Supplemental Data. Cellular and Network Mechanisms. of Operant Learning-Induced. Compulsive Behavior in Aplysia

Size: px
Start display at page:

Download "Supplemental Data. Cellular and Network Mechanisms. of Operant Learning-Induced. Compulsive Behavior in Aplysia"

Transcription

1 Current Biology, Volume 19 Supplemental Data Cellular and Network Mechanisms of Operant Learning-Induced Compulsive Behavior in Aplysia Romuald Nargeot, Morgane Le Bon-Jego, and John Simmers Supplemental Experimental Procedures Experimental Animals Adult A. fasciata, which are found locally from August to November in the Bassin d'arcachon (France), were supplied by the Lycée de la Mer (Gujan Mestras) and the Laboratoire de Biologie Marine (Arcachon). A. californica were purchased from the University of Miami (Fl, USA) and were used in the seasonal period when local A. fasciata are unavailable. Animals were maintained at 15 C in filtered artificial sea water (ASW) until used, and were fed daily with fresh seaweed (Ulva lactuca) obtained from the Lycée de la Mer and the Station de Biologie Marine at Roscoff (France). The animals remained unfed for 2 days before experiments to stimulate food-seeking during food-reward training. Behavioral Training Animals were first randomly assigned to a control (untrained) and two experimental groups to be given contingent or non-contingent food reward training, then placed individually in a small (8 dm 3 ) transparent aquarium placed over a mirror and filled with 5 L of fresh, aerated ASW. After an initial test period to verify that the different groups of animals expressed similar levels of spontaneous radula activity, training lasted 40 min and differed according to the particular group protocol. Throughout the behavioral status test and training periods, animals in all three groups were subjected to a continuous application of a food stimulus (1.5 cm 2 piece of seaweed) to the lips, without this inciting stimulus being bitten. The additional stimulus used for foodreward training consisted of an intra-buccal injection of 20 µl of a seaweed juice obtained from the maceration of 0.4 g of dried Ulva lactuca in 10 ml of ASW. Juice delivery was timed either to occurrences of radula bite cycles (in the contingent-reward training procedure) or at fixed intervals and independently of the timing of spontaneous bites (for non-contingent training). Since the neuronal correlates of these training protocols are reliably expressed for ~4 h by buccal feeding circuitry [S1], post-training effects were assessed by recording fictive radula biting in isolated B.g. preparations without intervening behavioral testing. All in vitro preparations were tested with identical experimental procedures and without knowledge of the behavioral history of animals. Only individual preparations that were subsequently found to match the statistically predominant phenotype of fictive biting expected from their respective training protocols (i.e. stereotyped rhythmic fictive biting in contingent preparations, slower non-rhythmic biting in control and non-contingent preparations; see Figure S1) were used for further detailed analysis.

2 In Vitro Electrophysiology Animals were anesthetized by the injection of ml of MgCl 2 into their hemolymph. After isolation, the bilaterally-paired buccal ganglia (B.g.) were pinned out in a Sylgard-lined Petri dish containing ASW (mm): NaCl, 450; KCl, 10; MgCl 2 (6H 2 O), 30; MgSO 4, 20; CaCl 2 (2H 2 O), 10; Hepes, 10 (ph adjusted to 7.4 with HCl). The preparations were maintained at 15 o C by means of a Peltier cooling device and were not superfused during the actual experiment. Extracellular recordings and stimulations were made using wire electrodes placed against selected peripheral nerves (see Figure 1A). Monopolar (recording) and bipolar (stimulation) electrodes were insulated from the bath with Vaseline petroleum jelly. Radula motor patterns, each consisting of motor nerve bursts that would normally drive protraction, retraction and closure phases of a radula bite cycle, were elicited by monotonic stimulation (8.5 V, 0.3 ms at 2 Hz) of the two bilateral 2,3 nerves (n.2,3; [S2]) generated by a single Grass S88 stimulator and delivered through a photo-isolation unit. Intracellular recordings and stimulations were made from de-sheathed ganglia with glass microelectrodes (tip resistance ~10-20 MΩ) filled with 2 M KCH 3 CO 2. All recorded signals were amplified by Axoclamp-2B electrometers (Molecular Devices, Palo Alto, CA), visualized on a Tektronix 5113 oscilloscope, digitized by an analog to digital converter (CED 1401, Cambridge Electronic Design, UK) and analyzed with Spike2 software (Cambridge Electronic Design, UK). Intrasomatically-recorded B30, B63 and B65 neurons were identified electrophysiologically according to the following criteria: Firstly, they produce spontaneous bursting activity that occurs during the protraction phase of each radula motor pattern [S3-S5]. Second, they have no axonal projections in peripheral buccal nerves, and third, they all produce mixed chemical excitatory and electrotonic synaptic potentials in the contralateral B31/32 motoneurons. Moreover, B30 has no axonal projection in the cerebro-buccal connectives (CBC), it produces IPSPs and a long-lasting activation of the bilateral B8 motoneurons and it does not make conventional synaptic connections with the B61/62 motoneurons [S5]. B63 was identified on the basis of its axonal projection in the contralateral CBC, a unique excitatory synapse with the contralateral B61/62 motoneurons and its lack of a conventional synapse with B8. B65 was identified by its absence of axonal projections in the CBCs and its production of facilitating EPSPs in the bilateral B61/62 motoneurons [S4,S6]. The input resistance (R i ) of neurons was measured by two-electrode current clamp whereby a recorded cell s membrane potential was held at -70 mv by continuous current injection through one electrode that also served to inject additional constant 2 s current pulses of -5 to -15 na in 5 na steps. The second electrode was then used to record the resultant voltage change and membrane input resistance was calculated as the ratio of the maximum voltage deflection over current pulse amplitudes of -10 na. The strength of electrical coupling between selected pairs of neurons was calculated as the ratio of the maximum postsynaptic voltage response to the corresponding maximum presynaptic voltage deflection elicited by a 2 s negative current pulse. In these experiments, two presynaptic electrodes were again used, one to maintain the cell s resting membrane potential at - 70 mv and for additional negative current pulse injection, while the other electrode was used for voltage recording. The resting membrane potential of the postsynaptic neuron, which was simultaneously impaled with a third electrode, was not altered experimentally during the recording of the electrical synaptic potential. No significant differences were found in the initial resting membrane potentials of recorded postsynaptic neurons in the different experimental groups of preparations (see Figure S2A), indicating that changes in the coupling coefficient

3 between cell pairs in the different experimental groups were not due to initial differences in postsynaptic membrane potential. The bi-directionality of coupling between cells was also verified qualitatively by injecting current via the single post-junctional recording electrode and recording the voltage response in the previously pre-junctional neuron. Data Analysis To assess the temporal organization of fictive radula bite cycles or of spike bursts in individual neurons, autocorrelations were computed by Spike2 software over a fixed number of successive events: either 100 radula motor patterns recorded extracellularly from motor nerves, 800 action potentials in intracellular recordings of B30 and B65 neurons, or 2000 action potentials in intracellular recordings from B63 neurons. The differences in numbers of analyzed events in the different cell types reflected their typical spontaneous firing frequencies. Autocorrelations were then expressed as histograms of 2.5 s bin widths over ranges of 150 s or 300 s for the analysis of extracellularly-recorded motor patterns and intracellularly-recorded action potentials, respectively. The choice of these time scales reflected the slower burst frequencies of individual neurons in response to depolarizing current injection as compared to the shorter cycle periods of motor patterns generated by the buccal network under tonic stimulation of the peripheral 2,3 nerve. The expression of radula motor patterns or impulse bursts in individual neurons was considered to be rhythmically recurring (i.e. with regular inter-pattern intervals) when the corresponding autocorrelation histograms could be fitted (with a correlation coefficient r 0 at a significant level of p < 0.05) by a damped sinusoidal Gabor function with a minimum of three peaks, an amplitude of at least 10% above offset, and a period, phase lag, time constant 0 at a significant level of p < 0.05 ([S1,S7,S8]; Figure S1A). The cycle-by-cycle variability (or dispersion) of burst onsets in B30 or B65 neurons relative to the onset of B63 bursts was determined by angular analysis [S9]. For this, periods between repetitive B63 impulse bursts were considered as successive cycles of 360 degrees. Burst onsets were detected by spike2 software in which a burst of action potentials was defined as impulse discharge at a frequency >2 Hz for at least 1 s when this activity was elicited by buccal network activation in response to nerve 2,3 stimulation, or by impulses at a frequency >0.5 Hz for at least 4 s when activity was elicited in an individual cell by intracellular current injection. The onset of bursting in a specific neuron relative to B63 (0 ) was computed as an angular fraction of 360 degrees. The dispersion value for a cell's burst onsets in a given preparation was computed as the average distance (in degrees) between each angular fraction and the corresponding mean calculated over successive B63 burst cycles by using Oriana software (Kovach Computing Services, Anglesey, Wales) [S9]. Group comparisons were made using SigmaStat software (Systat, Richmond, CA, USA) with non-parametric statistical tests because of the departure from a normal distribution and/or non-homogeneity of variances within or between groups of data. The Wilcoxon paired-sample test (T) and the Friedman s analysis of variance by ranks (χ 2 ) were used for comparisons of 2 and 3 dependent groups of data, respectively, while the Kruskal-Wallis test (H) was used for comparisons of 3 independent data groups. Post-hoc pairwise multiple comparisons of samples of equal and unequal sizes were made using the Newman-Keuls multiple range test (q) and the Dunn test (Q), respectively. Comparisons of the proportion of in vitro preparations in which neurons expressed rhythmic bursting in unpaired-sample procedures were made using the Fisher exact test (P). All tests were considered significant for a probability level of p 0.05.

4 Supplemental References S1. Nargeot R., Petrissans C., and Simmers J. (2007). Behavioral and in vitro correlates of compulsive-like food-seeking induced by operant conditioning in Aplysia. J. Neurosci. 27, S2. Nargeot R., Baxter D.A., and Byrne J.H. (1997). Contingent-dependent enhancement of rhythmic motor patterns: An in vitro analog of operant conditioning. J. Neurosci. 17, S3. Hurwitz I., Kupfermann I., and Susswein A.J. (1997). Different roles of neurons B63 and B34 that are active during the protraction phase of the buccal motor programs in Aplysia californica. J. Neurophysiol. 78, S4. Kabotyanski E.A., Baxter D.A., and Byrne J.H. (1998). Identification and characterization of catecholaminergic neuron B65, which initiates and modifies patterned activity in the buccal ganglia of Aplysia. J. Neurophysiol. 79, S5. Jing J., Cropper E.C., Hurwitz I., and Weiss K.R. (2004). The construction of movement with behavior-specific and behavior-independent modules. J. Neurosci. 24, S6. Due M.R., Jing J., and Weiss K.R. (2004). Dopaminergic contributions to modulatory functions of a dual-transmitter interneuron in Aplysia. Neurosci. Lett. 358, S7. Engel A.K., König P., Gray C.H., and Singer W. (1990). Stimulus-dependent neuronal oscillations in cat visual cortex: Intercolumnar interaction as determined by cross-correlation analysis. Eur. J. Neurosci. 2, S8. Young M.P., Tanaka K., and Yamane S. (1992). On oscillating neuronal responses in the visual cortex of the monkey. J. Neurophysiol. 67, S9. Zar J.H. (1984). Biostatistical Analysis. Englewood Cliffs NJ: Prentice-Hall.

5 Figure S1. Contingent-Induced Regularization and Increase in Rate of Fictive Biting (A) Analysis of the temporal organization of successive radula motor patterns recorded during in vitro testing in control (A1), contingent (A2) and non-contingent preparations (A3). Fictive bite cycles (each defined by the start of protractor motoneuron activity) in control and non-contingent preparations were randomly distributed in time as indicated by their flat autocorrelation histograms that were not fitted significantly (n.s.) by a Gabor function. In contrast, radula motor patterns in the contingent preparations were rhythmically recurring (i.e. with regular cycle periods ~25 s) as indicated by the significant fit of the histograms by a sinusoidal Gabor function (bold line). Similar autocorrelation procedures were used to analyze the regularity of patterninitiating cell bursting as shown in the recordings of Figure S3. (B) Group comparisons. The proportions of in vitro preparations expressing rhythmic fictive biting (defined by autocorrelation analysis as seen in A) in control (Ctrl), contingent (Cont.) and non-contingent (Non-cont.) preparations were significantly different: Fisher exact unpaired comparisons indicated a significantly higher proportion of rhythmic preparations in the contingent group as compared to either the control (P = 0.021) or non-contingent groups (P = 0.021). The latter two groups were not significantly different (n.s.; P = 1). * p (C) The cycle frequency of radula motor patterns in the contingent group was significantly higher than in the control and non-contingent groups. The control and non-contingent groups were not significantly different. Kruskal-Wallis test: H 2 = Post-hoc Dunn pair-wise multiple comparisons for samples of unequal sizes: contingent versus control, Q = 2.61; contingent vs non-contingent, Q = 2.54; control vs non-contingent, Q = * p Error bars represent ± SEM.

6 Figure S2. Operant Conditioning Does Not Alter the Resting Membrane Potential of Pattern-Initiating Neurons but Leads to an Increase in Their Input Resistance (A) Mean resting potentials of B63, B30 and B65 neurons in control (unfilled bars), contingent (filled bars) and non-contingent preparations (shaded bars). For each cell type, no significant differences (n.s.) were observed between the three experimental groups. K-W test: B63, H 2 = 0.15; B30, H 2 = 0.75; B65, H 2 = (B) Input resistances (R i ) of neurons in the same experimental groups measured with two electrodes and calculated from the maximal membrane voltage deflection evoked by -10 na injected current from -70 mv resting potential. R i was significantly higher in contingent preparations than in control or non-contingent preparations. R i of neurons in control and noncontingent groups were not significantly different (n.s.). K-W test: B63, H 2 = 7.30; B30, H 2 = 7.03; B65, H 2 = Post-hoc N-K tests for B63 as representative of the three cell types: contingent vs control, q = 4.75; contingent vs non-contingent, q = 3.40; control vs noncontingent, q = * p 0.05 ; ** p 0.025; *** p

7 Figure S3. Contingent-Dependent Plasticity of Bursting in Functionally Isolated B30 and B65 Neurons Under similar experimental conditions as described in Figure 4, individually-activated B30 (A) and B65 cells (B) generated irregular spike bursts when continuously depolarized (with +2 na) in control (A1, B1) and non-contingent preparations (A3, B3). However, in contingent preparations (A2, B2), depolarization-induced bursting occurred at a higher rate and with stereotyped burst durations and inter-burst intervals. Vertical scales: 30 mv.

8 Figure S4. Voltage Dependence of Burst Frequency in Individual B30 and B65 Neurons Under single-cell activation as described in Figure 4, B30 (A) and B65 (B) neurons were continuously depolarized with two different current magnitudes (indicated below traces). The increase in burst frequency with membrane depolarization indicated that burst-generation was intrinsic to the neurons. In B30 and B65 of control (A1, B1) and non-contingent preparations (A3, B3), current-evoked matching of burst frequencies to those expressed by the same cell type in contingent preparations (A2, B2) did not produce regularized bursting. Moreover, currentinduced changes in the burst frequencies of cells in contingent preparations did not lead to irregular bursting.

9 Figure S5. Learning-Induced Increase in Electrical Coupling between Contralateral Pattern-Initiating Neurons Group comparisons showing contingent-induced increases in electrical coupling strength between the bilateral B63 (A), bilateral B65 (B), B63 and contralateral B30 (C), and between B63 and contralateral B65 (D) neurons. * p 0.05 ; ** p 0.025; *** p (N-K posttests). n.s. not significant.

In Vitro Analog of Operant Conditioning in Aplysia

In Vitro Analog of Operant Conditioning in Aplysia The Journal of Neuroscience, March 15, 1999, 19(6):2261 2272 In Vitro Analog of Operant Conditioning in Aplysia. II. Modifications of the Functional Dynamics of an Identified Neuron Contribute to Motor

More information

Interneuronal Basis of the Generation of Related but Distinct Motor Programs in Aplysia

Interneuronal Basis of the Generation of Related but Distinct Motor Programs in Aplysia The Journal of Neuroscience, July 15, 2002, 22(14):6228 6238 Interneuronal Basis of the Generation of Related but Distinct Motor Programs in Aplysia: Implications for Current Neuronal Models of Vertebrate

More information

Article. Differential Roles of Nonsynaptic and Synaptic Plasticity in Operant Reward Learning-Induced Compulsive Behavior

Article. Differential Roles of Nonsynaptic and Synaptic Plasticity in Operant Reward Learning-Induced Compulsive Behavior Current Biology 24, 94 95, May 5, 24 ª24 Elsevier Ltd All rights reserved http://dx.doi.org/.6/j.cub.24.3.4 Differential Roles of Nonsynaptic and Synaptic Plasticity in Operant Reward Learning-Induced

More information

In Vitro Analog of Operant Conditioning in Aplysia. I. Contingent Reinforcement Modifies the Functional Dynamics of an Identified Neuron

In Vitro Analog of Operant Conditioning in Aplysia. I. Contingent Reinforcement Modifies the Functional Dynamics of an Identified Neuron The Journal of Neuroscience, March 15, 1999, 19(6):2247 2260 In Vitro Analog of Operant Conditioning in Aplysia. I. Contingent Reinforcement Modifies the Functional Dynamics of an Identified Neuron Romuald

More information

Classical Conditioning of Feeding in Aplysia: II. Neurophysiological Correlates

Classical Conditioning of Feeding in Aplysia: II. Neurophysiological Correlates The Journal of Neuroscience, May 1, 2000, 20(9):3377 3386 Classical Conditioning of Feeding in Aplysia: II. Neurophysiological Correlates Hilde A. Lechner, Douglas A. Baxter, and John H. Byrne W. M. Keck

More information

In Vitro Analog of Classical Conditioning of Feeding Behavior in Aplysia

In Vitro Analog of Classical Conditioning of Feeding Behavior in Aplysia Research In Vitro Analog of Classical Conditioning of Feeding Behavior in Aplysia Riccardo Mozzachiodi, Hilde A. Lechner, 1 Douglas A. Baxter, and John H. Byrne 2 W.M. Keck Center for Neurobiology of Learning

More information

Mechanisms Underlying Fictive Feeding in Aplysia: Coupling Between a Large Neuron With Plateau Potentials Activity and a Spiking Neuron

Mechanisms Underlying Fictive Feeding in Aplysia: Coupling Between a Large Neuron With Plateau Potentials Activity and a Spiking Neuron J Neurophysiol 87: 2307 2323, 2002; 10.1152/jn.00662.2001. Mechanisms Underlying Fictive Feeding in Aplysia: Coupling Between a Large Neuron With Plateau Potentials Activity and a Spiking Neuron ABRAHAM

More information

File name: Supplementary Information Description: Supplementary Figures, Supplementary Table and Supplementary References

File name: Supplementary Information Description: Supplementary Figures, Supplementary Table and Supplementary References File name: Supplementary Information Description: Supplementary Figures, Supplementary Table and Supplementary References File name: Supplementary Data 1 Description: Summary datasheets showing the spatial

More information

A Newly Identified Buccal Interneuron Initiates and Modulates Feeding Motor Programs in Aplysia

A Newly Identified Buccal Interneuron Initiates and Modulates Feeding Motor Programs in Aplysia J Neurophysiol 90: 2190 2204, 2003. First published June 11, 2003; 10.1152/jn.00173.2003. A Newly Identified Buccal Interneuron Initiates and Modulates Feeding Motor Programs in Aplysia N. C. Dembrow,

More information

Extrinsic Modulation and Motor Pattern Generation in a Feeding Network: a Cellular Study

Extrinsic Modulation and Motor Pattern Generation in a Feeding Network: a Cellular Study The Journal of Neuroscience, March 1, 2001, 21(5):1767 1778 Extrinsic Modulation and Motor Pattern Generation in a Feeding Network: a Cellular Study Volko A. Straub and Paul R. Benjamin Sussex Centre for

More information

Feeding Neural Networks in the Mollusc Aplysia

Feeding Neural Networks in the Mollusc Aplysia Review Neurosignals 2004;13:70 86 DOI: 10.1159/000076159 Received: May 5, 2003 Accepted after revision: August 15, 2003 Feeding Neural Networks in the Mollusc Aplysia Elizabeth C. Cropper Colin G. Evans

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10776 Supplementary Information 1: Influence of inhibition among blns on STDP of KC-bLN synapses (simulations and schematics). Unconstrained STDP drives network activity to saturation

More information

Neuroscience 201A (2016) - Problems in Synaptic Physiology

Neuroscience 201A (2016) - Problems in Synaptic Physiology Question 1: The record below in A shows an EPSC recorded from a cerebellar granule cell following stimulation (at the gap in the record) of a mossy fiber input. These responses are, then, evoked by stimulation.

More information

POSTSYNAPTIC INHIBITION OF CRAYFISH TONIC FLEXOR MOTOR NEURONES BY ESCAPE COMMANDS

POSTSYNAPTIC INHIBITION OF CRAYFISH TONIC FLEXOR MOTOR NEURONES BY ESCAPE COMMANDS J. exp. Biol. (1980), 85, 343-347 343 With a figures Printed in Great Britain POSTSYNAPTIC INHIBITION OF CRAYFISH TONIC FLEXOR MOTOR NEURONES BY ESCAPE COMMANDS BY J. Y. KUWADA, G. HAGIWARA AND J. J. WINE

More information

Bursting dynamics in the brain. Jaeseung Jeong, Department of Biosystems, KAIST

Bursting dynamics in the brain. Jaeseung Jeong, Department of Biosystems, KAIST Bursting dynamics in the brain Jaeseung Jeong, Department of Biosystems, KAIST Tonic and phasic activity A neuron is said to exhibit a tonic activity when it fires a series of single action potentials

More information

Astrocyte signaling controls spike timing-dependent depression at neocortical synapses

Astrocyte signaling controls spike timing-dependent depression at neocortical synapses Supplementary Information Astrocyte signaling controls spike timing-dependent depression at neocortical synapses Rogier Min and Thomas Nevian Department of Physiology, University of Berne, Bern, Switzerland

More information

Serotonin Enhances the Resistance Reflex of the Locomotor Network of the Crayfish through Multiple Modulatory Effects that Act Cooperatively

Serotonin Enhances the Resistance Reflex of the Locomotor Network of the Crayfish through Multiple Modulatory Effects that Act Cooperatively 398 The Journal of Neuroscience, January 14, 2004 24(2):398 411 Behavioral/Systems/Cognitive Serotonin Enhances the Resistance Reflex of the Locomotor Network of the Crayfish through Multiple Modulatory

More information

Supplementary Information

Supplementary Information Hyperpolarization-activated cation channels inhibit EPSPs by interactions with M-type K + channels Meena S. George, L.F. Abbott, Steven A. Siegelbaum Supplementary Information Part 1: Supplementary Figures

More information

Ube3a is required for experience-dependent maturation of the neocortex

Ube3a is required for experience-dependent maturation of the neocortex Ube3a is required for experience-dependent maturation of the neocortex Koji Yashiro, Thorfinn T. Riday, Kathryn H. Condon, Adam C. Roberts, Danilo R. Bernardo, Rohit Prakash, Richard J. Weinberg, Michael

More information

Interneuronal and Peptidergic Control of Motor Pattern Switching in Aplysia

Interneuronal and Peptidergic Control of Motor Pattern Switching in Aplysia J Neurophysiol 87: 49 61, 2002; 10.1152/jn.00438.2001. Interneuronal and Peptidergic Control of Motor Pattern Switching in Aplysia PETER T. MORGAN, JIAN JING, FERDINAND S. VILIM, AND KLAUDIUSZ R. WEISS

More information

The Journal sf Neuroscience. kbruary $2):

The Journal sf Neuroscience. kbruary $2): The Journal sf Neuroscience. kbruary 1989. $2): 398402 Selective Msdulation of Spike Duration by Serotonin and the Neuropeptides, FMRFamide, SCP,, Buccalin and Myomoduiin in Different Classes of Mechansafferent

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/317/5841/183/dc1 Supporting Online Material for Astrocytes Potentiate Transmitter Release at Single Hippocampal Synapses Gertrudis Perea and Alfonso Araque* *To whom

More information

CONTROL OF A CENTRAL PATTERN GENERATOR BY AN IDENTIFIED MODULATORY INTERNEURONE IN CRUSTACEA

CONTROL OF A CENTRAL PATTERN GENERATOR BY AN IDENTIFIED MODULATORY INTERNEURONE IN CRUSTACEA J. exp. Biol. 105, 59-82 (1983) 59 ^ d in Great Britain The Company of Biologists Limited 1983 CONTROL OF A CENTRAL PATTERN GENERATOR BY AN IDENTIFIED MODULATORY INTERNEURONE IN CRUSTACEA II. INDUCTION

More information

SUPPLEMENTARY INFORMATION. Supplementary Figure 1

SUPPLEMENTARY INFORMATION. Supplementary Figure 1 SUPPLEMENTARY INFORMATION Supplementary Figure 1 The supralinear events evoked in CA3 pyramidal cells fulfill the criteria for NMDA spikes, exhibiting a threshold, sensitivity to NMDAR blockade, and all-or-none

More information

Introduction. Behavioral/Systems/Cognitive. Gregg A. Phares, 1 Evangelos G. Antzoulatos, 1 Douglas A. Baxter, 2 and John H.

Introduction. Behavioral/Systems/Cognitive. Gregg A. Phares, 1 Evangelos G. Antzoulatos, 1 Douglas A. Baxter, 2 and John H. 8392 The Journal of Neuroscience, September 10, 2003 23(23):8392 8401 Behavioral/Systems/Cognitive Burst-Induced Synaptic Depression and Its Modulation Contribute to Information Transfer at Aplysia Sensorimotor

More information

Inhibitory Component of the Resistance Reflex in the Locomotor Network of the Crayfish

Inhibitory Component of the Resistance Reflex in the Locomotor Network of the Crayfish J Neurophysiol 88: 2575 2588, 2002; 10.1152/jn.00178.2002. Inhibitory Component of the Resistance Reflex in the Locomotor Network of the Crayfish MORGANE LE BON-JEGO AND DANIEL CATTAERT Laboratoire de

More information

Activity-Dependent Regulation of Potassium Currents in an Identified Neuron of the Stomatogastric Ganglion of the Crab Cancer borealis

Activity-Dependent Regulation of Potassium Currents in an Identified Neuron of the Stomatogastric Ganglion of the Crab Cancer borealis The Journal of Neuroscience, 1999, Vol. 19 RC33 1of5 Activity-Dependent Regulation of Potassium Currents in an Identified Neuron of the Stomatogastric Ganglion of the Crab Cancer borealis Jorge Golowasch,

More information

Modulation of Local Reflexes During Centrally Commanded Movements

Modulation of Local Reflexes During Centrally Commanded Movements Georgia State University ScholarWorks @ Georgia State University Biology Theses Department of Biology Spring 4-26-2013 Modulation of Local Reflexes During Centrally Commanded Movements Uzma H. Tahir Georgia

More information

State-, Timing-, and Pattern-Dependent Neuromodulation of Synaptic Strength by a Serotonergic Interneuron

State-, Timing-, and Pattern-Dependent Neuromodulation of Synaptic Strength by a Serotonergic Interneuron 268 The Journal of Neuroscience, January 7, 2009 29(1):268 279 Behavioral/Systems/Cognitive State-, Timing-, and Pattern-Dependent Neuromodulation of Synaptic Strength by a Serotonergic Interneuron Akira

More information

Thalamo-Cortical Relationships Ultrastructure of Thalamic Synaptic Glomerulus

Thalamo-Cortical Relationships Ultrastructure of Thalamic Synaptic Glomerulus Central Visual Pathways V1/2 NEUR 3001 dvanced Visual Neuroscience The Lateral Geniculate Nucleus () is more than a relay station LP SC Professor Tom Salt UCL Institute of Ophthalmology Retina t.salt@ucl.ac.uk

More information

Introduction to Electrophysiology

Introduction to Electrophysiology Introduction to Electrophysiology Dr. Kwangyeol Baek Martinos Center for Biomedical Imaging Massachusetts General Hospital Harvard Medical School 2018-05-31s Contents Principles in Electrophysiology Techniques

More information

CEREBRAL INTERNEURONES CONTROLLING FEEDING MOTOR OUTPUT IN THE SNAIL LYMNAEA STAGNALIS

CEREBRAL INTERNEURONES CONTROLLING FEEDING MOTOR OUTPUT IN THE SNAIL LYMNAEA STAGNALIS Biol. 147, 361-374 (1989) 361 'inted in Great Britain The Company of Biologists Limited 1989 CEREBRAL INTERNEURONES CONTROLLING FEEDING MOTOR OUTPUT IN THE SNAIL LYMNAEA STAGNALIS BY CATHERINE R. McCROHAN

More information

Nature Methods: doi: /nmeth Supplementary Figure 1. Activity in turtle dorsal cortex is sparse.

Nature Methods: doi: /nmeth Supplementary Figure 1. Activity in turtle dorsal cortex is sparse. Supplementary Figure 1 Activity in turtle dorsal cortex is sparse. a. Probability distribution of firing rates across the population (notice log scale) in our data. The range of firing rates is wide but

More information

Animal-to-animal variability of connection strength in the leech heartbeat central pattern generator

Animal-to-animal variability of connection strength in the leech heartbeat central pattern generator Animal-to-animal variability of connection strength in the leech heartbeat central pattern generator Rebecca C. Roffman, Brian J. Norris and Ronald L. Calabrese J Neurophysiol 107:1681-1693, 2012. First

More information

Repetition priming-induced changes in sensorimotor transmission

Repetition priming-induced changes in sensorimotor transmission J Neurophysiol 115: 1637 1643, 2016. First published January 13, 2016; doi:10.1152/jn.01082.2015. Repetition priming-induced changes in sensorimotor transmission Erik Svensson, Colin G. Evans, and Elizabeth

More information

Resonant synchronization of heterogeneous inhibitory networks

Resonant synchronization of heterogeneous inhibitory networks Cerebellar oscillations: Anesthetized rats Transgenic animals Recurrent model Review of literature: γ Network resonance Life simulations Resonance frequency Conclusion Resonant synchronization of heterogeneous

More information

BY KENJIRO YAMANA AND YOSHIHIRO TOH* Department of Biology, Faculty of Science, Kyushu University, Fukuoka 812, Japan. Accepted 27 May 1987 SUMMARY

BY KENJIRO YAMANA AND YOSHIHIRO TOH* Department of Biology, Faculty of Science, Kyushu University, Fukuoka 812, Japan. Accepted 27 May 1987 SUMMARY J. exp. Biol. 131, 205-213 (1987) 205 Printed in Great Bntain The Company of Biologists Limited 1987 INTRACELLULAR RECORDING FROM RECEPTOR CELLS OF THE TEMPORAL ORGAN OF THE JAPANESE HOUSE CENTIPEDE, THEREUONEMA

More information

What is Anatomy and Physiology?

What is Anatomy and Physiology? Introduction BI 212 BI 213 BI 211 Ecosystems Organs / organ systems Cells Organelles Communities Tissues Molecules Populations Organisms Campbell et al. Figure 1.4 Introduction What is Anatomy and Physiology?

More information

State-changes in the swimmeret system: a neural circuit that drives locomotion

State-changes in the swimmeret system: a neural circuit that drives locomotion 3605 The Journal of Experimental Biology 212, 3605-3611 Published by The Company of Biologists 2009 doi:10.1242/jeb.033621 State-changes in the swimmeret system: a neural circuit that drives locomotion

More information

Copyright Dr. Franklin B. Krasne, Swimmy

Copyright Dr. Franklin B. Krasne, Swimmy Copyright Dr. Franklin B. Krasne, 2008 Swimmy Advantages of Swimmy 1) Very faithful simulation of neural activity 2) Flawless electrode placement. 3) No extraneous noise issues--including extraneous biological

More information

Central pattern generator for swimming in Melibe

Central pattern generator for swimming in Melibe The Journal of Experimental iology 208, 1347-1361 Published by The ompany of iologists 2005 doi:10.1242/jeb.01500 1347 entral pattern generator for swimming in Melibe Stuart Thompson 1, * and Winsor H.

More information

Is action potential threshold lowest in the axon?

Is action potential threshold lowest in the axon? Supplementary information to: Is action potential threshold lowest in the axon? Maarten H. P. Kole & Greg J. Stuart Supplementary Fig. 1 Analysis of action potential (AP) threshold criteria. (a) Example

More information

Nitric oxide and histamine signal attempts to swallow: A component of learning that food is inedible in Aplysia

Nitric oxide and histamine signal attempts to swallow: A component of learning that food is inedible in Aplysia Research Nitric oxide and histamine signal attempts to swallow: A component of learning that food is inedible in Aplysia Ayelet Katzoff, Nimrod Miller, and Abraham J. Susswein 1 The Leslie and Susan Gonda

More information

Pattern generating role for motoneurons in a rythmically active neuronal network

Pattern generating role for motoneurons in a rythmically active neuronal network Pattern generating role for motoneurons in a rythmically active neuronal network Article (Published Version) Staras, Kevin, Kemenes, György and Benjamin, Paul R (1998) Pattern generating role for motoneurons

More information

CONTROL OF A CENTRAL PATTERN GENERATOR BY AN IDENTIFIED MODULATORY INTERNEURONE IN CRUSTACEA

CONTROL OF A CENTRAL PATTERN GENERATOR BY AN IDENTIFIED MODULATORY INTERNEURONE IN CRUSTACEA 7. exp. Biol. 105, 33-58 (1983) 3 3 ^n'nte^ m Great Britain The Company of Biologists Limited 1983 CONTROL OF A CENTRAL PATTERN GENERATOR BY AN IDENTIFIED MODULATORY INTERNEURONE IN CRUSTACEA I. MODULATION

More information

Computational cognitive neuroscience: 2. Neuron. Lubica Beňušková Centre for Cognitive Science, FMFI Comenius University in Bratislava

Computational cognitive neuroscience: 2. Neuron. Lubica Beňušková Centre for Cognitive Science, FMFI Comenius University in Bratislava 1 Computational cognitive neuroscience: 2. Neuron Lubica Beňušková Centre for Cognitive Science, FMFI Comenius University in Bratislava 2 Neurons communicate via electric signals In neurons it is important

More information

REPORT DOCUMENTATION PAGE OMB No

REPORT DOCUMENTATION PAGE OMB No Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 u, thc renortc bsurden 4,r this collection of Information s estimated to averav i -our per reso,,rse, includinc the time for reviewic instructions,

More information

THE INTEGRATION OF THE PATTERNED OUTPUT OF BUCCAL MOTONEURONES DURING FEEDING IN TRITONIA HOMBERGI

THE INTEGRATION OF THE PATTERNED OUTPUT OF BUCCAL MOTONEURONES DURING FEEDING IN TRITONIA HOMBERGI J. exp. Biol. (1979), 79, S3-4O With 1 a figures Printed in Great Britain 2 3 THE INTEGRATION OF THE PATTERNED OUTPUT OF BUCCAL MOTONEURONES DURING FEEDING IN TRITONIA HOMBERGI BY A. G. M. BULLOCH* AND

More information

Report. Autaptic Excitation Elicits Persistent Activity and a Plateau Potential in a Neuron of Known Behavioral Function

Report. Autaptic Excitation Elicits Persistent Activity and a Plateau Potential in a Neuron of Known Behavioral Function Current Biology 19, 479 484, March 24, 2009 ª2009 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2009.01.060 Autaptic Excitation Elicits Persistent Activity and a Plateau Potential in a Neuron of Known

More information

Correlation between Membrane Potential Responses and Tentacle Movement in the Dinoflagellate Noctiluca miliaris

Correlation between Membrane Potential Responses and Tentacle Movement in the Dinoflagellate Noctiluca miliaris ZOOLOGICAL SCIENCE 21: 131 138 (2004) 2004 Zoological Society of Japan Correlation between Membrane Potential Responses and Tentacle Movement in the Dinoflagellate Noctiluca miliaris Kazunori Oami* Institute

More information

Supplementary Figure 1: Kv7 currents in neonatal CA1 neurons measured with the classic M- current voltage-clamp protocol.

Supplementary Figure 1: Kv7 currents in neonatal CA1 neurons measured with the classic M- current voltage-clamp protocol. Supplementary Figures 1-11 Supplementary Figure 1: Kv7 currents in neonatal CA1 neurons measured with the classic M- current voltage-clamp protocol. (a), Voltage-clamp recordings from CA1 pyramidal neurons

More information

VS : Systemische Physiologie - Animalische Physiologie für Bioinformatiker. Neuronenmodelle III. Modelle synaptischer Kurz- und Langzeitplastizität

VS : Systemische Physiologie - Animalische Physiologie für Bioinformatiker. Neuronenmodelle III. Modelle synaptischer Kurz- und Langzeitplastizität Bachelor Program Bioinformatics, FU Berlin VS : Systemische Physiologie - Animalische Physiologie für Bioinformatiker Synaptische Übertragung Neuronenmodelle III Modelle synaptischer Kurz- und Langzeitplastizität

More information

IDENTIFIED NEURONES INVOLVED IN THE CONTROL OF RHYTHMIC BUCCAL MOTOR ACTIVITY IN THE SNAIL ACHAT1NA FULICA

IDENTIFIED NEURONES INVOLVED IN THE CONTROL OF RHYTHMIC BUCCAL MOTOR ACTIVITY IN THE SNAIL ACHAT1NA FULICA J. exp. Biot. 164, 117-133 (1992) 1X7 Primed in Great Britain The Company of Biologists Limited 1992 IDENTIFIED NEURONES INVOLVED IN THE CONTROL OF RHYTHMIC BUCCAL MOTOR ACTIVITY IN THE SNAIL ACHAT1NA

More information

Multiple Mechanisms for Integrating Proprioceptive Inputs That Converge on the Same Motor Pattern-Generating Network

Multiple Mechanisms for Integrating Proprioceptive Inputs That Converge on the Same Motor Pattern-Generating Network 8810 The Journal of Neuroscience, August 27, 2008 28(35):8810 8820 Behavioral/Systems/Cognitive Multiple Mechanisms for Integrating Proprioceptive Inputs That Converge on the Same Motor Pattern-Generating

More information

Light-evoked hyperpolarization and silencing of neurons by conjugated polymers

Light-evoked hyperpolarization and silencing of neurons by conjugated polymers Light-evoked hyperpolarization and silencing of neurons by conjugated polymers Paul Feyen 1,, Elisabetta Colombo 1,2,, Duco Endeman 1, Mattia Nova 1, Lucia Laudato 2, Nicola Martino 2,3, Maria Rosa Antognazza

More information

GRADED NEUROMUSCULAR TRANSMISSION IN THE HEART OF THE ISOPOD CRUSTACEAN LIGIA EXOTICA

GRADED NEUROMUSCULAR TRANSMISSION IN THE HEART OF THE ISOPOD CRUSTACEAN LIGIA EXOTICA The Journal of Experimental Biology 203, 1447 1457 (2000) Printed in Great Britain The Company of Biologists Limited 2000 JEB2587 1447 GRADED NEUROMUSCULAR TRANSMISSION IN THE HEART OF THE ISOPOD CRUSTACEAN

More information

Supplementary Figure 1 Information on transgenic mouse models and their recording and optogenetic equipment. (a) 108 (b-c) (d) (e) (f) (g)

Supplementary Figure 1 Information on transgenic mouse models and their recording and optogenetic equipment. (a) 108 (b-c) (d) (e) (f) (g) Supplementary Figure 1 Information on transgenic mouse models and their recording and optogenetic equipment. (a) In four mice, cre-dependent expression of the hyperpolarizing opsin Arch in pyramidal cells

More information

The control of spiking by synaptic input in striatal and pallidal neurons

The control of spiking by synaptic input in striatal and pallidal neurons The control of spiking by synaptic input in striatal and pallidal neurons Dieter Jaeger Department of Biology, Emory University, Atlanta, GA 30322 Key words: Abstract: rat, slice, whole cell, dynamic current

More information

Effects of adrenaline on nerve terminals in the superior cervical ganglion of the rabbit

Effects of adrenaline on nerve terminals in the superior cervical ganglion of the rabbit Br. J. Pharmac. (1971), 41, 331-338. Effects of adrenaline on nerve terminals in the superior cervical ganglion of the rabbit D. D. CHRIST AND S. NISHI Neurophysiology Laboratory, Department of Pharmacology,

More information

SWITCHING IN THE ACTIVITY STATE OF AN INTERNEURON THAT CONTROLS COORDINATION OF THE HEARTS IN THE MEDICINAL LEECH (HIRUDO MEDICINALIS)

SWITCHING IN THE ACTIVITY STATE OF AN INTERNEURON THAT CONTROLS COORDINATION OF THE HEARTS IN THE MEDICINAL LEECH (HIRUDO MEDICINALIS) J. exp. Biol. 186, 157 171 (1994) Printed in Great Britain The Company of Biologists Limited 1994 157 SWITCHING IN THE ACTIVITY STATE OF AN INTERNEURON THAT CONTROLS COORDINATION OF THE HEARTS IN THE MEDICINAL

More information

STRUCTURAL ELEMENTS OF THE NERVOUS SYSTEM

STRUCTURAL ELEMENTS OF THE NERVOUS SYSTEM STRUCTURAL ELEMENTS OF THE NERVOUS SYSTEM STRUCTURE AND MAINTENANCE OF NEURONS (a) (b) Dendrites Cell body Initial segment collateral terminals (a) Diagrammatic representation of a neuron. The break in

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Figure 1. Normal AMPAR-mediated fepsp input-output curve in CA3-Psen cdko mice. Input-output curves, which are plotted initial slopes of the evoked fepsp as function of the amplitude of the

More information

Endocrine System Nervous System

Endocrine System Nervous System Cells Endocrine System Nervous System Tissues Controls Organs Nervous System vs Endocrine System Electrical signals (graded potentials and action potentials) and chemical signals (neurotransmitters) Fast

More information

The Contribution of Activity-Dependent Synaptic Plasticity to Classical Conditioning in Aplysia

The Contribution of Activity-Dependent Synaptic Plasticity to Classical Conditioning in Aplysia The Journal of Neuroscience, August 15, 2001, 21(16):6413 6422 The Contribution of Activity-Dependent Synaptic Plasticity to Classical Conditioning in Aplysia Igor Antonov, 1 Irina Antonova, 1 Eric R.

More information

Neurons, Synapses and Signaling. Chapter 48

Neurons, Synapses and Signaling. Chapter 48 Neurons, Synapses and Signaling Chapter 48 Warm Up Exercise What types of cells can receive a nerve signal? Nervous Organization Neurons- nerve cells. Brain- organized into clusters of neurons, called

More information

Chapter 11: Nervous System and Nervous Tissue

Chapter 11: Nervous System and Nervous Tissue Chapter 11: Nervous System and Nervous Tissue I. Functions and divisions of the nervous system A. Sensory input: monitor changes in internal and external environment B. Integrations: make decisions about

More information

Ameen Alsaras. Ameen Alsaras. Mohd.Khatatbeh

Ameen Alsaras. Ameen Alsaras. Mohd.Khatatbeh 9 Ameen Alsaras Ameen Alsaras Mohd.Khatatbeh Nerve Cells (Neurons) *Remember: The neural cell consists of: 1-Cell body 2-Dendrites 3-Axon which ends as axon terminals. The conduction of impulse through

More information

LECTURE 2. C. Reason correlation and synaptic delay not enough to prove direct connection. D. Underlying mechanism behind oscillations possibilities

LECTURE 2. C. Reason correlation and synaptic delay not enough to prove direct connection. D. Underlying mechanism behind oscillations possibilities LECTURE 2 A. Identifying Swimmy neurons B. Finding E and I inputs to cells 1 and 2 C. Reason correlation and synaptic delay not enough to prove direct connection D. Underlying mechanism behind oscillations

More information

Relation across the Receptor.afferent in a Tonic Electroreceptor of Marine Catfish

Relation across the Receptor.afferent in a Tonic Electroreceptor of Marine Catfish No. 6] Proc. Japan Acad., 51 (1975) 485 102. Input. output Synapses Relation across the Receptor.afferent in a Tonic Electroreceptor of Marine Catfish By Shun-ichi UMEKITA, Yoshiko SUGAWARA, and Shosaku

More information

Classical Processes in the Same Preparation

Classical Processes in the Same Preparation Extending In Vitro Conditioning in Aplysia to Analyze Operant and Classical Processes in the Same Preparation Björn Brembs, Douglas A. Baxter and John H. Byrne Learn. Mem. 2004 11: 412-420; originally

More information

Supplementary Figure 2. Inter discharge intervals are consistent across electrophysiological scales and are related to seizure stage.

Supplementary Figure 2. Inter discharge intervals are consistent across electrophysiological scales and are related to seizure stage. Supplementary Figure 1. Progression of seizure activity recorded from a microelectrode array that was not recruited into the ictal core. (a) Raw LFP traces recorded from a single microelectrode during

More information

A Dynamic Neural Network Model of Sensorimotor Transformations in the Leech

A Dynamic Neural Network Model of Sensorimotor Transformations in the Leech Communicated by Richard Andersen 1 A Dynamic Neural Network Model of Sensorimotor Transformations in the Leech Shawn R. Lockery Yan Fang Terrence J. Sejnowski Computational Neurobiological Laboratory,

More information

Integrative Synaptic Mechanisms in the Caudal Ganglion of the Crayfish

Integrative Synaptic Mechanisms in the Caudal Ganglion of the Crayfish Integrative Synaptic Mechanisms in the Caudal Ganglion of the Crayfish JAMES B. PRESTON and DONALD KENNEDY ABSTRACT A study of activity recorded with intracellular micropipettes was undertaken in the caudal

More information

Barrages of Synaptic Activity Control the Gain and Sensitivity of Cortical Neurons

Barrages of Synaptic Activity Control the Gain and Sensitivity of Cortical Neurons 10388 The Journal of Neuroscience, November 12, 2003 23(32):10388 10401 Cellular/Molecular Barrages of Synaptic Activity Control the Gain and Sensitivity of Cortical Neurons Yousheng Shu, 1 * Andrea Hasenstaub,

More information

EE 791 Lecture 2 Jan 19, 2015

EE 791 Lecture 2 Jan 19, 2015 EE 791 Lecture 2 Jan 19, 2015 Action Potential Conduction And Neural Organization EE 791-Lecture 2 1 Core-conductor model: In the core-conductor model we approximate an axon or a segment of a dendrite

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Neurons, Synapses, and Signaling The Neuron is the functional unit of the nervous system. Neurons are composed of a cell body, which contains the nucleus and organelles; Dendrites which are extensions

More information

Physiology and Plasticity of Morphologically Identified Cells in the Mormyrid Electrosensory Lobe

Physiology and Plasticity of Morphologically Identified Cells in the Mormyrid Electrosensory Lobe The Journal of Neuroscience, August 15, 1997, 17(16):6409 6423 Physiology and Plasticity of Morphologically Identified Cells in the Mormyrid Electrosensory Lobe Curtis C. Bell, 1 Angel Caputi, 2 and Kirsty

More information

Coordination of Fast and Slow Rhythmic Neuronal Circuits

Coordination of Fast and Slow Rhythmic Neuronal Circuits The Journal of Neuroscience, August 1, 1999, 19(15):6650 6660 Coordination of Fast and Slow Rhythmic Neuronal Circuits Marlene Bartos, 1 Yair Manor, 2 Farzan Nadim, 2 Eve Marder, 2 and Michael P. Nusbaum

More information

Beyond Vanilla LTP. Spike-timing-dependent-plasticity or STDP

Beyond Vanilla LTP. Spike-timing-dependent-plasticity or STDP Beyond Vanilla LTP Spike-timing-dependent-plasticity or STDP Hebbian learning rule asn W MN,aSN MN Δw ij = μ x j (v i - φ) learning threshold under which LTD can occur Stimulation electrode Recording electrode

More information

Neurobiology: The nerve cell. Principle and task To use a nerve function model to study the following aspects of a nerve cell:

Neurobiology: The nerve cell. Principle and task To use a nerve function model to study the following aspects of a nerve cell: Principle and task To use a nerve function model to study the following aspects of a nerve cell: INTRACELLULAR POTENTIAL AND ACTION POTENTIAL Comparison between low and high threshold levels Comparison

More information

Part 11: Mechanisms of Learning

Part 11: Mechanisms of Learning Neurophysiology and Information: Theory of Brain Function Christopher Fiorillo BiS 527, Spring 2012 042 350 4326, fiorillo@kaist.ac.kr Part 11: Mechanisms of Learning Reading: Bear, Connors, and Paradiso,

More information

Involvement of Presynaptic and Postsynaptic Mechanisms in a Cellular Analog of Classical Conditioning at Aplysia

Involvement of Presynaptic and Postsynaptic Mechanisms in a Cellular Analog of Classical Conditioning at Aplysia The Journal of Neuroscience, January 1, 1998, 18(1):458 466 Involvement of Presynaptic and Postsynaptic Mechanisms in a Cellular Analog of Classical Conditioning at Aplysia Sensory-Motor Neuron Synapses

More information

The Functional Consequences of Changes in the Strength and Duration of Synaptic Inputs to Oscillatory Neurons

The Functional Consequences of Changes in the Strength and Duration of Synaptic Inputs to Oscillatory Neurons The Journal of Neuroscience, February, 2003 23(3):943 954 943 The Functional Consequences of Changes in the Strength and Duration of Synaptic Inputs to Oscillatory Neurons Astrid A. Prinz, Vatsala Thirumalai,

More information

Sample Lab Report 1 from 1. Measuring and Manipulating Passive Membrane Properties

Sample Lab Report 1 from  1. Measuring and Manipulating Passive Membrane Properties Sample Lab Report 1 from http://www.bio365l.net 1 Abstract Measuring and Manipulating Passive Membrane Properties Biological membranes exhibit the properties of capacitance and resistance, which allow

More information

ACTIVITY IN THE LOCUST NERVE CORD IN RESPONSE TO WING-NERVE STIMULATION

ACTIVITY IN THE LOCUST NERVE CORD IN RESPONSE TO WING-NERVE STIMULATION J. Exp. Biol. (1970), 5a, 667-673 667 With 3 text-figures Printed in Great Britain ACTIVITY IN THE LOCUST NERVE CORD IN RESPONSE TO WING-NERVE STIMULATION BY ERIK GETTRUP* Department of Zoology and Department

More information

Analysis of the Feeding Motor Pattern in the Pond Snail, Lymnaea stagnabs: Photoinactivation of Axonally Stained Pattern-generating Interneurons

Analysis of the Feeding Motor Pattern in the Pond Snail, Lymnaea stagnabs: Photoinactivation of Axonally Stained Pattern-generating Interneurons The Journal of Neuroscience, January 1994, 74(l): 153-166 Analysis of the Feeding Motor Pattern in the Pond Snail, Lymnaea stagnabs: Photoinactivation of Axonally Stained Pattern-generating Interneurons

More information

Electrophysiology. General Neurophysiology. Action Potentials

Electrophysiology. General Neurophysiology. Action Potentials 5 Electrophysiology Cochlear implants should aim to reproduce the coding of sound in the auditory system as closely as possible, for best sound perception. The cochlear implant is in part the result of

More information

BIONB/BME/ECE 4910 Neuronal Simulation Assignments 1, Spring 2013

BIONB/BME/ECE 4910 Neuronal Simulation Assignments 1, Spring 2013 BIONB/BME/ECE 4910 Neuronal Simulation Assignments 1, Spring 2013 Tutorial Assignment Page Due Date Week 1/Assignment 1: Introduction to NIA 1 January 28 The Membrane Tutorial 9 Week 2/Assignment 2: Passive

More information

What do you notice? Edited from

What do you notice? Edited from What do you notice? Edited from https://www.youtube.com/watch?v=ffayobzdtc8&t=83s How can a one brain region increase the likelihood of eliciting a spike in another brain region? Communication through

More information

Lidocaine alters the input resistance and evokes neural activity in crayfish sensory neurons

Lidocaine alters the input resistance and evokes neural activity in crayfish sensory neurons 20 Gen. Physiol. Biophys. (2007), 26, 20 26 Lidocaine alters the input resistance and evokes neural activity in crayfish sensory neurons M. B. Keceli and N. Purali Hacettepe University, Medical Faculty,

More information

Intro. Comp. NeuroSci. Ch. 9 October 4, The threshold and channel memory

Intro. Comp. NeuroSci. Ch. 9 October 4, The threshold and channel memory 9.7.4 The threshold and channel memory The action potential has a threshold. In figure the area around threshold is expanded (rectangle). A current injection that does not reach the threshold does not

More information

MOLECULAR AND CELLULAR NEUROSCIENCE

MOLECULAR AND CELLULAR NEUROSCIENCE MOLECULAR AND CELLULAR NEUROSCIENCE BMP-218 November 4, 2014 DIVISIONS OF THE NERVOUS SYSTEM The nervous system is composed of two primary divisions: 1. CNS - Central Nervous System (Brain + Spinal Cord)

More information

DOMINIQUE DEBANNE*, BEAT H. GÄHWILER, AND SCOTT M. THOMPSON MATERIALS AND METHODS

DOMINIQUE DEBANNE*, BEAT H. GÄHWILER, AND SCOTT M. THOMPSON MATERIALS AND METHODS Proc. Natl. Acad. Sci. USA Vol. 93, pp. 11225 11230, October 1996 Neurobiology Cooperative interactions in the induction of long-term potentiation and depression of synaptic excitation between hippocampal

More information

Omar Sami. Muhammad Abid. Muhammad khatatbeh

Omar Sami. Muhammad Abid. Muhammad khatatbeh 10 Omar Sami Muhammad Abid Muhammad khatatbeh Let s shock the world In this lecture we are going to cover topics said in previous lectures and then start with the nerve cells (neurons) and the synapses

More information

Modeling Depolarization Induced Suppression of Inhibition in Pyramidal Neurons

Modeling Depolarization Induced Suppression of Inhibition in Pyramidal Neurons Modeling Depolarization Induced Suppression of Inhibition in Pyramidal Neurons Peter Osseward, Uri Magaram Department of Neuroscience University of California, San Diego La Jolla, CA 92092 possewar@ucsd.edu

More information

Cellular Bioelectricity

Cellular Bioelectricity ELEC ENG 3BB3: Cellular Bioelectricity Notes for Lecture 24 Thursday, March 6, 2014 8. NEURAL ELECTROPHYSIOLOGY We will look at: Structure of the nervous system Sensory transducers and neurons Neural coding

More information

3) Most of the organelles in a neuron are located in the A) dendritic region. B) axon hillock. C) axon. D) cell body. E) axon terminals.

3) Most of the organelles in a neuron are located in the A) dendritic region. B) axon hillock. C) axon. D) cell body. E) axon terminals. Chapter 48 Neurons, Synapses, and Signaling Multiple-Choice Questions 1) A simple nervous system A) must include chemical senses, mechanoreception, and vision. B) includes a minimum of 12 ganglia. C) has

More information

Alterations in Synaptic Strength Preceding Axon Withdrawal

Alterations in Synaptic Strength Preceding Axon Withdrawal Alterations in Synaptic Strength Preceding Axon Withdrawal H. Colman, J. Nabekura, J.W. Lichtman presented by Ana Fiallos Synaptic Transmission at the Neuromuscular Junction Motor neurons with cell bodies

More information

Cuticular receptor activation of postural motoneurons in the abdomen of the hermit crab, Pagurus pollicarus

Cuticular receptor activation of postural motoneurons in the abdomen of the hermit crab, Pagurus pollicarus J Comp Physiol A (2004) 190: 365 377 DOI 10.1007/s00359-004-0502-y ORIGINAL PAPER W. D. Chapple Æ J. L. Krans Cuticular receptor activation of postural motoneurons in the abdomen of the hermit crab, Pagurus

More information

Cellular mechanisms of information transfer: neuronal and synaptic plasticity

Cellular mechanisms of information transfer: neuronal and synaptic plasticity Cellular mechanisms of information transfer: neuronal and synaptic plasticity Ivan Pavlov (UCL Institute of Neurology, UK) Anton Chizhov (Ioffe Physical Technical Institute) Pavel Zykin (St.-Petersburg

More information