Enhancing Cognitive System Self Perception Object Identification Using Neural Network

Size: px
Start display at page:

Download "Enhancing Cognitive System Self Perception Object Identification Using Neural Network"

Transcription

1 Technology, Volume-2, Issue-3, May-June, 2014, pp , IASTER Online: , Print: Enhancing Cognitive System Self Perception Object Identification Using Neural Network Saroj Kumar Gupta 1, Haftom G Egziabher 2 1 Department of Computer Science, Mizan Tepi University, Tepi, Postal Box-121, Ethiopia 2 Department of Information Technology, Mizan Tepi University, Tepi, Postal Box-121, Ethiopia ABSTRACT This research paper deals with an idea of object perception with object identification for cognitive system robotics. Initiative behind this agent development is to percept the object and percept human action and performs the same action with object identities. Object identities and action driven development agent is difficult for identifying whole body movement and challenging to identify pattern of whole object. We are working and trying to implement some background knowledge into robot which act and identify after perceiving object and its action. Cognitive Robot percept small perception and it perform complex action from it. This proposed robot achieves object identification, learning of environment and action perception. Keywords: Action Perception, Mirror Neuron, Utility theory, Neural Network. I. INTRODUCTION HOW a robot percept the identify object and percept human actions? Some mammal like rhesus macaques is able to identify their own body change of genes even when they are technically modify based on T cell and presence and absence of methyl based on and off genes, same way robot identify these kinds of cognitive functions may have the potential to break the limits of hand coded machine intelligence. The goal of this research paper is to create a cognitive system robot which actively develops perception, identifies object and absorb self and actions in non stationary environments. Our claim for current cognitive systems is that robot actions are perception developed with BG information, but their perception is not adapted as to give identity of object. In fact action driven development of perceptual ability is missing in robot learning in non stationary environments to identify object behavior. Therefore, identifying object and action perception of human in robots is not yet reconstrucable and perception of actions does by robots and humans is not treated in the same way at a perceptual level of robot. Artificial intelligence, makes it possible to design robot which can identify all existing specific elements object[1]. Fig 1. Rhesus Macaques and Neural Bio-Model Mirror Perception. The AI robot or computer gathers facts about a situation through sensors or human input. The computer compares this information to stored data and decides what the information signifies. The computer runs through various possible actions and predicts which action will be most successful based on the collected information and have memory space to keep track of object identification with the help of background knowledge (BG). 44

2 1.1. Humanoid Robot Humanoid Robotics includes a rich diversity of projects where perception, processing and action are embodied in a recognizably anthropomorphic form in order to emulate some subset of the physical, cognitive and social dimensions of the human body and experience. Figure 1 shows Schematic presentation of action-driven developments. An agent generates an action and associates the perceived the sensory event. The casual relation constructs body definition, motor control and action perception. The goal is not, to make robot that can be mistaken for or used interchangeably with real human beings. Rather, the goal is to create a new kind of tool and algorithm which, fundamentally different from any we have yet seen because it is designed to work with humans as well as to identify object. Humanoids will interact socially with people in typical, everyday environments. We already have robots to do tedious, repetitive labor for specialized environments and tasks. Instead, humanoids will be designed to act safely alongside humans, extending our capabilities in a wide variety of tasks and environments. II. ACTION PERCEPTION To perceive, according to this enactive approach to perception, is not merely to have sensations; it is to have sensations that we understand. In Action in Perception, we investigate the forms this understanding can take. He begins by arguing, on both phenomenological and empirical grounds, that the content of perception is not like the content of a picture; the world is not given to consciousness all at once but is gained gradually by active inquiry and exploration. we then argues that perceptual experience acquires content thanks to our possession and exercise of practical bodily knowledge, and examines, among other topics, the problems posed by spatial content and the experience of color. We consider the perspective aspect of the representational content of experience and assess the place of thought and understanding in experience. Finally, we explore the idea of the enactive approach for our understanding of the neuroscience of perception. An agent generates an action and associates the perceived the sensory event. The casual relation constructs body definition, motor control and action perception. Fig. 2. Schematic Presentation of Action-Driven Developments 2.1 Visual Motion A robot generates an motor exploration with the arm motor synergy. The synergy in this paper means coordination in the movement of multiple joint motors, based on motor exploration, the robot identifies its own body using vision and proprioception. We use visual motion cues to segment the robot s body parted from the background, since visual motion cues prove the target s independent from environment The absolute subtraction between the successive frames of monochrome image I m (x,t) result in a different image I f (x,t) as given I f (x,t) = I m (x,t)- I m (x,t-τ) (1) Where x=(ξ,ɳ ) denotes the horizontal and vertical coordinate on the image. T and τ denotes the sampling time and the interval of the frames [2]. 45

3 We will now define a procedure for clustering different blobs and filling in the area. First, motion points/pixels are grouped in clusters. A set of points is randomly sampled from the high intensity points on I f. Each sample point is given a small disk. The disk of the i th point x i is represented as follows: D i (x) = { x x - x i r i } (2) Where r i denotes the radius of the disk. The neighbor disks are grouped as a new disk, if the disks intersect. The intersection of disk D i (x) and D j (x) x i - x j < r i - r j (3) 2.2 Body Identification Fig. 3. Visual Motion Detection We will now introduce the body identification procedure that allows a robot to segment its body from the environment. The assumption is that the causal relation between a self generated action and its effect define the body of the agent. The robot monitors the visuomotor correlation between proprioceptive and visual motion. When the robot detects the visuomotor Correlation, the visually moving object is identified as a part of the body. We have improved the single body part identification of the previous system to allow multiple body part identification as follows: the robot generates actions with each motor unit (e.g., the wrist or shoulder of the left or right side), and associates the sensory event with the actuated motor unit individually. Multiple body part identification enables the robot to perceive its own body parts and link them to the corresponding motor units. The robot performs repetitive movements to exclude other objects from body identification. Fig. 4. Motor Control of Robot Figure 4 illustrates this procedure. The advantage of this technique is that the actiondriven perception generalizes the body identification in which the body can be modified or extended by a grasped tool as shown in figure 4 which shows how to control body by perception from the environment. The robot generates a movement which is given u = q + δq (4) Where u denotes the motor command of the motor unit, q denotes the reference encoder values of the motor unit, and δq denotes a variation. 46

4 III. MIRROR NEURON SYSTEM Research has been conducted to locate where in the brain specific parts and neurological systems are activated when humans imitate behaviors and actions of others, discovering a mirror neuron system. This neuron system allows a person to observe and then recreate the actions of others. Mirror neurons are pre motor and parietal cells in the macaque brain that fire when the animal performs a goal directed action and when it sees others performing the same action. Evidence suggests that the mirror neuron system also allows people to comprehend and understand the intentions and emotions of others. Problems of the mirror neuron system may be correlated with the social inadequacies of autism. There have been many studies done showing that children with autism, compared with typically developing children, demonstrate reduced activity in the frontal mirror neuron system area when observing or imitating facial emotional expressions[5][7] self survey response shown with survey about percept information and algorithm simple problem solving and knowledge base agent solve the problem of perception of robot. 3.1 Action Perception Proposed action perception system is summarized as follows: (1) The action perception system is developed by observing the robot s self-generated actions. (2) The motor repertoire is constructed incrementally by combining learned primitives. (3) The sensory effect of an action is encoded in multimodal sensory space. (4) Human actions are predicatively recognized via intermediate evaluation of the sensory effect. (5) Action perception allows cross-modal sensory anticipation and action reproduction. 3.2 Problem Formulation Process of deciding what actions and states to consider, and follows goal formulation. A Simple Problem-Solving Agent Function SIMPLE-PROBLEM-SOLVING-AGENT(P) returns an action inputs: p, a percept static: s, an action sequence, initially empty state, some description of the current world state g, a goal, initially null problem, a problem formulation state < UPDATE-STATE(state, p) if s is empty then g FORMULATE-GOAL(state) problem < FORMULATE-PROBLEM(state, g) s SEARCH( problem) action RECOMMENDATION^, state) s < REMAINDER(s, state) return action 3.3. A Generic Knowledge-Based Agent function KB-AGEN1( percept) returns an action static: KB, a knowledge base t, a counter, initially 0, indicating time TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t)) action ASK(KB, MAKE-ACTION-QUERY(t)) TELL(KB, MAKE-ACTION-SENTENCE(action, t)) T t+ 1 return action 47

5 IV. BASIC UTILITY THEORY The principle of Maximum Expected Utility (MEU) seems like a reasonable way to make decisions, but it is by no means obvious that it is the only rational way. After all, why should maximizing the average utility be so special why not try to maximize the sum of the cubes of the possible utilities, or try to minimize the worst possible loss? Also, couldn't an agent act rationally just by expressing preferences between states without giving them numeric values? Finally, why should a utility function with the required properties exist at all? Perhaps a rational agent can have a preference structure that is too complex to be captured by something as simple as a single real number for each state. Constraints on rational preferences these questions can be answered by writing down some constraints on the preferences that a rational agent should have, and then showing that the MEU principle can be derived from the constraints. Writing down these constraints is a way of defining the semantics of preferences. The idea is that, given some preferences on individual atomic states, the theory should allow one to derive results about preferences for complex decision-making scenarios. This is analogous to the way that the truth value of a complex logical sentence is derived from the truth value of its component propositions, and the way the probability of a complex event is derived from the probability of atomic events. In the language of utility theory, the complex scenarios are called lotteries to emphasize the idea that the different attainable outcomes are like different prizes, and that the outcome is determined by chance. The lottery L, in which there are two possible outcomes state A with probability) and state B with the remaining probability is written as L=[p,A; 1-p,B] In general, a lottery can have any number of outcomes. The following notation is used to express preferences or the lack of a preference between lotteries or states: AB- A is preferred to B., AB- the agent is indifferent between A and B. AB- the agent prefers A to B or is indifferent between them. The following six constraints are known as the axioms of utility theory. They specify the most obvious semantic constraints on preferences and lotteries. Ordability: Given any two states, a rational agent must either prefer one to the other or else rate the two as equally preferable. That is, an agent should know what it wants. (A B) V (B A) V (A ~ 5) (5) Transitivity: Given any three states, if an agent prefers A to B and prefers B to C, then the agent must prefer A to C. (A B) A (BC) => (A C) (6) Continuity: If some state B is between A and C in preference, then there is some probability p for which the rational agent will be indifferent between getting B for sure and the lottery that yields A with probability/? and C with probability 1 p. A B y C => p [p, A; 1 - p, C] ~ B (7) Substitutability: If an agent is indifferent between two lotteries, A and B, then the agent is indifferent between two more complex lotteries that are the same except that B is substituted for A in one of them. This holds regardless of the probabilities and the other outcome(s) in the lotteries. A ~ B => [p,a; l-p,c]~ [p,b;l -p,c] (8) 48

6 Monotonicity: Suppose there are two lotteries that have the same two outcomes, A and B. If an agent prefers A to B, then the agent must prefer the lottery that has a higher probability for A (and vice versa). AB => (pq [p,a; l-p,b] [q,a; 1 -q,b]) (9) Dccomposability: Compound lotteries can be reduced to simpler ones using the laws of probability. This has been called the "no fun in gambling" rule because it says that an agent should not prefer (or disprefer) one lottery just because it has more choice points than another. [p, A; 1 p, [q,b; 1 q,c]\ ~ [p,a; (1 p)q,b; (1 p)(l q),c] (10) Suppose that an agent is situated in the environment shown below Beginning in the start state, it must execute a sequence of actions. The environment terminates when the agent reaches one of the states marked +1 or -1. In each location, the available actions are called North, South, East, and West. We will assume for now that the agent knows which state it is in initially, and that it knows the effects of all of its actions on the state of the world [8]. V. CONCLUSION We propose a robot as an agent based on human action perception and experimentally shown as with clapping sound robot. This works as self generated action and perception through sensor motor. An ability of lacking tools and hardware component tools are hard to get to work with motor control but still working to achieve it. REFERENCES [1] A. Iriki, M. Tanaka, and Y. Iwamura, Coding of Modified Body Schema During Tool Use by Macaque Postcentral Neurones, Neuroreport, Vol. 7, No. 14, pp , [2] A. Iriki, M. Tanaka, S. Obayashi, and Y. Iwamura, Self-images in the Video Monitor Coded by Monkey Intraparietal Neurons, Neurosci. Res., Vol. 40, No. 2, pp , [3] G. Rizzolatti, L. Fadiga, V. Gallese, and L. Fogassi, Premotor Cortex and the Recognition of Motor Actions, Cognit. Brain Res., Vol. 3, No. 2, pp , [4] V. Gallese, L. Fadiga, L. Fogassi, and G. Rizzolatti, Action recognition in the premotor cortex, Brain, Vol. 119, No. 2, pp , Oct [5] L. Fogassi, P. Ferrari, B. Gesierich, S. Rozzi, F. Chersi, and G. Rizzolatti, Parietal lobe: From Action Organization to Intention Understanding, Science, Vol. 308, No. 5722, pp , 2005 [6] [7] perception of self action by Ryo Saegusa [8] Artificial Intelligence a Modern Approach By J. Russel and Peter Norvig. [9] ectsgenes 49

EMBODYING GESTURE PROCESSING A Computational Cognitive Model for Humanoid Virtual Agents

EMBODYING GESTURE PROCESSING A Computational Cognitive Model for Humanoid Virtual Agents EMBODYING GESTURE PROCESSING A Computational Cognitive Model for Humanoid Virtual Agents Amir Sadeghipour PhD Student @ Sociable Agents Group Bielefeld University, Germany Supervisor: Prof. Stefan Kopp

More information

(Visual) Attention. October 3, PSY Visual Attention 1

(Visual) Attention. October 3, PSY Visual Attention 1 (Visual) Attention Perception and awareness of a visual object seems to involve attending to the object. Do we have to attend to an object to perceive it? Some tasks seem to proceed with little or no attention

More information

Giacomo Rizzolatti - selected references

Giacomo Rizzolatti - selected references Giacomo Rizzolatti - selected references 1 Rizzolatti, G., Semi, A. A., & Fabbri-Destro, M. (2014). Linking psychoanalysis with neuroscience: the concept of ego. Neuropsychologia, 55, 143-148. Notes: Through

More information

Social Cognition and the Mirror Neuron System of the Brain

Social Cognition and the Mirror Neuron System of the Brain Motivating Questions Social Cognition and the Mirror Neuron System of the Brain Jaime A. Pineda, Ph.D. Cognitive Neuroscience Laboratory COGS1 class How do our brains perceive the mental states of others

More information

Agents and Environments

Agents and Environments Agents and Environments Berlin Chen 2004 Reference: 1. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Chapter 2 AI 2004 Berlin Chen 1 What is an Agent An agent interacts with its

More information

- Evolution and Mirror Neurons. An Introduction to the nature of Self-Consciousness -

- Evolution and Mirror Neurons. An Introduction to the nature of Self-Consciousness - Christophe Menant (1/7) Abstract: Self-consciousness is a product of evolution. Few people today disagree with the evolutionary history of humans. But the nature of self-consciousness is still to be explained,

More information

ICS 606. Intelligent Autonomous Agents 1. Intelligent Autonomous Agents ICS 606 / EE 606 Fall Reactive Architectures

ICS 606. Intelligent Autonomous Agents 1. Intelligent Autonomous Agents ICS 606 / EE 606 Fall Reactive Architectures Intelligent Autonomous Agents ICS 606 / EE 606 Fall 2011 Nancy E. Reed nreed@hawaii.edu 1 Lecture #5 Reactive and Hybrid Agents Reactive Architectures Brooks and behaviors The subsumption architecture

More information

Dr. Mark Ashton Smith, Department of Psychology, Bilkent University

Dr. Mark Ashton Smith, Department of Psychology, Bilkent University UMAN CONSCIOUSNESS some leads based on findings in neuropsychology Dr. Mark Ashton Smith, Department of Psychology, Bilkent University nattentional Blindness Simons and Levin, 1998 Not Detected Detected

More information

Phil 490: Consciousness and the Self Handout [16] Jesse Prinz: Mental Pointing Phenomenal Knowledge Without Concepts

Phil 490: Consciousness and the Self Handout [16] Jesse Prinz: Mental Pointing Phenomenal Knowledge Without Concepts Phil 490: Consciousness and the Self Handout [16] Jesse Prinz: Mental Pointing Phenomenal Knowledge Without Concepts Main Goals of this Paper: Professor JeeLoo Liu 1. To present an account of phenomenal

More information

Intent Inference and Action Prediction using a Computational Cognitive Model

Intent Inference and Action Prediction using a Computational Cognitive Model Intent Inference and Action Prediction using a Computational Cognitive Model Ji Hua Brian Ang, Loo Nin Teow, Gee Wah Ng Cognition and Fusion Laboratory, DSO National Laboratories Science Park Drive, Singapore

More information

Artificial Intelligence Lecture 7

Artificial Intelligence Lecture 7 Artificial Intelligence Lecture 7 Lecture plan AI in general (ch. 1) Search based AI (ch. 4) search, games, planning, optimization Agents (ch. 8) applied AI techniques in robots, software agents,... Knowledge

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Intelligent Agents Chapter 2 & 27 What is an Agent? An intelligent agent perceives its environment with sensors and acts upon that environment through actuators 2 Examples of Agents

More information

LECTURE 5: REACTIVE AND HYBRID ARCHITECTURES

LECTURE 5: REACTIVE AND HYBRID ARCHITECTURES Reactive Architectures LECTURE 5: REACTIVE AND HYBRID ARCHITECTURES An Introduction to MultiAgent Systems http://www.csc.liv.ac.uk/~mjw/pubs/imas There are many unsolved (some would say insoluble) problems

More information

Mirror Neurons in Primates, Humans, and Implications for Neuropsychiatric Disorders

Mirror Neurons in Primates, Humans, and Implications for Neuropsychiatric Disorders Mirror Neurons in Primates, Humans, and Implications for Neuropsychiatric Disorders Fiza Singh, M.D. H.S. Assistant Clinical Professor of Psychiatry UCSD School of Medicine VA San Diego Healthcare System

More information

Observational Learning Based on Models of Overlapping Pathways

Observational Learning Based on Models of Overlapping Pathways Observational Learning Based on Models of Overlapping Pathways Emmanouil Hourdakis and Panos Trahanias Institute of Computer Science, Foundation for Research and Technology Hellas (FORTH) Science and Technology

More information

Robot Trajectory Prediction and Recognition based on a Computational Mirror Neurons Model

Robot Trajectory Prediction and Recognition based on a Computational Mirror Neurons Model Robot Trajectory Prediction and Recognition based on a Computational Mirror Neurons Model Junpei Zhong, Cornelius Weber, and Stefan Wermter Department of Computer Science, University of Hamburg, Vogt Koelln

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence COMP-241, Level-6 Mohammad Fahim Akhtar, Dr. Mohammad Hasan Department of Computer Science Jazan University, KSA Chapter 2: Intelligent Agents In which we discuss the nature of

More information

Report. View-Based Encoding of Actions in Mirror Neurons of Area F5 in Macaque Premotor Cortex

Report. View-Based Encoding of Actions in Mirror Neurons of Area F5 in Macaque Premotor Cortex Current Biology 21, 144 148, January 25, 2011 ª2011 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2010.12.022 View-Based Encoding of Actions in Mirror Neurons of Area F5 in Macaque Premotor Cortex

More information

AI and Philosophy. Gilbert Harman. Thursday, October 9, What is the difference between people and other animals?

AI and Philosophy. Gilbert Harman. Thursday, October 9, What is the difference between people and other animals? AI and Philosophy Gilbert Harman Thursday, October 9, 2008 A Philosophical Question about Personal Identity What is it to be a person? What is the difference between people and other animals? Classical

More information

Motor Theories of Cognition

Motor Theories of Cognition Motor Theories of Cognition In his Essay Towards a New Theory of Vision (1709) Berkeley uses a motor representation to describe depth perception. Motor theory in Movement and Mental Imagery (1916) by Margeret

More information

Greg Hickok: The myth of mirror neurons

Greg Hickok: The myth of mirror neurons Greg Hickok: The myth of mirror neurons Somatic Perspectives January 2015 Gregory Hickok, Ph.D. is Professor of Cognitive Sciences at UC Irvine, Founder, Director Emeritus, and current Fellow of the UCI

More information

Vorlesung Grundlagen der Künstlichen Intelligenz

Vorlesung Grundlagen der Künstlichen Intelligenz Vorlesung Grundlagen der Künstlichen Intelligenz Reinhard Lafrenz / Prof. A. Knoll Robotics and Embedded Systems Department of Informatics I6 Technische Universität München www6.in.tum.de lafrenz@in.tum.de

More information

CS343: Artificial Intelligence

CS343: Artificial Intelligence CS343: Artificial Intelligence Introduction: Part 2 Prof. Scott Niekum University of Texas at Austin [Based on slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All materials

More information

Learning About Objects Through Action - Initial Steps Towards Artificial Cognition

Learning About Objects Through Action - Initial Steps Towards Artificial Cognition Learning About Objects Through Action - Initial Steps Towards Artificial Cognition Paul Fitzpatrick ; Giorgio Metta ; Lorenzo Natale ; Sajit Rao ; Giulio Sandini AI-Lab, MIT, Cambridge, MA, U.S.A. LIRA-Lab,

More information

Introduction and Historical Background. August 22, 2007

Introduction and Historical Background. August 22, 2007 1 Cognitive Bases of Behavior Introduction and Historical Background August 22, 2007 2 Cognitive Psychology Concerned with full range of psychological processes from sensation to knowledge representation

More information

What is AI? The science of making machines that:

What is AI? The science of making machines that: What is AI? The science of making machines that: Think like humans Think rationally Act like humans Act rationally Thinking Like Humans? The cognitive science approach: 1960s ``cognitive revolution'':

More information

neurons: how kids learn

neurons: how kids learn mirror neurons: how kids learn Table of Contents 1 2 mirror neurons The Neuron What is a Mirror Neuron Research language development Mimicry Mapping 3 actions and intentions Understanding Intentions 4

More information

On Intelligence. Contents. Outline. On Intelligence

On Intelligence. Contents. Outline. On Intelligence On Intelligence From Wikipedia, the free encyclopedia On Intelligence: How a New Understanding of the Brain will Lead to the Creation of Truly Intelligent Machines is a book by Palm Pilot-inventor Jeff

More information

Grounding Ontologies in the External World

Grounding Ontologies in the External World Grounding Ontologies in the External World Antonio CHELLA University of Palermo and ICAR-CNR, Palermo antonio.chella@unipa.it Abstract. The paper discusses a case study of grounding an ontology in the

More information

The mirror-neuron system: a Bayesian perspective

The mirror-neuron system: a Bayesian perspective CE: madhu ED: Susan Koshy Op: srini WNR: LWW_WNR_4050 COMMISSIONED REVIEW NEUROREPORT The mirror-neuron system: a Bayesian perspective James M. Kilner, Karl J. Friston and Chris D. Frith WellcomeTrust

More information

A Biologically Inspired Visuo-Motor Control Model based on a Deflationary Interpretation of Mirror Neurons

A Biologically Inspired Visuo-Motor Control Model based on a Deflationary Interpretation of Mirror Neurons A Biologically Inspired Visuo-Motor Control Model based on a Deflationary Interpretation of Mirror Neurons Roberto Prevete (prevete@na.infn.it) - Matteo Santoro (santoro@na.infn.it) Department of Physical

More information

Manuscript. Do not cite. 1. Mirror neurons or emulator neurons? Gergely Csibra Birkbeck, University of London

Manuscript. Do not cite. 1. Mirror neurons or emulator neurons? Gergely Csibra Birkbeck, University of London Manuscript. Do not cite. 1 Mirror neurons or emulator neurons? Gergely Csibra Birkbeck, University of London Mirror neurons are cells in the macaque brain that discharge both when the monkey performs a

More information

Evolving Imitating Agents and the Emergence of a Neural Mirror System

Evolving Imitating Agents and the Emergence of a Neural Mirror System Evolving Imitating Agents and the Emergence of a Neural Mirror System Elhanan Borenstein and Eytan Ruppin,2 School of Computer Science, Tel Aviv University, Tel-Aviv 6998, Israel 2 School of Medicine,

More information

Introduction to Artificial Intelligence 2 nd semester 2016/2017. Chapter 2: Intelligent Agents

Introduction to Artificial Intelligence 2 nd semester 2016/2017. Chapter 2: Intelligent Agents Introduction to Artificial Intelligence 2 nd semester 2016/2017 Chapter 2: Intelligent Agents Mohamed B. Abubaker Palestine Technical College Deir El-Balah 1 Agents and Environments An agent is anything

More information

Hemispheric Specialization (lateralization) Each lobe of the brain has specialized functions (Have to be careful with this one.)

Hemispheric Specialization (lateralization) Each lobe of the brain has specialized functions (Have to be careful with this one.) Cerebral Cortex Principles contralaterality the right half of your brain controls the left half of your body and vice versa. (contralateral control.) Localization of function Specific mental processes

More information

Cognitive Modelling Themes in Neural Computation. Tom Hartley

Cognitive Modelling Themes in Neural Computation. Tom Hartley Cognitive Modelling Themes in Neural Computation Tom Hartley t.hartley@psychology.york.ac.uk Typical Model Neuron x i w ij x j =f(σw ij x j ) w jk x k McCulloch & Pitts (1943), Rosenblatt (1957) Net input:

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 2. Rational Agents Nature and Structure of Rational Agents and Their Environments Wolfram Burgard, Bernhard Nebel and Martin Riedmiller Albert-Ludwigs-Universität

More information

Exploring the Structure and Function of Brain Networks

Exploring the Structure and Function of Brain Networks Exploring the Structure and Function of Brain Networks IAP 2006, September 20, 2006 Yoonsuck Choe Brain Networks Laboratory Department of Computer Science Texas A&M University choe@tamu.edu, http://research.cs.tamu.edu/bnl

More information

COMP329 Robotics and Autonomous Systems Lecture 15: Agents and Intentions. Dr Terry R. Payne Department of Computer Science

COMP329 Robotics and Autonomous Systems Lecture 15: Agents and Intentions. Dr Terry R. Payne Department of Computer Science COMP329 Robotics and Autonomous Systems Lecture 15: Agents and Intentions Dr Terry R. Payne Department of Computer Science General control architecture Localisation Environment Model Local Map Position

More information

KECERDASAN BUATAN 3. By Sirait. Hasanuddin Sirait, MT

KECERDASAN BUATAN 3. By Sirait. Hasanuddin Sirait, MT KECERDASAN BUATAN 3 By @Ir.Hasanuddin@ Sirait Why study AI Cognitive Science: As a way to understand how natural minds and mental phenomena work e.g., visual perception, memory, learning, language, etc.

More information

Definitions. The science of making machines that: This slide deck courtesy of Dan Klein at UC Berkeley

Definitions. The science of making machines that: This slide deck courtesy of Dan Klein at UC Berkeley Definitions The science of making machines that: Think like humans Think rationally Act like humans Act rationally This slide deck courtesy of Dan Klein at UC Berkeley Acting Like Humans? Turing (1950)

More information

Prof. Greg Francis 5/23/08

Prof. Greg Francis 5/23/08 Brain parts The brain IIE 269: Cognitive Psychology Greg Francis Lecture 02 The source of cognition (consider transplant!) Weighs about 3 pounds Damage to some parts result in immediate death or disability

More information

5.8 Departure from cognitivism: dynamical systems

5.8 Departure from cognitivism: dynamical systems 154 consciousness, on the other, was completely severed (Thompson, 2007a, p. 5). Consequently as Thompson claims cognitivism works with inadequate notion of cognition. This statement is at odds with practical

More information

Mirror neurons. Romana Umrianova

Mirror neurons. Romana Umrianova Mirror neurons Romana Umrianova The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations Giacomo Rizzolatti and Corrado Sinigaglia Mechanism that unifies action

More information

An Escalation Model of Consciousness

An Escalation Model of Consciousness Bailey!1 Ben Bailey Current Issues in Cognitive Science Mark Feinstein 2015-12-18 An Escalation Model of Consciousness Introduction The idea of consciousness has plagued humanity since its inception. Humans

More information

Representation 1. Discussion Question. Roskies: Downplaying the Similarities of Neuroimages to Photographs

Representation 1. Discussion Question. Roskies: Downplaying the Similarities of Neuroimages to Photographs Representation 1 Discussion Question In what way are photographs more reliable than paintings? A. They aren t B. The image in the photograph directly reflects what is before the lens C. The image in the

More information

Contents. Foundations of Artificial Intelligence. Agents. Rational Agents

Contents. Foundations of Artificial Intelligence. Agents. Rational Agents Contents Foundations of Artificial Intelligence 2. Rational s Nature and Structure of Rational s and Their s Wolfram Burgard, Bernhard Nebel, and Martin Riedmiller Albert-Ludwigs-Universität Freiburg May

More information

AI and Philosophy. Gilbert Harman. Tuesday, December 4, Early Work in Computational Linguistics (including MT Lab at MIT)

AI and Philosophy. Gilbert Harman. Tuesday, December 4, Early Work in Computational Linguistics (including MT Lab at MIT) AI and Philosophy Gilbert Harman Tuesday, December 4, 2007 My Background Web site http://www.princeton.edu/~harman Philosophy Early Work in Computational Linguistics (including MT Lab at MIT) Cognitive

More information

The Relation Between Perception and Action: What Should Neuroscience Learn From Psychology?

The Relation Between Perception and Action: What Should Neuroscience Learn From Psychology? ECOLOGICAL PSYCHOLOGY, 13(2), 117 122 Copyright 2001, Lawrence Erlbaum Associates, Inc. The Relation Between Perception and Action: What Should Neuroscience Learn From Psychology? Patrick R. Green Department

More information

Sperling conducted experiments on An experiment was conducted by Sperling in the field of visual sensory memory.

Sperling conducted experiments on An experiment was conducted by Sperling in the field of visual sensory memory. Levels of category Basic Level Category: Subordinate Category: Superordinate Category: Stages of development of Piaget 1. Sensorimotor stage 0-2 2. Preoperational stage 2-7 3. Concrete operational stage

More information

Development of goal-directed gaze shift based on predictive learning

Development of goal-directed gaze shift based on predictive learning 4th International Conference on Development and Learning and on Epigenetic Robotics October 13-16, 2014. Palazzo Ducale, Genoa, Italy WePP.1 Development of goal-directed gaze shift based on predictive

More information

Competing Frameworks in Perception

Competing Frameworks in Perception Competing Frameworks in Perception Lesson II: Perception module 08 Perception.08. 1 Views on perception Perception as a cascade of information processing stages From sensation to percept Template vs. feature

More information

Competing Frameworks in Perception

Competing Frameworks in Perception Competing Frameworks in Perception Lesson II: Perception module 08 Perception.08. 1 Views on perception Perception as a cascade of information processing stages From sensation to percept Template vs. feature

More information

DYNAMICISM & ROBOTICS

DYNAMICISM & ROBOTICS DYNAMICISM & ROBOTICS Phil/Psych 256 Chris Eliasmith Dynamicism and Robotics A different way of being inspired by biology by behavior Recapitulate evolution (sort of) A challenge to both connectionism

More information

INTRODUCTION TO MIRROR NEURONS MARY ET BOYLE, PH.D. DEPARTMENT OF COGNITIVE SCIENCE UCSD

INTRODUCTION TO MIRROR NEURONS MARY ET BOYLE, PH.D. DEPARTMENT OF COGNITIVE SCIENCE UCSD INTRODUCTION TO MIRROR NEURONS MARY ET BOYLE, PH.D. DEPARTMENT OF COGNITIVE SCIENCE UCSD Announcements Midterm 1 Review Friday during Lecture Midterm 1 Exam February 5 Monday! During lecture come prepared

More information

Parts of the Brain Match the terms to the picture.

Parts of the Brain Match the terms to the picture. Parts of the Brain Match the terms to the picture. 1. Cerebrum 2. Cerebellum 3. Brain Stem Activity 1: At each station is a different kind of brain and a task. You will have 2-3 minutes to perform the

More information

Oscillatory Neural Network for Image Segmentation with Biased Competition for Attention

Oscillatory Neural Network for Image Segmentation with Biased Competition for Attention Oscillatory Neural Network for Image Segmentation with Biased Competition for Attention Tapani Raiko and Harri Valpola School of Science and Technology Aalto University (formerly Helsinki University of

More information

M.Sc. in Cognitive Systems. Model Curriculum

M.Sc. in Cognitive Systems. Model Curriculum M.Sc. in Cognitive Systems Model Curriculum April 2014 Version 1.0 School of Informatics University of Skövde Sweden Contents 1 CORE COURSES...1 2 ELECTIVE COURSES...1 3 OUTLINE COURSE SYLLABI...2 Page

More information

Cross-modal body representation based on visual attention by saliency

Cross-modal body representation based on visual attention by saliency Cross-modal body representation based on visual attention by saliency Mai Hiita, Sawa Fue, Masai Ogino, and Minoru Asada Abstract In performing various inds of tass, body representation is one of the most

More information

Visual attention by saliency leads cross-modal body representation

Visual attention by saliency leads cross-modal body representation Visual attention by saliency leads cross-modal body representation Mai Hiita, Sawa Fue, Masai Ogino, Taashi Minato and Minoru Asada Graduate School of Engineering, Osaa University, 2-1 Yamadaoa, Suita,

More information

Computational Cognitive Neuroscience

Computational Cognitive Neuroscience Computational Cognitive Neuroscience Computational Cognitive Neuroscience Computational Cognitive Neuroscience *Computer vision, *Pattern recognition, *Classification, *Picking the relevant information

More information

Toward A Cognitive Computer Vision System

Toward A Cognitive Computer Vision System Toward A Cognitive Computer Vision System D. Paul Benjamin Pace University, 1 Pace Plaza, New York, New York 10038, 212-346-1012 benjamin@pace.edu Damian Lyons Fordham University, 340 JMH, 441 E. Fordham

More information

Intelligent Machines That Act Rationally. Hang Li Bytedance AI Lab

Intelligent Machines That Act Rationally. Hang Li Bytedance AI Lab Intelligent Machines That Act Rationally Hang Li Bytedance AI Lab Four Definitions of Artificial Intelligence Building intelligent machines (i.e., intelligent computers) Thinking humanly Acting humanly

More information

PART - A 1. Define Artificial Intelligence formulated by Haugeland. The exciting new effort to make computers think machines with minds in the full and literal sense. 2. Define Artificial Intelligence

More information

Importance of Deficits

Importance of Deficits Importance of Deficits In complex systems the parts are often so integrated that they cannot be detected in normal operation Need to break the system to discover the components not just physical components

More information

U. T. Place, Is consciousness a brain process?

U. T. Place, Is consciousness a brain process? 24.09x Minds and Machines U. T. Place, Is consciousness a brain process? Excerpts from U.T. Place, Is consciousness a brain process?, British Journal of Psychology 47: 44-50, 1956. Place begins by noting

More information

Intentionality. Phil 255

Intentionality. Phil 255 Intentionality Phil 255 Dan Dennett Intentional systems are ascribed intentional sentences Known as a supporter of instrumentalism about beliefs Student of Ryle s Dennett seems to present a kind of so$ened

More information

Agent-Based Systems. Agent-Based Systems. Michael Rovatsos. Lecture 5 Reactive and Hybrid Agent Architectures 1 / 19

Agent-Based Systems. Agent-Based Systems. Michael Rovatsos. Lecture 5 Reactive and Hybrid Agent Architectures 1 / 19 Agent-Based Systems Michael Rovatsos mrovatso@inf.ed.ac.uk Lecture 5 Reactive and Hybrid Agent Architectures 1 / 19 Where are we? Last time... Practical reasoning agents The BDI architecture Intentions

More information

Artificial Intelligence: Its Scope and Limits, by James Fetzer, Kluver Academic Publishers, Dordrecht, Boston, London. Artificial Intelligence (AI)

Artificial Intelligence: Its Scope and Limits, by James Fetzer, Kluver Academic Publishers, Dordrecht, Boston, London. Artificial Intelligence (AI) Artificial Intelligence: Its Scope and Limits, by James Fetzer, Kluver Academic Publishers, Dordrecht, Boston, London. Artificial Intelligence (AI) is the study of how to make machines behave intelligently,

More information

Principals of Object Perception

Principals of Object Perception Principals of Object Perception Elizabeth S. Spelke COGNITIVE SCIENCE 14, 29-56 (1990) Cornell University Summary Infants perceive object by analyzing tree-dimensional surface arrangements and motions.

More information

Perceptual Development Triggered by its Self-Organization in Cognitive Learning

Perceptual Development Triggered by its Self-Organization in Cognitive Learning 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems October 7-12, 2012. Vilamoura, Algarve, Portugal Perceptual Development Triggered by its Self-Organization in Cognitive Learning

More information

Local Image Structures and Optic Flow Estimation

Local Image Structures and Optic Flow Estimation Local Image Structures and Optic Flow Estimation Sinan KALKAN 1, Dirk Calow 2, Florentin Wörgötter 1, Markus Lappe 2 and Norbert Krüger 3 1 Computational Neuroscience, Uni. of Stirling, Scotland; {sinan,worgott}@cn.stir.ac.uk

More information

Behavior Architectures

Behavior Architectures Behavior Architectures 5 min reflection You ve read about two very different behavior architectures. What are the most significant functional/design differences between the two approaches? Are they compatible

More information

Theoretical Neuroscience: The Binding Problem Jan Scholz, , University of Osnabrück

Theoretical Neuroscience: The Binding Problem Jan Scholz, , University of Osnabrück The Binding Problem This lecture is based on following articles: Adina L. Roskies: The Binding Problem; Neuron 1999 24: 7 Charles M. Gray: The Temporal Correlation Hypothesis of Visual Feature Integration:

More information

The Integration of Features in Visual Awareness : The Binding Problem. By Andrew Laguna, S.J.

The Integration of Features in Visual Awareness : The Binding Problem. By Andrew Laguna, S.J. The Integration of Features in Visual Awareness : The Binding Problem By Andrew Laguna, S.J. Outline I. Introduction II. The Visual System III. What is the Binding Problem? IV. Possible Theoretical Solutions

More information

Action and Emotion Understanding

Action and Emotion Understanding Action and Emotion Understanding How do we grasp what other people are doing and feeling? Why does it seem so intuitive? Why do you have a visceral reaction when you see a wound or someone in a physically

More information

Geography of the Forehead

Geography of the Forehead 5. Brain Areas Geography of the Forehead Everyone thinks the brain is so complicated, but let s look at the facts. The frontal lobe, for example, is located in the front! And the temporal lobe is where

More information

A Scientific Model of Consciousness that Explains Spirituality and Enlightened States

A Scientific Model of Consciousness that Explains Spirituality and Enlightened States A Scientific Model of Consciousness that Explains Spirituality and Enlightened States Frank Heile, Ph.D. Physics degrees from Stanford and MIT consciousness@frankheile.com April 2016 Outline Part 1: Agents

More information

Time Experiencing by Robotic Agents

Time Experiencing by Robotic Agents Time Experiencing by Robotic Agents Michail Maniadakis 1 and Marc Wittmann 2 and Panos Trahanias 1 1- Foundation for Research and Technology - Hellas, ICS, Greece 2- Institute for Frontier Areas of Psychology

More information

MSc Psychological Research Methods/ MPsych Advanced Psychology Module Catalogue / 2018

MSc Psychological Research Methods/ MPsych Advanced Psychology Module Catalogue / 2018 MSc Psychological Research Methods/ MPsych Advanced Psychology Module Catalogue - 2017 / 2018 PSY555: Communication of Research for Psychology (Semester 2) 10 credits core PRM, option MPsych This module

More information

Human Information Processing and Cultural Diversity. Jaana Holvikivi, DSc. School of ICT

Human Information Processing and Cultural Diversity. Jaana Holvikivi, DSc. School of ICT Human Information Processing and Cultural Diversity Jaana Holvikivi, DSc. School of ICT Outline Introduction Understanding the human mind Cognitive capacity Cultural schemas Jaana Holvikivi 2 The human

More information

Sensation & Perception PSYC420 Thomas E. Van Cantfort, Ph.D.

Sensation & Perception PSYC420 Thomas E. Van Cantfort, Ph.D. Sensation & Perception PSYC420 Thomas E. Van Cantfort, Ph.D. Objects & Forms When we look out into the world we are able to see things as trees, cars, people, books, etc. A wide variety of objects and

More information

Fodor on Functionalism EMILY HULL

Fodor on Functionalism EMILY HULL Fodor on Functionalism EMILY HULL Deficiencies in Other Theories Dualism Failure to account for mental causation Immaterial substance cannot cause physical events If mental processes were a different substance

More information

Consciousness The final frontier!

Consciousness The final frontier! Consciousness The final frontier! How to Define it??? awareness perception - automatic and controlled memory - implicit and explicit ability to tell us about experiencing it attention. And the bottleneck

More information

Consciousness (Response to the Hard Problem)

Consciousness (Response to the Hard Problem) Indiana Undergraduate Journal of Cognitive Science 3 (2008) 21-27 Copyright 2008 IUJCS. All rights reserved Consciousness (Response to the Hard Problem) Artem Tsvetkov Cognitive Science and Biological

More information

Experimental Design I

Experimental Design I Experimental Design I Topics What questions can we ask (intelligently) in fmri Basic assumptions in isolating cognitive processes and comparing conditions General design strategies A few really cool experiments

More information

The minimal bodily Self - Behavioural and neuroscientific evidence

The minimal bodily Self - Behavioural and neuroscientific evidence Mirror Neurons, Embodied Empathy and the Boundaries of the Self London, 10-11 January 2014 The minimal bodily Self - Behavioural and neuroscientific evidence Vittorio Gallese Dept. of Neuroscience University

More information

Artificial Intelligence Programming Probability

Artificial Intelligence Programming Probability Artificial Intelligence Programming Probability Chris Brooks Department of Computer Science University of San Francisco Department of Computer Science University of San Francisco p.1/25 17-0: Uncertainty

More information

Vision and Action. 10/3/12 Percep,on Ac,on 1

Vision and Action. 10/3/12 Percep,on Ac,on 1 Vision and Action Our ability to move thru our environment is closely tied to visual perception. Simple examples include standing one one foot. It is easier to maintain balance with the eyes open than

More information

shows syntax in his language. has a large neocortex, which explains his language abilities. shows remarkable cognitive abilities. all of the above.

shows syntax in his language. has a large neocortex, which explains his language abilities. shows remarkable cognitive abilities. all of the above. Section: Chapter 14: Multiple Choice 1. Alex the parrot: pp.529-530 shows syntax in his language. has a large neocortex, which explains his language abilities. shows remarkable cognitive abilities. all

More information

1 What is an Agent? CHAPTER 2: INTELLIGENT AGENTS

1 What is an Agent? CHAPTER 2: INTELLIGENT AGENTS 1 What is an Agent? CHAPTER 2: INTELLIGENT AGENTS http://www.csc.liv.ac.uk/ mjw/pubs/imas/ The main point about agents is they are autonomous: capable of acting independently, exhibiting control over their

More information

Sensory Processing Disorder

Sensory Processing Disorder Disorder 101 Ingrid M. Kanics Kanics Inclusive Design Services, LLC imkanics@mindspring.com Sensory Integration Sensory Regulation Disorder Background: A. Jean Ayres, Occupational Therapist Neuroscience

More information

Intelligent Machines That Act Rationally. Hang Li Toutiao AI Lab

Intelligent Machines That Act Rationally. Hang Li Toutiao AI Lab Intelligent Machines That Act Rationally Hang Li Toutiao AI Lab Four Definitions of Artificial Intelligence Building intelligent machines (i.e., intelligent computers) Thinking humanly Acting humanly Thinking

More information

Visual Object Recognition Computational Models and Neurophysiological Mechanisms Neurobiology 130/230. Harvard College/GSAS 78454

Visual Object Recognition Computational Models and Neurophysiological Mechanisms Neurobiology 130/230. Harvard College/GSAS 78454 Visual Object Recognition Computational Models and Neurophysiological Mechanisms Neurobiology 130/230. Harvard College/GSAS 78454 Web site: http://tinyurl.com/visionclass (Class notes, readings, etc) Location:

More information

Carnegie Mellon University Annual Progress Report: 2011 Formula Grant

Carnegie Mellon University Annual Progress Report: 2011 Formula Grant Carnegie Mellon University Annual Progress Report: 2011 Formula Grant Reporting Period January 1, 2012 June 30, 2012 Formula Grant Overview The Carnegie Mellon University received $943,032 in formula funds

More information

Learning the Meaning of Neural Spikes Through Sensory-Invariance Driven Action

Learning the Meaning of Neural Spikes Through Sensory-Invariance Driven Action Learning the Meaning of Neural Spikes Through Sensory-Invariance Driven Action Yoonsuck Choe and S. Kumar Bhamidipati Department of Computer Science Texas A&M University College Station, TX 77843-32 {choe,bskumar}@tamu.edu

More information

AGENT-BASED SYSTEMS. What is an agent? ROBOTICS AND AUTONOMOUS SYSTEMS. Today. that environment in order to meet its delegated objectives.

AGENT-BASED SYSTEMS. What is an agent? ROBOTICS AND AUTONOMOUS SYSTEMS. Today. that environment in order to meet its delegated objectives. ROBOTICS AND AUTONOMOUS SYSTEMS Simon Parsons Department of Computer Science University of Liverpool LECTURE 16 comp329-2013-parsons-lect16 2/44 Today We will start on the second part of the course Autonomous

More information

(SAT). d) inhibiting automatized responses.

(SAT). d) inhibiting automatized responses. Which of the following findings does NOT support the existence of task-specific mental resources? 1. a) It is more difficult to combine two verbal tasks than one verbal task and one spatial task. 2. b)

More information

Dynamic Control Models as State Abstractions

Dynamic Control Models as State Abstractions University of Massachusetts Amherst From the SelectedWorks of Roderic Grupen 998 Dynamic Control Models as State Abstractions Jefferson A. Coelho Roderic Grupen, University of Massachusetts - Amherst Available

More information

Cognitive Penetrability and the Content of Perception

Cognitive Penetrability and the Content of Perception Cognitive Penetrability and the Content of Perception Michela C. Tacca University of Düsseldorf Introduction Perception is modular; namely, its processes are not influenced by our knowledge, since they

More information