Razi Kittaneh & Tamer Barakat. Bayan Abusheikha. Faisal Mohammed

Size: px
Start display at page:

Download "Razi Kittaneh & Tamer Barakat. Bayan Abusheikha. Faisal Mohammed"

Transcription

1 3 Razi Kittaneh & Tamer Barakat Bayan Abusheikha Faisal Mohammed

2 Transport and Osmolality In the last lecture we briefly talked about Transport, there are 2 types of transport: 1) Passive Transport 2) Active Transport. The main difference between the 2 types of transport is the usage of energy. No energy is used in Passive Transport in contrast to Active Transport which uses energy. The other difference between Active and Passive transport is that Passive Transport involves the transport of molecules along (or with) the gradient (whether it s a concentration gradient, electrical gradient, pressure gradient etc.) meanwhile Active Transport involves the transport of molecules against the gradient. 1)Passive Transport (downhill) a) Simple Diffusion: It s the movement of LIPID SOLUBLE substances through the cell membrane, so for a substance to move through a membrane by simple diffusion, it must be Lipid soluble. Gases are the best example for a lipid soluble substance including O 2 and CO 2 which pass easily through the membrane by simple diffusion. However, ions like Na+ or K+ can t pass through the cell membrane by simple diffusion. Page1

3 n And that s why gases are used in Anesthesia. Nitrous oxide (N 2 O) is mainly used in anesthesia because it passes quickly through the membrane, so it reaches the lung quickly and the patient becomes anesthetized. Another feature for gases in Anesthesia is that the gases leave the body quickly, because they are transported by simple diffusion, so the patient will recover quickly and at the suitable time. If other chemicals were used in anesthesia they might not leave the body easily and might harm other organs like kidney or liver because their movement is slower in the body through the membranes and the recovery time for an anesthetic person will be long. When the gas source in anesthesia is removed from the patient s mouth, the gases will move in the other direction in his body to leave it. n We mentioned, in the last lecture, that this kind of diffusion (simple diffusion) depends on many factors as shown below: J J J J J concentration gradient (Dc) solubility of the substance (s) area which the substance can pass through (A) 1 Dmolecular wight R STU STVWXYUZZ [\ STU ]U]^_`YU ( Dx) These factors can be summarized in J DC S A (thickness of the memb) Dmolecular weight Page2

4 n Since the thickness of the membrane is inversely proportional to the rate of diffusion, the respiratory membrane which separates the alveoli from the blood is very thin, so the air can move quickly to the blood in the lung. n There is a condition that occurs when there is too much fluid in the interstitial space that separates 2 areas, this condition is called edema. A specific type of this condition is pulmonary edema which is caused by excess fluids in THE LUNG. The other type is peripheral edema. Edema causes the membrane to become thicker, which results in the transport becomes slower and harder in the lung, this leads to difficulties in breathing and an increase in CO 2 concentrations in the blood this causes hypoxia (hypo=little oxia= oxygen) n The previous factors can be combined to form Fick s law: J = D Do Dp = P(c1-c2) A D is a constant that takes in consideration the solubility of the molecule in the lipid and Its molecular weight. C is the concentration. X is thickness. P is the permeability (solubility) b) Facilitated Diffusion (carrier mediated transport): It s the passive movement of molecules across the cell membrane via the aid of membrane proteins. This protein is called carrier protein and they are specific. n For carrier proteins, the number of the transport proteins in a cell is fixed under standard conditions. If the amount of the substance that must be transported is much higher than the number of transporters, the extra amount of substance will not pass, which means that carrier proteins can be saturated (facilitated diffusion is saturable) and that s a difference between simple and facilitated diffusion. n For channel proteins, which are other type of transport proteins, if the channels are open, the substance will move according to its concentration gradient, otherwise it won t function. Transport through channels is a case of simple diffusion. n Let s take Glucose transportation as an example: Page3 a carrier protein will move Glucose along its concentration gradient, once a carrier protein finishes moving a Glucose molecule it attaches to other one and so

5 on. This transportation is an example of facilitated diffusion and it doesn t need energy. Glucose has to be transported through this method because it isn t lipid soluble. Since carrier proteins are saturable, there is a value called Transport Maximum Tmax or Vmax (velocity max), which means after a specific amount of concentration, no more substances can be transported through carrier proteins because all carriers are busy(full). For simple diffusion, higher concentrations always lead to a higher transport rate. Page4

6 c) Osmosis: a special kind of passive transport, it s the movement of water through semi-permeable membrane from higher concentration of water to the lower one. (lower concentration of solutes to the higher one). n Water can pass through plasma membrane in 2 ways (mentioned in slides but Dr.Faisal didn t mention them) 1. Through lipid bilayer by simple diffusion. 2. Through aquaporins which are integral membrane proteins. n Osmole: the molecular weight of any substance in water (1 mole) = Avogadro's Number. in other words, 1 Osmole = 1 Mole IF the molecule doesn t dissociate in water. Osmolality= Number of Osmoles per kilogram of water. Osmolarity= Number of Osmoles per Liter of water. Note: since water s density is 1000kg/m 3 we can approximate that: Osmolarity Osmolality In Osmolality/Osmolarity, we don t care about concentrations, neither about weight in grams. We care about the number of osmoles. n Examples: o how many osmoles does 140 mmoles of NaCl equel? Since NaCl dissociates into ions, we will have 140 mosmoles of Na mosmoles of Cl - = 280 m osmoles. o what s the osmolarity/ osmolality of 140 mmoles of glucose(c 6 H 12 O 6 )? Since glucose doesn t dissociate, Its 140mOsm/L 140 mosm/kg. o which has more Osmolarity? 1 gram of K + or 1 gram of Na +? Since Osmolarity depends on the number of osmoles, we need to know the Molecular Weight ( from periodic table, Na is 23,K is 39). Now we can calculate the Number of cataions as the following: For Na + = 1/23 x 6.02x10 23 for K + = 1/39 x 6.02X10 23 So Na + cataions > K + cataions which means Na + has more Osmoarity. o which one has more Osmoles 180g of Glucose or 23g of Na +?( Molecular weight for glucose= 180, Na=23) Since they make the same number of molecules, they have the same osmoles. Page5

7 n Osmolarity in our body: Plasma and interstitial fliud have approximatly the same number of anaions and cataions. However, plasma has more proteins. To calculate the osmolarity of the extracellular fluid, we add all of the numbers of none-permeable solutes (i.e. proteins, anaions and cataions), we don t ignore molecular weight. ECF osmolarity equals 300 mosm/l ( or /Kg for Osmolality). The Osmolarity of the ICF is roughly the same. Since both ICF and ECF have the same osmoles, they are Isotonic (iso= same, tonic= tension). You can use the following picture to calculate the Osmolarity of each. n Osmotic Pressure If we have two solutions seperated by a semi-permeable membrane (permeable to water, non-permeable to solutes) as the picture above, three steps will occur: Page6

8 In (a) The left side of the U-tube has less osmolarity than the right side (osmolarity of water is zero), so water moves from the left side to the right side (osmosis) until the water level (pressure) is enough to stop the movement of water, we call the pressure that is enough to stop osmosis, Osmotic Pressure. In (b), water keeps moving from lower osmolarity (left) to the higher osmolarity (right until the Osmotic Pressure in the right side of the U-tube prevents movement of more water molecules. In which we reach a state of equilibrium. As shown in (c), we can prevent the movement of water by applying pressure to the right side of the U-tube, the pressure we must apply is equal to Osmotic Pressure. n We calculate the osmotic pressure by the following law: Where is the osmotic pressure, M is the molarity, R is the gas consant and T is the absolute temperature. n Additional info (only for acquaintance): we can use the method in the previous figure (c), to filter water (when pressing on the right side more than osmotic pressure, the water in the left side will rise in pure state because of the membrane which wont allow solutes through) n The Osmolality inside the cell is 300 mosm/l so: First solution is isotonic, because Osmolality is equal. there is no net movement of water Second solution is hypotonic or hyposmolar-solution (hypo=less), water will move into the cell (by osmosis) causing hemolysis (hemo=blood, lysis=bursting) -Note: we say hemolysis to RBCs, the rupture of other cells is simply called lysis The third solution is hypertonic or hyperosmolar solution (hyper= more), so the cell will lose water (by osmosis) and shrink, we also call that crenation of the cell. Page7

9 (The osmolality of water is zero since there aren t any osmoles) n -Question: if we want to make the plasma of a patient hypotonic, what do we inject him with? We inject him with water, which will cause RBCs to hemolyze and the person might end up dead. n For this reason, when we inject patients with solutions that are isotonic to our ECF and ICF (both 300 mosm/l), for example: % NaCl (9 grams per 1L of water) => Rq rq.r 300 mosm/l. 18: 9 from Na + and 9 from Cl - we multiply the percentage with 1000 so the unit becomes (gram/l) m Molar solution of CaCl 2 => 100 x 3 (Ca 2+, Cl -, Cl - )= 300mOsm/L m Molar of glucose => 300 mosm/l All the previous solutions have the same osmolality of our body. 2) Active Transport (uphill transport): it s the transport that needs energy to move solutes against their concentration/electrical/etc. gradient. It has two types: a) Primary active transport (Direct): These pumps are specific saturable proteins that pump solutes against their gradients. For instance: Na + /k + pump, Ca ++ pump and H + pump. they can also be called Na + /k + ATPase, Ca ++ ATPase and H + ATPase since they use ATP as a source of energy, they hydrolyze ATP directly for energy. These pumps can be electrogenic (genic= formation). Pumps generate voltage by unequal distribution of charge, the most common electrogenic pump is Na + /k + (moves 3 Na + cations out of the cell and 2 K + into the cell against their concentration gradient where the concentration of Na+ outside the cell is already higher than the inside). b) Secondary Active transport (indirect): In this type of active transport, the energy isn t used directly, the pump uses the energy stored in Na + or H + concentration gradients which is maintained by ATPases as Na + /k + ATPase (that s how its indirect). Na+/ Ca++ exchange: Na+ enters and Ca++ leaves. Page8

10 Na enters passively (by diffusion) but overall, it s active because the Na+/K+ pump is what maintains the Na+ outside in higher concentrations. The pump is active so Na+/Ca++ exchange does use ATP but indirectly There are two types of secondary transport according to the movement of solutes: a) Symporter (sym= same): Also called Cotransport, both solutes move in the same direction. b) Antiporter: Also called Counter transport: it moves the solutes in opposite directions. Quiz 1- Emphysema is a lung disease, as in the picture, how does it affect gas exchange (diffusion): a- It doesn t affect it b- It increases diffusion because of the space increasement C- It decreases diffusion because the surface area decreases 2- Pneumonia is a lung disease, which diffusion factor does it affect A- Thickness b- molecular weight c- concentration gradient d- electrical charge Page9

11 3-How does insulin help to increase glucose absorption by cells from blood? a- It sends signals to cells to build more carrier proteins for glucose to increase Vmax b- CHOOSE A!! c- CHOOSE A!! d- CHOOSE A!! 4-In the following picture, when does osmosis stop? a- When all the water in the right moves to the left b- When the osmolarity of the right side = osmolarity Of the left side c- When both sides have the same concentration of H 2 O D- When there is enough pressure on the left side (Osmotic pressure) 5-The solvent of the U-tube is a-plasma b-blood C-water d-fats 6-What is crenation A- Shrinking c- bursting a- Normal d- plasmolyzing 7-What would happen to Na + /glucose co transport if there is no Na + /k + pump? A-The cotransport would eventually stop because the Na gradient is lost. b-the cotransport would eventually stop because the glucose gradient is lost. c-na + /glucose is independent of any other pump *CORRECT ANSWERS ARE IN UPPERCASE* The End (finally!!) Page10

Chapter 4 Cell Membrane Transport

Chapter 4 Cell Membrane Transport Chapter 4 Cell Membrane Transport Plasma Membrane Review o Functions Separate ICF / ECF Allow exchange of materials between ICF / ECF such as obtaining O2 and nutrients and getting rid of waste products

More information

Ch 3 Membrane Transports

Ch 3 Membrane Transports Ch 3 Membrane Transports what's so dynamic about cell membranes? living things get nutrients and energy from the envrionment this is true of the entire organism and each cell this requires transport in/out

More information

The table indicates how changing the variable listed alone will alter diffusion rate.

The table indicates how changing the variable listed alone will alter diffusion rate. Rate of Diffusion (flux) Concentration gradient substance x surface area of membrane x lipid solubility = Distance (thickness of membrane) x molecular weight Table 3-1: Factors Influencing the Rate of

More information

Cellular Physiology. Body Fluids: 1) Water: (universal solvent) Body water varies based on of age, sex, mass, and body composition

Cellular Physiology. Body Fluids: 1) Water: (universal solvent) Body water varies based on of age, sex, mass, and body composition Membrane Physiology Body Fluids: 1) Water: (universal solvent) Body water varies based on of age, sex, mass, and body composition H 2 O ~ 73% body weight Low body fat; Low bone mass H 2 O ( ) ~ 60% body

More information

Lab 4: Osmosis and Diffusion

Lab 4: Osmosis and Diffusion Page 4.1 Lab 4: Osmosis and Diffusion Cells need to obtain water and other particles from the fluids that surround them. Water and other particles also move out of cells. Osmosis (for water) and diffusion

More information

Taking care of business Go to this page and enter room SJ123: http://tinyurl.com/physclicker Take 2 minutes to complete this survey: http://tinyurl.com/physdis Online quiz this weekend: Released Thursday

More information

Interactions Between Cells and the Extracellular Environment

Interactions Between Cells and the Extracellular Environment Chapter 6 Interactions Between Cells and the Extracellular Environment Et Extracellular lll environment Includes all parts of the body outside of cells Cells receive nourishment Cells release waste Cells

More information

LAB 4: OSMOSIS AND DIFFUSION

LAB 4: OSMOSIS AND DIFFUSION Page 4.1 LAB 4: OSMOSIS AND DIFFUSION Cells need to obtain water and other particles from the fluids that surround them. Water and other particles also move out of cells. Osmosis (for water) and diffusion

More information

Transport across the cell membrane

Transport across the cell membrane Transport across the cell membrane Learning objectives Body compartments ECF and ICF Constituents Lipid Bilayer: Barrier to water and water-soluble substances ions glucose H 2 O urea CO 2 O 2 N 2 halothane

More information

Membrane Transport. Anatomy 36 Unit 1

Membrane Transport. Anatomy 36 Unit 1 Membrane Transport Anatomy 36 Unit 1 Membrane Transport Cell membranes are selectively permeable Some solutes can freely diffuse across the membrane Some solutes have to be selectively moved across the

More information

Consider the structure of the plasma membrane (fig. 8.6)- phospholipid bilayer with peripheral and integral proteins.

Consider the structure of the plasma membrane (fig. 8.6)- phospholipid bilayer with peripheral and integral proteins. Topic 8: MEMBRANE TRANSPORT (lectures 11-12) OBJECTIVES: 1. Have a basic appreciation of the chemical characteristics of substances that impact their ability to travel across plasma membranes. 2. Know

More information

Ch. 7 Diffusion, Osmosis, and Movement across a Membrane

Ch. 7 Diffusion, Osmosis, and Movement across a Membrane Ch. 7 Diffusion, Osmosis, and Movement across a Membrane Diffusion Spontaneous movement of particles from an area of high concentration to an area of low concentration Does not require energy (exergonic)

More information

Ch3: Cellular Transport Review KEY

Ch3: Cellular Transport Review KEY Ch3: Cellular Transport Review KEY OSMOSIS Label the pictures below ( isotonic, hypertonic, or hypotonic environments) hypotonic hypertonic isotonic hypertonic means there is a GREATER concentration of

More information

Membrane Transport. Biol219 Lecture 9 Fall 2016

Membrane Transport. Biol219 Lecture 9 Fall 2016 Membrane Transport Permeability - the ability of a substance to pass through a membrane Cell membranes are selectively permeable Permeability is determined by A. the phospholipid bilayer and B. transport

More information

CHAPTER. Movement Across Plasma Membrane. Chapter 6 Outline. Diffusion Osmosis. Membrane Potential Cell Signaling

CHAPTER. Movement Across Plasma Membrane. Chapter 6 Outline. Diffusion Osmosis. Membrane Potential Cell Signaling CHAPTER 6 Interaction Between Cells and the Extracellular Environment Chapter 6 Outline Extracellular Environment Diffusion Osmosis Carrier-Mediated Carrier Mediated Transport Membrane Potential Cell Signaling

More information

Membrane Dynamics. The body is mostly water. Figure 5.1a Body Fluid Compartments. Figure 5.1c Body Fluid Compartments 2016 Pearson Education, Inc.

Membrane Dynamics. The body is mostly water. Figure 5.1a Body Fluid Compartments. Figure 5.1c Body Fluid Compartments 2016 Pearson Education, Inc. Figure 5.1a Body Fluid Compartments Membrane Dynamics The body is mostly water Figure 5.1c Body Fluid Compartments 1 Osmotic Equilibrium Chemical Disequilibrium ØWater moves freely between the ECF and

More information

Lujain Al_Adayleh. Amani Nofal. Mohammad khatatbeh

Lujain Al_Adayleh. Amani Nofal. Mohammad khatatbeh 4 Lujain Al_Adayleh Amani Nofal Mohammad khatatbeh Recap : Filtration: the movement according to the differences of pressure. **note: not all particles have the same solubility through plasma membrane.

More information

Passive Transport. Does not expend cellular energy for the movement to take place. Ex-rolling down a hill

Passive Transport. Does not expend cellular energy for the movement to take place. Ex-rolling down a hill Passive Transport Fluid Mosaic Model Passive Transport Does not expend cellular energy for the movement to take place Ex-rolling down a hill Parts of a Solution Solute: what gets dissolved Solvent: What

More information

Review: Cellular Transport

Review: Cellular Transport Review: Cellular Transport OSMOSIS 1. Label the pictures below ( isotonic, hypertonic, or hypotonic). The dots represent solutes. A. B. C. 2. means there is a GREATER concentration of solute molecules

More information

[S] [S] Hypertonic [H O] [H 2 O] g. Osmosis is the diffusion of water through membranes! 15. Osmosis. Concentrated sugar solution

[S] [S] Hypertonic [H O] [H 2 O] g. Osmosis is the diffusion of water through membranes! 15. Osmosis. Concentrated sugar solution Concentrated sugar solution Sugar molecules (Water molecules not shown) 100ml 100ml Hypertonic [S] g [H2 Hypotonic [H O] 2 O] [H 2 O] g Semipermeable Dilute sugar solution (100ml) Time 125ml Osmosis 75ml

More information

There are mainly two types of transport :

There are mainly two types of transport : There are mainly two types of transport : # Type one: Passive diffusion 1- which does not require additional energy and occurs down the concentration gradient (high low concentration) " Down Hill" (^_^

More information

UNIVERSITY OF MEDICAL SCIENCES, ONDO DEPARTMENT OF PHYSIOLOGY PHS 211 TRANSPORT MECHANISM LECTURER: MR A.O. AKINOLA

UNIVERSITY OF MEDICAL SCIENCES, ONDO DEPARTMENT OF PHYSIOLOGY PHS 211 TRANSPORT MECHANISM LECTURER: MR A.O. AKINOLA UNIVERSITY OF MEDICAL SCIENCES, ONDO DEPARTMENT OF PHYSIOLOGY PHS 211 TRANSPORT MECHANISM LECTURER: MR A.O. AKINOLA OUTLINE Introduction Basic mechanisms Passive transport Active transport INTRODUCTION

More information

Plasma Membrane Structure and Function

Plasma Membrane Structure and Function Plasma Membrane Structure and Function The plasma membrane separates the internal environment of the cell from its surroundings. The plasma membrane is a phospholipid bilayer with embedded proteins. The

More information

3.2.3 Transport across cell membranes

3.2.3 Transport across cell membranes alevelbiology.co.uk 3.2.3 Transport across cell membranes SPECIFICATION The basic structure of all cell membranes, including cell-surface membranes and the membranes around the cell organelles of eukaryotes,

More information

BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes

BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes The cell membrane is the gateway into the cell, and must allow needed things such as nutrients into the cell without letting them escape.

More information

Modern Cell Theory. Plasma Membrane. Generalized Cell Structures. Cellular Form and Function. Three principle parts of a cell

Modern Cell Theory. Plasma Membrane. Generalized Cell Structures. Cellular Form and Function. Three principle parts of a cell Cellular Form and Function Concepts of cellular structure Cell surface Membrane transport Cytoplasm Modern Cell Theory All living organisms are composed of cells. the simplest structural and functional

More information

The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11

The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11 1 February 26, The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11 Introduction I 2 Biological membranes are phospholipid bilayers with associated proteins. Current data support a fluid

More information

BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes

BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes The cell membrane is the gateway into the cell, and must allow needed things such as nutrients into the cell without letting them escape.

More information

Cell Membrane-Structure and Function

Cell Membrane-Structure and Function Cell Membrane-Structure and Function BIO 250 Living things are composed of cells and cell products (extracellular) Cells are the basic unit of structure They are the basic unit of function They vary in

More information

Passive Cellular Transport. Unit 2 Lesson 4

Passive Cellular Transport. Unit 2 Lesson 4 Unit 2 Lesson 4 Students will be able to: Define passive transport Enumerate the three types of passive transport Described each type of passive transport: osmosis, diffusion, and facilitated diffusion

More information

Cell Transport. Movement of molecules

Cell Transport. Movement of molecules Cell Transport Movement of molecules TEKS Students will investigate and explain cellular processes, including homeostasis and transport of molecules Homeostasis The maintaining of a stable body system

More information

Body Water ANS 215 Physiology and Anatomy of Domesticated Animals

Body Water ANS 215 Physiology and Anatomy of Domesticated Animals Body Water ANS 215 Physiology and Anatomy of Domesticated Animals I. Body Water A. Water is the most abundant constituent comprising 60% of total body weight. 1. Solvent for many chemicals of the body

More information

Comprehensive and Easy Course Notes for BIOL1040 Exams and Assessment

Comprehensive and Easy Course Notes for BIOL1040 Exams and Assessment Comprehensive and Easy Course Notes for BIOL1040 Exams and Assessment MODULE 1: PRINCIPLES OF CELL FUNCTION Membrane Structure & Function Cellular membranes are fluid mosaics of lipids and proteins Phospholipids

More information

Unit 7: Topic 7.4 Cellular Transport

Unit 7: Topic 7.4 Cellular Transport Unit 7: Topic 7.4 Cellular Transport Name: Class key Period: Page 1 of 39 Topic 7.4 assignments Pages/Sections Date Assigned Date Due Page 2 of 39 Topic: Membrane Channels Objective: Why do molecules move

More information

BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes

BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes The cell membrane is the gateway into the cell, and must allow needed things such as nutrients into the cell without letting them escape.

More information

FIGURE A. The phosphate end of the molecule is polar (charged) and hydrophilic (attracted to water).

FIGURE A. The phosphate end of the molecule is polar (charged) and hydrophilic (attracted to water). PLASMA MEMBRANE 1. The plasma membrane is the outermost part of a cell. 2. The main component of the plasma membrane is phospholipids. FIGURE 2.18 A. The phosphate end of the molecule is polar (charged)

More information

Transport through membranes

Transport through membranes Transport through membranes Membrane transport refers to solute and solvent transfer across both cell membranes, epithelial and capillary membranes. Biological membranes are composed of phospholipids stabilised

More information

Membrane transport. Small molecules. pumps. Large molecules

Membrane transport. Small molecules. pumps. Large molecules Cell Membrane and Transport Review Sheet Transport of nutrients, ions, and excretory substances from one side to the other is a major function of the cell membrane. A number of different means have been

More information

Membrane Structure. Membrane Structure. Membranes. Chapter 5

Membrane Structure. Membrane Structure. Membranes. Chapter 5 Membranes Chapter 5 Membrane Structure The fluid mosaic model of membrane structure contends that membranes consist of: -phospholipids arranged in a bilayer -globular proteins inserted in the lipid bilayer

More information

Plasma Membrane Structure and Function

Plasma Membrane Structure and Function Plasma Membrane Structure and Function Chapter 7 Image from: http://www.biologie.uni-hamburg.de/b-online/ge22/03.gif Slide show modified from: http://www.explorebiology.com/pptap/2005/ http://facstaff.bloomu.edu/gdavis/links%20100.htm

More information

Chapter 4. Membrane Structure and Function. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 4. Membrane Structure and Function. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 4 Membrane Structure and Function Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 4.1 Plasma Membrane Structure and Function Regulates the entrance

More information

In the Name of God, the Most Merciful, the Most Compassionate. Movement of substances across the plasma membrane

In the Name of God, the Most Merciful, the Most Compassionate. Movement of substances across the plasma membrane *Quick Revision: In the Name of God, the Most Merciful, the Most Compassionate Movement of substances across the plasma membrane Passive transport (doesn't require metabolic energy) Active transport (requires

More information

Chapter 3: Exchanging Materials with the Environment. Cellular Transport Transport across the Membrane

Chapter 3: Exchanging Materials with the Environment. Cellular Transport Transport across the Membrane Chapter 3: Exchanging Materials with the Environment Cellular Transport Transport across the Membrane Transport? Cells need things water, oxygen, balance of ions, nutrients (amino acids, sugars..building

More information

The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11

The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11 1 The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11 Introduction I 2 Biological membranes are phospholipid bilayers with associated proteins. Current data support a fluid mosaic model

More information

1.14. Passive Transport

1.14. Passive Transport Passive Transport 1.14 Simple Diffusion Cell s are selectively permeable only certain substances are able to pass through them. As mentioned in section 1.2, cell s are largely composed of a phospholipid

More information

TRANSPORT ACROSS MEMBRANES

TRANSPORT ACROSS MEMBRANES Unit 2: Cells, Membranes and Signaling TRANSPORT ACROSS MEMBRANES Chapter 5 Hillis Textbook TYPES OF TRANSPORT ACROSS THE CELL (PLASMA) MEMBRANE: What do you remember? Complete the chart with what you

More information

Movement Through the Cell Membrane

Movement Through the Cell Membrane Movement Through the Cell Membrane Cellular Movement All living organisms rely on diffusion Get oxygen for respiration Removing waste products Transpiration in plants Cellular Movement The cell membrane

More information

Equilibrium is a condition of balance. Changes in temperature, pressure or concentration can cause a shift in the equilibrium.

Equilibrium is a condition of balance. Changes in temperature, pressure or concentration can cause a shift in the equilibrium. Copy into Note Packet and Return to Teacher Cells and Their Environment Section 1: Passive Transport Objectives Relate concentration gradients, diffusion, and equilibrium. Predict the direction of water

More information

Cell Membranes & Movement Across Them

Cell Membranes & Movement Across Them Cell Membranes & Movement Across Them 2006-2007 Cell (plasma) membrane Cells need an inside & an outside separate cell from its environment cell membrane is the boundary IN food - sugars - proteins - fats

More information

Phospholipids. Extracellular fluid. Polar hydrophilic heads. Nonpolar hydrophobic tails. Polar hydrophilic heads. Intracellular fluid (cytosol)

Phospholipids. Extracellular fluid. Polar hydrophilic heads. Nonpolar hydrophobic tails. Polar hydrophilic heads. Intracellular fluid (cytosol) Module 2C Membranes and Cell Transport All cells are surrounded by a plasma membrane. Eukaryotic cells also contain internal membranes and membrane- bound organelles. In this module, we will examine the

More information

Chapter 3b Cells Membrane transport - Student Notes

Chapter 3b Cells Membrane transport - Student Notes Chapter 3b Cells Membrane transport - Student Notes 1 Transport are permeable Some molecules the membrane; others do 2 Types of Membrane Transport processes No cellular required Substance its processes

More information

Body Fluid Compartments

Body Fluid Compartments Yıldırım Beyazıt University Faculty of Medicine Department of Physiology Body Fluid Compartments Dr. Sinan Canan Body fluid balance 1 Body fluid compartments 2 Water distribution Tissue % Water Blood 83,0

More information

Transport Across the Cell Membrane 11/5/07

Transport Across the Cell Membrane 11/5/07 11/5/07 "The difference between the internal and external chemical composition of a cell represents a degree of order, that can be maintained only by a barrier to free movement into and out of the cell.

More information

Membrane Structure and Function

Membrane Structure and Function Membrane Structure and Function Chapter 7 Objectives Define the following terms: amphipathic molecules, aquaporins, diffusion Distinguish between the following pairs or sets of terms: peripheral and integral

More information

Diffusion & Osmosis - Exercise 4

Diffusion & Osmosis - Exercise 4 Diffusion & Osmosis - Exercise 4 Objectives -Define: Solvent, Solute, and Solution -Define: Diffusion, Selectively permeable membrane, Osmosis, and Dialysis -Understand rule of thumb: Concentration will

More information

Chapter 2 Transport Systems

Chapter 2 Transport Systems Chapter 2 Transport Systems The plasma membrane is a selectively permeable barrier between the cell and the extracellular environment. It permeability properties ensure that essential molecules such as

More information

Biology. Membranes.

Biology. Membranes. 1 Biology Membranes 2015 10 28 www.njctl.org 2 Vocabulary active transport carrier protein channel protein concentration gradient diffusion enzymatic activity facilitated diffusion fluid mosaic hypertonic

More information

Unit 3: Cellular Processes. 1. SEPARTION & PROTECTION: the contents of the cell from the. 2. TRANSPORT: the transport of in and out of the cell

Unit 3: Cellular Processes. 1. SEPARTION & PROTECTION: the contents of the cell from the. 2. TRANSPORT: the transport of in and out of the cell Unit 3: Cellular Processes Name: Aim #14 Cell Membrane: How does the cell membrane function to maintain homeostasis? Date: _ I. The Cell Membrane: What is it? Also known as A thin structure that acts as

More information

Chapter 4: Cell Membrane Structure and Function

Chapter 4: Cell Membrane Structure and Function Chapter 4: Cell Membrane Structure and Function Plasma Membrane: Thin barrier separating inside of cell (cytoplasm) from outside environment Function: 1) Isolate cell s contents from outside environment

More information

Cell Membranes & Movement Across Them

Cell Membranes & Movement Across Them Cell Membranes & Movement Across Them 2006-2007 Cell (plasma) membrane Cells need an inside & an outside separate cell from its environment cell membrane is the boundary IN food sugars proteins fats salts

More information

Concept 7.1: Cellular membranes are fluid mosaics of lipids and proteins

Concept 7.1: Cellular membranes are fluid mosaics of lipids and proteins Concept 7.1: Cellular membranes are fluid mosaics of lipids and proteins Lipids: Non-polar substances such as fat that contain C, H, O. Phospholipids: Lipid with phosphate group, very abundant in plasma

More information

LAB 04 Diffusion and Osmosis

LAB 04 Diffusion and Osmosis LAB 04 Diffusion and Osmosis Objectives: Describe the physical mechanisms of diffusion and osmosis. Understand the relationship between surface area and rate of diffusion. Describe how molar concentration

More information

The Phospholipids Between Us (Part 2) Transport through Cell Membranes

The Phospholipids Between Us (Part 2) Transport through Cell Membranes The Phospholipids Between Us (Part 2) Transport through Cell Membranes Lesson Plan developed by Kai Orton, PhD and Apurva Naik, PhD (Northwestern University) and based on the PhET Interactive Simulation:

More information

The Cell Membrane. Lecture 3a. Overview: Membranes. What is a membrane? Structure of the cell membrane. Fluid Mosaic Model. Membranes and Transport

The Cell Membrane. Lecture 3a. Overview: Membranes. What is a membrane? Structure of the cell membrane. Fluid Mosaic Model. Membranes and Transport Lecture 3a. The Cell Membrane Membranes and Transport Overview: Membranes Structure of cell membranes Functions of cell membranes How things get in and out of cells What is a membrane? Basically, a covering

More information

Transport of Solutes and Water

Transport of Solutes and Water Transport of Solutes and Water Across cell membranes 1. Simple and Facilitated diffusion. 2. Active transport. 3. Osmosis. Simple diffusion Simple diffusion - the red particles are moving from an area

More information

Equilibrium when two areas have the same concentration or are filled evenly

Equilibrium when two areas have the same concentration or are filled evenly Aim: How does the cell membrane function to maintain homeostasis? Do Now: Describe what homeostasis is. Homework: Vocab: Homeostasis, equilibrium, concentration gradient, diffusion, carrier protein, osmosis,

More information

Membrane Structure and Function. Cell Membranes and Cell Transport

Membrane Structure and Function. Cell Membranes and Cell Transport Membrane Structure and Function Cell Membranes and Cell Transport 1895 1917 1925 Membrane models Membranes are made of lipids Phospholipids can form membranes Its actually 2 layers - there are proteins

More information

Biology 2201 Unit 1 Matter & Energy for Life

Biology 2201 Unit 1 Matter & Energy for Life Biology 2201 Unit 1 Matter & Energy for Life 2.2 Cell Membrane Structure Primary Membrane Function: Homeostasis Conditions in the cell must remain more or less constant under many different conditions

More information

Cell Membrane and Transport

Cell Membrane and Transport Cell Membrane and Transport 29/06/2015 11:08 AM Describe the Characteristics of the phospholipid Bilayer. The Phospholipid bilayer is made up of a double layer of membrane lipids that have a hydrophobic

More information

Plasma Membranes. Plasma Membranes WJEC GCE BIOLOGY 4.6

Plasma Membranes. Plasma Membranes WJEC GCE BIOLOGY 4.6 4.6 Repeat Fig 3.20A here Fluid Mosaic Model of the Plasma Membrane Carbohydrate chain Glycoprotein Intrinsic Protein Non-polar hydrophobic fatty acid Phospholipids Appearance of the Cell Membrane Seen

More information

The Cell Membrane AP Biology

The Cell Membrane AP Biology The Cell Membrane 2007-2008 Warm Up What would happen if you gave a patient an IV of pure water? a. Their blood cells would shrink. b. Their blood cells would burst. c. The patient would slowly become

More information

Osmoregulation and Osmotic Balance

Osmoregulation and Osmotic Balance OpenStax-CNX module: m44808 1 Osmoregulation and Osmotic Balance OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this

More information

David Huang! AP Biology! Oct. 4,2013! AP Biology Osmosis Laboratory Analysis! Introduction:!! There are several different methods for the

David Huang! AP Biology! Oct. 4,2013! AP Biology Osmosis Laboratory Analysis! Introduction:!! There are several different methods for the David Huang AP Biology Oct. 4,2013 AP Biology Osmosis Laboratory Analysis Introduction: There are several different methods for the transportation of molecules across the phospholipid bilayer. These transportation

More information

Each cell has its own border, which separates the cell from its surroundings and also determines what comes in and what goes out.

Each cell has its own border, which separates the cell from its surroundings and also determines what comes in and what goes out. 7.3 Cell Transport Wednesday, December 26, 2012 10:02 AM Vocabulary: Diffusion: process in which cells become specialized in structure and function Facilitated diffusion: process of diffusion in which

More information

Membrane structure & function

Membrane structure & function Membrane structure & function Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The phospholipid bilayer describes a structure with. a. polar layers on the

More information

Membrane Structure and Function. Selectively permeable membranes are key to the cell's ability to function

Membrane Structure and Function. Selectively permeable membranes are key to the cell's ability to function Membrane Structure and Function Selectively permeable membranes are key to the cell's ability to function Amphipathic Molecules Have both hydrophilic and hydrophobic regions Phospholipids have hydrophilic

More information

Movement across the Cell Membrane

Movement across the Cell Membrane Movement across the Cell Membrane Diffusion 2nd Law of Thermodynamics governs biological systems universe tends towards disorder (entropy) Diffusion u movement from HIGH LOW concentration Simple Diffusion

More information

PHYSIOLOGY 2017: OPTO 5344 Lecture 1. Transport across the cell membrane Constanzo 1. I. Introduction

PHYSIOLOGY 2017: OPTO 5344 Lecture 1. Transport across the cell membrane Constanzo 1. I. Introduction PHYSIOLOGY 2017: OPTO 5344 Lecture 1. Transport across the cell membrane Constanzo 1 I. Introduction Fig. 1 Composition and size of cells and organelles (Ganong, 21 st edition) Water - 70-85% of cell mass

More information

Chapter 7: Membrane Structure and Function

Chapter 7: Membrane Structure and Function Chapter 7: Membrane Structure and Function Name Period Concept 7.1 Cellular membranes are fluid mosaics of lipids and proteins 1. The large molecules of all living things fall into just four main classes.

More information

Movement across the Cell Membrane (Ch. 7.3)

Movement across the Cell Membrane (Ch. 7.3) Movement across the Cell Membrane (Ch. 7.3) 2007-2008 Diffusion 2nd Law of Thermodynamics governs biological systems universe tends towards disorder (entropy) Diffusion movement from HIGH LOW concentration

More information

Ch 4 Cells & Their Environment

Ch 4 Cells & Their Environment Ch 4 Cells & Their Environment Biology Mrs. Stolipher MEMBRANE STRUCTURE AND FUNCTION Membranes organize the chemical activities of cells Membranes are selectively permeable They control the flow of substances

More information

Overview. Chapter 3: Cells and Their Functions. The Cell. Key Terms. Microscopes. Microscopes. Cytology The study of cells

Overview. Chapter 3: Cells and Their Functions. The Cell. Key Terms. Microscopes. Microscopes. Cytology The study of cells Overview Chapter 3: Cells and Their Functions Key Terms The Cell active transport filtration mitochondria cancer gene mitosis carcinogen hemolysis mutation chromosome hypertonic nucleus cytology hypotonic

More information

5.6 Diffusion, Membranes, and Metabolism

5.6 Diffusion, Membranes, and Metabolism 5.6 Diffusion, Membranes, and Metabolism Concentration of a substance Number of atoms or molecules in a given volume Concentration gradient of a substance A difference in concentration between two regions

More information

Cellular Transport Notes

Cellular Transport Notes Cellular Transport Notes About Cell Membranes All cells have a cell membrane Functions: a. Controls what enters and exits the cell to maintain an internal balance called homeostasis b. Provides protection

More information

CELL MEMBRANE & CELL TRANSPORT

CELL MEMBRANE & CELL TRANSPORT CELL MEMBRANE & CELL TRANSPORT Homeostasis: Maintaining a Balance Organisms must adjust to changes in their environment. If not DEATH! A formal definition is maintaining a stable internal condition despite

More information

Unit 1 Matter & Energy for Life

Unit 1 Matter & Energy for Life Unit 1 Matter & Energy for Life Chapter 2 Interaction of Cell Structure Biology 2201 Primary Membrane Function: Homeostasis Conditions in the cell must remain more or less constant under many different

More information

Chapter 7: Membrane Structure and Function. Key Terms:

Chapter 7: Membrane Structure and Function. Key Terms: Key Terms: Selectively permeable Fluid mosaic model Amphipathic Phospholipid Bilayer Hydrophilic Hydrophobic Phosphate head Fatty acid tail Davson-Danielli Singer-Nicolson Freeze-Fracture EM Unsaturated

More information

Dr.Faisal Mohammad 7/2/2013. Malek Abu Osba a

Dr.Faisal Mohammad 7/2/2013. Malek Abu Osba a Dr.Faisal Mohammad 2 7/2/2013 Malek Abu Osba a 2 Fast Review` Normal mechanism : negative feedback mechanism e.g : controlling the blood pressure is an example of negative feedback mechanism internal environment

More information

Cell Biology. The Plasma Membrane

Cell Biology. The Plasma Membrane Cell Biology The Plasma Membrane recall Fluid Mosiac Model S.J. Singer Semipermeable membrane fluid portion is double layer of phospholipids (=phospholipid bilayer) mosaic portion is the proteins and carbohydrates

More information

Section 4: Cellular Transport. Cellular transport moves substances within the cell and moves substances into and out of the cell.

Section 4: Cellular Transport. Cellular transport moves substances within the cell and moves substances into and out of the cell. Section 4: Cellular transport moves substances within the cell and moves substances into and out of the cell. Essential Questions What are the processes of diffusion, facilitated diffusion, and active

More information

Lecture Overview. Cell Membrane. Marieb s Human Anatomy and Physiology. Chapter 3 Cell Membranes Movement Across the Cell Membrane Lecture 7

Lecture Overview. Cell Membrane. Marieb s Human Anatomy and Physiology. Chapter 3 Cell Membranes Movement Across the Cell Membrane Lecture 7 Marieb s Human Anatomy and Physiology Marieb Hoehn Chapter 3 Cell Membranes Movement Across the Cell Membrane Lecture 7 1 The cell membrane Lecture Overview Osmotic pressure and tonicity Movement of substances

More information

Plasma Membrane Function

Plasma Membrane Function Plasma Membrane Function Cells have to maintain homeostasis, they do this by controlling what moves across their membranes Structure Double Layer of phospholipids Head (polar) hydrophiliclikes water -

More information

Cell Membrane Diagram

Cell Membrane Diagram Cell Membrane Diagram Draw a diagram of the cell membrane. Please include (and label): - Phospholipid bilayer (hydrophilic and hydrophobic) Protein channel An ion pump Cholesterol Gylcoproteins* Define

More information

Ch. 3: Cells & Their Environment

Ch. 3: Cells & Their Environment Ch. 3: Cells & Their Environment OBJECTIVES: 1. To distinguish different cellular (fluid) compartments 2. Understand movement of substances across cell membranes (passive vs active) 3. To recognize different

More information

Terminology. Terminology. Terminology. Molarity number of moles of solute / Liter of solution. a) Terminology b) Body Fluid Compartments

Terminology. Terminology. Terminology. Molarity number of moles of solute / Liter of solution. a) Terminology b) Body Fluid Compartments Integrative Sciences: Biological Systems A Fall 2011 Body Fluids Compartments, Renal Clearance and Renal Excretion of Drugs Monday, November 21, 2011 Lisa M. Harrison-Bernard, Ph.D. Department of Physiology;

More information

Chapter 8 Cells and Their Environment

Chapter 8 Cells and Their Environment Chapter Outline Chapter 8 Cells and Their Environment Section 1: Cell Membrane KEY IDEAS > How does the cell membrane help a cell maintain homeostasis? > How does the cell membrane restrict the exchange

More information

WEDNESDAY 10/18/17. Why is the cell/plasma membrane important? What is the cell/plasma membrane made of? Label the cell membrane on your notes.

WEDNESDAY 10/18/17. Why is the cell/plasma membrane important? What is the cell/plasma membrane made of? Label the cell membrane on your notes. WEDNESDAY 10/18/17 Why is the cell/plasma membrane important? What is the cell/plasma membrane made of? Label the cell membrane on your notes. THE PLASMA MEMBRANE - 2 Gateway to Cell HOMEOSTASIS Balanced

More information

Cell Structure and Function. Cell Membrane and Osmosis

Cell Structure and Function. Cell Membrane and Osmosis Cell Structure and Function Cell Membrane and Osmosis Cell Membrane All living things must maintain homeostasis. The cell membrane is the boundary between the cell and the environment that surrounds the

More information

The Transport of Materials Across Cell Membranes

The Transport of Materials Across Cell Membranes The Transport of Materials Across Cell Membranes EK 2.B.1.b. LO 2.10 The Plasma Membrane 2 EK 2.B.1.b. LO 2.10 The Plasma Membrane The cell membrane is said to be semi permeable or selectively permeable

More information

CELL BOUNDARIES. Cells create boundaries through: Cell Membranes made of the phospholipid bilayer Cell Walls made of cellulose in plants

CELL BOUNDARIES. Cells create boundaries through: Cell Membranes made of the phospholipid bilayer Cell Walls made of cellulose in plants CELL BOUNDARIES CELL BOUNDARIES Cells create boundaries through: Cell Membranes made of the phospholipid bilayer Cell Walls made of cellulose in plants TYPES OF MEMBRANES Some substances = too large or

More information