Bing Hao, Long Zhao, Na-na Luo, Dan Ruan, Yi-zhen Pang, Wei Guo, Hao Fu, Xiu-yu Guo, Zuo-ming Luo, Jing Wu, Hao-jun Chen, Hua Wu and Long Sun *

Size: px
Start display at page:

Download "Bing Hao, Long Zhao, Na-na Luo, Dan Ruan, Yi-zhen Pang, Wei Guo, Hao Fu, Xiu-yu Guo, Zuo-ming Luo, Jing Wu, Hao-jun Chen, Hua Wu and Long Sun *"

Transcription

1 Hao et al. BMC Cancer (2018) 18: RESEARCH ARTICLE Open Access Is it sufficient to evaluate bone marrow involvement in newly diagnosed lymphomas using 18 F-FDG PET/CT and/or routine iliac crest biopsy? A new approach of PET/CT-guided targeted bone marrow biopsy Bing Hao, Long Zhao, Na-na Luo, Dan Ruan, Yi-zhen Pang, Wei Guo, Hao Fu, Xiu-yu Guo, Zuo-ming Luo, Jing Wu, Hao-jun Chen, Hua Wu and Long Sun * Abstract Background: To investigate whether PET/CT-guided bone marrow biopsy adds complementary information for evaluation of bone marrow involvement (BMI) in newly diagnosed lymphomas. Methods: Patients with newly diagnosed lymphomas that received both 18 F-FDG PET/CT and bone marrow biopsy (BMB) were included in this retrospective study. PET/CT classification of bone lesions was classified as isolated, multifocal (2 lesions or more), diffuse (homogeneous uptake of the entire axial skeleton), or negative. BMBs included PET/CT-guided targeted BMB and/or the routine unilateral iliac crest biopsy. Of 34 patients with focal lesions on PET/CT scan, 30 received both PET/CT-guided targeted BMB and iliac crest biopsy, and 4 patients received targeted biopsy without iliac crest biopsy. The final diagnosis of BMI depends on BMB results. Results: A total of 299 patients with lymphomas were included. PET/CT classification of bone lesions was isolated (16/5.4%), multifocal (67/22.4%), diffuse (52/17.4%), and negative (164/54.8%). If only positive iliac crest biopsy was considered as the reference standard, the sensitivity of 18 F-FDG PET/CT for identifying focal and diffuse BMI was 48 and 56%, respectively, and the respective specificities were 70 and 83%. Three of 30 patients (10.0%) with focal lesions on PET/CT were confirmed to be false-positive by targeted BMB, and 25 of 30 patients (83.3%) with focal lesions on PET/CT were confirmed as false-negative by iliac crest biopsy. Conclusion: It is insufficient to evaluate BMI in newly diagnosed lymphomas using both 18 F-FDG PET/CT and routine iliac crest biopsy. 18 F-FDG PET/CT imaging should be performed before BMB. In focal bone lesions, PET/CT-guided targeted BMB may complement the results of possible false-positive PET/CT and false-negative iliac crest biopsy findings. However, in diffuse and negative lesions, iliac crest biopsy cannot be safely omitted. Keywords: Lymphomas, Bone marrow involvement, 18 F-FDG PET/CT, Bone marrow biopsy * Correspondence: @163.com Bing Hao and Long Zhao contributed equally to this work. Department of Nuclear Medicine & Minnan PET Center, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Rd, Xiamen , Fujian, China The Author(s) Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated.

2 Hao et al. BMC Cancer (2018) 18:1192 Page 2 of 11 Background Lymphomas are malignant neoplasms characterized by the proliferation of cells native to the lymphoid tissue. In 2015, an estimated 88,200 people will be diagnosed with lymphomas, and there will be approximately 52,100 deaths due to the disease in China [1]. Lymphoma subtype and stage affect therapeutic decisions and prognosis. Thus, accurate assessment of lymphoma patients at initial presentation is necessary for good outcomes. Bone marrow (BM) is an important extent site, which occurs in 5 15% of Hodgkin lymphomas (HLs), and 20 40% of non-hodgkin lymphomas (NHLs), depending on the histological subtype [2, 3].The evaluation of BM status is of critical importance in newly diagnosed lymphomas, as it is stage, diagnosis, and if prolonged chemotherapy or radiotherapy may be required. According to the National Comprehensive Cancer Network (NCCN) guidelines for HL and NHL, routine iliac crest biopsy is essential in all lymphomas where treatment is considered, and is the gold standard for bone marrow staging. Unfortunately, results are subject to sampling error, especially focal bone lesions, which may lead to false-negative iliac crest biopsy results. Previous studies have demonstrate bilateral core biopsies can improves the diagnostic yield, ranging between 10 and 60% [4 6], however, an additional biopsy means more risk of complications such as bleeding, pain, and anxiety [7, 8]. There is debate about whether 18 F-FDG PET/CT scanning can replace routine iliac crest biopsy [9 13]. The Lugano Classification [14] has noted that 18 F-FDG PET/ CT is highly sensitive for BMI which may complement the results of routine iliac crest biopsy, and that is has potential for accurate evaluation of BMI in HL and diffuse large B-cell lymphoma (DLBCL). El-Galaly et al. [15] concluded that routine iliac crest biopsy is not required for evaluation of HL if 18 F-FDG PET/CT is performed. However, the reference standard according to iliac crest biopsy for true BMI has been questioned [16], since other diseases such as benign conditions or other malignancies can also generate false-positive PET/CT findings [17, 18]. Lim et al. [19] reported that iliac crest biopsy is only needed for DLBCL if the PET/CT finding is negative. The use of PET/CT for evaluation of other subtypes is also controversial. Nevertheless, false-positive PET/CT and false-negative routine iliac crest biopsy results will alter the bone staging of lymphomas. Thus, positive PET/CT findings require histological confirmation, with targeted biopsy preferred to other methods [20, 21]. In our previous study [22], PET/CT-guided targeted BMB was shown to be a safe and effective technique for the evaluation of advanced lung cancer with metastatic bone tumors. However, there are no studies examining the utility of PET/CT-guided targeted BMB, rather than iliac crest biopsy, for bone staging in newly diagnosed lymphomas. The aim of this study was to investigate whether PET/CT-guided targeted BMB adds complementary information for the evaluation of BMI in newly diagnosed lymphomas. Methods Patients We retrospectively reviewed the records of patients with a diagnosis of lymphoma treated at out center from January 2012 to January Patients were identified through the electronic medical records and pathological reporting systems. Patients were included in this study if 18 F-FDG PET/CT-guided targeted BMB or iliac crest biopsy were performed as part of the initial clinical lymphoma staging, and no other malignancy was present. Patients did not receive chemotherapy prior to 18 F-FDG PET/CT scanning, and PET/CT scans were performed within 7 days before or after BMB. Patients were staged according to the Ann Arbor classification. BMI was confirmed based on histological evaluation of biopsy results. PET/CT technique and imaging Patients were asked to fast for 4 6h before 18 F-FDG PET/CT scanning. Blood glucose levels were confirmed to be within a maximum value of 120 mg/dl. Intravenous injection of the 18 F-FDG tracer was administered at a dosage of mci/kg. Thereafter, the patient rested for 20 min and was encouraged to drink water. A low-dose CT scan from the head to the proximal femur was performed first, with parameters of 110 kv, 110 ma, a tube rotation time of 0.5 s, and 3.3-mm section thickness, which was matched to the PET section thickness. The second scan was immediately followed by a PET scan of the identical transverse field of view. Emission time was acquired for 3 min per table position. Data acquisition by an integrated PET/CT system (Discovery STE; GE Medical Systems, Milwaukee, WI, USA) was performed within 60 min of tracer injection. PET/CT image data sets were reconstructed iteratively by applying the CT data for attenuation correction, and co-registered images were displayed on an ADW4.3 or ADW4.6 workstation. PET/CT images were carefully reviewed by 2 senior nuclear medicine physicians. Most indolent lymphomas demonstrate an increased 18 F-FDG uptake, but the degree of 18 F-FDG uptake is lower than aggressive lymphomas. If used the positive finding as the uptake over than liver, it may underestimate BMI of indolent lymphomas. 18 F-FDG uptake of some indolent lymphomas actually was lower that of liver, especially in diffuse BMI. Positive PET/CT findings were based on the visual assessment of 18 F-FDG uptake in the involved sites relative to that of the mediastinum. PET/CT-assessed bone lesions

3 Hao et al. BMC Cancer (2018) 18:1192 Page 3 of 11 Fig. 1 Study flow diagram were characterized as isolated, multifocal, diffuse, and negative. PET/CT-guided targeted BMB was performed to determinate the diagnosis and bone staging of lymphomas. BMB Two methods of BMB were performed: 1) routine unilateral iliac crest biopsy and 2) PET/CT-guided targeted bone marrow biopsy. Unilateral iliac crest BMB was routinely in newly diagnosed lymphoma patients performed before any treatment was administered. One sample was obtained for each patient, and lengths of the samples were 1.0 cm. PET/CT-guided targeted BMB was performed by 1 board certified nuclear medicine physician using the same PET/CT scanner on a separate day to reduce the radiation dose to the operator. 18 F-FDG PET/CT fused images were used to determine the appropriate puncture site with high FDG uptake, and the biopsy needle was introduced stepwise under fused PET/CT image and CT guidance. An 11G (BMN-B, SA Medical & Plastic Instruments Co., Ltd., Shanghai, China) biopsy needle was used. One or two samples were obtained for each patient, and the lengths of samples all were 1.5 or 2.2 cm. All patients were kept for observation for at least 2 h after the biopsy procedure. The BMB specimens were analyzed by morphological and immunohistochemical studies. The pathological results of all BMBs were validated by review of the individual pathology reports. Reference standard Three reference standards for true BMI were used: 1) the iliac crest biopsy; 2) both focal skeletal PET/CT lesions and positive iliac crest biopsy; 3) PET/CT-guided targeted BMB. Statistical analysis and ethics Median and range were reported for continuous variables, and counts and percentages for categorical variables. Clopper-Pearson exact confidence limits were calculated for sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy. Differences between PET/CT-guided targeted BMB and routine BMB were analyzed using Fisher exact test. All statistical analysis was performed using SPSS, version 23, and MedCalc, version software. The P value for statistical significance was set to P <.05. This retrospective evaluation of collected data was approved by the ethics committee of our institution. All patients gave their written informed consent prior to any procedures performed. Results Inclusion criteria A total of 317 patients with lymphomas were identified and screened for eligibility. Twelve patients did not have

4 Hao et al. BMC Cancer (2018) 18:1192 Page 4 of 11 Table 1 Clinicopathologic Characteristics of the Study Cohort (n = 299) Characteristic No. of patients % Study subject 299 Male: Female ratio 1.5 Age, years median 54.8 range 4 91 PET-assessed skeletal pattern Focal, isolated Focal, multiple Diffuse Negative Subtypes of lymphoma Hodgkin lymphoma a Low-grade Non-Hodgkin lymphoma b High-grade Non-Hodgkin lymphoma c Unclassification d Richter transformation Others Abbreviations: NLP Nodular lymphocyte predominant, NS Nodular sclerosis lymphomas, MC Mixed cellularity, LR Lymphocyte-rich, DLBC Diffuse large B cell, PTC Peripheral T cell, BL Burkitt lymphoma, ACL Anaplastic large cell, MZ Marginal zone, MC Mantle cell, MALT Mucosa-associated lymphoid tissue, SLL/ CLL Chronic lymphocytic leukemia/small lymphocytic lymphoma a Hodgkin lymphoma included 3 NLP, 10 NS, 8 MC, 4 LR b Low-grade Non-Hodgkin lymphoma included 24 Follicular,10 MZ, 13 MC, 9 MALT, 12 SLL/CLL c High-grade Non-Hodgkin lymphoma included 129 DLBC, 8 PTC, 2 BL, 5 ACL, 2 Lymphoblastic, 25 NK-T d Unclassification included 8 B-cell lymphomas, 8 T-cell lymphomas an iliac crest biopsy in the staging workup, and 6 patients had another coexisting malignancy, and were thus excluded. Thus, 299 patients met the inclusion criteria and were included in the analysis. Of 299 patients identified, 295 patients received an iliac crest biopsy, and 4 patients had only a targeted biopsy. Of the 295 patients received an iliac crest biopsy, 30 patients with focal lesions received both a targeted biopsy and the iliac crest biopsy. Most of the suspicious lymphoma patients will be recommended for PET/CT examination to further diagnosis and differential diagnosis. It is difficult to get Table 2 Concordance Between Bone Marrow Biopsy and PET/ CT Findings for Evaluation of Bone Marrow Disease (n = 295) Bone marrow involvement Total + PET focal bone lesions PET diffuse bone lesions PET negative Total definite lymphomas subtypes diagnosis before PET/CT examination in daily clinical practice. Study flow diagram is shown in Fig. 1. Clinicopathological characteristics The median age of patients in the study was 54.8 years (range, 4 91 years), and the male: female ratio was 1:5. The lymphoma subtypes were classified as HL, low-grade, high-grade, NHL, unclassification, Richter transformation and others. Patient characteristic are summarized in the Table 1. PET/CT classification of bone lesions in newly diagnosed lymphomas Abnormal skeletal FDG uptake was present in 135 patients (45.2%). Eighty-three of 135 had focal lesions (isolated, 16; multifocal, 67). Of the 83 patients, 16 had positive iliac crest biopsies; 52 of 135 had diffusely homogeneous FDG uptake. Of the 52 patients, 22 had positive iliac crest biopsies involving most of the axial skeleton. Negative skeletal FDG uptake was present in 164 patients (54.8%), of whom 17 had positive iliac crest biopsies. PET/ CT data are summarized in Table 2. Diagnostic performance of 18 F-FDG PET/CT and iliac crest biopsy for determination of BMI Results of the diagnostic performance of 18 F-FDG PET/ CT and iliac crest biopsy for evaluating BMI are shown in Table 3. If only positive iliac crest biopsy was considered the reference standard for true BMI, the sensitivity and specificity of 18 F-FDG PET/CT for detection of focal bone lesions were 48% (95% confidence interval [CI]: 31 to 66%) and 70% (95% CI: 63 to 76%), respectively. The PPV and NPV were 20% (95% CI: 12 to 31%) and 90% (95% CI: 84 to 94%), respectively. The overall diagnostic accuracy (the proportion of true-positive and true-negative results over the total number of tests performed) was 67% (95% CI: 61 to 73%). For diffuse lesions, the sensitivity and specificity were 56% (95% CI: 40 to 72%) and 83% (95% CI: 77 to 88%), respectively. The PPV and NPV were 42% (95% CI: 30 to 57%) and 90% (95% CI: 84 to 90%), respectively. The overall diagnostic accuracy was 78% (95% CI: 72 to 83%). If focal skeletal PET/CT lesions and positive iliac crest biopsy were both considered as the reference standard for true BMI, the sensitivity of focal bone lesions was 82% (95% CI: 71 to 88%) for PET/CT versus 34% (95% CI: 25 to 45%) for iliac crest biopsy. The NPVs were 90% (95% CI: 84 to 94%) for PET/CT versus 70% (95% CI: 63 to 76%) for iliac crest biopsy. The overall diagnostic accuracy was 93% (95% CI: 89 to 96%) for PET/CT versus 74% (95% CI: 68 to 79%) for iliac crest biopsy. As for diffuse lesions, the sensitivity was 75% (95% CI: 63 to 85%) for PET/CT versus 57% (95% CI: 44 to 68%) for iliac

5 Hao et al. BMC Cancer (2018) 18:1192 Page 5 of 11 Table 3 Sensitivity, Specificity, PPV, NPV, and Accuracy of the Iliac Crest Biopsy and PET/CT for Detection of Bone Marrow Disease in the 295 patients Diagnostic Modality % 95%CI % 95%CI Iliac crest biopsy Focal PET/CT Bone Disease Defined Only by Positive Iliac crest biopsy (n = 55) Diffuse Sensitivity N/A a Sensitivity N/A a Specificity N/A a Specificity N/A a PPV N/A a PPV N/A a NPV N/A a NPV N/A a Accuracy N/A a Accuracy N/A a Focal Sensitivity to 66 Sensitivity to 72 Specificity to 76 Specificity to 88 PPV to 31 PPV to 57 NPV to 94 NPV to 90 Accuracy to 73 Accuracy to 83 Bone Disease Defined Only by Positive Iliac crest biopsy and/or FDG-avid bone lesion (n = 148) Iliac crest biopsy Focal Diffuse Sensitivity to 45 Sensitivity to 68 Specificity N/A b Specificity N/A b PPV N/A b PPV N/A b NPV to 76 NPV to 88 Accuracy to 79 Accuracy to 90 PET/CT Focal Diffuse Sensitivity to 88 Sensitivity to 85 Specificity N/A b Specificity N/A b PPV N/A b PPV N/A b NPV to 94 NPV to 94 Accuracy to 96 Accuracy to 95 Abbreviations: PET Positron emission tomography, CT Computed tomography, N/A Not applicable, NPV Negative predictive value, PPV Positive predictive value P < 0.05 for difference between the routine iliac crest biopsy and PET/CT for detection of bone marrow disease a N/A because iliac crest biopsy is considered the gold standard in this analysis b N/A because of missing reference for true positive Diffuse Table 4 18 F-FDG avidity of Indolent lymphomas Indolent lymphomas subtype N 18 F-FDG-avid Negative % 18 F-FDG-avid Focal/Diffuse/Negative bone lesions Follicular /4/18 Marginal zone /6/3 MALT /0/9 SLL/CLL /4/6 Mantle cell /3/10 Abbreviations: MALT Mucosa-associated lymphoid tissue, SLL/CLL Small lymphocytic lymphoma/chronic lymphocytic leukemia

6 Hao et al. BMC Cancer (2018) 18:1192 Page 6 of 11 Table 5 A Comparison of the Diagnostic Performance Between PET/CT-guided Targeted BMB and Iliac Crest Biopsy for the Assessment of Focal Bone marrow disease on PET/CT scan in the 30 patients Pathological results Total P + Target bone biopsy(n = 30) 27 (90.0%) 3 a (10.0%) 30 < 0.05 Routine iliac crest biopsy(n = 30) 5 (16.7%) 25 (83.3%) 30 a Negative results include one Eosinophilic granuloma with fibrosis, one myelodysplastic syndrome (MDS) and one active bone marrow hyperplasia Fisher exact test crest biopsy. The NPVs were 90% (95% CI: 84 to 94%) for PET/CT versus 83% (95% CI: 77 to 88%) for iliac crest biopsy. The overall diagnostic accuracy was 92% (95% CI: 89 to 95%) for PET/CT versus 86% (95% CI: 81 to 90%) for iliac crest biopsy. PET/CT findings of indolent lymphomas The main subtypes of indolent lymphomas were follicular, marginal zone, mucosa-associated lymphoid tissue (MALT), small lymphocytic lymphoma/chronic lymphocytic leukemia (SLL/CLL) and mantle cell lymphomas. The 18 F-FDG avidity of this group of lymphomas was demonstrated in Table 4. Differences of bone staging between PET/CT-guided targeted BMB and iliac crest biopsy for focal bone lesions A comparison of the diagnostic performance between PET/CT-guided targeted BMB and iliac crest biopsy for the assessment of focal BM disease in the 30 patients is shown in Table 5. The diagnostic ability of targeted BMB was superior to that of iliac crest biopsy (sensitivity of 90.0% versus 16.7%, respectively, P < 0.05). Three of 30 patients with a negative targeted biopsy were confirmed to have false-positive PET/CT findings, and the pathological results included 1 eosinophilic granuloma with fibrosis, 1 myelodysplastic syndrome (MDS), and 1 active bone marrow hyperplasia. Twenty-five of 30 patients with focal lesions on PET/CT scan were confirmed to have false-negative results of iliac crest biopsies. In addition, in 4 patients who had a targeted BMB without an iliac crest biopsy, the diagnosis and bone staging was established in a single procedure. BMB related inflammatory response and complications Forty-eight patients with focal lesions received PET/CT scan after BMB. In those patients, only 4(8.3%) patients had slightly 18 F-FDG uptake in the puncture site, the degree of 18 F-FDG uptake of puncture site is obviously lower than that of lesions of BMI. The average time to perform a biopsy was 30 min. Slight bleeding and pain occurred in almost all patients who underwent a biopsy, but no serious complications were noted (Table 6). Representative images are shown in Figs. 2, 3, 4, 5 and 6. Discussion To our knowledge, this study is the first to propose the notion that PET/CT-guided targeted BMB can add pathological confirmation of focal BMI in newly diagnosed lymphomas. Based on the data that 18 F-FDG PET/CT overcomes deficiencies of iliac crest biopsy, targeted BMB has gradually become routine practice at our institution. 18 F-FDG PET/CT has been widely accepted for the evaluation of focal BMI of HL, without the need for routine iliac crest biopsy [14, 15]. However, its actual diagnostic value is difficult to determine because of scarce target biopsies, and only the iliac crest biopsy as a reference standard for true BMI may erroneously generate false-positive PET/CT and false-negative iliac crest biopsy results. Our results demonstrated that 1 of 2 patients with HL with focal bone lesions on PET/CT scan, together with a negative iliac crest biopsy, confirmed the false-positive PET/CT findings via a targeted biopsy. If all subtypes were included, in the 30 patients in whom a targeted biopsy and an iliac crest biopsy were performed, 3 of 30 patients who had a positive PET/CT findings were shown to have other BM diseases rather than lymphoma BMI by targeted biopsy. Therefore, although 18 F-FDG PET/CT can easily detect the bone Table 6 Analysis of the 34 PET/CT-guided targeted BMBs for PET-assessed staging IV patients Biopsy No. of Biopsy procedure Diagnosis Bone morpholovic abnormalities on CT findings site biopsies Success Complications Subtype a Other b No. of Yes No. of No Slight pain Slight bleeding Ilium Sacrum Ischium Rib Femur Total a Subtype means definite subtype diagnosis, such as diffuse large B cell lymphoma b Other include one Eosinophilic granuloma with fibrosis, one myelodysplastic syndrome (MDS) and one active bone marrow hyperplasia

7 Hao et al. BMC Cancer (2018) 18:1192 Page 7 of 11 Fig. 2 PET/CT classification of bone marrow involvement (maximum intensity projection images, MIP). a Isolated lesion in the left ilium (black arrow). b Multifocal lesions in bone marrow. c Diffuse lesions in axial skeleton. d Negative PET findings in bone marrow lesions, positive findings also required histological examination, even in cases of HL. Adequate imaging is a prerequisite for performing a biopsy to establish a diagnosis. Advances in imaging techniques have contributed to the increasing use of image -guided percutaneous biopsy for the diagnosis of primary and secondary bone tumors [23, 24].18F-FDG PET/CT is the preferred method for determining the choice of biopsy site, as it is superior to other imaging methods [25]. Compared to a conventional CT-guided biopsy, the dual modality technique provides co-registered information about both the morphology and physiology of the proposed biopsy site, and can offer a target that exhibits increased FDG uptake [26]. In addition, whole body PET/ CT allows visualization of the entire marrow and provides better visualization of poorly defined bone abnormalities than other modalities [27, 28]. In our study, 19 of 34 patients had no bone abnormalities on CT and were thus not suitable for CT-guided biopsy, while PET/CT identified an accurate biopsy site. Most importantly, the PET/ CT classification of bone lesions of lymphomas is useful for determining the choice of biopsy. The pattern of skeletal FDG uptake was categorized as isolated, multifocal, diffuse, and negative. Our results also demonstrated 5 of Fig. 3 PET/CT-guided targeted bone marrow biopsy procedure. a-c 18F-FDG PET/CT findings. a The MIP image showed multifocal lesions in the region of bone and abdomen. b and c Axial CT image, axial PET/CT fusion image, showed high 18F-FDG uptake within the left ilium (white arrow), while no overt bony change was observed within the corresponding hypermetabolic region. d Procedure of biopsy target selection. e Puncture process using a 16G bone biopsy needle. f CT image showed the biopsy needle positioned within the left ilium lesion (white arrow). g Histological examination combined with immunohistochemical result confirmed a diagnosis of NHL (high-grade B cell lymphoma), suggesting further examination with C-MYC, Bcl-2, and Bcl-6 genetic testing

8 Hao et al. BMC Cancer (2018) 18:1192 Page 8 of 11 Fig. 4 A patient with mixed cell Hodgkin lymphoma, who was suspected of having multifocal bone lesions on the PET/CT image. Targeted biopsy confirmed false-positive PET findings. a MIP image showed multifocal bone lesions. b and c Axial CT image, axial PET/CT fusion image, showed high 18F-FDG uptake within the right ilium (white arrow) and osteolytic destruction was observed within the corresponding hypermetabolic region (white arrow). d CT image showed the biopsy needle positioned within the right ilium lesion (arrow). e Histological examination combined with immunohistochemical result confirmed the diagnosis of eosinophilic granuloma with fibrosis 68 patients (7.4%) with focal 18F-FDG avid bone lesions in indolent lymphomas. Individual algorithms for evaluation of BMI should be performed for various bone lesions identified on PET/CT imaging. In general, failure to follow appropriate biopsy procedures may lead to inaccurate bone staging. Currently, routine iliac crest biopsy is still the standard bone staging method for patients with newly diagnosed lymphomas [29]. However, it is well-known that the procedure is associated with low sensitivity in newly diagnosed lymphomas, especially those with focal BMI. In other words, a negative routine iliac crest biopsy cannot rule out the presence of BMI. Our results showed that PET/CT had a sensitivity of 48% in 79 patients with focal bone lesions. Sampling error, especially outside the iliac crest, may be major factor. Thus, it is preferable to use PET/CT-guided targeted BMB in the case of positive PET/CT findings to easily obtain representative tissue. First, a separate staging procedure adds time, cost, coordination of care, inconvenience, and an additional anesthetic risk [7, 30].In the 34 patients in our study,4 patients were simultaneously confirmed diagnosis and stage of lymphoma only through targeted BMB so that iliac crest biopsy could be avoided. Second, targeted biopsy avoided false-positive PET/CT findings in 3 of 34 patients in our study, which can result in inaccurate staging. Third, targeted biopsy was obviously superior to routine iliac crest biopsy in our study (sensitivity of 90.0% for targeted biopsy vs. 16.7% for iliac crest biopsy), and a false-negative iliac crest biopsy was avoided. In addition, we believe that targeted biopsy is a suitable reference standard to calculate the specificity of bone marrow 18F-FDG PET. PET/CT-guided targeted BMB is a safe and feasible method for bone lesions [27, 31 33]. The preferred choice of puncture site for an individual patient depends on the size and location and local experience and expertise. In our study, the relatively safer puncture site that is suspicious BMI on 18F-FDG PET/CT was preferred consideration and no serious complications were noted. Meanwhile, an adequate amount of tissue is required for immunophenotyping and genetic testing to establish a definitive diagnosis of lymphomas [29]. In our study, an adequate amount of tissue was obtained in all 34 patients and definitive subtype diagnosis was determined in 31 of 34 patients. The overall success rate was 91.2%. The remaining two patients were diagnosed with B-cell lymphomas, and didn t receive immunophenotyping and genetic testing for differential diagnosis due to lack of funds. Thus, our biopsy procedure actually showed a safe, feasible and effective method for diagnosis of lymphomas. When an FDG-avid peripheral lymph node is not present, or in the case of primary bone

9 Hao et al. BMC Cancer (2018) 18:1192 Page 9 of 11 Fig. 5 A patient who was suspected of having a lymphoma based on 18F-FDGPET/CT findings. Both diagnosis and staging were completed through PET/CT-guided targeted bone marrow biopsy in one procedure. The iliac crest biopsy was negative. a MIP image showed high 18F-FDG uptake within lesions in multiple retroperitoneal lymph nodes, spleen, and isolated left ilium. b and c PET/CT image showed high 18F-FDG uptake (SUVmax 3.38) within the left ilium, while no abnormality was observed on corresponding CT image (arrow). d CT image showed the biopsy needle positioned within the left ilium lesion (arrow). e Histological examination combined with immunohistochemical result confirmed a diagnosis of DLBCL Fig. 6 A patient with suspected lymphoma involvement in multiple areas of bone marrow, liver, spleen, and lymph nodes. She received targeted biopsy for diagnosis and staging. a MIP image showed high 18F-FDG uptake within lesions in the bone marrow, liver, spleen, and lymph nodes. b and c Axial PET/CT image showed high 18F-FDG uptake (SUVmax 17.34) within the left ilium, and abnormality on the corresponding CT image (arrow). d CT image showed the biopsy needle positioned within the left ilium lesion (arrow). e Histological examination combined with immunohistochemical result confirmed a diagnosis of DLBCL. f MIP of follow-up 18F-FDG PET/CT at the end of chemotherapy showed no hypermetabolic lesions (complete response)

10 Hao et al. BMC Cancer (2018) 18:1192 Page 10 of 11 lymphoma, a targeted BMB is a potential alternative for accurate diagnosis, and complete staging in a single procedure. However, targeted bone marrow biopsy in some localizations may be relatively difficult, such as skull, anterior part of vertebra.etc. The puncture site should be selected in the relatively safe localizations for advoiding serious complication. Diffuse bone lesions on PET/CT scan are usually defined as homogeneous increased FDG uptake of the entire axial skeleton, and are a well-known phenomenon in patients treated with hematopoietic growth factors [34, 35]. However, the finding is relatively uncommon in newly diagnosed lymphomas [36]. In a study by Admas et al. [37], the incidence of diffuse bone lesions on PET/CT scan was 4.2% (23/542), and the frequency of positive iliac crest biopsies was 55.0% (11/20) in newly diagnosed lymphomas. But our current study reported that the incidences of diffuse skeletal uptake were about 17.4%. The difference in the incidences is due to the different PET positive standard. We considered 18 F-FDG FDG uptake greater the mediastinum as PET positive standard, while Hugo J.A. Adams refer to 18 F-FDG FDG uptake greater than liver. Thus, it is explainable why the incidence of diffuse bone marrow FDG uptake in our current study was higher than that of Hugo J.A. Adams, s results. This present study showed that 18 F-FDG PET/CT does not exhibit very good concordance with the results of iliac crest biopsy, and its sensitivity and specificity were only 56 and 83%, respectively. Thus, iliac crest biopsy is more useful for diffuse bone lesions seen on PET/CT scan compared with other modality. A routine iliac crest biopsy also cannot be safely omitted in the case of negative bone marrow PET/CT findings, except in cases of DLBCL [14, 19].In our study, we did not find positive iliac crest biopsy results if the PET/ CT was negative in patients with DLBCL. But in other subtypes of lymphomas, of 164 patients who had negative PET/CT results, 17 had positive iliac crest results, resulting in an overall NPV of 90%. Thus, 10% of the patients would be inaccurate staging if the iliac crest biopsy was not performed. Some limitations of this study should be acknowledged. First,the sample size of PET/CT-guided targeted BMBs was limited. We tried to retrieve multi-center date to test and verify our results. Second, only 18 F-FDG PET/CT and iliac crest biopsy were studied, more other modality, such as MRI, laboratory examination, etc. must be considered. Finally, subtypes of lymphomas present differences depending on various PET/CT findings. In regard to these problems, more studies will be followed in the future gradually. Conclusion It is insufficient to evaluate BMI in newly diagnosed lymphomas using both 18 F-FDG PET/CT and routine iliac crest biopsy. It is recommended that 18 F-FDG PET/ CT imaging be performed before any BMB. In focal lesions identified on 18 F-FDG PET/CT scan, it is preferable to PET/CT-guided targeted biopsy, because it could not exclude possible false-positive PET/CT findings, even in HL, and can also avoid additional blind biopsies. However, in diffuse and negative lesions identified on 18 F-FDG PET/CT scan, iliac crest biopsy cannot be safely omitted. Abbreviations 95%CI: 95% confidence interval; BM: Bone marrow; BMI: Bone marrow involvement; DLBCL: Diffuse large B-cell lymphoma; HL: Hodgkin lymphoma; MALT: Mucosa-associated lymphoid tissue; MDS: Myelodysplastic syndrome; NCCN: National Comprehensive Cancer Network; NHL: Non-Hodgkin lymphomas; NPV: Negative predictive value; PPV: Positive predictive value; SLL/CLL: Small lymphocytic lymphoma/chronic lymphocytic leukemia Acknowledgements We are indebted to Nuclear department & Minnan PET Center of Fujian Province for providing technical assistance. We also thank all the patients for allowing us to analyze their data. Funding This study was funded by the National Natural Science Foundation of China ( ), the Natural Science Foundation of Fujian Province of China (2015 J01543) and the second batch of science and technology projects in Xiamen (3502Z ). Funding bodies were not involved in the design of the study, collection, analysis, and interpretation of date or in writing the manuscript. Availability of data and materials The datasets and materials used and/or analyzed during the current study are available from the corresponding author on reasonable request. Authors contributions BH, LZ, LS carried out conception and design. BH, LZ, WG, NL, HF, YP, HC, JW carried out collection and assembly of data. BH, LZ, XG, DR and ZL carried out data analysis and interpretation. JW, DR and XG carried out PET/CT acquisition and collection of clinical data. HW, LS and LZ provided critical comments for this manuscript. BH, LZ, YP, HW and LS participated in manuscript writing and revision. All authors read and approved the final manuscript. Ethics approval and consent to participate The study was approved by the Human Research Ethics Committee of the First Affiliated Hospital of Xiamen University, Xiamen, China (KYX ). Written informed consent was obtained from each participant. Consent for publication Not applicable. Competing interests The authors declare that they have no competing interests. Publisher s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Received: 9 July 2018 Accepted: 16 November 2018 References 1. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J. Cancer statistics in China, CA Cancer J Clin. 2016;66(2): Conlan MG, Bast M, Armitage JO, Weisenburger DD. Bone marrow involvement by non-hodgkin s lymphoma: the clinical significance of morphologic discordance between the lymph node and bone marrow. Nebraska lymphoma study group. J Clin Oncol. 1990;8(7):

11 Hao et al. BMC Cancer (2018) 18:1192 Page 11 of Munker R, Hasenclever D, Brosteanu O, Hiller E, Diehl V. Bone marrow involvement in Hodgkin s disease: an analysis of 135 consecutive cases. German Hodgkin s lymphoma study group. J Clin Oncol. 1995;13(2): Brunning RD, Bloomfield CD, McKenna RW, Peterson LA. Bilateral trephine bone marrow biopsies in lymphoma and other neoplastic diseases. Ann Intern Med. 1975;82(3): Juneja SK, Wolf MM, Cooper IA. Value of bilateral bone marrow biopsy specimens in non-hodgkin s lymphoma. J Clin Pathol. 1990;43(8): Wang J, Weiss LM, Chang KL, Slovak ML, Gaal K, Forman SJ, Arber DA. Diagnostic utility of bilateral bone marrow examination: significance of morphologic and ancillary technique study in malignancy. Cancer. 2002; 94(5): Brunetti GA, Tendas A, Meloni E, Mancini D, Maggiore P, Scaramucci L, Giovannini M, Niscola P, Cartoni C, Alimena G. Pain and anxiety associated with bone marrow aspiration and biopsy: a prospective study on 152 Italian patients with hematological malignancies. Ann Hematol. 2011;90(10): Bain BJ. Morbidity associated with bone marrow aspiration and trephine biopsy - a review of UK data for Haematologica. 2006;91(9): Carr R, Barrington SF, Madan B, O'Doherty MJ, Saunders CA, van der Walt J, Timothy AR. Detection of lymphoma in bone marrow by whole-body positron emission tomography. Blood. 1998;91(9): Moog F, Bangerter M, Kotzerke J, Guhlmann A, Frickhofen N, Reske SN. 18-Ffluorodeoxyglucose-positron emission tomography as a new approach to detect lymphomatous bone marrow. J Clin Oncol. 1998;16(2): Pakos EE, Fotopoulos AD, Ioannidis JP. 18F-FDG PET for evaluation of bone marrow infiltration in staging of lymphoma: a meta-analysis. J Nucl Med. 2005;46(6): Cetin G, Cikrikcioglu MA, Ozkan T, Karatoprak C, Ar MC, Eskazan AE, Ayer M, Cerit A, Gozubenli K, Uysal BB, et al. Can positron emission tomography and computed tomography be a substitute for bone marrow biopsy in detection of bone marrow involvement in patients with Hodgkin s or non- Hodgkin s lymphoma? Turk J Haematol. 2015;32(3): Pelosi E, Penna D, Douroukas A, Bello M, Amati A, Arena V, Passera R, Bisi G. Bone marrow disease detection with FDG-PET/CT and bone marrow biopsy during the staging of malignant lymphoma: results from a large multicentre study. Q J Nucl Med Mol Imaging. 2011;55(4): Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, Lister TA. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27): El-Galaly TC, d'amore F, Mylam KJ, de Nully Brown P, Bogsted M, Bukh A, Specht L, Loft A, Iyer V, Hjorthaug K, et al. Routine bone marrow biopsy has little or no therapeutic consequence for positron emission tomography/ computed tomography-staged treatment-naive patients with Hodgkin lymphoma. J Clin Oncol. 2012;30(36): Adams HJ, Kwee TC, Nievelstein RA. Influence of imperfect reference standard bias on the diagnostic performance of MRI in the detection of lymphomatous bone marrow involvement. Clin Radiol. 2013;68(7): Inoue K, Goto R, Okada K, Kinomura S, Fukuda H. A bone marrow F-18 FDG uptake exceeding the liver uptake may indicate bone marrow hyperactivity. Ann Nucl Med. 2009;23(7): Aoki J, Watanabe H, Shinozaki T, Takagishi K, Ishijima H, Oya N, Sato N, Inoue T, Endo K. FDG PET of primary benign and malignant bone tumors: standardized uptake value in 52 lesions. Radiology. 2001;219(3): Lim ST, Tao M, Cheung YB, Rajan S, Mann B. Can patients with early-stage diffuse large B-cell lymphoma be treated without bone marrow biopsy? Ann Oncol. 2005;16(2): Welker JA, Henshaw RM, Jelinek J, Shmookler BM, Malawer MM. The percutaneous needle biopsy is safe and recommended in the diagnosis of musculoskeletal masses. Cancer. 2000;89(12): Mitsuyoshi G, Naito N, Kawai A, Kunisada T, Yoshida A, Yanai H, Dendo S, Yoshino T, Kanazawa S, Ozaki T. Accurate diagnosis of musculoskeletal lesions by core needle biopsy. J Surg Oncol. 2006;94(1): Guo W, Hao B, Chen HJ, Zhao L, Luo ZM, Wu H, Sun L. PET/CT-guided percutaneous biopsy of FDG-avid metastatic bone lesions in patients with advanced lung cancer: a safe and effective technique. Eur J Nucl Med Mol Imaging. 2017;44(1): Gogna A, Peh WC, Munk PL. Image-guided musculoskeletal biopsy. Radiol Clin N Am. 2008;46(3): , v. 24. Wu Y, Su LP, Yang XT, Zhang JX, Zhao M, Zhang Z, Guan T, Liu XL, Zheng YP, Han WE. Preliminary evaluation of PET-CT and DWI for the detection of lymphoma bone marrow infiltration. Zhonghua Zhong Liu Za Zhi. 2016; 38(11): Chowdhury FU, Shah N, Scarsbrook AF, Bradley KM. [18F]FDG PET/CT imaging of colorectal cancer: a pictorial review. Postgrad Med J. 2010;86(1013): Hao B, Guo W, Luo NN, Fu H, Chen HJ, Zhao L, Wu H, Sun L. Metabolic imaging for guidance of curative treatment of isolated pelvic implantation metastasis after resection of spontaneously ruptured hepatocellular carcinoma: a case report. World J Gastroenterol. 2016;22(41): Cornelis F, Silk M, Schoder H, Takaki H, Durack JC, Erinjeri JP, Sofocleous CT, Siegelbaum RH, Maybody M, Solomon SB. Performance of intra-procedural 18-fluorodeoxyglucose PET/CT-guided biopsies for lesions suspected of malignancy but poorly visualized with other modalities. Eur J Nucl Med Mol Imaging. 2014;41(12): Klaeser B, Wiskirchen J, Wartenberg J, Weitzel T, Schmid RA, Mueller MD, Krause T. PET/CT-guided biopsies of metabolically active bone lesions: applications and clinical impact. Eur J Nucl Med Mol Imaging. 2010;37(11): Horwitz SM, Zelenetz AD, Gordon LI, Wierda WG, Abramson JS, Advani RH, Andreadis CB, Bartlett N, Byrd JC, Fayad LE, et al. NCCN guidelines insights: non-hodgkin s lymphomas, version J Natl Compr Canc Netw. 2016;14(9): Adams HJ, Nievelstein RA, Kwee TC. Opportunities and limitations of bone marrow biopsy and bone marrow FDG-PET in lymphoma. Blood Rev. 2015;29(6): Matti A, Farolfi A, Frisoni T, Fanti S, Nanni C. FDG-PET/CT guided biopsy in Angiosarcoma of bone: diagnosis, staging and beyond. Clin Nucl Med. 2018;43(2):e Adams HJ, de Klerk JM, Heggelman BG, Dubois SV, Kwee TC. Malignancy rate of biopsied suspicious bone lesions identified on FDG PET/CT. Eur J Nucl Med Mol Imaging. 2016;43(7): Maciel MJ, Tyng CJ, Barbosa PN, Bitencourt AG, Matushita Junior JP, Zurstrassen CE, Chung WT, Chojniak R. Computed tomography-guided percutaneous biopsy of bone lesions: rate of diagnostic success and complications. Radiol Bras. 2014;47(5): Knopp MV, Bischoff H, Rimac A, Oberdorfer F, van Kaick G. Bone marrow uptake of fluorine-18-fluorodeoxyglucose following treatment with hematopoietic growth factors: initial evaluation. Nucl Med Biol. 1996;23(6): Hollinger EF, Alibazoglu H, Ali A, Green A, Lamonica G. Hematopoietic cytokine-mediated FDG uptake simulates the appearance of diffuse metastatic disease on whole-body PET imaging. Clin Nucl Med. 1998;23(2): Khan AB, Barrington SF, Mikhaeel NG, Hunt AA, Cameron L, Morris T, Carr R. PET-CT staging of DLBCL accurately identifies and provides new insight into the clinical significance of bone marrow involvement. Blood. 2013;122(1): Adams HJ, Kwee TC, Fijnheer R, Dubois SV, Nievelstein RA, de Klerk JM. Diffusely increased bone marrow FDG uptake in recently untreated lymphoma: incidence and relevance. Eur J Haematol. 2015;95(1):83 9.

Sally Barrington Martin Hutchings

Sally Barrington Martin Hutchings Sally Barrington Martin Hutchings Therapeutic implications of BMI Bone marrow involvement means extranodal disease and by definition stage IV BMI detected by BMB is a poor prognostic feature in most lymphomas

More information

Staging: Recommendations for bone marrow investigations

Staging: Recommendations for bone marrow investigations International Workshop for PET in Lymphoma Staging and Restaging Thursday October 4th, Menton. Staging: Recommendations for bone marrow investigations Martin Hutchings Department of Haematology Rigshospitalet,

More information

Dr Sneha Shah Tata Memorial Hospital, Mumbai.

Dr Sneha Shah Tata Memorial Hospital, Mumbai. Dr Sneha Shah Tata Memorial Hospital, Mumbai. Topics covered Lymphomas including Burkitts Pediatric solid tumors (non CNS) Musculoskeletal Ewings & osteosarcoma. Neuroblastomas Nasopharyngeal carcinomas

More information

PET-imaging: when can it be used to direct lymphoma treatment?

PET-imaging: when can it be used to direct lymphoma treatment? PET-imaging: when can it be used to direct lymphoma treatment? Luca Ceriani Nuclear Medicine and PET-CT centre Oncology Institute of Southern Switzerland Bellinzona Disclosure slide I declare no conflict

More information

The Clinical Utility of FDG PET-CT in Evaluation of Bone Marrow Involvement by Lymphoma

The Clinical Utility of FDG PET-CT in Evaluation of Bone Marrow Involvement by Lymphoma pissn 1598-2998, eissn 2005-9256 Cancer Res Treat. 2015;47(3):458-464 Original Article http://dx.doi.org/10.4143/crt.2014.091 Open Access The Clinical Utility of FDG PET-CT in Evaluation of Bone Marrow

More information

Lugano classification: Role of PET-CT in lymphoma follow-up

Lugano classification: Role of PET-CT in lymphoma follow-up CAR Educational Exhibit: ID 084 Lugano classification: Role of PET-CT in lymphoma follow-up Charles Nhan 4 Kevin Lian MD Charlotte J. Yong-Hing MD FRCPC Pete Tonseth 3 MD FRCPC Department of Diagnostic

More information

Research Article Revisiting the Marrow Metabolic Changes after Chemotherapy in Lymphoma: A Step towards Personalized Care

Research Article Revisiting the Marrow Metabolic Changes after Chemotherapy in Lymphoma: A Step towards Personalized Care International Molecular Imaging Volume 2011, Article ID 942063, 6 pages doi:10.1155/2011/942063 Research Article Revisiting the Marrow Metabolic Changes after Chemotherapy in Lymphoma: A Step towards Personalized

More information

FDG-PET/CT in the management of lymphomas

FDG-PET/CT in the management of lymphomas FDG-PET/CT in the management of lymphomas Olivier Gheysens, MD, PhD Dept. of Nuclear Medicine, UZ Leuven BHS, Feb 4th 2017 Brussels Dept. of Nuclear Overview Introduction on FDG-PET/CT Staging Response

More information

Frequency and Pattern of Bone Marrow Infiltration in Non- Hodgkin s Lymphoma

Frequency and Pattern of Bone Marrow Infiltration in Non- Hodgkin s Lymphoma Original Article Frequency and Pattern of Bone Marrow Infiltration in Non- Hodgkin s Lymphoma Ayaz Lone, 1 Samina Naeem 2 Abstract Introduction: Lymphomas are divided into two, groups Hodgkin s Lymphoma

More information

Lymphoma Read with the experts

Lymphoma Read with the experts Lymphoma Read with the experts Marc Seltzer, MD Associate Professor of Radiology Geisel School of Medicine at Dartmouth Director, PET-CT Course American College of Radiology Learning Objectives Recognize

More information

Sarajevo (Bosnia Hercegivina) Monday June :30-16:15. PET/CT in Lymphoma

Sarajevo (Bosnia Hercegivina) Monday June :30-16:15. PET/CT in Lymphoma Sarajevo (Bosnia Hercegivina) Monday June 16 2013 15:30-16:15 PET/CT in Lymphoma FDG-avidity Staging (nodal & extra nodal) Response evaluation Early assessment during treatment / interim (ipet) Remission

More information

Update in Lymphoma Imaging

Update in Lymphoma Imaging Update in Lymphoma Imaging Victorine V. Muse, MD Lymphoma Update in Lymphoma Imaging Victorine V Muse, MD Heterogeneous group of lymphoid neoplasms divided into two broad histological categories Hodgkin

More information

Regression of Advanced Gastric MALT Lymphoma after the Eradication of Helicobacter pylori

Regression of Advanced Gastric MALT Lymphoma after the Eradication of Helicobacter pylori Gut and Liver, Vol. 6, No. 2, April 2012, pp. 270-274 CASE REPORT Regression of Advanced Gastric MALT Lymphoma after the Eradication of Helicobacter pylori Soo-Kyung Park, Hwoon-Yong Jung, Do Hoon Kim,

More information

Dual-time-point FDG-PET/CT Imaging of Temporal Bone Chondroblastoma: A Report of Two Cases

Dual-time-point FDG-PET/CT Imaging of Temporal Bone Chondroblastoma: A Report of Two Cases Dual-time-point FDG-PET/CT Imaging of Temporal Bone Chondroblastoma: A Report of Two Cases Akira Toriihara 1 *, Atsunobu Tsunoda 2, Akira Takemoto 3, Kazunori Kubota 1, Youichi Machida 1, Ukihide Tateishi

More information

University of Groningen

University of Groningen University of Groningen Can FDG-PET/CT replace blind bone marrow biopsy of the posterior iliac crest in Ewing sarcoma? Kasalak, Omer; Glaudemans, Andor W.J.M.; Overbosch, Jelle; Jutte, Paul C.; Kwee, Thomas

More information

Lymphoma: What You Need to Know. Richard van der Jagt MD, FRCPC

Lymphoma: What You Need to Know. Richard van der Jagt MD, FRCPC Lymphoma: What You Need to Know Richard van der Jagt MD, FRCPC Overview Concepts, classification, biology Epidemiology Clinical presentation Diagnosis Staging Three important types of lymphoma Conceptualizing

More information

4th INTERNATIONAL WORKSHOP ON INTERIM-PET IN LYMPHOMA Palais de l Europe, Menton Oct 4-5, 2012

4th INTERNATIONAL WORKSHOP ON INTERIM-PET IN LYMPHOMA Palais de l Europe, Menton Oct 4-5, 2012 4th INTERNATIONAL WORKSHOP ON INTERIM-PET IN LYMPHOMA Palais de l Europe, Menton Oct 4-5, 2012 international workshop for PET in lymphoma staging and restaging Lale Kostakoglu Department of Radiology Mount

More information

Testicular relapse of non-hodgkin Lymphoma noted on FDG-PET

Testicular relapse of non-hodgkin Lymphoma noted on FDG-PET Testicular relapse of non-hodgkin Lymphoma noted on FDG-PET Stephen D. Scotti 1*, Jennifer Laudadio 2 1. Department of Radiology, North Carolina Baptist Hospital, Winston-Salem, NC, USA 2. Department of

More information

/S

/S CLINICAL SCIENCE Positron emission tomography with 2-[18f]- fluoro-2-deoxy-d-glucose for initial staging of hodgkin lymphoma: a single center experience in brazil Juliano Julio Cerci, I Luís Fernando Pracchia,

More information

Diagnostic value of fluorine-18 fluorodeoxyglucose positron emission tomography / computed tomography in fever of unknown origin

Diagnostic value of fluorine-18 fluorodeoxyglucose positron emission tomography / computed tomography in fever of unknown origin 175 18 F-FDG PET /CT 1* 2* 1 1 1 1 1 1 1. 100034 2. 100850 18 F-FDG PET /CT fever of unknown origin FUO 2010 8 2013 4 51 FUO FDG PET /CT 3 FDG PET /CT t 51 FUO 32 9 7 3 FDG PET FUO 27 52. 9% 14 27. 5%

More information

Bone and CT Scans Are Complementary for Diagnoses of Bone Metastases in Breast Cancer When PET Scans Findings Are Equivocal: A Case Report

Bone and CT Scans Are Complementary for Diagnoses of Bone Metastases in Breast Cancer When PET Scans Findings Are Equivocal: A Case Report Bone and CT Scans Are Complementary for Diagnoses of Bone Metastases in Breast Cancer When Scans Findings Are Equivocal: A Case Report Yuk-Wah Tsang 1, Jyh-Gang Leu 2, Yen-Kung Chen 3, Kwan-Hwa Chi 1,4

More information

Disclosure. Acknowledgement. What is the Best Workup for Rectal Cancer Staging: US/MRI/PET? Rectal cancer imaging. None

Disclosure. Acknowledgement. What is the Best Workup for Rectal Cancer Staging: US/MRI/PET? Rectal cancer imaging. None What is the Best Workup for Rectal Cancer Staging: US/MRI/PET? Zhen Jane Wang, MD Assistant Professor in Residence UC SF Department of Radiology Disclosure None Acknowledgement Hueylan Chern, MD, Department

More information

RADIOLOGY: the chest x-ray

RADIOLOGY: the chest x-ray RADIOLOGY: the chest x-ray A B A case of lymphoma that was treated in September 1901 by W. A. Pusey, Professor of Dermatology in the Medical Department of the University of Illinois. A: The patient on

More information

FDG-PET/CT in Gynaecologic Cancers

FDG-PET/CT in Gynaecologic Cancers Friday, August 31, 2012 Session 6, 9:00-9:30 FDG-PET/CT in Gynaecologic Cancers (Uterine) cervical cancer Endometrial cancer & Uterine sarcomas Ovarian cancer Little mermaid (Edvard Eriksen 1913) honoring

More information

Positron Emission Tomography (PET) for Staging Low-Grade Non-Hodgkin s Lymphomas (NHL)

Positron Emission Tomography (PET) for Staging Low-Grade Non-Hodgkin s Lymphomas (NHL) CANCER BIOTHERAPY & RADIOPHARMACEUTICALS Volume 16, Number 4, 2001 Mary Ann Liebert, Inc. Positron Emission Tomography (PET) for Staging Low-Grade Non-Hodgkin s Lymphomas (NHL) F. Najjar, R. Hustinx, G.

More information

Programming LYRIC Response in Immunomodulatory Therapy Trials Yang Wang, Seattle Genetics, Inc., Bothell, WA

Programming LYRIC Response in Immunomodulatory Therapy Trials Yang Wang, Seattle Genetics, Inc., Bothell, WA PharmaSUG 2017 Paper BB12 Programming LYRIC Response in Immunomodulatory Therapy Trials Yang Wang, Seattle Genetics, Inc., Bothell, WA ABSTRACT The LYmphoma Response to Immunomodulatory therapy Criteria

More information

Workshop key imaging questions

Workshop key imaging questions 11th INTERNATIONAL CONFERENCE ON MALIGNANT LYMPHOMA Lugano, Switzerland, June 15-18, 2011 Workshop key imaging questions Relevance of current imaging staging systems Influence of tumour burden Need for

More information

Yiyan Liu. 1. Introduction

Yiyan Liu. 1. Introduction AIDS Research and Treatment Volume 2012, Article ID 764291, 6 pages doi:10.1155/2012/764291 Clinical Study Concurrent FDG Avid Nasopharyngeal Lesion and Generalized Lymphadenopathy on PET-CT Imaging Is

More information

HODGKIN LYMPHOMA DR. ALEJANDRA ZARATE OSORNO HOSPITAL ESPAÑOL DE MEXICO

HODGKIN LYMPHOMA DR. ALEJANDRA ZARATE OSORNO HOSPITAL ESPAÑOL DE MEXICO HODGKIN LYMPHOMA DR. ALEJANDRA ZARATE OSORNO HOSPITAL ESPAÑOL DE MEXICO HODGKIN LYMPHOMA CLASSIFICATION Lukes & Butler Rye WHO-2016 Linphocytic and/or histiocytic Nodular & diffuse Nodular Sclerosis Lymphocyte

More information

Diagnostic value of MR-DWI technique in the diagnosis and staging of Hodgkin and non-hodgkin lymphoma: comparison with PET-CT methods

Diagnostic value of MR-DWI technique in the diagnosis and staging of Hodgkin and non-hodgkin lymphoma: comparison with PET-CT methods Diagnostic value of MR-DWI technique in the diagnosis and staging of Hodgkin and non-hodgkin lymphoma: comparison with PET-CT methods Poster No.: C-2106 Congress: ECR 2015 Type: Scientific Exhibit Authors:

More information

L hyperfixation dans le suivi des lymphomes représente-t-elle toujours une maladie active?

L hyperfixation dans le suivi des lymphomes représente-t-elle toujours une maladie active? L hyperfixation dans le suivi des lymphomes représente-t-elle toujours une maladie active? Thierry Vander Borght UCL Mont-Godinne, Belgique FDG-PET in Lymphoma: Mont-Godinne Experience 03/2000 10/2002:

More information

Prof. Dr. NAGUI M. ABDELWAHAB,M.D.; MARYSE Y. AWADALLAH, M.D. AYA M. BASSAM, Ms.C.

Prof. Dr. NAGUI M. ABDELWAHAB,M.D.; MARYSE Y. AWADALLAH, M.D. AYA M. BASSAM, Ms.C. Role of Whole-body Diffusion MR in Detection of Metastatic lesions Prof. Dr. NAGUI M. ABDELWAHAB,M.D.; MARYSE Y. AWADALLAH, M.D. AYA M. BASSAM, Ms.C. Cancer is a potentially life-threatening disease,

More information

Early detection of prostate cancer (PCa) may feasibly lead

Early detection of prostate cancer (PCa) may feasibly lead ORIGINAL ARTICLE C-11 Choline PET/CT Imaging for Differentiating Malignant From Benign Prostate Lesions Xin Li, MD,* Qi Liu, MD, PhD,* Muwen Wang, MD, PhD,* Xunbo Jin, MD,* Qingwei Liu, MD, PhD,* Shuzhan

More information

FDG PET/CT STAGING OF LUNG CANCER. Dr Shakher Ramdave

FDG PET/CT STAGING OF LUNG CANCER. Dr Shakher Ramdave FDG PET/CT STAGING OF LUNG CANCER Dr Shakher Ramdave FDG PET/CT STAGING OF LUNG CANCER FDG PET/CT is used in all patients with lung cancer who are considered for curative treatment to exclude occult disease.

More information

PET/CT in Evaluation Bone Marrow Infiltration in Malignant Lymphoma

PET/CT in Evaluation Bone Marrow Infiltration in Malignant Lymphoma PET/CT in Evaluation Bone Marrow Infiltration in Malignant Lymphoma Badr, S 1. Abdelwahab, M.A 1 and Moustafa, H 2. 1 NCI and 2 NEMROCK Centre, Cairo University, Egypt. The bone marrow is found within

More information

Colorectal Cancer and FDG PET/CT

Colorectal Cancer and FDG PET/CT Hybrid imaging in colorectal & esophageal cancer Emmanuel Deshayes IAEA WorkShop, November 2017 Colorectal Cancer and FDG PET/CT 1 Clinical background Cancer of the colon and rectum is one of the most

More information

Non-Hodgkin lymphomas (NHLs) Hodgkin lymphoma )HL)

Non-Hodgkin lymphomas (NHLs) Hodgkin lymphoma )HL) Non-Hodgkin lymphomas (NHLs) Hodgkin lymphoma )HL) Lymphoid Neoplasms: 1- non-hodgkin lymphomas (NHLs) 2- Hodgkin lymphoma 3- plasma cell neoplasms Non-Hodgkin lymphomas (NHLs) Acute Lymphoblastic Leukemia/Lymphoma

More information

FDG PET/CT Versus I-131 MIBG Scan in Diagnosis of Neuroblastoma Osseous Infiltrates; Comparative Study

FDG PET/CT Versus I-131 MIBG Scan in Diagnosis of Neuroblastoma Osseous Infiltrates; Comparative Study Egyptian J. Nucl. Med., Vol. 10, No. 2, Dec 2014 85 Original article, Oncology FDG PET/CT Versus I-131 MIBG Scan in Diagnosis of Neuroblastoma Osseous Infiltrates; Comparative Study Amr, M 1. Kotb, M 1,

More information

1 Introduction. 2 Materials and methods. LI Na 1 LI Yaming 1,* YANG Chunming 2 LI Xuena 1 YIN Yafu 1 ZHOU Jiumao 1

1 Introduction. 2 Materials and methods. LI Na 1 LI Yaming 1,* YANG Chunming 2 LI Xuena 1 YIN Yafu 1 ZHOU Jiumao 1 Nuclear Science and Techniques 20 (2009) 354 358 18 F-FDG PET/CT in diagnosis of skeletal metastases LI Na 1 LI Yaming 1,* YANG Chunming 2 LI Xuena 1 YIN Yafu 1 ZHOU Jiumao 1 1 Department of Nuclear Medicine,

More information

Pros and Cons: Interim PET in DLBCL Ulrich Dührsen Department of Hematology University Hospital Essen

Pros and Cons: Interim PET in DLBCL Ulrich Dührsen Department of Hematology University Hospital Essen 3rd International Workshop on in Lymphoma Menton, September 26, 2011 Afternoon Controversies Pros and Cons: in DLBCL Ulrich Dührsen Department of Hematology University Hospital Essen Pros Is there any

More information

WHAT DOES PET IMAGING ADD TO CONVENTIONAL STAGING OF HEAD AND NECK CANCER PATIENTS?

WHAT DOES PET IMAGING ADD TO CONVENTIONAL STAGING OF HEAD AND NECK CANCER PATIENTS? doi:10.1016/j.ijrobp.2006.12.044 Int. J. Radiation Oncology Biol. Phys., Vol. 68, No. 2, pp. 383 387, 2007 Copyright 2007 Elsevier Inc. Printed in the USA. All rights reserved 0360-3016/07/$ see front

More information

During past decades, because of the lack of knowledge

During past decades, because of the lack of knowledge Staging and Classification of Lymphoma Ping Lu, MD In 2004, new cases of non-hodgkin s in the United States were estimated at 54,370, representing 4% of all cancers and resulting 4% of all cancer deaths,

More information

The Egyptian Journal of Hospital Medicine (October 2017) Vol.69(1), Page

The Egyptian Journal of Hospital Medicine (October 2017) Vol.69(1), Page The Egyptian Journal of Hospital Medicine (October 2017) Vol.69(1), Page 1668-1673 Role of Surveillance CT in Detection of Pre-Clinical Relapse in Patients with B- Cell lymphoma: A Retrospective Study

More information

objectives Pitfalls and Pearls in PET/CT imaging Kevin Robinson, DO Assistant Professor Department of Radiology Michigan State University

objectives Pitfalls and Pearls in PET/CT imaging Kevin Robinson, DO Assistant Professor Department of Radiology Michigan State University objectives Pitfalls and Pearls in PET/CT imaging Kevin Robinson, DO Assistant Professor Department of Radiology Michigan State University To determine the regions of physiologic activity To understand

More information

The Importance of PET/CT in Human Health. Homer A. Macapinlac, M.D.

The Importance of PET/CT in Human Health. Homer A. Macapinlac, M.D. The Importance of PET/CT in Human Health Homer A. Macapinlac, M.D. Learning objectives Provide an overview of the impact of PET/CT imaging on the management of patients and its impact on health care expenditures.

More information

Limited Role of Bone Marrow Aspiration and Biopsy in the Initial Staging Work-up of Gastric Mucosa-Associated Lymphoid Tissue Lymphoma in Korea

Limited Role of Bone Marrow Aspiration and Biopsy in the Initial Staging Work-up of Gastric Mucosa-Associated Lymphoid Tissue Lymphoma in Korea Gut and Liver, Vol. 8, No. 6, November 2014, pp. 637-642 ORiginal Article Limited Role of Bone Marrow Aspiration and Biopsy in the Initial Staging Work-up of Gastric Mucosa-Associated Lymphoid Tissue Lymphoma

More information

When do you need PET/CT or MRI in early breast cancer?

When do you need PET/CT or MRI in early breast cancer? When do you need PET/CT or MRI in early breast cancer? Elizabeth A. Morris MD FACR Chief, Breast Imaging Service Memorial Sloan-Kettering Cancer Center NY, NY Objectives What is the role of MRI in initial

More information

PET CT for Staging Lung Cancer

PET CT for Staging Lung Cancer PET CT for Staging Lung Cancer Rohit Kochhar Consultant Radiologist Disclosures Neither I nor my immediate family members have financial relationships with commercial organizations that may have a direct

More information

Large cell immunoblastic Diffuse histiocytic (DHL) Lymphoblastic lymphoma Diffuse lymphoblastic Small non cleaved cell Burkitt s Non- Burkitt s

Large cell immunoblastic Diffuse histiocytic (DHL) Lymphoblastic lymphoma Diffuse lymphoblastic Small non cleaved cell Burkitt s Non- Burkitt s Non Hodgkin s Lymphoma Introduction 6th most common cause of cancer death in United States. Increasing in incidence and mortality. Since 1970, the incidence of has almost doubled. Overview The types of

More information

The updated incidences and mortalities of major cancers in China, 2011

The updated incidences and mortalities of major cancers in China, 2011 DOI 10.1186/s40880-015-0042-6 REVIEW Open Access The updated incidences and mortalities of major cancers in China, 2011 Wanqing Chen *, Rongshou Zheng, Hongmei Zeng and Siwei Zhang Abstract Introduction:

More information

Short summary of published results of PET with fluoromethylcholine (18F) in prostate cancer

Short summary of published results of PET with fluoromethylcholine (18F) in prostate cancer Short summary of published results of PET with fluoromethylcholine (18F) in prostate cancer JN TALBOT and all the team of Service de Médecine Nucléaire Hôpital Tenon et Université Pierre et Marie Curie,

More information

Comparison of RECIST version 1.0 and 1.1 in assessment of tumor response by computed tomography in advanced gastric cancer

Comparison of RECIST version 1.0 and 1.1 in assessment of tumor response by computed tomography in advanced gastric cancer Original Article Comparison of RECIST version 1.0 and 1.1 in assessment of tumor response by computed tomography in advanced gastric cancer Gil-Su Jang 1 *, Min-Jeong Kim 2 *, Hong-Il Ha 2, Jung Han Kim

More information

Role of PET/CT in the Detection of Bone Marrow Infiltration in Pediatric Lymphoma Patients

Role of PET/CT in the Detection of Bone Marrow Infiltration in Pediatric Lymphoma Patients Original Paper, Oncology. Role of PET/CT in the Detection of Bone Marrow Infiltration in Pediatric Lymphoma Patients Abd El Aziz, S 1. Kotb, M 1. Abd El Wahab, M 1 and Moustafa, H 2. 1 National Cancer

More information

They are updated regularly as new NICE guidance is published. To view the latest version of this NICE Pathway see:

They are updated regularly as new NICE guidance is published. To view the latest version of this NICE Pathway see: bring together everything NICE says on a topic in an interactive flowchart. are interactive and designed to be used online. They are updated regularly as new NICE guidance is published. To view the latest

More information

Mimics of Lymphoma in Routine Biopsies. Mixed follicular and paracortical hyperplasia. Types of Lymphoid Hyperplasia

Mimics of Lymphoma in Routine Biopsies. Mixed follicular and paracortical hyperplasia. Types of Lymphoid Hyperplasia Mimics of Lymphoma in Routine Biopsies Patrick Treseler, MD, PhD Professor of Pathology University of California San Francisco Types of Lymphoid Hyperplasia Follicular hyperplasia (B-cells) Paracortical

More information

Involvement of Abdominal and Pelvic Lymph Nodes in Non--Hodgkin Lymphoma: the Nodal Distribution in Chinese Patients

Involvement of Abdominal and Pelvic Lymph Nodes in Non--Hodgkin Lymphoma: the Nodal Distribution in Chinese Patients 2?8 Involvement of Abdominal and Pelvic Lymph Nodes in Non--Hodgkin Lymphoma: the Nodal Distribution in Chinese Patients Ning Wu Ying Uu Dongmei Un Yu Chen Mulan Shi Department of Diagnostic Radiology,

More information

Triage of Limited Versus Extensive Disease on 18 F-FDG PET/CT Scan in Small Cell lung Cancer

Triage of Limited Versus Extensive Disease on 18 F-FDG PET/CT Scan in Small Cell lung Cancer Triage of Limited Versus Extensive Disease on F-FDG PET/CT Scan in Small Cell lung Cancer Riaz Saima 1*, Bashir Humayun 1, Niazi Imran Khalid 2 1 Department of Nuclear Medicine, Shaukat Khanum Memorial

More information

Diagnostic Value of EBUS-TBNA in Various Lung Diseases (Lymphoma, Tuberculosis, Sarcoidosis)

Diagnostic Value of EBUS-TBNA in Various Lung Diseases (Lymphoma, Tuberculosis, Sarcoidosis) Diagnostic Value of EBUS-TBNA in Various Lung Diseases (Lymphoma, Tuberculosis, Sarcoidosis) Sevda Sener Cömert, MD, FCCP. SBU, Kartal Dr.Lütfi Kırdar Training and Research Hospital Department of Pulmonary

More information

Hodgkin. The PET World. Sally Barrington

Hodgkin. The PET World. Sally Barrington Hodgkin The PET World Sally Barrington PET-CT Staging in HL PET-CT changes stage 15-30% RATHL - Advanced HL 1171 pts Stage by PET-CT compared with cect and BMB 20% stage change; upstaging 14% Most upstaging

More information

Insook Park 1 and Sungmin Kang 2*

Insook Park 1 and Sungmin Kang 2* Park and Kang Journal of Medical Case Reports (2017) 11:89 DOI 10.1186/s13256-017-1246-y CASE REPORT Open Access Distal appendicular skeletal involvement of diffuse large B-cell lymphoma on technetium-99m

More information

18F-FDG PET/CT Versus I-131 MIBG Scan in Diagnosis of Neuroblastoma Osseous Infiltrates; Comparative Study

18F-FDG PET/CT Versus I-131 MIBG Scan in Diagnosis of Neuroblastoma Osseous Infiltrates; Comparative Study Egyptian J. Nucl. Med., Vol. 11, No. 1, Dec 2015 28 Original article, Oncology 18F-FDG PET/CT Versus I-131 MIBG Scan in Diagnosis of Neuroblastoma Osseous Infiltrates; Comparative Study Amr, M 1. Kotb,

More information

Immunopathology of Lymphoma

Immunopathology of Lymphoma Immunopathology of Lymphoma Noraidah Masir MBBCh, M.Med (Pathology), D.Phil. Department of Pathology Faculty of Medicine Universiti Kebangsaan Malaysia Lymphoma classification has been challenging to pathologists.

More information

Recommendations for Initial Evaluation, Staging and Response Assessment of Lymphomas

Recommendations for Initial Evaluation, Staging and Response Assessment of Lymphomas Recommendations for Initial Evaluation, Staging and Response Assessment of Lymphomas Bruce D. Cheson, M.D. Georgetown University Hospital Lombardi Comprehensive Cancer Center Washington, D.C., USA Disclosures

More information

Utility of 18 F-FDG PET/CT in metabolic response assessment after CyberKnife radiosurgery for early stage non-small cell lung cancer

Utility of 18 F-FDG PET/CT in metabolic response assessment after CyberKnife radiosurgery for early stage non-small cell lung cancer Utility of F-FDG PET/CT in metabolic response assessment after CyberKnife radiosurgery for early stage non-small cell lung cancer Ngoc Ha Le 1*, Hong Son Mai 1, Van Nguyen Le 2, Quang Bieu Bui 2 1 Department

More information

Pearls and pitfalls in interpretation of lymphoid lesions in needle biopsies

Pearls and pitfalls in interpretation of lymphoid lesions in needle biopsies Pearls and pitfalls in interpretation of lymphoid lesions in needle biopsies Megan S. Lim MD PhD University of Pennsylvania October 8, 2018 Objectives To understand how the trend toward less invasive lymph

More information

Mantle Cell Lymphoma

Mantle Cell Lymphoma HEMATOPATHOLOGY Original Article Mantle Cell Lymphoma Morphologic Findings in Bone Marrow Involvement JAY WASMAN, MD, 1 NANCY S. ROSENTHAL, MD,' AND DIANE C. FARHI, MD 2 Although mantle cell lymphoma (MCL),

More information

Mimics of Lymphoma in Routine Biopsies. I have nothing to disclose regarding the information to be reported in this talk.

Mimics of Lymphoma in Routine Biopsies. I have nothing to disclose regarding the information to be reported in this talk. Mimics of Lymphoma in Routine Biopsies Patrick Treseler, MD, PhD Professor of Pathology University of California San Francisco I have nothing to disclose regarding the information to be reported in this

More information

2007 ANNUAL SITE STUDY HODGKIN S LYMPHOMA

2007 ANNUAL SITE STUDY HODGKIN S LYMPHOMA 2007 ANNUAL SITE STUDY HODGKIN S LYMPHOMA SUSQUEHANNA HEALTH David B. Nagel, M.D. April 11, 2008 Hodgkin s lymphoma was first described by Thomas Hodgkin in 1832. It remained an incurable malignancy until

More information

Physician Follow-Up and Guideline Adherence in Post- Treatment Surveillance of Colorectal Cancer

Physician Follow-Up and Guideline Adherence in Post- Treatment Surveillance of Colorectal Cancer Physician Follow-Up and Guideline Adherence in Post- Treatment Surveillance of Colorectal Cancer Gabriela M. Vargas, MD Kristin M. Sheffield, PhD, Abhishek Parmar, MD, Yimei Han, MS, Kimberly M. Brown,

More information

The Role of PET / CT in Lung Cancer Staging

The Role of PET / CT in Lung Cancer Staging July 2004 The Role of PET / CT in Lung Cancer Staging Vlad Vinarsky, Harvard Medical School Year IV Patient AM HPI: 81 yo F p/w hemoptysis x 1 month LLL lesion on CXR, not responsive to Abx 35 pack-year

More information

Impact of fasting on 18 F-fluorocholine gastrointestinal uptake and detection of lymph node metastases in patients with prostate cancer

Impact of fasting on 18 F-fluorocholine gastrointestinal uptake and detection of lymph node metastases in patients with prostate cancer Wondergem et al. EJNMMI Research (2016) 6:2 DOI 10.16/s13550-015-0159-2 SHORT COMMUNICATION Open Access Impact of fasting on F-fluorocholine gastrointestinal uptake and detection of lymph node metastases

More information

Imaging of Pulmonary Tuberculosis with 18 F-Fluoro-Deoxy-Glucose and

Imaging of Pulmonary Tuberculosis with 18 F-Fluoro-Deoxy-Glucose and Send Orders for Reprints to reprints@benthamscience.net The Open Nuclear Medicine Journal, 2014, 6, 17-21 17 Open Access Imaging of Pulmonary Tuberculosis with 18 F-Fluoro-Deoxy-Glucose and 18 F-Ethylcholine

More information

Los Angeles Radiological Society 62 nd Annual Midwinter Radiology Conference January 31, 2010

Los Angeles Radiological Society 62 nd Annual Midwinter Radiology Conference January 31, 2010 Los Angeles Radiological Society 62 nd Annual Midwinter Radiology Conference January 31, 2010 Self Assessment Module on Nuclear Medicine and PET/CT Case Review FDG PET/CT IN LYMPHOMA AND MELANOMA Submitted

More information

CT PET SCANNING for GIT Malignancies A clinician s perspective

CT PET SCANNING for GIT Malignancies A clinician s perspective CT PET SCANNING for GIT Malignancies A clinician s perspective Damon Bizos Head, Surgical Gastroenterology Charlotte Maxeke Johannesburg Academic Hospital Case presentation 54 year old with recent onset

More information

PET/CT F-18 FDG. Objectives. Basics of PET/CT Imaging. Objectives. Basic PET imaging

PET/CT F-18 FDG. Objectives. Basics of PET/CT Imaging. Objectives. Basic PET imaging Basics of PET/CT Imaging Kevin Robinson, DO Department of Radiology Michigan State University Objectives Basic PET imaging Evaluating the therapeutic response Evaluating the big 5 Lymphoma Breast Lung

More information

DETERMINATION OF A LYMPHOID PROCESS

DETERMINATION OF A LYMPHOID PROCESS Chapter 2 Applications of Touch Preparation Cytology to Intraoperative Consultations: Lymph Nodes and Extranodal Tissues for Evaluation of Hematolymphoid Disorders INTRODUCTION As discussed in Chap. 1,

More information

PET-CT in Peripheral T-cell Lymphoma: To Be or Not To Be

PET-CT in Peripheral T-cell Lymphoma: To Be or Not To Be PET-CT in Peripheral T-cell Lymphoma: To Be or Not To Be Bruce D. Cheson, M.D. Georgetown University Hospital Lombardi Comprehensive Cancer Center Washington, DC, USA So What is the Question(s)? What is

More information

The diagnostic value of determination of serum GOLPH3 associated with CA125, CA19.9 in patients with ovarian cancer

The diagnostic value of determination of serum GOLPH3 associated with CA125, CA19.9 in patients with ovarian cancer European Review for Medical and Pharmacological Sciences 2017; 21: 4039-4044 The diagnostic value of determination of serum GOLPH3 associated with CA125, CA19.9 in patients with ovarian cancer H.-Y. FAN

More information

Effective Health Care Program

Effective Health Care Program Comparative Effectiveness Review Number 143 Effective Health Care Program Techniques for the Diagnosis and Staging of Hepatocellular Carcinoma Executive Background and Objectives Hepatocellular carcinoma

More information

Peking University People's Hospital, Peking University Institute of Hematology

Peking University People's Hospital, Peking University Institute of Hematology Qian Jiang, M.D. Peking University People's Hospital, Peking University Institute of Hematology No. 11 Xizhimen South Street, Beijing, 100044, China. Phone number: 86-10-66583802 Mobile: 86-13611115100

More information

Breast Cancer Imaging

Breast Cancer Imaging Breast Cancer Imaging I. Policy University Health Alliance (UHA) will cover breast imaging when such services meet the medical criteria guidelines (subject to limitations and exclusions) indicated below.

More information

PET imaging of cancer metabolism is commonly performed with F18

PET imaging of cancer metabolism is commonly performed with F18 PCRI Insights, August 2012, Vol. 15: No. 3 Carbon-11-Acetate PET/CT Imaging in Prostate Cancer Fabio Almeida, M.D. Medical Director, Arizona Molecular Imaging Center - Phoenix PET imaging of cancer metabolism

More information

FDG PET for therapy response assessment in lymphoma: Beyond Lugano Classification

FDG PET for therapy response assessment in lymphoma: Beyond Lugano Classification FDG PET for therapy response assessment in lymphoma: Beyond Lugano Classification Yan Xuexian, MD, DABNM Department of Nuclear Medicine and PET, SGH National Cancer Center Singapore Duke-NUS Medical School

More information

to lymph nodes of the neck

to lymph nodes of the neck [Chinese Journal of Cancer 28:3, 263-267; March 2009]; 2009 Landes Bioscience Clinical Research Paper 18 F-FDG PET/CT for the detection of primary tumors metastasizing to lymph nodes of the neck Ying-Ying

More information

PET Imaging in Langerhans Cell Histiocytosis

PET Imaging in Langerhans Cell Histiocytosis PET Imaging in Langerhans Cell Histiocytosis Christiane Franzius Bremen, Germany Histiocytosis Histiocytosis Idiopathic proliferation of histiocytes Two types of histiocytes macrophages: antigen processing

More information

F NaF PET/CT in the Evaluation of Skeletal Malignancy

F NaF PET/CT in the Evaluation of Skeletal Malignancy F NaF PET/CT in the Evaluation of Skeletal Malignancy Andrei Iagaru, MD September 26, 2013 School of of Medicine Ø Introduction Ø F NaF PET/CT in Primary Bone Cancers Ø F NaF PET/CT in Bone Metastases

More information

Positron Emission Tomography in the Evaluation of Lymphoma

Positron Emission Tomography in the Evaluation of Lymphoma Positron Emission Tomography in the Evaluation of Lymphoma Ora Israel, Zohar Keidar, and Rachel Bar-Shalom Positron emission tomography (PET) using 18 F-fluorodeoxyglucose (FDG) has emerged in recent years

More information

PET/CT in Evaluation Bone Marrow Infiltration in Malignant Lymphoma

PET/CT in Evaluation Bone Marrow Infiltration in Malignant Lymphoma Review Article PET/CT in Evaluation Bone Marrow Infiltration in Malignant Lymphoma Badr, S 1. Abdelwahab, M.A 1 and Moustafa, H 2. 1 NCI and 2 NEMROCK Centre, Cairo University, Egypt. The bone marrow is

More information

Management of Neck Metastasis from Unknown Primary

Management of Neck Metastasis from Unknown Primary Management of Neck Metastasis from Unknown Primary.. Definition Histologic evidence of malignancy in the cervical lymph node (s) with no apparent primary site of original tumour Diagnosis after a thorough

More information

Whole body F-18 sodium fluoride PET/CT in the detection of bone metastases in patients with known malignancies: A pictorial review

Whole body F-18 sodium fluoride PET/CT in the detection of bone metastases in patients with known malignancies: A pictorial review Whole body F-18 sodium fluoride PET/CT in the detection of bone metastases in patients with known malignancies: A pictorial review Poster No.: C-1196 Congress: ECR 2014 Type: Educational Exhibit Authors:

More information

Ga-67 scintigraphy in lymphoma patients undergoing bone marrow transplantation

Ga-67 scintigraphy in lymphoma patients undergoing bone marrow transplantation 54 Turkish Journal of Cancer Volume 37, No. 2, 27 Ga-67 scintigraphy in lymphoma patients undergoing bone marrow transplantation PINR ÖZGEN KIRTLI 1, ELKIS ERŞ 1, EVREN ÖZDEMİR 2, YENER KOÇ 3 Hacettepe

More information

Utilizing and Interpreting FDG-PET/CT Images in Patients Referred for Assessment of

Utilizing and Interpreting FDG-PET/CT Images in Patients Referred for Assessment of Journal of Nuclear Medicine, published on June 29, 2017 as doi:10.2967/jnumed.117.197004 Utilizing and Interpreting FDG-PET/CT Images in Patients Referred for Assessment of Cardiac Sarcoidosis: The Devil

More information

Principles of nuclear metabolic imaging. Prof. Dr. Alex Maes AZ Groeninge Kortrijk and KULeuven Belgium

Principles of nuclear metabolic imaging. Prof. Dr. Alex Maes AZ Groeninge Kortrijk and KULeuven Belgium Principles of nuclear metabolic imaging Prof. Dr. Alex Maes AZ Groeninge Kortrijk and KULeuven Belgium I. Molecular imaging probes A. Introduction - Chemical disturbances will precede anatomical abnormalities

More information

PSMA PET SCANNING AND THERANOSTICS IN PROSTATE CANCER KEVIN TRACEY, MD, FRCPC PRECISION DIAGNSOTIC IMAGING REGIONAL PET/CT CENTRE

PSMA PET SCANNING AND THERANOSTICS IN PROSTATE CANCER KEVIN TRACEY, MD, FRCPC PRECISION DIAGNSOTIC IMAGING REGIONAL PET/CT CENTRE PSMA PET SCANNING AND THERANOSTICS IN PROSTATE CANCER KEVIN TRACEY, MD, FRCPC PRECISION DIAGNSOTIC IMAGING REGIONAL PET/CT CENTRE DISCLOSURES/CONFLICTS NONE OBJECTIVES Understand current diagnostic role

More information

PET/CT Frequently Asked Questions

PET/CT Frequently Asked Questions PET/CT Frequently Asked Questions General Q: Is FDG PET specific for cancer? A: No, it is a marker of metabolism. In general, any disease that causes increased metabolism can result in increased FDG uptake

More information

Staging recurrent ovarian cancer with 18 FDG PET/CT

Staging recurrent ovarian cancer with 18 FDG PET/CT ONCOLOGY LETTERS 5: 593-597, 2013 Staging recurrent ovarian cancer with FDG PET/CT SANJA DRAGOSAVAC 1, SOPHIE DERCHAIN 2, NELSON M.G. CASERTA 3 and GUSTAVO DE SOUZA 2 1 DIMEN Medicina Nuclear and PET/CT

More information

High incidence of false-positive PET scans in patients with aggressive non-hodgkin s lymphoma treated with rituximab-containing regimens

High incidence of false-positive PET scans in patients with aggressive non-hodgkin s lymphoma treated with rituximab-containing regimens original article 20: 309 318, 2009 doi:10.1093/annonc/mdn629 Published online 7 October 2008 High incidence of false-positive PET scans in patients with aggressive non-hodgkin s lymphoma treated with rituximab-containing

More information

Lymphoma/CLL 101: Know your Subtype. Dr. David Macdonald Hematologist, The Ottawa Hospital

Lymphoma/CLL 101: Know your Subtype. Dr. David Macdonald Hematologist, The Ottawa Hospital Lymphoma/CLL 101: Know your Subtype Dr. David Macdonald Hematologist, The Ottawa Hospital Function of the Lymph System Lymph Node Lymphocytes B-cells develop in the bone marrow and influence the immune

More information

Research Article The Advantage of PET and CT Integration in Examination of Lung Tumors

Research Article The Advantage of PET and CT Integration in Examination of Lung Tumors Hindawi Publishing Corporation International Journal of Biomedical Imaging Volume 2007, Article ID 17131, 5 pages doi:10.1155/2007/17131 Research Article The Advantage of PET and CT Integration in Examination

More information

Cancer incidence and patient survival rates among the residents in the Pudong New Area of Shanghai between 2002 and 2006

Cancer incidence and patient survival rates among the residents in the Pudong New Area of Shanghai between 2002 and 2006 Chinese Journal of Cancer Original Article Cancer incidence and patient survival rates among the residents in the Pudong New Area of Shanghai between 2002 and 2006 Xiao-Pan Li 1, Guang-Wen Cao 2, Qiao

More information