Weaning from mechanical ventilation

Size: px
Start display at page:

Download "Weaning from mechanical ventilation"

Transcription

1 Weaning from mechanical ventilation Jeremy Lermitte BM FRCA Mark J Garfield MB ChB FRCA Mechanical ventilation has gone through a dramatic evolution over a relatively short space of time. After the Copenhagen polio epidemic in 1952, negative pressure iron lungs were replaced by intermittent positive pressure ventilation. This was originally delivered at set volumes and rates. The next step forward was the introduction of intermittent mandatory ventilation, and shortly thereafter this was synchronized to the patient s respiratory effort. More recently, pressure support ventilation and bi-level positive airway pressure modes have become available. Modern ventilators are increasingly sensitive, allowing easy patient triggering of supported breaths, modes such as tube compensation, and measurement of numerous respiratory parameters. Developments in weaning techniques have paralleled these improvements in ventilator functionality. Conventional invasive ventilation is associated with a number of complications such as pneumonia, tracheal stenosis and baro/volutrauma. Many of the complications increase in likelihood with duration of ventilation. It is therefore important to wean patients from mechanical ventilation as quickly as possible. Weaning from mechanical ventilation is the process of reducing ventilatory support, ultimately resulting in a patient breathing spontaneously and being extubated. This process can be achieved rapidly in 80% of patients when the original cause of the respiratory failure has improved. The remaining cases will require a more gradual method of withdrawing ventilation. Factors associated with successful weaning To enable weaning to be successful, thought has to be given to the following areas: (i) has the underlying condition improved? (ii) is the patient s general condition optimal? (iii) have potential airway problems been identified and remedied? (iv) is breathing adequate? Cause of respiratory failure In order for a patient to wean successfully, the cause of their respiratory failure has to have been resolved to a reasonable level. Thought has to be given to the patient s state before the current exacerbation to gauge what it is possible to achieve, and allow setting of realistic aims. General optimization Careful preparation before potential weaning can make the difference in the numerous borderline weanable cases encountered in the intensive care. This is very important because those patients who are re-intubated in general have worse outcomes. Common causes of weaning failure are listed in Table 1. Table 2 illustrates the usual preconditions that must be met before any consideration can be given to the institution of a weaning programme. Airway problems To successfully wean a patient the artificial airway needs to be removed. For this to happen, good upper airway reflexes are needed, including an adequate cough and minimal secretions. An adequate conscious level is required for airway maintenance after extubation. Airway (particularly laryngeal) oedema may be under-recognized as a cause of difficulty in breathing after extubation, occurring in 10 15% of patients. The risk factors for postextubation airway oedema include a medical reason for admission, a traumatic or difficult intubation, a history of self extubation, an overinflated tracheal tube cuff at admission, and intubation for extended periods. The ability to breathe around a deflated endotracheal tube cuff, or the presence of a cuff leak >130 ml during volume cycled ventilation, has been used to predict an adequate airway diameter. 1 In those patients at risk, corticosteroids are commonly used, but there is little evidence to support this practice. 2 Post-extubation stridor may be ameliorated by epinephrine nebulizers or inhalation of a helium/oxygen mixture. Key points Weaning may be hastened by spontaneous breathing trials and daily screening of respiratory function. Respiratory rate/tidal ventilation ratio is a good predictor of successful weaning. Synchronized intermittent mandatory ventilation is the least efficient method of weaning. Use of non-invasive ventilation may improve outcome for some patients who develop respiratory failure after extubation. Jeremy Lermitte BM FRCA Specialist Registrar in Anaesthesia Intensive Care Unit Ipswich Hospital NHS Trust Heath Road Ipswich IP4 5UL Mark J Garfield MB ChB FRCA Consultant in Anaesthesia and Intensive Care Medicine Intensive Care Unit Ipswich Hospital NHS Trust Heath Road Ipswich IP4 5UL Tel: Fax: mark.garfield@doctors.org.uk (for correspondence) doi /bjaceaccp/mki031 Continuing Education in Anaesthesia, Critical Care & Pain Volume 5 Number ª The Board of Management and Trustees of the British Journal of Anaesthesia [2005]. All rights reserved. For Permissions, please journals.permissions@oupjournals.org 113

2 Table 1 Causes of weaning difficulty Central drive Drive to breathe reduced by: Sedatives Direct insults to the respiratory centre Hyperventilation to abnormally low PaCO 2 for a particular patient Metabolic alkalosis (commonly exacerbated by hypokalaemia) Loss of hypoxic drive (COPD) Clinically patients may fail to demonstrate respiratory distress and will in time develop Type II respiratory failure Neuromuscular Primary neurological disorders Guillain Barré syndrome Myasthenia Gravis Botulism Critical illness polyneuropathy (more common with steroids and neuromuscular blocking agents) Critical care myopathy/malnutrition Electrolyte abnormalities Hypokalaemia Hypophosphataemia Hypomagnesaemia Hypocalcaemia Hypothyroidism Increased respiratory load Increased resistance Bronchospasm Increased or thick secretions Reduced compliance Pneumonia Pulmonary oedema Intrinsic PEEP Pleural effusions Pneumothoraces Paralytic ileus or abdominal distension Increased ventilation Hypermetabolism (sepsis is a common cause) Overfeeding Metabolic acidosis Shock Pulmonary embolism Table 2 General preconditions for commencement of weaning Reversal of primary problem causing need for ventilation Patient awake and responsive Good analgesia, ability to cough Reducing or minimal doses of inotropic support Ideally functioning bowels, absence of abdominal distension Normalizing metabolic status Adequate haemoglobin concentration Continuous positive airway pressure administered after extubation may also help. Predicting successful weaning Numerous numerical indices have been used to predict the outcome of weaning, some of which are listed in Table 3. The sensitivities and specificities of each vary depending upon the cut-off used. Many of the indices have good sensitivities but most have low specificities. When looking at these indices, it is not only important to look at the cut-off used but also the timing as to when the test was undertaken. Table 3 Numerical indices used to predict successful weaning Minute ventilation <10 litre min 1 Vital capacity/weight >10 ml kg 1 Respiratory frequency <35 bpm Tidal volume/weight >5ml kg 1 Maximum inspiratory pressure < 25 cm H 2 O PaO 2 /PAO 2 >0.35 Respiratory rate/tidal volume <100 litre 1 PaO 2 /FIO 2 >200 mm Hg (26.3 kpa) A number of guidelines favour the use of the ratio of respiratory rate/tidal volume undertaken 1 min into a spontaneous breathing trial (SBT). 3 In addition, a reasonable level of oxygenation should be demonstrated, often assessed by the Pa O2 /F I O2 ratio at a positive end-expiratory pressure (PEEP) <5 cm H 2 O. It is clear that despite their limitations, the systematic use of predictors produces better outcomes than clinical judgement by physicians alone. 4 Assessing adequacy of breathing The SBT is the traditional approach to weaning patients from mechanical ventilation. This originally involved disconnecting the patient from the ventilator and connecting a device such as a T-piece. Other variants of SBTs include continuous positive airway pressure (CPAP), which may maintain the functional residual capacity, and low level variable pressure support ventilation (PSV) to overcome the resistance to breathing through an endotracheal tube (often called tube compensation). As well as assessing whether a patient is ready for extubation, SBTs of increasing duration can be used to aid the weaning process and can be performed without disconnecting the patient from the ventilator. When patients are considered ready to wean, the best way to assess whether they will breathe on their own is by undertaking an SBT. It has been demonstrated that by doing this the weaning process may be hastened. Trials comparing CPAP (5 cm H 2 O), PSV (7 cm H 2 O) and T-piece methods to ascertain readiness for extubation do not demonstrate any great superiority of one method relative to another. It has also been shown that SBTs for 30 and 120 min are equivalent. 4 Evidence-based criteria for terminating weaning trials do not exist, so subjective clinical judgement is used backed up by arterial blood gases. The criteria used in some clinical trials are shown in Table 4. Patients successfully completing an SBT may proceed to extubation. Those who fail SBTs may require a slower form of weaning involving SBTs of a gradually increasing duration. Consideration may also be given to the formation of a tracheostomy. Patients failing the spontaneous breathing trial Many patients will not pass a spontaneous breathing trial on their first attempt (those with numerous comorbidities, the elderly and patients who have been ventilated for long period of time often fall into this category). 114 Continuing Education in Anaesthesia, Critical Care & Pain Volume 5 Number

3 The best trials looking at the weaning of patients that fail their initial spontaneous breathing trial have given conflicting results. The ventilatory choices for these patients include the following: (i) T-piece trials; (ii) synchronized intermittent mandatory ventilation (SIMV); or (iii) pressure support ventilation (PSV). T-piece trials involve periods of supported ventilation being gradually broken up by SBTs of increasing duration (most trials increase these durations twice per day). There is some evidence that once-daily breathing trials may be just as effective. 6 Once the Table 4 Criteria used in some trials to terminate (fail) SBTs Respiratory rate >35 bpm Sp O2 <90% Heart rate >140 beats min 1 or change by >20% Systolic blood pressure >180 or <90 mm Hg Agitation Sweating Anxiety or signs of increased work of breathing (paradoxical breathing, intercostal retraction, nasal flaring) Reason for ventilation improved / resolved Daily screening of respiratory function (Pa O2 /FI O2 >200, PEEP 5, adequate cough, f/v T <100, no vasopressors or sedatives) Yes Spontaneous breathing trial (30 min with T-piece, CPAP or low level pressure support) 3 Extubate Well tolerated patient can manage 2 h without problems they are extubated (see the criteria to terminate SBTs). SIMV is undertaken by gradually reducing the mandatory rate (most trials have done this by 2 4 bpm on a twice-daily basis, or more regularly if tolerated). The end-point for these SIMV patients is a rate of 4 5 min 1, for varying periods of time depending upon the trial. Patients who meet preset criteria are then extubated. PSV involves gradually reducing the pressure to assist spontaneous breaths (most trials have done this by reducing the pressure support by 2 4 cm H 2 O twice a day and more often if tolerated). The end point is PSV at around 5 8 cm H 2 O for a duration that varies from 2 to 24 h. Again, patients who have reached this stage successfully are then extubated. In the trial by Brochard and colleagues, PSV led to a significantly shorter duration of weaning relative to T-piece or SIMV methods. 7 Esteban and colleagues, however, demonstrated T-piece trials to be superior to either PSV or SIMV. 6 In the majority of trials, SIMV was found to be the least efficient method of weaning. It must be noted, however, that in these trials, there was no support for spontaneous breaths between triggered mandatory breaths. Modern ventilators often combine No Poorly tolerated Continue ventilation Gradual weaning (daily T-piece trials or pressure support ventilation) 4,5 Respiratory failure postextubation Consider trial of non-invasive ventilation for 1 2 h (cardiogenic pulmonary oedema, COPD, immunosuppressed, postthoracic surgery) 6,9 Intubate if appropriate Fig. 1 Algorithm for discontinuation of mechanical ventilation. Continuing Education in Anaesthesia, Critical Care & Pain Volume 5 Number

4 SIMV or bi-level positive airway pressure and a form of PSV. There is also evidence from both trials that protocols may hasten weaning. A suggested algorithm for discontinuation of mechanical ventilation is shown in Figure 1. Non-invasive ventilation Patients who are re-intubated have higher complication and mortality rates. Non-invasive ventilation could not only avoid intubation in some patients, but may also have a role in preventing re-intubation in patients who have failed extubation. 8 Patients with chronic obstructive pulmonary disease (COPD), and those who are immunosuppressed with bilateral infiltrates, have been shown to have reduced intubation and mortality rates with the application of non-invasive ventilation. Benefit has also been demonstrated for patients with cardiogenic pulmonary oedema. Whether non-invasive ventilation has advantages over CPAP has yet to be proven for this group of patients (one study actually showed a higher rate of myocardial infarction with use of noninvasive ventilation). Studies looking at heterogeneous populations with acute hypoxaemic respiratory failure have found no benefit in using non-invasive ventilation to facilitate the discontinuation of conventional ventilation or avoid re-intubation. Only trials looking at patients with COPD or cardiogenic pulmonary oedema, or with a predominance of such patients, have demonstrated improved survival, decreased pneumonia rates and decreased length of intensive care stays under these circumstances Tracheostomies It is a generally held belief, despite the lack of evidence demonstrating direct benefit, that patients requiring long-term ventilatory support are better managed using a tracheostomy. Some of the advantages include easier mouth care, improved mobility of the patient, facilitation of oral nourishment; improved patient comfort allowing decreased sedation and better communication. Decreasing sedation use has been shown to reduce the length of intensive care stay. In view of these advantages, it would prove difficult to recruit patients for a trial comparing continued translaryngeal and tracheostomy routes of ventilatory support. Surgical and percutaneous tracheostomies have broadly been shown to carry equal risk. The forthcoming randomized controlled multi-centre Tracman trial is aiming to elucidate whether there is an advantage to performing tracheostomies at a particular time. One single centre randomized trial by Rumbak and colleagues, 12 in a medical intensive care unit, demonstrated a reduced length of stay, reduced mortality and nosocomial pneumonia rate in the early tracheostomy group. Patients proving difficult to wean Equipment problems such as encrustation of the endotracheal tube or secretions in the filter can influence the ability to wean. The endotracheal tube may itself cause bronchospasm. Obese patients may require a higher level of PEEP while intubated to prevent atelectasis. Those with severe restrictive disease may normally breathe with a high respiratory rate. It may be appropriate in these sorts of patients to attempt an extubation. Some patients will not wean quickly and may require the services of a specialist-weaning unit. These units take a much longerterm approach to weaning than most acute ICUs, and have a number of ventilatory modalities at their disposal. In the UK, they also have access to the resources required to arrange ongoing ventilation in the community, whether invasive or non-invasive. An example of referral criteria used in a recent study included mechanical ventilation for more than 2 weeks, and having failed two spontaneous breathing trials. Of 403 patients studied, 68% were successfully weaned from the ventilator. The hospital mortality of those admitted was 25%. Only 50% of those admitted were alive at 1 yr, and 38% at 3 yr. 13 Weaning protocols It is has been shown in many studies that use of a weaning protocol reduces time on the ventilator and shortens ICU stay. 14 Much of this work has been conducted in open intensive care units in the USA, many of which are not run by specialist intensive care physicians. In these units, where a physician may only see patients once per day, these nurse-led protocols clearly work. A recent study, however, compared weaning by protocol with physician-directed weaning in a closed ICU, staffed and directed by ICU-trained physicians. The results showed no difference between the two groups of patients with regard to duration of ventilation, ICU stay, hospital and ICU mortality, and re-intubation rate. 15 The message from this study is that it is not the protocol that hastens weaning, but the constant vigilance and attention that the protocol necessitates. Conclusion All patients receiving ventilatory support should be assessed on a daily basis for their suitability for weaning. This may involve meeting several preconditions, and then an SBT. If unsuccessful, weaning should be attempted using either PSV, or daily spontaneous breathing periods of increasing duration. A tracheostomy may be helpful in patients who are difficult to wean. Over 95% of patients should be weanable in this way. A few patients per year may need referral to a long-term weaning unit. References 1. Jaber S, Chanques G, Matecki S, et al. Post-extubation stridor in intensive care patients. Intensive Care Med 2003; 29: Ho LI, Harn HJ, Lien TC, Hu PY, Wang JH. Post-extubation laryngeal edema in adults. Risk factor evaluation and prevention by hydrocortisone. Intensive Care Med 1996; 22: Yang KL, Tobin MJ. A prospective study of indexes predicting the outcome of trials of weaning from mechanical ventilation. N Engl J Med 1991; 324: Continuing Education in Anaesthesia, Critical Care & Pain Volume 5 Number

5 4. Ely EW, Baker AM, Dunagan DP. Effect on the duration of mechanical ventilation of identifying patients capable of breathing spontaneously. N Engl J Med 1996, 335: Esteban A, Alia I, Tobin MJ, et al. Effects of spontaneous breathing trial duration on outcome of attemptstodiscontinue mechanical ventilation. Am J Respir Crit Care Med 1999; 159: Esteban A, Frutos F, Tobin MJ, et al. A comparison of four methods of weaning patients from mechanical ventilation. N Engl J Med 1995; 332: Brochard L, Raus A, Benito S, et al. Comparison of three methods of gradual withdrawal from ventilatory support during weaning from mechanical ventilation. Am J Respir Crit Care Med 1994; 150: Truwit JD, Bernard GR. Noninvasive ventilation don t push too hard. N Engl J Med 2004; 350: Nava S, Ambrosino N, Clini E, et al. Noninvasive mechanical ventilation in the weaning of patients with respiratory failure due to chronic obstructive pulmonary disease. Ann Intern Med 1998; 128: Girault C, Daudenthun I, Chevron V, et al. Noninvasive ventilation as a systematic extubation and weaning technique in acute on chronic respiratory failure. Am J Respir Crit Care Med 1999; 160: Esteban A, Frutos-Vivar M, Ferguson M, Arabi M. Noninvasive positive-pressure ventilation for respiratory failure after extubation. N Engl J Med 2004; 350: Rumbak MJ, Newton M, Truncale T, Schwartz SW, Adams JW, Hazard PB. A prospective randomized study comparing early percutaneous dilational tracheotomy to prolonged translaryngeal intubation (delayed tracheotomy) in critically ill medical patients. Crit Care Med 2004; 32: Schonhofer B, Euteneuer S, Nava S, Suchi S, Kohler D. Survival of mechanically ventilated patients admitted to a specialised weaning centre. Intensive Care Med 2002; 27: Dries DJ, McGonigal MD, Malian MS, Bor BJ, Sullivan C. Protocol-driven ventilator weaning reduces use of mechanical ventilation, rate of early reintubation, and ventilator-associated pneumonia. J Trauma 2004; 56: Schonhofer B, Euteneuer S, Nava S, Suchi S, Kohler D. A prospective, controlled trial of a protocol-based strategy to discontinue mechanical ventilation. Am J Respir Crit Care Med 2004; 169: See multiple choice questions Continuing Education in Anaesthesia, Critical Care & Pain Volume 5 Number

Weaning from Mechanical Ventilation. Dr Azmin Huda Abdul Rahim

Weaning from Mechanical Ventilation. Dr Azmin Huda Abdul Rahim Weaning from Mechanical Ventilation Dr Azmin Huda Abdul Rahim Content Definition Classification Weaning criteria Weaning methods Criteria for extubation Introduction Weaning comprises 40% of the duration

More information

What is the next best step?

What is the next best step? Noninvasive Ventilation William Janssen, M.D. Assistant Professor of Medicine National Jewish Health University of Colorado Denver Health Sciences Center What is the next best step? 65 year old female

More information

Prepared by : Bayan Kaddourah RN,MHM. GICU Clinical Instructor

Prepared by : Bayan Kaddourah RN,MHM. GICU Clinical Instructor Mechanical Ventilation Prepared by : Bayan Kaddourah RN,MHM. GICU Clinical Instructor 1 Definition Is a supportive therapy to facilitate gas exchange. Most ventilatory support requires an artificial airway.

More information

NIV - BI-LEVEL POSITIVE AIRWAY PRESSURE (BIPAP)

NIV - BI-LEVEL POSITIVE AIRWAY PRESSURE (BIPAP) Introduction NIV - BI-LEVEL POSITIVE AIRWAY PRESSURE (BIPAP) Noninvasive ventilation (NIV) is a method of delivering oxygen by positive pressure mask that allows for the prevention or postponement of invasive

More information

Weaning from mechanical ventilation in 21 st century

Weaning from mechanical ventilation in 21 st century 1 Weaning from mechanical ventilation in 21 st century Dr. P.K.Dash. Additional Professor in Anaesthesiology Sree Chitra Tirunal Institute for Medical Sciences ant Technology Trivandrum 695011 Kerala Mechanical

More information

Liberation from Mechanical Ventilation in Critically Ill Adults

Liberation from Mechanical Ventilation in Critically Ill Adults Liberation from Mechanical Ventilation in Critically Ill Adults 2017 ACCP/ATS Clinical Practice Guidelines Timothy D. Girard, MD, MSCI Clinical Research, Investigation, and Systems Modeling of Acute Illness

More information

The Art and Science of Weaning from Mechanical Ventilation

The Art and Science of Weaning from Mechanical Ventilation The Art and Science of Weaning from Mechanical Ventilation Shekhar T. Venkataraman M.D. Professor Departments of Critical Care Medicine and Pediatrics University of Pittsburgh School of Medicine Some definitions

More information

NIV in Acute Respiratory Failure: Where we fail? Dr Shrikanth Srinivasan MD,DNB,FNB,EDIC Consultant, Critical Care Medicine Medanta, The Medicity

NIV in Acute Respiratory Failure: Where we fail? Dr Shrikanth Srinivasan MD,DNB,FNB,EDIC Consultant, Critical Care Medicine Medanta, The Medicity NIV in Acute Respiratory Failure: Where we fail? Dr Shrikanth Srinivasan MD,DNB,FNB,EDIC Consultant, Critical Care Medicine Medanta, The Medicity Use of NIV 1998-2010 50 45 40 35 30 25 20 15 10 5 0 1998

More information

Caring Practice: Evidence-based Terminal Ventilator Withdrawal

Caring Practice: Evidence-based Terminal Ventilator Withdrawal 1 Caring Practice: Evidence-based Terminal Ventilator Withdrawal Margaret L Campbell PhD, RN, FPCN 2 Webinar Goals Describe the processes for ensuring patient comfort during terminal ventilator withdrawal

More information

Mechanical ventilation in the emergency department

Mechanical ventilation in the emergency department Mechanical ventilation in the emergency department Intubation and mechanical ventilation are often needed in emergency treatment. A ENGELBRECHT, MB ChB, MMed (Fam Med), Dip PEC, DA Head, Emergency Medicine

More information

Charisma High-flow CPAP solution

Charisma High-flow CPAP solution Charisma High-flow CPAP solution Homecare PNEUMOLOGY Neonatology Anaesthesia INTENSIVE CARE VENTILATION Sleep Diagnostics Service Patient Support charisma High-flow CPAP solution Evidence CPAP therapy

More information

NIV use in ED. Dr. Khalfan AL Amrani Emergency Resuscitation Symposium 2 nd May 2016 SQUH

NIV use in ED. Dr. Khalfan AL Amrani Emergency Resuscitation Symposium 2 nd May 2016 SQUH NIV use in ED Dr. Khalfan AL Amrani Emergency Resuscitation Symposium 2 nd May 2016 SQUH Outline History & Introduction Overview of NIV application Review of proven uses of NIV History of Ventilation 1940

More information

WEANING READINESS & SPONTANEOUS BREATHING TRIAL MONITORING

WEANING READINESS & SPONTANEOUS BREATHING TRIAL MONITORING CLINICAL EVIDENCE GUIDE WEANING READINESS & SPONTANEOUS BREATHING TRIAL MONITORING Weaning readiness and spontaneous breathing trial monitoring protocols can help you make the right weaning decisions at

More information

PAPER DE LA VNI EN LA RETIRADA DE LA VENTILACIÓ INVASIVA I FRACÀS D EXTUBACIÓ

PAPER DE LA VNI EN LA RETIRADA DE LA VENTILACIÓ INVASIVA I FRACÀS D EXTUBACIÓ PAPER DE LA VNI EN LA RETIRADA DE LA VENTILACIÓ INVASIVA I FRACÀS D EXTUBACIÓ Dr. Miquel Ferrer UVIIR, Servei de Pneumologia, Hospital Clínic, IDIBAPS, CibeRes, Barcelona. E- mail: miferrer@clinic.ub.es

More information

Case Scenarios. Dr Shrikanth Srinivasan MD,DNB,FNB,EDIC. Consultant, Critical Care Medicine Medanta, The Medicity

Case Scenarios. Dr Shrikanth Srinivasan MD,DNB,FNB,EDIC. Consultant, Critical Care Medicine Medanta, The Medicity Case Scenarios Dr Shrikanth Srinivasan MD,DNB,FNB,EDIC Consultant, Critical Care Medicine Medanta, The Medicity Case 1 A 36 year male with cirrhosis and active GI bleeding is intubated to protect his airway,

More information

PAOLO PELOSI, LAURA MARIA CHIERICHETTI, PAOLO SEVERGNINI

PAOLO PELOSI, LAURA MARIA CHIERICHETTI, PAOLO SEVERGNINI MANAGEMENT OF WEANING EUROANESTHESIA 2005 Vienna, Austria 28-31 May 2005 12RC11 PAOLO PELOSI, LAURA MARIA CHIERICHETTI, PAOLO SEVERGNINI Dipartimento Ambiente, Salute e Sicurezza, Universita degli Studi

More information

Test Bank Pilbeam's Mechanical Ventilation Physiological and Clinical Applications 6th Edition Cairo

Test Bank Pilbeam's Mechanical Ventilation Physiological and Clinical Applications 6th Edition Cairo Instant dowload and all chapters Test Bank Pilbeam's Mechanical Ventilation Physiological and Clinical Applications 6th Edition Cairo https://testbanklab.com/download/test-bank-pilbeams-mechanical-ventilation-physiologicalclinical-applications-6th-edition-cairo/

More information

MECHANICAL VENTILATION PROTOCOLS

MECHANICAL VENTILATION PROTOCOLS GENERAL or SURGICAL Initial Ventilator Parameters Ventilator Management (see appendix I) Assess Patient Data (see appendix II) Data Collection Mode: Tidal Volume: FIO2: PEEP: Rate: I:E Ratio: ACUTE PHASE

More information

NON-INVASIVE VENTILATION. Lijun Ding 23 Jan 2018

NON-INVASIVE VENTILATION. Lijun Ding 23 Jan 2018 NON-INVASIVE VENTILATION Lijun Ding 23 Jan 2018 Learning objectives What is NIV The difference between CPAP and BiPAP The indication of the use of NIV Complication of NIV application Patient monitoring

More information

17400 Medina Road, Suite 100 Phone: Minneapolis, MN Fax:

17400 Medina Road, Suite 100 Phone: Minneapolis, MN Fax: 17400 Medina Road, Suite 100 Phone: 763-398-8300 Minneapolis, MN 55447-1341 Fax: 763-398-8400 www.pulmonetic.com Clinical Bulletin To: Cc: From: Domestic Sales Representatives and International Distributors

More information

Mechanical Ventilation of the Patient with Neuromuscular Disease

Mechanical Ventilation of the Patient with Neuromuscular Disease Mechanical Ventilation of the Patient with Neuromuscular Disease Dean Hess PhD RRT Associate Professor of Anesthesia, Harvard Medical School Assistant Director of Respiratory Care, Massachusetts General

More information

Noninvasive ventilation: Selection of patient, interfaces, initiation and weaning

Noninvasive ventilation: Selection of patient, interfaces, initiation and weaning CME article Johnson S, et al: Noninvasive ventilation Noninvasive ventilation: Selection of patient, interfaces, initiation and weaning Saumy Johnson, Ramesh Unnikrishnan * Email: ramesh.unnikrishnan@manipal.edu

More information

Extubation Failure & Delay in Brain-Injured Patients

Extubation Failure & Delay in Brain-Injured Patients Extubation Failure & Delay in Brain-Injured Patients Niall D. Ferguson, MD, FRCPC, MSc Director, Critical Care Medicine University Health Network & Mount Sinai Hospital Associate Professor of Medicine

More information

NIV in acute hypoxic respiratory failure

NIV in acute hypoxic respiratory failure All course materials, including the original lecture, are available as webcasts/podcasts at www.ers-education. org/niv2009.htm NIV in acute hypoxic respiratory failure Educational aims This presentation

More information

Optimize vent weaning and SBT outcomes. Identify underlying causes for SBT failures. Role SBT and weaning protocol have in respiratory care

Optimize vent weaning and SBT outcomes. Identify underlying causes for SBT failures. Role SBT and weaning protocol have in respiratory care Optimize vent weaning and SBT outcomes Identify underlying causes for SBT failures Role SBT and weaning protocol have in respiratory care Lower risk of developing complications Lower risk of VAP, other

More information

Mechanical Ventilation ศ.พ.ญ.ส ณ ร ตน คงเสร พงศ ภาคว ชาว ส ญญ ว ทยา คณะแพทยศาสตร ศ ร ราชพยาบาล

Mechanical Ventilation ศ.พ.ญ.ส ณ ร ตน คงเสร พงศ ภาคว ชาว ส ญญ ว ทยา คณะแพทยศาสตร ศ ร ราชพยาบาล Mechanical Ventilation ศ.พ.ญ.ส ณ ร ตน คงเสร พงศ ภาคว ชาว ส ญญ ว ทยา คณะแพทยศาสตร ศ ร ราชพยาบาล Goal of Mechanical Ventilation Mechanical ventilation is any means in which physical device or machines are

More information

7 Initial Ventilator Settings, ~05

7 Initial Ventilator Settings, ~05 Abbreviations (inside front cover and back cover) PART 1 Basic Concepts and Core Knowledge in Mechanical -- -- -- -- 1 Oxygenation and Acid-Base Evaluation, 1 Review 01Arterial Blood Gases, 2 Evaluating

More information

Effectiveness and safety of a protocolized mechanical ventilation and weaning strategy of COPD patients by respiratory therapists

Effectiveness and safety of a protocolized mechanical ventilation and weaning strategy of COPD patients by respiratory therapists Original Article Effectiveness and safety of a protocolized mechanical ventilation and weaning strategy of COPD patients by respiratory therapists Cenk Kirakli, Ozlem Ediboglu, Ilknur Naz, Pinar Cimen,

More information

Although the literature reports that approximately. off a ventilator

Although the literature reports that approximately. off a ventilator Taking your patient off a ventilator Although the literature reports that approximately 33% of patients in the ICU require mechanical ventilation (MV),! the figure is closer to 90% for the critically SONIA

More information

Difficult weaning from mechanical ventilation

Difficult weaning from mechanical ventilation Difficult weaning from mechanical ventilation Paolo Biban, MD Director, Neonatal and Paediatric Intensive Care Unit Division of Paediatrics, Major City Hospital Azienda Ospedaliera Universitaria Integrata

More information

The use of proning in the management of Acute Respiratory Distress Syndrome

The use of proning in the management of Acute Respiratory Distress Syndrome Case 3 The use of proning in the management of Acute Respiratory Distress Syndrome Clinical Problem This expanded case summary has been chosen to explore the rationale and evidence behind the use of proning

More information

POLICY. Number: Title: APPLICATION OF NON INVASIVE VENTILATION FOR ACUTE RESPIRATORY FAILURE. Authorization

POLICY. Number: Title: APPLICATION OF NON INVASIVE VENTILATION FOR ACUTE RESPIRATORY FAILURE. Authorization POLICY Number: 7311-60-024 Title: APPLICATION OF NON INVASIVE VENTILATION FOR ACUTE RESPIRATORY FAILURE Authorization [ ] President and CEO [ x ] Vice President, Finance and Corporate Services Source:

More information

GE Healthcare. Non Invasive Ventilation (NIV) For the Engström Ventilator. Relief, Relax, Recovery

GE Healthcare. Non Invasive Ventilation (NIV) For the Engström Ventilator. Relief, Relax, Recovery GE Healthcare Non Invasive Ventilation (NIV) For the Engström Ventilator Relief, Relax, Recovery COPD is currently the fourth leading cause of death in the world, and further increases in the prevalence

More information

1.1.2 CPAP therapy is used for patients who are suffering from an acute type 1 respiratory failure (Pa02 <8kPa with a normal or low Pac02).

1.1.2 CPAP therapy is used for patients who are suffering from an acute type 1 respiratory failure (Pa02 <8kPa with a normal or low Pac02). Guidelines for initiating and managing CPAP (Continuous Positive Airway Pressure) on a general ward. B25/2006 1.Introduction and Who Guideline applies to 1.1.1 This document provides guidance for Healthcare

More information

Recent Advances in Respiratory Medicine

Recent Advances in Respiratory Medicine Recent Advances in Respiratory Medicine Dr. R KUMAR Pulmonologist Non Invasive Ventilation (NIV) NIV Noninvasive ventilation (NIV) refers to the administration of ventilatory support without using an invasive

More information

Non-invasive Positive Pressure Mechanical Ventilation: NIPPV: CPAP BPAP IPAP EPAP. My Real Goals. What s new in 2018? OMG PAP?

Non-invasive Positive Pressure Mechanical Ventilation: NIPPV: CPAP BPAP IPAP EPAP. My Real Goals. What s new in 2018? OMG PAP? Non-invasive Positive Pressure Mechanical Ventilation: What s new in 2018? Geoffrey R. Connors, MD, FACP Associate Professor of Medicine University of Colorado School of Medicine Division of Pulmonary

More information

Prolonged Invasive Ventilation Following Acute Ventilatory Failure in COPD* Weaning Results, Survival, and the Role of Noninvasive Ventilation

Prolonged Invasive Ventilation Following Acute Ventilatory Failure in COPD* Weaning Results, Survival, and the Role of Noninvasive Ventilation CHEST Prolonged Invasive Ventilation Following Acute Ventilatory Failure in COPD* Weaning Results, Survival, and the Role of Noninvasive Ventilation Timothy G. Quinnell, MRCP; Samantha Pilsworth, BSc;

More information

Keeping Patients Off the Vent: Bilevel, HFNC, Neither?

Keeping Patients Off the Vent: Bilevel, HFNC, Neither? Keeping Patients Off the Vent: Bilevel, HFNC, Neither? Robert Kempainen, MD Pulmonary and Critical Care Medicine Hennepin County Medical Center University of Minnesota School of Medicine Objectives Summarize

More information

Mechanical Ventilation Principles and Practices

Mechanical Ventilation Principles and Practices Mechanical Ventilation Principles and Practices Dr LAU Chun Wing Arthur Department of Intensive Care Pamela Youde Nethersole Eastern Hospital 6 October 2009 In this lecture, you will learn Major concepts

More information

Journal Club American Journal of Respiratory and Critical Care Medicine. Zhang Junyi

Journal Club American Journal of Respiratory and Critical Care Medicine. Zhang Junyi Journal Club 2018 American Journal of Respiratory and Critical Care Medicine Zhang Junyi 2018.11.23 Background Mechanical Ventilation A life-saving technique used worldwide 15 million patients annually

More information

Respiratory Disease. Dr Amal Damrah consultant Neonatologist and Paediatrician

Respiratory Disease. Dr Amal Damrah consultant Neonatologist and Paediatrician Respiratory Disease Dr Amal Damrah consultant Neonatologist and Paediatrician Signs and Symptoms of Respiratory Diseases Cardinal Symptoms Cough Sputum Hemoptysis Dyspnea Wheezes Chest pain Signs and Symptoms

More information

NON INVASIVE LIFE SAVERS. Non Invasive Ventilation (NIV)

NON INVASIVE LIFE SAVERS. Non Invasive Ventilation (NIV) Table 1. NIV: Mechanisms Of Action Decreases work of breathing Increases functional residual capacity Recruits collapsed alveoli Improves respiratory gas exchange Reverses hypoventilation Maintains upper

More information

NI 60. Non-invasive ventilation without compromise. Homecare Pneumology Neonatology Anaesthesia. Sleep Diagnostics Service Patient Support

NI 60. Non-invasive ventilation without compromise. Homecare Pneumology Neonatology Anaesthesia. Sleep Diagnostics Service Patient Support NI 60 Non-invasive ventilation without compromise Homecare Pneumology Neonatology Anaesthesia INTENSIVE CARE VENTILATION Sleep Diagnostics Service Patient Support NI 60 Non-invasive ventilation without

More information

Approach to type 2 Respiratory Failure

Approach to type 2 Respiratory Failure Approach to type 2 Respiratory Failure Changing Nature of NIV Not longer just the traditional COPD patients Increasingly Obesity Neuromuscular Pneumonias 3 fold increase in patients with Ph 7.25 and below

More information

Weaning and extubation in PICU An evidence-based approach

Weaning and extubation in PICU An evidence-based approach Weaning and extubation in PICU An evidence-based approach Suchada Sritippayawan, MD. Div. Pulmonology & Crit Care Dept. Pediatrics Faculty of Medicine Chulalongkorn University Kanokporn Udomittipong, MD.

More information

Noninvasive Ventilation: Non-COPD Applications

Noninvasive Ventilation: Non-COPD Applications Noninvasive Ventilation: Non-COPD Applications NONINVASIVE MECHANICAL VENTILATION Why Noninvasive Ventilation? Avoids upper A respiratory airway trauma system lacerations, protective hemorrhage strategy

More information

Module 4: Understanding MechanicalVentilation Jennifer Zanni, PT, DScPT Johns Hopkins Hospital

Module 4: Understanding MechanicalVentilation Jennifer Zanni, PT, DScPT Johns Hopkins Hospital Module 4: Understanding MechanicalVentilation Jennifer Zanni, PT, DScPT Johns Hopkins Hospital Objectives Upon completion of this module, the learner will be able to: Identify types of airways and indications

More information

SESSION 3 OXYGEN THERAPY

SESSION 3 OXYGEN THERAPY SESSION 3 OXYGEN THERAPY Harith Eranga Yapa Department of Nursing Faculty of Health Sciences The Open University of Sri Lanka 1 Outline Methods of delivery Complications of oxygen therapy Artificial airways

More information

Home Mechanical Ventilation. Anthony Bateman

Home Mechanical Ventilation. Anthony Bateman Home Mechanical Ventilation Anthony Bateman What is Long Term Ventilation? LTV is the provision of respiratory support to individuals with non-acute respiratory failure Progression of expected disease

More information

UCH WEANING FROM MECHANICAL VENTILATION PATHWAY

UCH WEANING FROM MECHANICAL VENTILATION PATHWAY UCH WEANING FROM MECHANICAL VENTILATION PATHWAY WAKE WARM AND WEAN. POST OPERATIVE PATIENTS WHO HAVE BEEN VENTILATED < 24 HOURS DAILY EXTUBATION SCREEN A DAILY SCREEN TO BE CARRIED OUT ON ALL PATIENTS

More information

Spontaneous Breathing Trial and Mechanical Ventilation Weaning Process

Spontaneous Breathing Trial and Mechanical Ventilation Weaning Process Page 1 of 5 ASSESSMENT INTERVENTION Patient receiving mechanical ventilation Baseline ventilatory mode/ settings RT and RN to assess criteria 1 for SBT Does patient meet criteria? RT to initiate SBT Does

More information

Landmark articles on ventilation

Landmark articles on ventilation Landmark articles on ventilation Dr Shrikanth Srinivasan MD,DNB,FNB,EDIC Consultant, Critical Care Medicine Medanta, The Medicity ARDS AECC DEFINITION-1994 ALI Acute onset Bilateral chest infiltrates PCWP

More information

CLINICAL VIGNETTE 2016; 2:3

CLINICAL VIGNETTE 2016; 2:3 CLINICAL VIGNETTE 2016; 2:3 Editor-in-Chief: Olufemi E. Idowu. Neurological surgery Division, Department of Surgery, LASUCOM/LASUTH, Ikeja, Lagos, Nigeria. Copyright- Frontiers of Ikeja Surgery, 2016;

More information

Surgery Grand Rounds. Non-invasive Ventilation: A valuable tool. James Cromie, PGY 3 8/24/09

Surgery Grand Rounds. Non-invasive Ventilation: A valuable tool. James Cromie, PGY 3 8/24/09 Surgery Grand Rounds Non-invasive Ventilation: A valuable tool James Cromie, PGY 3 8/24/09 History of mechanical ventilation 1930 s: use of iron lung 1940 s: First NIV system (Bellevue Hospital) 1950 s:

More information

An introduction to mechanical ventilation. Fran O Higgins, Adrian Clarke Correspondence

An introduction to mechanical ventilation. Fran O Higgins, Adrian Clarke Correspondence Update in Anaesthesia An introduction to mechanical ventilation Respiratory Summary Mechanical ventilation is the major invasive intervention offered in the ICU. In low income countries, where the facilities

More information

DISCONTINUING AND WEANING VENTILATORY SUPPORT (MacIntyre et al., 2001)

DISCONTINUING AND WEANING VENTILATORY SUPPORT (MacIntyre et al., 2001) Respiratory support 179 Non-invasive PSV has also been shown to lead to more rapid improvement in oxygenation and reduction in respiratory rate when compared to conventional oxygen therapy in acute cardiogenic

More information

Weaning from Mechanical Ventilation

Weaning from Mechanical Ventilation CHAPTER 47 Victor Kim and Gerard J. Criner Weaning from Mechanical Ventilation CHAPTER OUTLINE Learning Objectives Case Study Determining the Cause of Respiratory Failure When is the Patient Ready to Wean?

More information

New Modes and New Concepts In Mechanical Ventilation

New Modes and New Concepts In Mechanical Ventilation New Modes and New Concepts In Mechanical Ventilation Prof Department of Anesthesia and Surgical Intensive Care Cairo University 1 2 New Ventilation Modes Dual Control Within-a-breath switches from PC to

More information

Crit Vent Bundle for Mechanical Ventilation (337) [337] Physician - Also, enter Critical Care Admission Orders

Crit Vent Bundle for Mechanical Ventilation (337) [337] Physician - Also, enter Critical Care Admission Orders Crit Vent Bundle for Mechanical Ventilation (337) [337] Physician - Also, enter Critical Care Admission Orders Initial Vent Settings (Single Response) [6360] If no previous orders and no choice made by

More information

Surviving Sepsis Campaign. Guidelines for Management of Severe Sepsis/Septic Shock. An Overview

Surviving Sepsis Campaign. Guidelines for Management of Severe Sepsis/Septic Shock. An Overview Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis/Septic Shock An Overview Mechanical Ventilation of Sepsis-Induced ALI/ARDS ARDSnet Mechanical Ventilation Protocol Results: Mortality

More information

Noninvasive proportional assist ventilation may be useful in weaning patients who failed spontaneous breathing trial

Noninvasive proportional assist ventilation may be useful in weaning patients who failed spontaneous breathing trial Egyptian Journal of Anaesthesia (2012) 28, 89 94 Egyptian Society of Anesthesiologists Egyptian Journal of Anaesthesia www.elsevier.com/locate/egja www.sciencedirect.com Research Article Noninvasive proportional

More information

Emergency)tracheostomy)management)/)Patent)upper)airway)

Emergency)tracheostomy)management)/)Patent)upper)airway) Emergency)tracheostomy)management)/)Patent)upper)airway) Call,for,airway,expert,help,,Look,,listen,&,feel,at,the,mouth,and,tracheostomy) A)Mapleson)C)system)(e.g.) Waters)circuit ))may)help)assessment)if)available)

More information

Acute noninvasive ventilation what s the evidence? Respiratory Medicine Update: Royal College of Physicians & BTS Thu 28 th January 2016

Acute noninvasive ventilation what s the evidence? Respiratory Medicine Update: Royal College of Physicians & BTS Thu 28 th January 2016 Acute noninvasive ventilation what s the evidence? Respiratory Medicine Update: Royal College of Physicians & BTS Thu 28 th January 2016 Annabel Nickol Consultant in Respiratory Medicine, Sleep & Ventilation

More information

Introduction and Overview of Acute Respiratory Failure

Introduction and Overview of Acute Respiratory Failure Introduction and Overview of Acute Respiratory Failure Definition: Acute Respiratory Failure Failure to oxygenate Inadequate PaO 2 to saturate hemoglobin PaO 2 of 60 mm Hg ~ SaO 2 of 90% PaO 2 of 50 mm

More information

Tracheostomy practice in adults with acute respiratory failure

Tracheostomy practice in adults with acute respiratory failure 本檔僅供內部教學使用檔案內所使用之照片之版權仍屬於原期刊公開使用時, 須獲得原期刊之同意授權 Tracheostomy practice in adults with acute respiratory failure Bradley D. Freeman, MD, FACS; Peter E. Morris, MD, FCCP Crit Care Med 2012 Vol. 40, No. 10

More information

Weaning: The key questions

Weaning: The key questions Weaning from mechanical ventilation Weaning / Extubation failure: Is it a real problem in the PICU? Reported extubation failure rates in PICUs range from 4.1% to 19% Baisch SD, Wheeler WB, Kurachek SC,

More information

By Nichole Miller, BSN Direct Care Nurse, ICU Dwight D Eisenhower Army Medical Center Fort Gordon, Ga.

By Nichole Miller, BSN Direct Care Nurse, ICU Dwight D Eisenhower Army Medical Center Fort Gordon, Ga. Set the stage for ventilator 2.0 ANCC CONTACT HOURS Are you puzzled by ventilator modes? We help you differentiate between invasive and noninvasive ventilation and understand the common settings for each.

More information

European Society of Intensive Care Medicine (ESICM) Acute Respiratory Failure Section WEAN SAFE. Data Collection Forms

European Society of Intensive Care Medicine (ESICM) Acute Respiratory Failure Section WEAN SAFE. Data Collection Forms European Society of Intensive Care Medicine (ESICM) Acute Respiratory Failure Section WEAN SAFE Data Collection Forms Study ID: Date of Data collection: FORM 0: - ORGANIZATIONAL DATA OF THE PARTICIPATING

More information

Lecture Notes. Chapter 9: Smoke Inhalation Injury and Burns

Lecture Notes. Chapter 9: Smoke Inhalation Injury and Burns Lecture Notes Chapter 9: Smoke Inhalation Injury and Burns Objectives List the factors that influence mortality rate Describe the nature of smoke inhalation and the fire environment Recognize the pulmonary

More information

Concerns and Controversial Issues in NPPV. Concerns and Controversial Issues in Noninvasive Positive Pressure Ventilation

Concerns and Controversial Issues in NPPV. Concerns and Controversial Issues in Noninvasive Positive Pressure Ventilation : Common Therapy in Daily Practice Concerns and Controversial Issues in Noninvasive Positive Pressure Ventilation Rongchang Chen Guangzhou Institute of Respiratory Disease as the first choice of mechanical

More information

Trial protocol - NIVAS Study

Trial protocol - NIVAS Study 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Trial protocol - NIVAS Study METHODS Study oversight The Non-Invasive Ventilation after Abdominal Surgery

More information

New York Science Journal 2017;10(5)

New York Science Journal 2017;10(5) Value of Automatic Tube Compensation during Weaning of Mechanically Ventilated Patient in Medical Intensive Care Unit Mohamed Abouzeid. 1, Ahmed E. Kabil. 2, Ahmed Al-Ashkar 1 and Hafez A. Abdel-Hafeez

More information

STATE OF OKLAHOMA 2014 EMERGENCY MEDICAL SERVICES PROTOCOLS

STATE OF OKLAHOMA 2014 EMERGENCY MEDICAL SERVICES PROTOCOLS 3K NON-INVASIVE POSITIVE PRESSURE VENTILATION (NIPPV) ADULT EMT EMT-INTERMEDIATE 85 ADVANCED EMT PARAMEDIC Indications: 1. Dyspnea Uncertain Etiology Adult. 2. Dyspnea Asthma Adult. 3. Dyspnea Chronic

More information

WorldwidE AssessmeNt of Separation of patients From ventilatory assistance WEAN SAFE

WorldwidE AssessmeNt of Separation of patients From ventilatory assistance WEAN SAFE European Society of Intensive Care Medicine (ESICM) Acute Respiratory Failure Section ESICM Trial Group WorldwidE AssessmeNt of Separation of patients From ventilatory assistance WEAN SAFE Data Collection

More information

Non-Invasive Ventilation

Non-Invasive Ventilation Khusrav Bajan Head Emergency Medicine, Consultant Intensivist & Physician, P.D. Hinduja National Hospital & M.R.C. 112 And the Lord God formed man of the dust of the ground and breathed into his nostrils

More information

You are caring for a patient who is intubated and. pressure control ventilation. The ventilator. up to see these scalars

You are caring for a patient who is intubated and. pressure control ventilation. The ventilator. up to see these scalars Test yourself Test yourself #1 You are caring for a patient who is intubated and ventilated on pressure control ventilation. The ventilator alarms and you look up to see these scalars What is the most

More information

AFCH NEUROMUSCULAR DISORDERS (NMD) PROTOCOL

AFCH NEUROMUSCULAR DISORDERS (NMD) PROTOCOL AFCH NEUROMUSCULAR DISORDERS (NMD) PROTOCOL A. Definition of Therapy: 1. Cough machine: 4 sets of 5 breaths with a goal of I:E pressures approximately the same of 30-40. Inhale time = 1 second, exhale

More information

Bergen Community College Division of Health Professions Department of Respiratory Care Fundamentals of Respiratory Critical Care

Bergen Community College Division of Health Professions Department of Respiratory Care Fundamentals of Respiratory Critical Care Bergen Community College Division of Health Professions Department of Respiratory Care Fundamentals of Respiratory Critical Care Date Revised: January 2015 Course Description Student Learning Objectives:

More information

Slide 1. Slide 2. Slide 3 VENTILATOR MADNESS.. MAKING SENSE OF IT ALL!! Objectives: I have nothing to disclose.

Slide 1. Slide 2. Slide 3 VENTILATOR MADNESS.. MAKING SENSE OF IT ALL!! Objectives: I have nothing to disclose. Slide 1 VENTILATOR MADNESS.. MAKING SENSE OF IT ALL!! Maryann M Brogden ND, MSN, RN, APN-C, CCNS, SCRN Slide 2 I have nothing to disclose. Slide 3 Objectives: Identify Criteria for Intubation Differentiate

More information

INDICATIONS FOR RESPIRATORY ASSISTANCE A C U T E M E D I C I N E U N I T P - Y E A R M B B S 4

INDICATIONS FOR RESPIRATORY ASSISTANCE A C U T E M E D I C I N E U N I T P - Y E A R M B B S 4 INDICATIONS FOR RESPIRATORY ASSISTANCE A C U T E M E D I C I N E U N I T P - Y E A R M B B S 4 RESPIRATORY FAILURE Acute respiratory failure is defined by hypoxemia with or without hypercapnia. It is one

More information

SECTION 1: INCLUSION, EXCLUSION & RANDOMISATION INFORMATION

SECTION 1: INCLUSION, EXCLUSION & RANDOMISATION INFORMATION SECTION 1: INCLUSION, EXCLUSION & RANDOMISATION INFORMATION DEMOGRAPHIC INFORMATION Given name Family name Date of birth Consent date Gender Female Male Date of surgery INCLUSION & EXCLUSION CRITERIA YES

More information

Changes in Breathing Variables During a 30-Minute Spontaneous Breathing Trial

Changes in Breathing Variables During a 30-Minute Spontaneous Breathing Trial Changes in Breathing Variables During a 30-Minute Spontaneous Breathing Trial Juan B Figueroa-Casas MD, Sean M Connery MSc, and Ricardo Montoya RRT BACKGROUND: Spontaneous breathing trials (SBTs) are increasingly

More information

Noninvasive pressure support ventilation in COPD patients with postextubation hypercapnic respiratory insufficiency

Noninvasive pressure support ventilation in COPD patients with postextubation hypercapnic respiratory insufficiency Eur Respir J 1998; 11: 1349 1353 DOI: 10.1183/09031936.98.11061349 Printed in UK - all rights reserved Copyright ERS Journals Ltd 1998 European Respiratory Journal ISSN 0903-1936 Noninvasive pressure support

More information

CONTINUOUS POSITIVE AIRWAY PRESSURE (CPAP) DEFINITION

CONTINUOUS POSITIVE AIRWAY PRESSURE (CPAP) DEFINITION CONTINUOUS POSITIVE AIRWAY PRESSURE (CPAP) DEFINITION Method of maintaining low pressure distension of lungs during inspiration and expiration when infant breathing spontaneously Benefits Improves oxygenation

More information

Invasive mechanical ventilation is

Invasive mechanical ventilation is A randomized, controlled trial of the role of weaning predictors in clinical decision making* Maged A. Tanios, MD, MPH; Michael L. Nevins, MD; Katherine P. Hendra, MD; Pierre Cardinal, MD; Jill E. Allan,

More information

Volume Guarantee Initiation and ongoing clinical management of an infant supported by Volume Guarantee A Case Study

Volume Guarantee Initiation and ongoing clinical management of an infant supported by Volume Guarantee A Case Study D-32084-2011 Volume Guarantee Initiation and ongoing clinical management of an infant supported by Volume Guarantee A Case Study Robert DiBlasi RRT-NPS, FAARC Respiratory Care Manager of Research & Quality

More information

and Noninvasive Ventilatory Support

and Noninvasive Ventilatory Support Chapter 2 Mechanical Ventilation and Noninvasive Ventilatory Support Megan L. Anderson and John G. Younger PERSPECTIVE Invasive and noninvasive ventilation are essential tools for treatment of critically

More information

Sample Case Study. The patient was a 77-year-old female who arrived to the emergency room on

Sample Case Study. The patient was a 77-year-old female who arrived to the emergency room on Sample Case Study The patient was a 77-year-old female who arrived to the emergency room on February 25 th with a chief complaint of shortness of breath and a deteriorating pulmonary status along with

More information

Supplementary Online Content 2

Supplementary Online Content 2 Supplementary Online Content 2 van Meenen DMP, van der Hoeven SM, Binnekade JM, et al. Effect of on demand vs routine nebulization of acetylcysteine with salbutamol on ventilator-free days in intensive

More information

Respiratory Failure. Causes of Acute Respiratory Failure (ARF): a- Intrapulmonary:

Respiratory Failure. Causes of Acute Respiratory Failure (ARF): a- Intrapulmonary: Respiratory failure exists whenever the exchange of O 2 for CO 2 in the lungs cannot keep up with the rate of O 2 consumption & CO 2 production in the cells of the body. This results in a fall in arterial

More information

I. Subject: Continuous Positive Airway Pressure CPAP by Continuous Flow Device

I. Subject: Continuous Positive Airway Pressure CPAP by Continuous Flow Device I. Subject: Continuous Positive Airway Pressure CPAP by Continuous Flow Device II. Policy: Continuous Positive Airway Pressure CPAP by the Down's system will be instituted by Respiratory Therapy personnel

More information

Cardiorespiratory Physiotherapy Tutoring Services 2017

Cardiorespiratory Physiotherapy Tutoring Services 2017 VENTILATOR HYPERINFLATION ***This document is intended to be used as an information resource only it is not intended to be used as a policy document/practice guideline. Before incorporating the use of

More information

ROLE OF DEXAMETHASONE FOR PREVENTION OF POST-EXTUBATION AIRWAY OBSTRUCTION IN CRITICALLY ILL ADULT PATIENTS

ROLE OF DEXAMETHASONE FOR PREVENTION OF POST-EXTUBATION AIRWAY OBSTRUCTION IN CRITICALLY ILL ADULT PATIENTS ORIGINAL ARTICLE ROLE OF DEXAMETHASONE FOR PREVENTION OF POST-EXTUBATION AIRWAY OBSTRUCTION IN CRITICALLY ILL ADULT PATIENTS ROOHINA N. BALOCH, NASIR KHAN JAKHRANI, ASHOK LAL, NAUSHEEN MEHMOOD ABSTRACT

More information

Handling Common Problems & Pitfalls During. Oxygen desaturation in patients receiving mechanical ventilation ACUTE SEVERE RESPIRATORY FAILURE

Handling Common Problems & Pitfalls During. Oxygen desaturation in patients receiving mechanical ventilation ACUTE SEVERE RESPIRATORY FAILURE Handling Common Problems & Pitfalls During ACUTE SEVERE RESPIRATORY FAILURE Pravit Jetanachai, MD QSNICH Oxygen desaturation in patients receiving mechanical ventilation Causes of oxygen desaturation 1.

More information

Web Appendix 1: Literature search strategy. BTS Acute Hypercapnic Respiratory Failure (AHRF) write-up. Sources to be searched for the guidelines;

Web Appendix 1: Literature search strategy. BTS Acute Hypercapnic Respiratory Failure (AHRF) write-up. Sources to be searched for the guidelines; Web Appendix 1: Literature search strategy BTS Acute Hypercapnic Respiratory Failure (AHRF) write-up Sources to be searched for the guidelines; Cochrane Database of Systematic Reviews (CDSR) Database of

More information

Copyright 1997,2005 M. Singer and A. R. Webb

Copyright 1997,2005 M. Singer and A. R. Webb Editors: Singer, Mervyn; Webb, Andrew R. Title: Oxford Handbook of Critical Care, 2nd Edition Copyright 1997,2005 M. Singer and A. R. Webb Ovid: Oxford Handbook of Critical Care Editors: Singer, Mervyn;

More information

Provide guidelines for the management of mechanical ventilation in infants <34 weeks gestation.

Provide guidelines for the management of mechanical ventilation in infants <34 weeks gestation. Page 1 of 5 PURPOSE: Provide guidelines for the management of mechanical ventilation in infants

More information

Clinical Practice Guidelines for Cases with Pneumonia associated with Pandemic H1N infection As of 7 August 2009

Clinical Practice Guidelines for Cases with Pneumonia associated with Pandemic H1N infection As of 7 August 2009 Clinical Practice Guidelines for Cases with Pneumonia associated with Pandemic H1N1 2009 infection As of 7 August 2009 This Clinical Practice Guideline contains basic information to be considered when

More information