Macromolecules: Their Structure and Function Lecture Series 2 Macromolecules: Their Structure and Function Reading Assignments Read Chapter 4 (Protein structure & Function) Biological Substances found in Living Tissues The big four in terms of macromolecules

More information

Understand how protein is formed by amino acids

Understand how protein is formed by amino acids Identify between fibrous and globular proteins Understand how protein is formed by amino acids Describe the structure of proteins using specific examples Functions of proteins Fibrous proteins Globular

More information

BIOCHEMISTRY. How Are Macromolecules Formed? Dehydration Synthesis or condensation reaction Polymers formed by combining monomers and removing water.

BIOCHEMISTRY. How Are Macromolecules Formed? Dehydration Synthesis or condensation reaction Polymers formed by combining monomers and removing water. BIOCHEMISTRY Organic compounds Compounds that contain carbon are called organic. Inorganic compounds do not contain carbon. Carbon has 4 electrons in outer shell. Carbon can form covalent bonds with as

More information

A. Lipids: Water-Insoluble Molecules

A. Lipids: Water-Insoluble Molecules Biological Substances found in Living Tissues Lecture Series 3 Macromolecules: Their Structure and Function A. Lipids: Water-Insoluble Lipids can form large biological molecules, but these aggregations

More information

Hemoglobin & Sickle Cell Anemia Exercise

Hemoglobin & Sickle Cell Anemia Exercise Name StarBiochem Hemoglobin & Sickle Cell Anemia Exercise Learning Objectives In this exercise, you will use StarBiochem, a protein 3D viewer, to explore the structure of the normal hemoglobin protein

More information

Chapter 2 pt 2. Atoms, Molecules, and Life. Gregory Ahearn. John Crocker. Including the lecture Materials of

Chapter 2 pt 2. Atoms, Molecules, and Life. Gregory Ahearn. John Crocker. Including the lecture Materials of Chapter 2 pt 2 Atoms, Molecules, and Life Including the lecture Materials of Gregory Ahearn University of North Florida with amendments and additions by John Crocker Copyright 2009 Pearson Education, Inc..

More information

Amino Acids - Building Blocks of Proteins

Amino Acids - Building Blocks of Proteins Amino Acids - Building Blocks of Proteins Introduction Proteins are more than an important part of your diet. Proteins are complex molecular machines that are involved in nearly all of your cellular functions.

More information

Biochemistry Macromolecules and Enzymes. Unit 02

Biochemistry Macromolecules and Enzymes. Unit 02 Biochemistry Macromolecules and Enzymes Unit 02 Organic Compounds Compounds that contain CARBON are called organic. What is Carbon? Carbon has 4 electrons in outer shell. Carbon can form covalent bonds

More information

Macromolecules. copyright cmassengale

Macromolecules. copyright cmassengale Macromolecules 1 Organic Compounds Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. 2 Carbon (C) Carbon has 4 electrons in outer shell. Carbon can form covalent

More information

Biological Molecules

Biological Molecules Chemical Building Blocks of Life Chapter 3 Biological Molecules Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent

More information

Organic Compounds. Compounds that contain CARBON are called organic. Macromolecules are large organic molecules.

Organic Compounds. Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. Macromolecules Organic Compounds Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. Carbon (C) Carbon has 4 electrons in outer shell. Carbon can form covalent

More information

Organic Molecules: Proteins

Organic Molecules: Proteins Organic Molecules: Proteins Proteins Most structurally & functionally diverse group Function: involved in almost everything enzymes (pepsin, DNA polymerase) structure (keratin, collagen) carriers & transport

More information

Most life processes are a series of chemical reactions influenced by environmental and genetic factors.

Most life processes are a series of chemical reactions influenced by environmental and genetic factors. Biochemistry II Most life processes are a series of chemical reactions influenced by environmental and genetic factors. Metabolism the sum of all biochemical processes 2 Metabolic Processes Anabolism-

More information

Hemoglobin & Sickle Cell Anemia Exercise

Hemoglobin & Sickle Cell Anemia Exercise Name StarBiochem Hemoglobin & Sickle Cell Anemia Exercise Background Hemoglobin is the protein in red blood cells responsible for carrying oxygen from the lungs to the rest of the body and for returning

More information

Biology Chapter 2 Review

Biology Chapter 2 Review Biology Chapter 2 Review Vocabulary: Define the following words on a separate piece of paper. Element Compound Ion Ionic Bond Covalent Bond Molecule Hydrogen Bon Cohesion Adhesion Solution Solute Solvent

More information

Biology: Life on Earth Chapter 3 Molecules of life

Biology: Life on Earth Chapter 3 Molecules of life Biology: Life on Earth Chapter 3 Molecules of life Chapter 3 Outline 3.1 Why Is Carbon So Important in Biological Molecules? p. 38 3.2 How Are Organic Molecules Synthesized? p. 38 3.3 What Are Carbohydrates?

More information

Chapter 2: Biochemistry

Chapter 2: Biochemistry Chapter 2: Biochemistry Biochemistry Biochemistry is the study of chemical makeup and reactions of living matter All chemicals in the body are either organic & inorganic Organic compounds contain carbon

More information

WHY IS THIS IMPORTANT?

WHY IS THIS IMPORTANT? CHAPTER 2 FUNDAMENTAL CHEMISTRY FOR MICROBIOLOGY WHY IS THIS IMPORTANT? An understanding of chemistry is essential to understand cellular structure and function, which are paramount for your understanding

More information

a) The statement is true for X = 400, but false for X = 300; b) The statement is true for X = 300, but false for X = 200;

a) The statement is true for X = 400, but false for X = 300; b) The statement is true for X = 300, but false for X = 200; 1. Consider the following statement. To produce one molecule of each possible kind of polypeptide chain, X amino acids in length, would require more atoms than exist in the universe. Given the size of

More information

Question Expected Answers Mark Additional Guidance 1 (a) (i) peptide (bond / link) ; 1 DO NOT CREDIT dipeptide (a) (ii) hydrolysis ;

Question Expected Answers Mark Additional Guidance 1 (a) (i) peptide (bond / link) ; 1 DO NOT CREDIT dipeptide (a) (ii) hydrolysis ; Question Expected Answers Mark Additional Guidance 1 (a) (i) peptide (bond / link) ; 1 DO NOT CREDIT dipeptide (a) (ii) hydrolysis ; IGNORE name of bond (b) 1 water / H O, is, added / used / needed ; substrate

More information

HOMEWORK II and Swiss-PDB Viewer Tutorial DUE 9/26/03 62 points total. The ph at which a peptide has no net charge is its isoelectric point.

HOMEWORK II and Swiss-PDB Viewer Tutorial DUE 9/26/03 62 points total. The ph at which a peptide has no net charge is its isoelectric point. BIOCHEMISTRY I HOMEWORK II and Swiss-PDB Viewer Tutorial DUE 9/26/03 62 points total 1). 8 points total T or F (2 points each; if false, briefly state why it is false) The ph at which a peptide has no

More information

Review of Biochemistry

Review of Biochemistry Review of Biochemistry Chemical bond Functional Groups Amino Acid Protein Structure and Function Proteins are polymers of amino acids. Each amino acids in a protein contains a amino group, - NH 2,

More information

Proteins and their structure

Proteins and their structure Proteins and their structure Proteins are the most abundant biological macromolecules, occurring in all cells and all parts of cells. Proteins also occur in great variety; thousands of different kinds,

More information

Bio 12 Chapter 2 Test Review

Bio 12 Chapter 2 Test Review Bio 12 Chapter 2 Test Review 1.Know the difference between ionic and covalent bonds In order to complete outer shells in electrons bonds can be Ionic; one atom donates or receives electrons Covalent; atoms

More information

So where were we? But what does the order mean? OK, so what's a protein? 4/1/11

So where were we? But what does the order mean? OK, so what's a protein? 4/1/11 So where were we? We know that DNA is responsible for heredity Chromosomes are long pieces of DNA DNA turned out to be the transforming principle We know that DNA is shaped like a long double helix, with

More information

! Proteins are involved functionally in almost everything: " Receptor Proteins - Respond to external stimuli. " Storage Proteins - Storing amino acids

! Proteins are involved functionally in almost everything:  Receptor Proteins - Respond to external stimuli.  Storage Proteins - Storing amino acids Proteins Most structurally & functionally diverse group! Proteins are involved functionally in almost everything: Proteins Multi-purpose molecules 2007-2008 Enzymatic proteins - Speed up chemical reactions!

More information

Practice Questions for Biochemistry Test A. 1 B. 2 C. 3 D. 4

Practice Questions for Biochemistry Test A. 1 B. 2 C. 3 D. 4 Practice Questions for Biochemistry Test 1. The quaternary structure of a protein is determined by: A. interactions between distant amino acids of the same polypeptide. B.interactions between close amino

More information

BIO 311C Spring Lecture 15 Friday 26 Feb. 1

BIO 311C Spring Lecture 15 Friday 26 Feb. 1 BIO 311C Spring 2010 Lecture 15 Friday 26 Feb. 1 Illustration of a Polypeptide amino acids peptide bonds Review Polypeptide (chain) See textbook, Fig 5.21, p. 82 for a more clear illustration Folding and

More information

/ The following functional group is a. Aldehyde c. Carboxyl b. Ketone d. Amino

/ The following functional group is a. Aldehyde c. Carboxyl b. Ketone d. Amino Section A: Multiple Choice Select the answer that best answers the following questions. Please write your selected choice on the line provided, in addition to circling the answer. /25 1. The following

More information

OPTION GROUP: BIOLOGICAL MOLECULES 3 PROTEINS WORKBOOK. Tyrone R.L. John, Chartered Biologist

OPTION GROUP: BIOLOGICAL MOLECULES 3 PROTEINS WORKBOOK. Tyrone R.L. John, Chartered Biologist NAME: OPTION GROUP: BIOLOGICAL MOLECULES 3 PROTEINS WORKBOOK Tyrone R.L. John, Chartered Biologist 1 Tyrone R.L. John, Chartered Biologist 2 Instructions REVISION CHECKLIST AND ASSESSMENT OBJECTIVES Regular

More information

The Basics: A general review of molecular biology:

The Basics: A general review of molecular biology: The Basics: A general review of molecular biology: DNA Transcription RNA Translation Proteins DNA (deoxy-ribonucleic acid) is the genetic material It is an informational super polymer -think of it as the

More information

Organic Compounds. Compounds that contain CARBON are called organic. Macromolecules are large organic molecules.

Organic Compounds. Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. Macromolecules 1 Organic Compounds Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. 2 Carbon (C) Carbon has 4 electrons in outer shell. Carbon can form covalent

More information

Amino Acids and Proteins Hamad Ali Yaseen, PhD MLS Department, FAHS, HSC, KU Biochemistry 210 Chapter 22

Amino Acids and Proteins Hamad Ali Yaseen, PhD MLS Department, FAHS, HSC, KU Biochemistry 210 Chapter 22 Amino Acids and Proteins Hamad Ali Yaseen, PhD MLS Department, FAHS, HSC, KU Hamad.ali@hsc.edu.kw Biochemistry 210 Chapter 22 Importance of Proteins Main catalysts in biochemistry: enzymes (involved in

More information

2.1.1 Biological Molecules

2.1.1 Biological Molecules 2.1.1 Biological Molecules Relevant Past Paper Questions Paper Question Specification point(s) tested 2013 January 4 parts c and d p r 2013 January 6 except part c j k m n o 2012 June 1 part ci d e f g

More information

The Building blocks of life. Macromolecules

The Building blocks of life. Macromolecules The Building blocks of life Macromolecules 1 copyright cmassengale 2 Organic Compounds Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. 3 LIFE ON EARTH IS CARBON-BASED

More information

The building blocks of life.

The building blocks of life. The building blocks of life. All the functions of the cell are based on chemical reactions. the building blocks of organisms BIOMOLECULE MONOMER POLYMER carbohydrate monosaccharide polysaccharide lipid

More information

A look at macromolecules (Text pages 38-54) What is the typical chemical composition of a cell? (Source of figures to right: Madigan et al.

A look at macromolecules (Text pages 38-54) What is the typical chemical composition of a cell? (Source of figures to right: Madigan et al. A look at macromolecules (Text pages 38-54) What is the typical chemical composition of a cell? (Source of figures to right: Madigan et al. 2002 Chemical Bonds Ionic Electron-negativity differences cause

More information

Proteins. Dr. Basima Sadiq Jaff. /3 rd class of pharmacy. PhD. Clinical Biochemistry

Proteins. Dr. Basima Sadiq Jaff. /3 rd class of pharmacy. PhD. Clinical Biochemistry Proteins /3 rd class of pharmacy Dr. Basima Sadiq Jaff PhD. Clinical Biochemistry a Greek word that means of first importance. It is a very important class of food molecules that provide organisms not

More information

The Amazing Molecule: Water

The Amazing Molecule: Water The Amazing Molecule: Water All living things are made of chemicals. Understanding life requires an understanding of chemistry. Biochemistry- the chemistry of life helps us understand todays biological

More information

CLASS SET. Modeling Life s Important Compounds. AP Biology

CLASS SET. Modeling Life s Important Compounds. AP Biology Modeling Life s Important Compounds AP Biology CLASS SET OBJECTIVES: Upon completion of this activity, you will be able to: Explain the connection between the sequence and the subcomponents of a biological

More information

BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2.

BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2. BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2. A possible explanation for an event that occurs in nature is

More information

Biology 5A Fall 2010 Macromolecules Chapter 5

Biology 5A Fall 2010 Macromolecules Chapter 5 Learning Outcomes: Macromolecules List and describe the four major classes of molecules Describe the formation of a glycosidic linkage and distinguish between monosaccharides, disaccharides, and polysaccharides

More information

Proteins. Proteins. Proteins. Proteins. Effect of different R groups: Nonpolar amino acids. Amino acids H C OH H R. Multipurpose molecules.

Proteins. Proteins. Proteins. Proteins. Effect of different R groups: Nonpolar amino acids. Amino acids H C OH H R. Multipurpose molecules. Multipurpose molecules 2008-2009 Most structurally & functionally diverse group Function: involved in almost everything enzymes (pepsin, DNA polymerase) structure (keratin, collagen) carriers & transport

More information

AP Biology. Proteins. Proteins. Proteins. Amino acids H C OH H R. Effect of different R groups: Polar amino acids polar or charged & hydrophilic

AP Biology. Proteins. Proteins. Proteins. Amino acids H C OH H R. Effect of different R groups: Polar amino acids polar or charged & hydrophilic Most structurally & functionally diverse group : involved in almost everything enzymes (pepsin, DNA polymerase) structure (keratin, collagen) carriers & transport (, aquaporin) cell communication signals

More information

Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Concept 5.4: Proteins have many structures, resulting in a wide range of functions Proteins account for more than 50% of the dry mass of most cells Protein functions include structural support, storage,

More information

Biological molecules

Biological molecules Biological molecules 04-04-16 Announcements Your lab report 1 is due now Quiz 1 is on Wednesday at the beginning of class, so don t be late Review Macromolecues are large molecules necessary for life made

More information

Activities for the α-helix / β-sheet Construction Kit

Activities for the α-helix / β-sheet Construction Kit Activities for the α-helix / β-sheet Construction Kit The primary sequence of a protein, composed of amino acids, determines the organization of the sequence into the secondary structure. There are two

More information

Objective: You will be able to explain how the subcomponents of

Objective: You will be able to explain how the subcomponents of Objective: You will be able to explain how the subcomponents of nucleic acids determine the properties of that polymer. Do Now: Read the first two paragraphs from enduring understanding 4.A Essential knowledge:

More information

Types of macromolecules. Proteins. Amino acids 9/15/2010. Carbohydrates. Lipids. Proteins. Nucleic acids

Types of macromolecules. Proteins. Amino acids 9/15/2010. Carbohydrates. Lipids. Proteins. Nucleic acids Types of macromolecules Carbohydrates Lipids Proteins Nucleic acids Proteins Chief building blocks of life 1000s of proteins Lots of different functions, but all built the same way & from the same raw

More information

Biological systems interact, and these systems and their interactions possess complex properties. STOP at enduring understanding 4A

Biological systems interact, and these systems and their interactions possess complex properties. STOP at enduring understanding 4A Biological systems interact, and these systems and their interactions possess complex properties. STOP at enduring understanding 4A Homework Watch the Bozeman video called, Biological Molecules Objective:

More information

Chemistry 20 Chapter 14 Proteins

Chemistry 20 Chapter 14 Proteins Chapter 14 Proteins Proteins: all proteins in humans are polymers made up from 20 different amino acids. Proteins provide structure in membranes, build cartilage, muscles, hair, nails, and connective tissue

More information

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules NAME DATE Chapter 5 - The Structure and Function of Large Biological Molecules Guided Reading Concept 5.1: Macromolecules are polymers, built from monomers 1. The large molecules of all living things fall

More information

Honors Biology Chapter 3: Macromolecules PPT Notes

Honors Biology Chapter 3: Macromolecules PPT Notes Honors Biology Chapter 3: Macromolecules PPT Notes 3.1 I can explain why carbon is unparalleled in its ability to form large, diverse molecules. Diverse molecules found in cells are composed of carbon

More information

1.4. Lipids - Advanced

1.4. Lipids - Advanced 1.4. Lipids - Advanced www.ck12.org In humans, triglycerides are a mechanism for storing unused calories, and their high concentration in blood correlates with the consumption of excess starches and other

More information

AP BIOLOGY: READING ASSIGNMENT FOR CHAPTER 5

AP BIOLOGY: READING ASSIGNMENT FOR CHAPTER 5 1) Complete the following table: Class Monomer Functions Carbohydrates 1. 3. Lipids 1. 3. Proteins 1. 3. 4. 5. 6. Nucleic Acids 1. 2) Circle the atoms of these two glucose molecules that will be removed

More information

Chapter 5 Structure and Function Of Large Biomolecules

Chapter 5 Structure and Function Of Large Biomolecules Formation of Macromolecules Monomers Polymers Macromolecules Smaller larger Chapter 5 Structure and Function Of Large Biomolecules monomer: single unit dimer: two monomers polymer: three or more monomers

More information

Biological Molecules. Carbohydrates, Proteins, Lipids, and Nucleic Acids

Biological Molecules. Carbohydrates, Proteins, Lipids, and Nucleic Acids Biological Molecules Carbohydrates, Proteins, Lipids, and Nucleic Acids Organic Molecules Always contain Carbon (C) and Hydrogen (H) Carbon is missing four electrons Capable of forming 4 covalent bonds

More information

2.2 Properties of Water

2.2 Properties of Water 2.2 Properties of Water I. Water s unique properties allow life to exist on Earth. A. Life depends on hydrogen bonds in water. B. Water is a polar molecule. 1. Polar molecules have slightly charged regions

More information

Chapter 5 THE STRUCTURE AND FUNCTION OF LARGE BIOLOGICAL MOLECULES

Chapter 5 THE STRUCTURE AND FUNCTION OF LARGE BIOLOGICAL MOLECULES Chapter 5 THE STRUCTURE AND FUNCTION OF LARGE BIOLOGICAL MOLECULES You Must Know The role of dehydration synthesis in the formation of organic compounds and hydrolysis in the digestion of organic compounds.

More information

The Structure and Function of Macromolecules

The Structure and Function of Macromolecules The Structure and Function of Macromolecules Macromolecules are polymers Polymer long molecule consisting of many similar building blocks. Monomer the small building block molecules. Carbohydrates, proteins

More information

Macromolecules. Note: If you have not taken Chemistry 11 (or if you ve forgotten some of it), read the Chemistry Review Notes on your own.

Macromolecules. Note: If you have not taken Chemistry 11 (or if you ve forgotten some of it), read the Chemistry Review Notes on your own. Macromolecules Note: If you have not taken Chemistry 11 (or if you ve forgotten some of it), read the Chemistry Review Notes on your own. Macromolecules are giant molecules made up of thousands or hundreds

More information

Chapter 5: The Structure and Function of Large Biological Molecules

Chapter 5: The Structure and Function of Large Biological Molecules Name Period Concept 5.1 Macromolecules are polymers, built from monomers 1. The large molecules of all living things fall into just four main classes. Name them. 2. Circle the three classes that are called

More information

Introduction to Protein Structure Collection

Introduction to Protein Structure Collection Introduction to Protein Structure Collection Teaching Points This collection is designed to introduce students to the concepts of protein structure and biochemistry. Different activities guide students

More information

INTRODUCTION TO ORGANIC COMPOUNDS. Copyright 2009 Pearson Education, Inc.

INTRODUCTION TO ORGANIC COMPOUNDS. Copyright 2009 Pearson Education, Inc. INTRODUCTION TO ORGANIC COMPOUNDS 3.1 I can explain why carbon is unparalleled in its ability to form large, diverse molecules. Diverse molecules found in cells are composed of carbon bonded to other elements

More information

Lesson 2. Biological Molecules. Introduction to Life Processes - SCI 102 1

Lesson 2. Biological Molecules. Introduction to Life Processes - SCI 102 1 Lesson 2 Biological Molecules Introduction to Life Processes - SCI 102 1 Carbon in Biological Molecules Organic molecules contain carbon (C) and hydrogen (H) Example: glucose (C 6 H 12 O 6 ) Inorganic

More information

Q1: Circle the best correct answer: (15 marks)

Q1: Circle the best correct answer: (15 marks) Q1: Circle the best correct answer: (15 marks) 1. Which one of the following incorrectly pairs an amino acid with a valid chemical characteristic a. Glycine, is chiral b. Tyrosine and tryptophan; at neutral

More information

OPTION GROUP: BIOLOGICAL MOLECULES 3 PROTEINS WORKBOOK. Tyrone R.L. John, Chartered Biologist

OPTION GROUP: BIOLOGICAL MOLECULES 3 PROTEINS WORKBOOK. Tyrone R.L. John, Chartered Biologist NAME: OPTION GROUP: BIOLOGICAL MOLECULES 3 PROTEINS WORKBOOK Tyrone R.L. John, Chartered Biologist 1 Tyrone R.L. John, Chartered Biologist 2 Instructions REVISION CHECKLIST AND ASSESSMENT OBJECTIVES Regular

More information

Carbon. Isomers. The Chemical Building Blocks of Life

Carbon. Isomers. The Chemical Building Blocks of Life The Chemical Building Blocks of Life Carbon Chapter 3 Framework of biological molecules consists primarily of carbon bonded to Carbon O, N, S, P or H Can form up to 4 covalent bonds Hydrocarbons molecule

More information

Bielkoviny, enzýmy. Július Cirák. Protein Structure Timothy G. Standish

Bielkoviny, enzýmy. Július Cirák. Protein Structure Timothy G. Standish Bielkoviny, enzýmy Július irák Alanine Acid Different Amino Acid lasses 2 on-polar Aspartic acid 2 Amine Generic 2? R Acid Basic Polar istidine 2 S 2 + ysteine Levels f Protein rganization Primary Structure

More information

Human Anatomy & Physiology C H A P T E R

Human Anatomy & Physiology C H A P T E R PowerPoint Lecture Slides prepared by Barbara Heard, Atlantic Cape Community College Ninth Edition Human Anatomy & Physiology C H A P T E R 2 Annie Leibovitz/Contact Press Images 2013 Pearson Education,

More information

Paper No. 01. Paper Title: Food Chemistry. Module-16: Protein Structure & Denaturation

Paper No. 01. Paper Title: Food Chemistry. Module-16: Protein Structure & Denaturation Paper No. 01 Paper Title: Food Chemistry Module-16: Protein Structure & Denaturation The order of amino acids in a protein molecule is genetically determined. This primary sequence of amino acids must

More information

3.1 Carbon is Central to the Living World

3.1 Carbon is Central to the Living World BIOL 100 Ch. 3 1 3.1 Carbon is Central to the Living World Carbon Central element to life Most biological molecules are built on a carbon framework. Organic molecules Humans 18.5% Carbon Why is Carbon

More information

Proteins. AP Biology. Proteins. Proteins. Proteins. Effect of different R groups: Nonpolar amino acids. Amino acids H C OH H R. Structure.

Proteins. AP Biology. Proteins. Proteins. Proteins. Effect of different R groups: Nonpolar amino acids. Amino acids H C OH H R. Structure. 2008-2009 Most structurally & functionally diverse group : involved in almost everything (pepsin, DNA polymerase) (keratin, collagen) (hemoglobin, aquaporin) (insulin & other hormones) (antibodies) (actin

More information

CARBOHYDRATES. Produce energy for living things Atoms? Monomer Examples? Carbon, hydrogen, and oxygen in 1:2:1 ratio.

CARBOHYDRATES. Produce energy for living things Atoms? Monomer Examples? Carbon, hydrogen, and oxygen in 1:2:1 ratio. CARBOHYDRATES Produce energy for living things Atoms? Carbon, hydrogen, and oxygen in 1:2:1 ratio Monomer Examples? Sugars, starches MONOSACCHARIDES--- main source of energy for cells Glucose Know formula?

More information

A. Structure and Function 1. Carbon a. Forms four (4) covalent bonds linked together in chains or rings Forms skeleton of basic biochemicals b.

A. Structure and Function 1. Carbon a. Forms four (4) covalent bonds linked together in chains or rings Forms skeleton of basic biochemicals b. Biochemistry 2 A. Structure and Function 1. arbon a. Forms four (4) covalent bonds linked together in chains or rings Forms skeleton of basic biochemicals b. in three dimensions (3D) Diagrams in 2D may

More information

The Structure and Function of Large Biological Molecules Part 4: Proteins Chapter 5

The Structure and Function of Large Biological Molecules Part 4: Proteins Chapter 5 Key Concepts: The Structure and Function of Large Biological Molecules Part 4: Proteins Chapter 5 Proteins include a diversity of structures, resulting in a wide range of functions Proteins Enzymatic s

More information

All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds:

All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds: Biochemistry Organic Chemistry All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds: Do not contain carbon Organic

More information

Bioinformatics for molecular biology

Bioinformatics for molecular biology Bioinformatics for molecular biology Structural bioinformatics tools, predictors, and 3D modeling Structural Biology Review Dr Research Scientist Department of Microbiology, Oslo University Hospital -

More information

Green Segment Contents

Green Segment Contents Green Segment Contents Parts Reference Guide Green Segment 1 8 2 6 3 4 5 7 1. Amino Acid Side Chain Chart shows the properties and atomic structure of side chains. 2. Amino Acid Side Chains affect protein

More information