Probabilistic Evaluation of Saliency Models

Size: px
Start display at page:

Download "Probabilistic Evaluation of Saliency Models"

Transcription

1 Matthias Kümmerer Matthias Bethge Centre for Integrative Neuroscience, University of Tübingen, Germany October 8,

2 Introduction Model evaluation Modelling Saliency Maps 2 Matthias Ku mmerer, Matthias Bethge

3 mit.saliency.edu 3

4 How to judge saliency model performance? 4

5 Common intuition: Higher saliency corresponds to more fixations 5

6 Common intuition: Higher saliency corresponds to more fixations Saliency is operationalised by measuring fixation densities: p(x, y) 5

7 History of Probablistic Modelling in Saliency Vincent et al: Do we look at lights? Vis.Cog Barthelmé et al: Modelling fixation locations using spatial point processes, JoV 2013 Kümmerer et al: Information-theoretic model comparison unifies saliency metrics, PNAS 2015 Kümmerer et al: DeepGaze I, ICLR Worshop

8 Information theory provides a principled and accepted way to assess how well a model predicts the true density 7

9 The average log-likelihood of a model is N i 1 N log ˆp(x i, y i I i ) for fixations (x i, y i ) on images I i and a model ˆp(x, y I ) 8

10 The average log-likelihood of a model is N i 1 N log ˆp(x i, y i I i ) for fixations (x i, y i ) on images I i and a model ˆp(x, y I ) Information gain: Average log-likelihood relative to baseline IG(ˆp p bl ) = 1 N N log ˆp(x i, y i I i ) 1 N i N log p bl (x i, y i ) i 8

11 The average log-likelihood of a model is N i 1 N log ˆp(x i, y i I i ) for fixations (x i, y i ) on images I i and a model ˆp(x, y I ) Information gain: Average log-likelihood relative to baseline IG(ˆp p bl ) = 1 N N log ˆp(x i, y i I i ) 1 N i N log p bl (x i, y i ) i Interpretation: In a game of 20 questions, how many questions does the model save compared to baseline when trying to find the location of a fixation 8

12 Information Gain [bit/fix] Model A Model B Model C 9

13 Information Gain [bit/fix] Model A Model B Model C Gold Standard 9

14 Information Gain [bit/fix] Model A Model B Model C Gold Standard 100% 50% 42% 21% information gain explained 9

15 10

16 Saliency map Blurring Nonlinearity Center bias 11

17 Resolving the metric inconsistencies. relative performance information gain explained information gain explained AUC wrt. uniform AUC wrt. center bias i.b. D KL f.b. D KL wrt. center bias f.b. D KL wrt. uniform NSS CC Kümmerer et al., PNAS

18 Resolving the metric inconsistencies. relative performance relative performance information gain explained information gain explained information gain explained AUC wrt. uniform AUC wrt. center bias i.b. D KL f.b. D KL wrt. center bias f.b. D KL wrt. uniform NSS CC Kümmerer et al., PNAS

19 DeepGaze 13

20 Deep Gaze II: Model architecture VGG features (fixed parameters) readout network (learned parameters) DeepGaze I: ICLR Workshop 2015 DeepGaze II: arxiv 2016 deepgaze.bethgelab.org blur + softmax 14

21 Deep Gaze: Performance information gain explained [%] Baseline IttiKoch Kienzle CovSal HouZhang SUN, orig GBVS IttiKoch2 Context Aware Torralba Judd SUN, optim RARE AIM BMS edn Deep Gaze I Deep Gaze II Gold standard 15

22 Analysing Probabilistic Models stimulus with ground truth 16

23 Analysing Probabilistic Models stimulus with ground truth model predictions 16

24 Analysing Probabilistic Models stimulus with ground truth model predictions 30 fixation counts for image areas # fixations

25 Analysing Probabilistic Models 17

26 Analysing Probabilistic Models 17

27 Analysing Probabilistic Models 17

28 Analysing Probabilistic Models 17

29 Introduction Model evaluation Modelling Analysing Probabilistic Models 18 Matthias Ku mmerer, Matthias Bethge

30 Analysing Probabilistic Models p_dg(left)-p_mlc(left)= SUN.scale015 AIM Torralba Kienzle MLC Baseline Nonparametric CovSal IttiKoch HouZhang SUN.scale06386 GBVS.ittikoch GBVS.gbvs BMS ContextAware RARE edn Judd DeepGaze2 DeepGaze1 gold_standard Mean-Luminance-Contrast DeepGaze2 19

31 Analysing Probabilistic Models 20

32 Saliency Benchmarking Define submission format; encourage people to hand in probabilistic models Have a principled way to use different saliency maps for different metrics, e.g. with/without centre bias (AUC vs sauc) match empirical saliency histogramm for CC Evaluate information gain / information gain explained Publish the centre bias What to do about classical models? 21

33 Summary Phrasing saliency models probabilistically allows to resolve the inconsistency between different metrics, making benchmarking more interpretable (PNAS 2015) By using probabilistic modeling and optimizing for information gain, we were able to improve the state-of-the-art in fixation prediction (ICLR Workshop 2015; arxiv 2016) Probabilistic modelling gives us new analysis techniques to quantify where and how models fail, and to visualize the limitations of our datasets relative performance information gain explained [%] Baseline IttiKoch information gain explained Kienzle CovSal HouZhang SUN, orig model predictions GBVS IttiKoch2 # fixations Context Aware Torralba 0 Judd SUN, optim RARE AIM BMS edn Deep Gaze I Deep Gaze II Gold standard fixation counts for image areas 22

34 Thank you Matthias Bethge Tom Wallis Lucas Theis Bethgelab 23

Deep Gaze I: Boosting Saliency Prediction with Feature Maps Trained on ImageNet

Deep Gaze I: Boosting Saliency Prediction with Feature Maps Trained on ImageNet Deep Gaze I: Boosting Saliency Prediction with Feature Maps Trained on ImageNet Matthias Kümmerer 1, Lucas Theis 1,2*, and Matthias Bethge 1,3,4* 1 Werner Reichardt Centre for Integrative Neuroscience,

More information

Computational modeling of visual attention and saliency in the Smart Playroom

Computational modeling of visual attention and saliency in the Smart Playroom Computational modeling of visual attention and saliency in the Smart Playroom Andrew Jones Department of Computer Science, Brown University Abstract The two canonical modes of human visual attention bottomup

More information

Where should saliency models look next?

Where should saliency models look next? Where should saliency models look next? Zoya Bylinskii 1, Adrià Recasens 1, Ali Borji 2, Aude Oliva 1, Antonio Torralba 1, and Frédo Durand 1 1 Computer Science and Artificial Intelligence Laboratory Massachusetts

More information

Understanding Low- and High-Level Contributions to Fixation Prediction

Understanding Low- and High-Level Contributions to Fixation Prediction Understanding Low- and High-Level Contributions to Fixation Prediction Matthias Kümmerer, Thomas S.A. Wallis, Leon A. Gatys, Matthias Bethge University of Tübingen, Centre for Integrative Neuroscience

More information

arxiv: v1 [cs.cv] 3 Sep 2018

arxiv: v1 [cs.cv] 3 Sep 2018 Learning Saliency Prediction From Sparse Fixation Pixel Map Shanghua Xiao Department of Computer Science, Sichuan University, Sichuan Province, China arxiv:1809.00644v1 [cs.cv] 3 Sep 2018 2015223040036@stu.scu.edu.cn

More information

arxiv: v3 [cs.cv] 1 Jul 2018

arxiv: v3 [cs.cv] 1 Jul 2018 1 Computer Vision and Image Understanding journal homepage: www.elsevier.com SalGAN: visual saliency prediction with adversarial networks arxiv:1701.01081v3 [cs.cv] 1 Jul 2018 Junting Pan a, Cristian Canton-Ferrer

More information

Multi-Level Net: a Visual Saliency Prediction Model

Multi-Level Net: a Visual Saliency Prediction Model Multi-Level Net: a Visual Saliency Prediction Model Marcella Cornia, Lorenzo Baraldi, Giuseppe Serra, Rita Cucchiara Department of Engineering Enzo Ferrari, University of Modena and Reggio Emilia {name.surname}@unimore.it

More information

SalGAN: Visual Saliency Prediction with Generative Adversarial Networks

SalGAN: Visual Saliency Prediction with Generative Adversarial Networks SalGAN: Visual Saliency Prediction with Generative Adversarial Networks Junting Pan, Elisa Sayrol and Xavier Giro-i-Nieto Image Processing Group Universitat Politecnica de Catalunya (UPC) Barcelona, Catalonia/Spain

More information

Task-driven Webpage Saliency

Task-driven Webpage Saliency Task-driven Webpage Saliency Quanlong Zheng 1[0000 0001 5059 0078], Jianbo Jiao 1,2[0000 0003 0833 5115], Ying Cao 1[0000 0002 9288 3167], and Rynson W.H. Lau 1[0000 0002 8957 8129] 1 Department of Computer

More information

arxiv: v1 [cs.cv] 1 Feb 2017

arxiv: v1 [cs.cv] 1 Feb 2017 Visual Saliency Prediction Using a Mixture of Deep Neural Networks Samuel Dodge and Lina Karam Arizona State University {sfdodge,karam}@asu.edu arxiv:1702.00372v1 [cs.cv] 1 Feb 2017 Abstract Visual saliency

More information

The Importance of Time in Visual Attention Models

The Importance of Time in Visual Attention Models The Importance of Time in Visual Attention Models Degree s Thesis Audiovisual Systems Engineering Author: Advisors: Marta Coll Pol Xavier Giró-i-Nieto and Kevin Mc Guinness Dublin City University (DCU)

More information

An Integrated Model for Effective Saliency Prediction

An Integrated Model for Effective Saliency Prediction Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) An Integrated Model for Effective Saliency Prediction Xiaoshuai Sun, 1,2 Zi Huang, 1 Hongzhi Yin, 1 Heng Tao Shen 1,3

More information

THE human visual system has an exceptional ability of

THE human visual system has an exceptional ability of SUBMITTED MANUSCRIPT TO IEEE TCDS 1 DeepFeat: A Bottom Up and Top Down Saliency Model Based on Deep Features of Convolutional Neural Nets Ali Mahdi, Student Member, IEEE, and Jun Qin, Member, IEEE arxiv:1709.02495v1

More information

Adding Shape to Saliency: A Computational Model of Shape Contrast

Adding Shape to Saliency: A Computational Model of Shape Contrast Adding Shape to Saliency: A Computational Model of Shape Contrast Yupei Chen 1, Chen-Ping Yu 2, Gregory Zelinsky 1,2 Department of Psychology 1, Department of Computer Science 2 Stony Brook University

More information

Predicting Human Eye Fixations via an LSTM-based Saliency Attentive Model

Predicting Human Eye Fixations via an LSTM-based Saliency Attentive Model 1 Predicting Human Eye Fixations via an LSTM-based Saliency Attentive Model arxiv:1611.09571v4 [cs.cv] 9 Jul 2018 Marcella Cornia, Lorenzo Baraldi, Giuseppe Serra, and Rita Cucchiara Abstract Data-driven

More information

A Deep Multi-Level Network for Saliency Prediction

A Deep Multi-Level Network for Saliency Prediction A Deep Multi-Level Network for Saliency Prediction Marcella Cornia, Lorenzo Baraldi, Giuseppe Serra and Rita Cucchiara Dipartimento di Ingegneria Enzo Ferrari Università degli Studi di Modena e Reggio

More information

A Locally Weighted Fixation Density-Based Metric for Assessing the Quality of Visual Saliency Predictions

A Locally Weighted Fixation Density-Based Metric for Assessing the Quality of Visual Saliency Predictions FINAL VERSION PUBLISHED IN IEEE TRANSACTIONS ON IMAGE PROCESSING 06 A Locally Weighted Fixation Density-Based Metric for Assessing the Quality of Visual Saliency Predictions Milind S. Gide and Lina J.

More information

VISUAL search is necessary for rapid scene analysis

VISUAL search is necessary for rapid scene analysis IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 8, AUGUST 2016 3475 A Unified Framework for Salient Structure Detection by Contour-Guided Visual Search Kai-Fu Yang, Hui Li, Chao-Yi Li, and Yong-Jie

More information

Deep Visual Attention Prediction

Deep Visual Attention Prediction IEEE TRANSACTIONS ON IMAGE PROCESSING 1 Deep Visual Attention Prediction Wenguan Wang, and Jianbing Shen, Senior Member, IEEE arxiv:1705.02544v3 [cs.cv] 22 Mar 2018 Abstract In this work, we aim to predict

More information

Marc Assens, Xavier Giro-i-Nieto, Kevin McGuinness, Noel E. O Connor

Marc Assens, Xavier Giro-i-Nieto, Kevin McGuinness, Noel E. O Connor Accepted Manuscript Scanpath and saliency prediction on 360 degree images Marc Assens, Xavier Giro-i-Nieto, Kevin McGuinness, Noel E. O Connor PII: S0923-5965(18)30620-9 DOI: https://doi.org/10.1016/j.image.2018.06.006

More information

Spontaneous Cortical Activity Reveals Hallmarks of an Optimal Internal Model of the Environment. Berkes, Orban, Lengyel, Fiser.

Spontaneous Cortical Activity Reveals Hallmarks of an Optimal Internal Model of the Environment. Berkes, Orban, Lengyel, Fiser. Statistically optimal perception and learning: from behavior to neural representations. Fiser, Berkes, Orban & Lengyel Trends in Cognitive Sciences (2010) Spontaneous Cortical Activity Reveals Hallmarks

More information

THE last two decades have witnessed enormous development

THE last two decades have witnessed enormous development 1 Semantic and Contrast-Aware Saliency Xiaoshuai Sun arxiv:1811.03736v1 [cs.cv] 9 Nov 2018 Abstract In this paper, we proposed an integrated model of semantic-aware and contrast-aware saliency combining

More information

Methods for comparing scanpaths and saliency maps: strengths and weaknesses

Methods for comparing scanpaths and saliency maps: strengths and weaknesses Methods for comparing scanpaths and saliency maps: strengths and weaknesses O. Le Meur olemeur@irisa.fr T. Baccino thierry.baccino@univ-paris8.fr Univ. of Rennes 1 http://www.irisa.fr/temics/staff/lemeur/

More information

An Attentional Framework for 3D Object Discovery

An Attentional Framework for 3D Object Discovery An Attentional Framework for 3D Object Discovery Germán Martín García and Simone Frintrop Cognitive Vision Group Institute of Computer Science III University of Bonn, Germany Saliency Computation Saliency

More information

Motivation: Attention: Focusing on specific parts of the input. Inspired by neuroscience.

Motivation: Attention: Focusing on specific parts of the input. Inspired by neuroscience. Outline: Motivation. What s the attention mechanism? Soft attention vs. Hard attention. Attention in Machine translation. Attention in Image captioning. State-of-the-art. 1 Motivation: Attention: Focusing

More information

Saliency aggregation: Does unity make strength?

Saliency aggregation: Does unity make strength? Saliency aggregation: Does unity make strength? Olivier Le Meur a and Zhi Liu a,b a IRISA, University of Rennes 1, FRANCE b School of Communication and Information Engineering, Shanghai University, CHINA

More information

Dynamic Eye Movement Datasets and Learnt Saliency Models for Visual Action Recognition

Dynamic Eye Movement Datasets and Learnt Saliency Models for Visual Action Recognition Dynamic Eye Movement Datasets and Learnt Saliency Models for Visual Action Recognition Stefan Mathe 1,3 and Cristian Sminchisescu 2,1 1 Institute of Mathematics of the Romanian Academy (IMAR) 2 Faculty

More information

Action from Still Image Dataset and Inverse Optimal Control to Learn Task Specific Visual Scanpaths

Action from Still Image Dataset and Inverse Optimal Control to Learn Task Specific Visual Scanpaths Action from Still Image Dataset and Inverse Optimal Control to Learn Task Specific Visual Scanpaths Stefan Mathe 1,3 and Cristian Sminchisescu 2,1 1 Institute of Mathematics of the Romanian Academy of

More information

Active Fixation Control to Predict Saccade Sequences

Active Fixation Control to Predict Saccade Sequences Active Fixation Control to Predict Saccade Sequences Calden Wloka Iuliia Kotseruba John K. Tsotsos Department of Electrical Engineering and Computer Science York University, Toronto, Canada calden, yulia

More information

OVER the past decades, we have witnessed tremendous

OVER the past decades, we have witnessed tremendous 1266 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 27, NO. 6, JUNE 2016 The Application of Visual Saliency Models in Objective Image Quality Assessment: A Statistical Evaluation Wei Zhang,

More information

Spatio-Temporal Saliency Networks for Dynamic Saliency Prediction

Spatio-Temporal Saliency Networks for Dynamic Saliency Prediction TO APPEAR IN IEEE TRANSACTIONS ON MULTIMEDIA, 2017 1 Spatio-Temporal Saliency Networks for Dynamic Saliency Prediction Cagdas Bak, Aysun Kocak, Erkut Erdem, and Aykut Erdem arxiv:1607.04730v2 [cs.cv] 15

More information

Early Salient Region Selection Does Not Drive Rapid Visual Categorization

Early Salient Region Selection Does Not Drive Rapid Visual Categorization 1 Early Salient Region Selection Does Not Drive Rapid Visual Categorization Abstract John K. Tsotsos, Iuliia Kotseruba, Calden Wloka York University, Toronto, Canada {tsotsos, yulia_k, calden @eecs.yorku.ca}

More information

Learning Visual Attention to Identify People with Autism Spectrum Disorder

Learning Visual Attention to Identify People with Autism Spectrum Disorder Learning Visual Attention to Identify People with Autism Spectrum Disorder Ming Jiang, Qi Zhao University of Minnesota mjiang@umn.edu, qzhao@cs.umn.edu Abstract This paper presents a novel method for quantitative

More information

Computational Cognitive Science

Computational Cognitive Science Computational Cognitive Science Lecture 19: Contextual Guidance of Attention Chris Lucas (Slides adapted from Frank Keller s) School of Informatics University of Edinburgh clucas2@inf.ed.ac.uk 20 November

More information

Saliency Prediction with Active Semantic Segmentation

Saliency Prediction with Active Semantic Segmentation JIANG et al.: SALIENCY PREDICTION WITH ACTIVE SEMANTIC SEGMENTATION 1 Saliency Prediction with Active Semantic Segmentation Ming Jiang 1 mjiang@u.nus.edu Xavier Boix 1,3 elexbb@nus.edu.sg Juan Xu 1 jxu@nus.edu.sg

More information

Video Saliency Detection via Dynamic Consistent Spatio- Temporal Attention Modelling

Video Saliency Detection via Dynamic Consistent Spatio- Temporal Attention Modelling AAAI -13 July 16, 2013 Video Saliency Detection via Dynamic Consistent Spatio- Temporal Attention Modelling Sheng-hua ZHONG 1, Yan LIU 1, Feifei REN 1,2, Jinghuan ZHANG 2, Tongwei REN 3 1 Department of

More information

Learned Region Sparsity and Diversity Also Predict Visual Attention

Learned Region Sparsity and Diversity Also Predict Visual Attention Learned Region Sparsity and Diversity Also Predict Visual Attention Zijun Wei 1, Hossein Adeli 2, Gregory Zelinsky 1,2, Minh Hoai 1, Dimitris Samaras 1 1. Department of Computer Science 2. Department of

More information

VIDEO SALIENCY INCORPORATING SPATIOTEMPORAL CUES AND UNCERTAINTY WEIGHTING

VIDEO SALIENCY INCORPORATING SPATIOTEMPORAL CUES AND UNCERTAINTY WEIGHTING VIDEO SALIENCY INCORPORATING SPATIOTEMPORAL CUES AND UNCERTAINTY WEIGHTING Yuming Fang, Zhou Wang 2, Weisi Lin School of Computer Engineering, Nanyang Technological University, Singapore 2 Department of

More information

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1 The Application of Visual Saliency Models in Objective Image Quality Assessment: A Statistical Evaluation Wei Zhang, Student Member, IEEE, Ali

More information

Webpage Saliency. National University of Singapore

Webpage Saliency. National University of Singapore Webpage Saliency Chengyao Shen 1,2 and Qi Zhao 2 1 Graduate School for Integrated Science and Engineering, 2 Department of Electrical and Computer Engineering, National University of Singapore Abstract.

More information

I. INTRODUCTION VISUAL saliency, which is a term for the pop-out

I. INTRODUCTION VISUAL saliency, which is a term for the pop-out IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 27, NO. 6, JUNE 2016 1177 Spatiochromatic Context Modeling for Color Saliency Analysis Jun Zhang, Meng Wang, Member, IEEE, Shengping Zhang,

More information

Predicting When Saliency Maps are Accurate and Eye Fixations Consistent

Predicting When Saliency Maps are Accurate and Eye Fixations Consistent Predicting When Saliency Maps are Accurate and Eye Fixations Consistent Anna Volokitin Michael Gygli Xavier Boix 2,3 Computer Vision Laboratory, ETH Zurich, Switzerland 2 Department of Electrical and Computer

More information

THE rapid development of mobile devices further emphasizes. Spatiotemporal Knowledge Distillation for Efficient Estimation of Aerial Video Saliency

THE rapid development of mobile devices further emphasizes. Spatiotemporal Knowledge Distillation for Efficient Estimation of Aerial Video Saliency 1 Spatiotemporal Knowledge Distillation for Efficient Estimation of Aerial Video Saliency Jia Li, Senior Member, IEEE, Kui Fu, Shengwei Zhao and Shiming Ge, Senior Member, IEEE arxiv:1904.04992v1 [cs.cv]

More information

A Data-driven Metric for Comprehensive Evaluation of Saliency Models

A Data-driven Metric for Comprehensive Evaluation of Saliency Models A Data-driven Metric for Comprehensive Evaluation of Saliency Models Jia Li 1,2, Changqun Xia 1, Yafei Song 1, Shu Fang 3, Xiaowu Chen 1 1 State Key Laboratory of Virtual Reality Technology and Systems,

More information

Objects do not predict fixations better than early saliency: A re-analysis of Einhäuser et al. s data

Objects do not predict fixations better than early saliency: A re-analysis of Einhäuser et al. s data Journal of Vision (23) 3():8, 4 http://www.journalofvision.org/content/3//8 Objects do not predict fixations better than early saliency: A re-analysis of Einhäuser et al. s data Ali Borji Department of

More information

Deriving an appropriate baseline for describing fixation behaviour. Alasdair D. F. Clarke. 1. Institute of Language, Cognition and Computation

Deriving an appropriate baseline for describing fixation behaviour. Alasdair D. F. Clarke. 1. Institute of Language, Cognition and Computation Central Baselines 1 Running head: CENTRAL BASELINES Deriving an appropriate baseline for describing fixation behaviour Alasdair D. F. Clarke 1. Institute of Language, Cognition and Computation School of

More information

Object Detectors Emerge in Deep Scene CNNs

Object Detectors Emerge in Deep Scene CNNs Object Detectors Emerge in Deep Scene CNNs Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba Presented By: Collin McCarthy Goal: Understand how objects are represented in CNNs Are

More information

A Visual Saliency Map Based on Random Sub-Window Means

A Visual Saliency Map Based on Random Sub-Window Means A Visual Saliency Map Based on Random Sub-Window Means Tadmeri Narayan Vikram 1,2, Marko Tscherepanow 1 and Britta Wrede 1,2 1 Applied Informatics Group 2 Research Institute for Cognition and Robotics

More information

Visual Saliency in Image Quality Assessment

Visual Saliency in Image Quality Assessment Visual Saliency in Image Quality Assessment Wei Zhang School of Computer Science and Informatics Cardiff University A thesis submitted in partial fulfilment of the requirement for the degree of Doctor

More information

Saliency in Crowd. 1 Introduction. Ming Jiang, Juan Xu, and Qi Zhao

Saliency in Crowd. 1 Introduction. Ming Jiang, Juan Xu, and Qi Zhao Saliency in Crowd Ming Jiang, Juan Xu, and Qi Zhao Department of Electrical and Computer Engineering National University of Singapore Abstract. Theories and models on saliency that predict where people

More information

What we see is most likely to be what matters: Visual attention and applications

What we see is most likely to be what matters: Visual attention and applications What we see is most likely to be what matters: Visual attention and applications O. Le Meur P. Le Callet olemeur@irisa.fr patrick.lecallet@univ-nantes.fr http://www.irisa.fr/temics/staff/lemeur/ November

More information

arxiv: v1 [cs.cv] 1 Sep 2016

arxiv: v1 [cs.cv] 1 Sep 2016 arxiv:1609.00072v1 [cs.cv] 1 Sep 2016 Attentional Push: Augmenting Salience with Shared Attention Modeling Siavash Gorji James J. Clark Centre for Intelligent Machines, Department of Electrical and Computer

More information

The Attraction of Visual Attention to Texts in Real-World Scenes

The Attraction of Visual Attention to Texts in Real-World Scenes The Attraction of Visual Attention to Texts in Real-World Scenes Hsueh-Cheng Wang (hchengwang@gmail.com) Marc Pomplun (marc@cs.umb.edu) Department of Computer Science, University of Massachusetts at Boston,

More information

Saliency in Crowd. Ming Jiang, Juan Xu, and Qi Zhao

Saliency in Crowd. Ming Jiang, Juan Xu, and Qi Zhao Saliency in Crowd Ming Jiang, Juan Xu, and Qi Zhao Department of Electrical and Computer Engineering National University of Singapore, Singapore eleqiz@nus.edu.sg Abstract. Theories and models on saliency

More information

A top-down saliency model with goal relevance

A top-down saliency model with goal relevance Journal of Vision (2019) 19(1):11, 1 16 1 A top-down saliency model with goal relevance James Tanner Laurent Itti Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA

More information

PathGAN: Visual Scanpath Prediction with Generative Adversarial Networks

PathGAN: Visual Scanpath Prediction with Generative Adversarial Networks PathGAN: Visual Scanpath Prediction with Generative Adversarial Networks Marc Assens 1, Kevin McGuinness 1, Xavier Giro-i-Nieto 2, and Noel E. O Connor 1 1 Insight Centre for Data Analytic, Dublin City

More information

High-Resolution Breast Cancer Screening with Multi-View Deep Convolutional Neural Networks

High-Resolution Breast Cancer Screening with Multi-View Deep Convolutional Neural Networks High-Resolution Breast Cancer Screening with Multi-View Deep Convolutional Neural Networks Krzysztof J. Geras Joint work with Kyunghyun Cho, Linda Moy, Gene Kim, Stacey Wolfson and Artie Shen. GTC 2017

More information

Introduction to ROC analysis

Introduction to ROC analysis Introduction to ROC analysis Andriy I. Bandos Department of Biostatistics University of Pittsburgh Acknowledgements Many thanks to Sam Wieand, Nancy Obuchowski, Brenda Kurland, and Todd Alonzo for previous

More information

arxiv: v2 [cs.cv] 22 Mar 2018

arxiv: v2 [cs.cv] 22 Mar 2018 Deep saliency: What is learnt by a deep network about saliency? Sen He 1 Nicolas Pugeault 1 arxiv:1801.04261v2 [cs.cv] 22 Mar 2018 Abstract Deep convolutional neural networks have achieved impressive performance

More information

HUMAN VISUAL PERCEPTION CONCEPTS AS MECHANISMS FOR SALIENCY DETECTION

HUMAN VISUAL PERCEPTION CONCEPTS AS MECHANISMS FOR SALIENCY DETECTION HUMAN VISUAL PERCEPTION CONCEPTS AS MECHANISMS FOR SALIENCY DETECTION Oana Loredana BUZATU Gheorghe Asachi Technical University of Iasi, 11, Carol I Boulevard, 700506 Iasi, Romania lbuzatu@etti.tuiasi.ro

More information

Improving Saliency Models by Predicting Human Fixation Patches

Improving Saliency Models by Predicting Human Fixation Patches Improving Saliency Models by Predicting Human Fixation Patches Rachit Dubey 1, Akshat Dave 2, and Bernard Ghanem 1 1 King Abdullah University of Science and Technology, Saudi Arabia 2 University of California

More information

arxiv: v1 [cs.cv] 2 Jun 2017

arxiv: v1 [cs.cv] 2 Jun 2017 INTEGRATED DEEP AND SHALLOW NETWORKS FOR SALIENT OBJECT DETECTION Jing Zhang 1,2, Bo Li 1, Yuchao Dai 2, Fatih Porikli 2 and Mingyi He 1 1 School of Electronics and Information, Northwestern Polytechnical

More information

Computational Cognitive Science

Computational Cognitive Science Computational Cognitive Science Lecture 15: Visual Attention Chris Lucas (Slides adapted from Frank Keller s) School of Informatics University of Edinburgh clucas2@inf.ed.ac.uk 14 November 2017 1 / 28

More information

Fusing Generic Objectness and Visual Saliency for Salient Object Detection

Fusing Generic Objectness and Visual Saliency for Salient Object Detection Fusing Generic Objectness and Visual Saliency for Salient Object Detection Yasin KAVAK 06/12/2012 Citation 1: Salient Object Detection: A Benchmark Fusing for Salient Object Detection INDEX (Related Work)

More information

Bayesian integration in sensorimotor learning

Bayesian integration in sensorimotor learning Bayesian integration in sensorimotor learning Introduction Learning new motor skills Variability in sensors and task Tennis: Velocity of ball Not all are equally probable over time Increased uncertainty:

More information

Influence of Low-Level Stimulus Features, Task Dependent Factors, and Spatial Biases on Overt Visual Attention

Influence of Low-Level Stimulus Features, Task Dependent Factors, and Spatial Biases on Overt Visual Attention Influence of Low-Level Stimulus Features, Task Dependent Factors, and Spatial Biases on Overt Visual Attention Sepp Kollmorgen 1,2., Nora Nortmann 1., Sylvia Schröder 1,2 *., Peter König 1 1 Institute

More information

Lecturer: Rob van der Willigen 11/9/08

Lecturer: Rob van der Willigen 11/9/08 Auditory Perception - Detection versus Discrimination - Localization versus Discrimination - - Electrophysiological Measurements Psychophysical Measurements Three Approaches to Researching Audition physiology

More information

How does image noise affect actual and predicted human gaze allocation in assessing image quality?

How does image noise affect actual and predicted human gaze allocation in assessing image quality? How does image noise affect actual and predicted human gaze allocation in assessing image quality? Florian Röhrbein 1, Peter Goddard 2, Michael Schneider 1,Georgina James 2, Kun Guo 2 1 Institut für Informatik

More information

Lecturer: Rob van der Willigen 11/9/08

Lecturer: Rob van der Willigen 11/9/08 Auditory Perception - Detection versus Discrimination - Localization versus Discrimination - Electrophysiological Measurements - Psychophysical Measurements 1 Three Approaches to Researching Audition physiology

More information

SALIENCY refers to a component (object, pixel, person) in a

SALIENCY refers to a component (object, pixel, person) in a 1 Personalized Saliency and Its Prediction Yanyu Xu *, Shenghua Gao *, Junru Wu *, Nianyi Li, and Jingyi Yu arxiv:1710.03011v2 [cs.cv] 16 Jun 2018 Abstract Nearly all existing visual saliency models by

More information

Predicting Video Saliency with Object-to-Motion CNN and Two-layer Convolutional LSTM

Predicting Video Saliency with Object-to-Motion CNN and Two-layer Convolutional LSTM 1 Predicting Video Saliency with Object-to-Motion CNN and Two-layer Convolutional LSTM Lai Jiang, Student Member, IEEE, Mai Xu, Senior Member, IEEE, and Zulin Wang, Member, IEEE arxiv:1709.06316v2 [cs.cv]

More information

Evaluating Visual Saliency Algorithms: Past, Present and Future

Evaluating Visual Saliency Algorithms: Past, Present and Future Journal of Imaging Science and Technology R 59(5): 050501-1 050501-17, 2015. c Society for Imaging Science and Technology 2015 Evaluating Visual Saliency Algorithms: Past, Present and Future Puneet Sharma

More information

Going from Image to Video Saliency: Augmenting Image Salience with Dynamic Attentional Push

Going from Image to Video Saliency: Augmenting Image Salience with Dynamic Attentional Push Going from Image to Video Saliency: Augmenting Image Salience with Dynamic Attentional Push Siavash Gorji James J. Clark Centre for Intelligent Machines, Department of Electrical and Computer Engineering,

More information

Deep Networks and Beyond. Alan Yuille Bloomberg Distinguished Professor Depts. Cognitive Science and Computer Science Johns Hopkins University

Deep Networks and Beyond. Alan Yuille Bloomberg Distinguished Professor Depts. Cognitive Science and Computer Science Johns Hopkins University Deep Networks and Beyond Alan Yuille Bloomberg Distinguished Professor Depts. Cognitive Science and Computer Science Johns Hopkins University Artificial Intelligence versus Human Intelligence Understanding

More information

The Peripheral Detection Task and Related Methods: Theoretical and Methodological Issues

The Peripheral Detection Task and Related Methods: Theoretical and Methodological Issues The Peripheral Detection Task and Related Methods: Theoretical and Methodological Issues Johan Engström, Driver Metrics Workshop, San Antonio, TX 2008-06-02 Outline The PDT and its variants Theoretical

More information

Actions in the Eye: Dynamic Gaze Datasets and Learnt Saliency Models for Visual Recognition

Actions in the Eye: Dynamic Gaze Datasets and Learnt Saliency Models for Visual Recognition Actions in the Eye: Dynamic Gaze Datasets and Learnt Saliency Models for Visual Recognition Stefan Mathe, Cristian Sminchisescu Presented by Mit Shah Motivation Current Computer Vision Annotations subjectively

More information

Validating the Visual Saliency Model

Validating the Visual Saliency Model Validating the Visual Saliency Model Ali Alsam and Puneet Sharma Department of Informatics & e-learning (AITeL), Sør-Trøndelag University College (HiST), Trondheim, Norway er.puneetsharma@gmail.com Abstract.

More information

MEMORABILITY OF NATURAL SCENES: THE ROLE OF ATTENTION

MEMORABILITY OF NATURAL SCENES: THE ROLE OF ATTENTION MEMORABILITY OF NATURAL SCENES: THE ROLE OF ATTENTION Matei Mancas University of Mons - UMONS, Belgium NumediArt Institute, 31, Bd. Dolez, Mons matei.mancas@umons.ac.be Olivier Le Meur University of Rennes

More information

Neurons and neural networks II. Hopfield network

Neurons and neural networks II. Hopfield network Neurons and neural networks II. Hopfield network 1 Perceptron recap key ingredient: adaptivity of the system unsupervised vs supervised learning architecture for discrimination: single neuron perceptron

More information

Weakly Supervised Coupled Networks for Visual Sentiment Analysis

Weakly Supervised Coupled Networks for Visual Sentiment Analysis Weakly Supervised Coupled Networks for Visual Sentiment Analysis Jufeng Yang, Dongyu She,Yu-KunLai,PaulL.Rosin, Ming-Hsuan Yang College of Computer and Control Engineering, Nankai University, Tianjin,

More information

EECS 433 Statistical Pattern Recognition

EECS 433 Statistical Pattern Recognition EECS 433 Statistical Pattern Recognition Ying Wu Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208 http://www.eecs.northwestern.edu/~yingwu 1 / 19 Outline What is Pattern

More information

High-level Vision. Bernd Neumann Slides for the course in WS 2004/05. Faculty of Informatics Hamburg University Germany

High-level Vision. Bernd Neumann Slides for the course in WS 2004/05. Faculty of Informatics Hamburg University Germany High-level Vision Bernd Neumann Slides for the course in WS 2004/05 Faculty of Informatics Hamburg University Germany neumann@informatik.uni-hamburg.de http://kogs-www.informatik.uni-hamburg.de 1 Contents

More information

Salient Object Detection Driven by Fixation Prediction

Salient Object Detection Driven by Fixation Prediction Salient Object Detection Driven by Fixation Prediction Wenguan Wang 1, Jianbing Shen 1,2, Xingping Dong 1, Ali Borji 3 1 Beijing Lab of Intelligent Information Technology, School of Computer Science, Beijing

More information

On the role of context in probabilistic models of visual saliency

On the role of context in probabilistic models of visual saliency 1 On the role of context in probabilistic models of visual saliency Date Neil Bruce, Pierre Kornprobst NeuroMathComp Project Team, INRIA Sophia Antipolis, ENS Paris, UNSA, LJAD 2 Overview What is saliency?

More information

Efficient Deep Model Selection

Efficient Deep Model Selection Efficient Deep Model Selection Jose Alvarez Researcher Data61, CSIRO, Australia GTC, May 9 th 2017 www.josemalvarez.net conv1 conv2 conv3 conv4 conv5 conv6 conv7 conv8 softmax prediction???????? Num Classes

More information

B657: Final Project Report Holistically-Nested Edge Detection

B657: Final Project Report Holistically-Nested Edge Detection B657: Final roject Report Holistically-Nested Edge Detection Mingze Xu & Hanfei Mei May 4, 2016 Abstract Holistically-Nested Edge Detection (HED), which is a novel edge detection method based on fully

More information

A LEARNING-BASED VISUAL SALIENCY FUSION MODEL FOR HIGH DYNAMIC RANGE VIDEO (LBVS-HDR)

A LEARNING-BASED VISUAL SALIENCY FUSION MODEL FOR HIGH DYNAMIC RANGE VIDEO (LBVS-HDR) A LEARNING-BASED VISUAL SALIENCY FUSION MODEL FOR HIGH DYNAMIC RANGE VIDEO (LBVS-HDR) Amin Banitalebi-Dehkordi1, Yuanyuan Dong1, Mahsa T. Pourazad1,2, and Panos Nasiopoulos1 1 2 ECE Department and ICICS

More information

AS AN important and challenging problem in computer

AS AN important and challenging problem in computer IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 8, AUGUST 2016 3919 DeepSaliency: Multi-Task Deep Neural Network Model for Salient Object Detection Xi Li, Liming Zhao, Lina Wei, Ming-Hsuan Yang, Senior

More information

A Bayesian Network Model of Knowledge-Based Authentication

A Bayesian Network Model of Knowledge-Based Authentication Association for Information Systems AIS Electronic Library (AISeL) AMCIS 2007 Proceedings Americas Conference on Information Systems (AMCIS) December 2007 A Bayesian Network Model of Knowledge-Based Authentication

More information

A HMM-based Pre-training Approach for Sequential Data

A HMM-based Pre-training Approach for Sequential Data A HMM-based Pre-training Approach for Sequential Data Luca Pasa 1, Alberto Testolin 2, Alessandro Sperduti 1 1- Department of Mathematics 2- Department of Developmental Psychology and Socialisation University

More information

Deep Compression and EIE: Efficient Inference Engine on Compressed Deep Neural Network

Deep Compression and EIE: Efficient Inference Engine on Compressed Deep Neural Network Deep Compression and EIE: Efficient Inference Engine on Deep Neural Network Song Han*, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark Horowitz, Bill Dally Stanford University Our Prior Work: Deep

More information

4. gaze direction and decisions How does gaze direction affect decision-making?

4. gaze direction and decisions How does gaze direction affect decision-making? 4. gaze direction and decisions How does gaze direction affect decision-making? Sun, D. et al (2018) Frontiers in Human Neuroscience, Volume 12: Article 52 Sun, D. et al (2018) Frontiers in Human Neuroscience,

More information

arxiv: v2 [cs.cv] 17 Jun 2016

arxiv: v2 [cs.cv] 17 Jun 2016 Human Attention in Visual Question Answering: Do Humans and Deep Networks Look at the Same Regions? Abhishek Das 1, Harsh Agrawal 1, C. Lawrence Zitnick 2, Devi Parikh 1, Dhruv Batra 1 1 Virginia Tech,

More information

AClass: A Simple, Online Probabilistic Classifier. Vikash K. Mansinghka Computational Cognitive Science Group MIT BCS/CSAIL

AClass: A Simple, Online Probabilistic Classifier. Vikash K. Mansinghka Computational Cognitive Science Group MIT BCS/CSAIL AClass: A Simple, Online Probabilistic Classifier Vikash K. Mansinghka Computational Cognitive Science Group MIT BCS/CSAIL AClass: A Simple, Online Probabilistic Classifier or How I learned to stop worrying

More information

SUN: A Model of Visual Salience Using Natural Statistics. Gary Cottrell Lingyun Zhang Matthew Tong Tim Marks Honghao Shan Nick Butko Javier Movellan

SUN: A Model of Visual Salience Using Natural Statistics. Gary Cottrell Lingyun Zhang Matthew Tong Tim Marks Honghao Shan Nick Butko Javier Movellan SUN: A Model of Visual Salience Using Natural Statistics Gary Cottrell Lingyun Zhang Matthew Tong Tim Marks Honghao Shan Nick Butko Javier Movellan 1 Collaborators QuickTime and a TIFF (LZW) decompressor

More information

CPC journal club archive

CPC journal club archive CPC journal club archive (alphabetically ordered according to first author s last name) last updated: 01/30/2019 abrahamyan/silva/daking/carandini/gardner - adaptable history biases in human perceptual

More information

PLEASE SCROLL DOWN FOR ARTICLE

PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by: [Vincent, Benjamin T.] On: 22 June 2009 Access details: Access Details: [subscription number 912611831] Publisher Psychology Press Informa Ltd Registered in England and

More information