JOURNAL OF VIROLOGY, Dec. 2000, p Vol. 74, No. 24. Copyright 2000, American Society for Microbiology. All Rights Reserved.

Size: px
Start display at page:

Download "JOURNAL OF VIROLOGY, Dec. 2000, p Vol. 74, No. 24. Copyright 2000, American Society for Microbiology. All Rights Reserved."

Transcription

1 JOURNAL OF VIROLOGY, Dec. 2000, p Vol. 74, No X/00/$ Copyright 2000, American Society for Microbiology. All Rights Reserved. Lentivirus Gene Transfer in Murine Hematopoietic Progenitor Cells Is Compromised by a Delay in Proviral Integration and Results in Transduction Mosaicism and Heterogeneous Gene Expression in Progeny Cells HANNA MIKKOLA, 1 NIELS-BJARNE WOODS, 1 MARKETA SJÖGREN, 1 HILDUR HELGADOTTIR, 1 ISAO HAMAGUCHI, 1 STEN-EIRIK JACOBSEN, 2 DIDIER TRONO, 3 AND STEFAN KARLSSON 1 * Section for Molecular Medicine and Gene Therapy 1 and the Stem Cell Laboratory, 2 Lund University, Lund, Sweden, and the Department of Genetics and Microbiology, University of Geneva Medical School, Geneva, Switzerland 3 Received 12 June 2000/Accepted 25 September 2000 Human immunodeficiency virus type 1-based lentivirus vectors containing the green fluorescent protein (GFP) gene were used to transduce murine Lin c-kit Sca1 primitive hematopoietic progenitor cells. Following transduction, the cells were plated into hematopoietic progenitor cell assays in methylcellulose and the colonies were scored for GFP positivity. After incubation for 20 h, lentivirus vectors transduced 27.3% 6.7% of the colonies derived from unstimulated target cells, but transduction was more efficient when the cells were supported with stem cell factor (SCF) alone (42.0% 5.5%) or SCF, interleukin-3 (IL-3), and IL-6 ( %) during transduction. The, vesicular stomatitis virus glycoprotein-pseudotyped MGIN oncoretrovirus control vector required IL-3, IL-6, and SCF for significant transduction ( %). Interestingly, only a portion of the progeny cells within the lentivirus-transduced methylcellulose colonies expressed GFP, in contrast to the homogeneous expression in oncoretrovirus-transduced colonies. Secondary plating of the primary GFP lentivirus vector-transduced colonies revealed vector PCR GFP (42%), vector PCR GFP (46%), and vector PCR GFP (13%) secondary colonies, indicating true genetic mosaicism with respect to the viral genome in the progeny cells. The degree of vector mosaicism in individual colonies could be reduced by extending the culture time after transduction and before plating into the clonal progenitor cell assay, indicating a delay in the lentiviral integration process. Furthermore, supplementation with exogenous deoxynucleoside triphosphates during transduction decreased mosaicism within the colonies. Although cytokine stimulation during transduction correlates with higher transduction efficiency, rapid cell division after transduction may result in loss of the viral genome in the progeny cells. Therefore, optimal transduction may require activation without promoting intense cell proliferation prior to vector integration. Hematopoietic stem cells are an attractive target for gene therapy, as they can both self-renew and differentiate into all blood lineages, thus supporting hematopoiesis throughout the lifetime. Gene transfer into hematopoietic stem cells can potentially provide a cure for many inherited and acquired diseases of the hematopoietic and immune systems (25). So far the success of gene therapy in the hematopoietic system has been limited by inefficient gene transfer. Due to the quiescent nature of human hematopoietic stem cells, they are fairly poor targets for conventional oncoretrovirus vectors, which require cell division for integration (22, 26). Lentivirus proteins have nuclear localization signals which facilitate entry of the preintegration complex into the nuclei of nondividing cells (4, 22, 42). This enables lentivirus vectors to transduce nondividing cells, and they therefore represent a promising tool for gene therapy of hematopoietic stem cells (27, 30, 31, 36, 38, 40). Lentivirus gene transfer vectors have been shown to transduce both dividing and nondividing cells from various species, including cell lines and primary cells such as neurons (2, 10, 12, 19, 44), myocytes (18), and hepatocytes (18, 34); retinal (28), * Corresponding author. Mailing address: Molecular Medicine and Gene Therapy, Wallenberg Neuroscience Center, Lund University, Lund, Sweden. Phone: Fax: E- mail: Stefan.Karlsson@molmed.lu.se. Present address: Division of Hematology-Oncology, Children s Hospital, Harvard Medical School, Boston, Mass. corneal (41), cochlear (16), and, pancreatic islet (15) cells; and various populations of hematopoietic cells (1, 5, 11, 13, 30, 39, 40). Continuous vector development has focused on the generation of vectors that are both efficient and safe (32). The tropism of the vector is widened by pseudotyping the virus by vesicular stomatitis virus glycoprotein (VSV-G) envelope (23), which also provides high stability for the virus and facilitates concentration for high titers. For safety reasons the accessory genes vif, vpr, vpu, and nef, involved in the pathogenesis of wild-type human immunodeficiency virus (HIV), have been deleted. The probability of generation of replication-competent recombinants (RCRs) is minimized by segregating the cisand trans-acting elements in three different plasmids, as well as developing self-inactivating lentiviruses with deletions in the U3 region of the 3' long terminal repeat (LTR) (29,45). Lentivirus vectors do not transduce any viral genes into the target cells, minimizing the likelihood of immune reactions. The ex vivo transduction used for hematopoietic cells omits the need to expose the patient to the virus systemically, reducing the risk of toxicity potentially associated with high quantities of the vector, as shown with in vivo transduction of murine hepatocytes (34). Several studies have demonstrated the superiority of HIV type 1 (HIV-1)-based lentivirus vectors to oncoretrovirus vectors in transducing human hematopoietic progenitor cells and human candidate stem cells. This includes CD34 cells from different sources including bone marrow, cord blood, and mo

2 11912 MIKKOLA ET AL. J. VIROL. bilized peripheral blood progenitor cells, as well as purified cells with the CD34 CD38 immunophenotype (1, 5, 11, 13, 30, 39, 40) that are known to support long-term hematopoiesis. High transduction efficiency has been demonstrated in in vitro assays as well as in vivo in xenograft models, for example, in immunodeficient NOD/SCID mice which act as hosts for the transplantation of human hematopoietic cells (30). Although the NOD/SCID mouse assay is the most commonly used assay so far for the study of human candidate stem cells, it is limited by the short life span of the recipients as well as by the inability to support differentiation to all hematopoietic lineages. The development of lentiviral gene therapy into clinical use will require preclinical trials in animal models. This will be invaluable for in vivo testing of new lentivirus vectors, e.g., to achieve optimal expression levels in differentiated progeny cells or to provide lineage-specific or regulatable expression of the transgene. The animal disease models are also crucial for testing the effects of lentivirus gene transfer in vivo, as well as assessing the safety of the vector system in immunocompetent hosts. The aim of this work was to study the efficiency of lentivirus gene transfer into murine hematopoietic stem cells under quiescent and proliferating conditions. In this study we have demonstrated that purified Lin c-kit Sca1 primitive murine hematopoietic progenitor cells can be transduced by lentivirus vectors under both quiescent as and cytokine-stimulated conditions and that high transgene expression levels can be achieved using the elongation factor 1 (EF-1 ) promoter. However, the transduction efficiency is consistently higher if the target cells are transduced with cytokine support. Furthermore, the final gene transfer efficiency in the daughter cells is compromised by a latency of lentivirus vector integration, and optimal gene transfer of primitive murine hematopoietic progenitor cells depends on adjustment of the cytokine stimulation and proliferation kinetics of the target cell during and after transduction. MATERIALS AND METHODS Lentivirus vector constructs. Lentivirus vectors were generated by transient transfection in 293T cells using the three-plasmid system as previously described (31). The packaging plasmid pcmv R8.91 provides the Gag, Pol, Tat, and Rev proteins to package the viral particle in 293T cells. The envelope coding plasmid pmd.g provides the vector with a VSV-G envelope, which broadens the host range and stabilizes the viral particle. The transfer vector plasmid, phr'ef-1 GFP, contains the enhanced green fluorescent protein (GFP) marker gene (6, 7, 8, 35) driven by an internal promoter, EF-1 (a gift from Stuart Orkin, Children s Hospital, Boston, Mass.), as described earlier with other internal promoters (31). Additionally, three other internal promoters, PGK, CMV, or CAG (a hybrid promoter containing the chicken actin promoter and the CMV enhancer), were tested for expression in mouse hematopoietic cells. The promoters were also tested in self-inactivating (SIN) vectors where the U3 region of the 3' LTR is deleted to improve the safety of the vector system further (29, 45), as well as with the woodchuck hepatitis virus posttranscriptional regulatory element (WPRE) downstream from the transgene in an effort to provide high expression levels, as shown in Fig. 1 (46). Preparation of high-titer virus vectors. Lentivirus vectors were generated by transient transfection in 293T cells using the three-plasmid system as described earlier (31). Briefly, the transfection was performed by CaPO 4 precipitation in Dulbecco s modified Eagle medium (DMEM) 10% fetal bovine serum (Gibco BRL, Cleveland, Ohio) 100 IU of penicillin/ml 100 g of streptomycin (Gibco BRL)/ml, followed by a medium change after 18 h. Viral supernatants were harvested 24 and 48 h later and concentrated by ultracentrifugation. The viral supernatants were titered on HeLa cells by serial dilutions and analyzed 96 h later by fluorescence-activated cell sorter (FACS) (FACS Calibur, Becton Dickinson Immunocytometry Systems, San Jose, Calif.) for the ratio of GFP cells. Lentivirus titers ranged from to For the oncoretrovirus control vector, the MGIN vector (containing the GFP gene followed by an internal ribosomal entry site [IRES] and the neomycin resistance gene driven by the vector LTR) (8) pseudotyped with the same envelope, VSV-G, was used. The MGIN vector plasmid (a gift from Robert Hawley, Holland Laboratory, American Red Cross, Rockville, Md.) was transfected into the GP env AM12 packaging cell line. The harvested supernatants were used to transduce the 293 FIG. 1. Lentivirus gene transfer vectors. The four internal promoters tested are shown. The WPRE element was added to the vectors containing the CAG, PGK, and EF-1 promoters and compared with those without WPRE. SIN vectors with PGK and CMV promoters were compared with the PGK and CMV vectors with normal LTRs. GPG cell line (kindly provided by Richard Mulligan, Children s Hospital, Boston, Mass.) with tetracycline-controlled VSV-G expression (33) to obtain VSV- G-pseudotyped MGIN vector. For the oncoretrovirus transductions, both concentrated serum-free supernatants (titers, to transducing units [TU]/ml) and nonconcentrated serum-containing supernatants (titers, to TU/ml) were used. Isolation of murine Lin c-kit Sca1 hematopoietic progenitor cells. For isolation of murine hematopoietic progenitor and stem cells, bone marrow hematopoietic cells from femurs and tibias of 8- to 12-week-old C57/B6 donor mice were used. Lin cells were depleted by 2.8- g/ml rat anti-mouse antibodies against Gr1, Mac1, B220, CD5, CD4, CD8, and Ter119 (PharMingen, San Diego, Calif.) and sheep anti-rat antibody-conjugated magnetic beads (M-450; Dynal, Oslo, Norway). The resulting Lin /Lin low cells were stained with 20 g of phycoerythrin (PE)-conjugated rat anti-mouse c-kit and fluorescein isothiocyanate (FITC)-conjugated rat anti-mouse Sca1 antibodies (PharMingen)/ml and sorted by FACS (FACS Vantage; Becton Dickinson Immunocytometry Systems). All isolation steps were performed on Iscove s modified Dulbecco s medium (IMDM; Gibco BRL) with 5% serum, 10 4 M -mercaptoethanol ( -ME), 100 IU of penicillin/ml, and 100 g of streptomycin/ml. Transduction of murine hematopoietic progenitor cells. Sorted cells were washed, and all lentivirus transductions and liquid cultures were performed in serum-free X-Vivo 15 medium (BioWhittaker, Walkersville, Md.) with 1% bovine serum albumin (Stem Cell Technologies, Vancouver, British Columbia, Canada), -ME, l-glutamine, and penicillin-streptomycin, with and without cytokine supplementation. The transductions were performed either in 96-well plates (non-tissue culture treated; Falcon; BD Biosciences, San Jose, Calif.) coated with fibronectin (Retronectin; Takara Shuzo, Otsu, Japan) or on terasaki plates (Falcon). In 96-well plates, 2,000 to 10,000 cells were transduced in each well in a volume of 100 l, whereas in terasaki plates, 500 to 1,000 cells were transduced in each well in a volume of 20 l. Viral supernatants were supplemented to result in a multiplicity of infection (MOI) of 100 HeLa TU/cell (final titers, to ). The transductions were performed for 20 h with 4 g of protamine sulfate/ml either (i) without any cytokines, (ii) with 50 ng of rat stem cell factor (SCF)/ml, or (iii) with 50 ng of rat SCF/ml, 50 ng of human interleukin-6 (IL-6)/ml, and 10 ng of murine IL-3/ml. In an effort to aid reverse transcription of the viral genome, some transductions were supplemented with deoxynucleoside triphosphates (dntps). The dntp solution (New England Biolabs, Beverly, Mass.) was diluted in water to make a stock solution and added to the culture medium at the same time as the viral supernatant. The final concentration of each dntp was 50 M. To improve transduction efficiency further, double transduction was performed by adding new viral supernatant at 20 h and incubating for an additional 20 h, resulting in a final transduction time of 40 h and a total MOI of 200 (Fig. 2). Methylcellulose colony assays. After the transduction, the cells were plated in methylcellulose containing SCF, IL-6, IL-3, and 20% fetal calf serum (FCS) in IMDM (Stem Cell Technologies). In selected experiments, the transduced cells were further cultured for an additional 24 to 72 h in SCF alone or SCF, IL-6, and IL-3 before plating into colony assays. The colonies were scored at days 6 to 7 for GFP expression by microscopy. Individual GFP colonies were also analyzed by FACS for GFP expression within each colony, or the cells from all colonies in the plate were pooled and analyzed by FACS for GFP expression in the progeny of all clonogenic progenitors. In selected experiments, primary GFP methylcellulose colonies were picked at day 6, after which each individual colony was split in two for FACS analysis and secondary plating in methylcellulose. The secondary colonies were cultured for 2 weeks, and each secondary colony was analyzed by microscopy, FACS, and PCR. PCR from hematopoietic colonies. After scoring for GFP expression, individual methylcellulose colonies were picked for PCR analysis. The cells within each colony were lysed in a lysis buffer containing 105 mm KCl, 14 mm Tris HCl 2, 2.5 mm MgCl 2 (aqueous solution), 0.3 mg of gelatin/ml, 0.45% NP-40, 0.45% Tween 20, and 60 g of proteinase K/ml and were incubated at 56 C for 1 h followed by

3 VOL. 74, 2000 LENTIVIRUS GENE TRANSFER IN HEMATOPOIETIC PROGENITORS FIG. 2. Experimental design for studying lentivirus gene transfer and expression in murine hematopoietic stem cells 96 C for 15 min. The PCR to detect the presence of the vector gene was performed by primers within the GFP gene (GFP56F; 5' GAG CTG GAC GGC GAC GTA AAC G, and GFP629R, 5' CGC TTC TCG TTG GGG TCT TTG CT). Amplification was performed in 1.5 mm MgCl 2 with 30 cycles of 95, 60, and 72 C, and the PCR products were analyzed on ethidium bromide-agarose gels. The integrity of DNA samples was controlled by PCR for mouse actin. RESULTS Optimal lentivirus vector design for expression in murine hematopoietic cells. To select an optimal expression cassette for high expression of lentivirus-vectors in murine hematopoietic cells, 10 different expression vectors were tested in murine hematopoietic cells (Fig. 1). The vectors EF-1, EF-1 WPRE, PGK, PGK-SIN, PGK-WPRE-SIN, CMV, CMV- WPRE, CMV-SIN, CAG, and CAG-WPRE were named according to the internal promoter and whether the WPRE or the SIN deletion was present. The purified hematopoietic cells were transduced, grown in liquid culture in the presence of IL-3, IL-6, and SCF for 3 days, and then analyzed by FACS. The vector containing the EF-1 promoter generated the highest mean fluoresence intensity (MFI) among the GFP cells by FIG. 3. Effects of vector design on levels of GFP expression in Lin c-kit Sca1 hematopoietic cells transduced with lentivirus vectors with different internal promoters. The MFI generated by the expression of the GFP is shown the standard error of the mean (n 3 experiments). Purified cells were transduced as described in Materials and Methods, then grown in liquid culture containing IL-3, IL-6, and SCF for 3 days, and analyzed by FACS. FACS (EF-1, 179 8; PGK, 58 3; CMV, 39 2; CAG, ; n 3 experiments) and was comparable to the MFI (162 2) generated by the oncoretrovirus, vector MGIN (Fig. 3). Addition of the WPRE did not provide an improvement in murine hematopoietic cells, in contrast to the human cell lines HeLa and 293T, where two- to threefold improvement was seen (data not shown). Inclusion of the SIN deletion did not have a clear effect on the expression levels in murine hematopoietic cells (data not shown). Therefore, we chose the EF-1 vector without addition of the WPRE element and without the SIN deletion for all further experiments presented below. Gene transfer efficiencies of lentivirus vectors in Lin c-kit Sca1 murine hematopoietic progenitor cells. Lentivirus gene transfer efficiency in Lin c-kit Sca1 clonogenic progenitors was analyzed in methylcellulose colony assays. The lentivirus vector transduction efficiency, as scored by the percentage of GFP colonies in methylcellulose, was high under all 20-h transduction conditions tested. The scoring was initially performed by microscopy and confirmed by FACS analysis of the individual GFP colonies. If the transduction was performed without cytokines or serum, the transduction efficiency with the lentivirus vector was %, whereas there was no significant transduction with the oncoretrovirus control ( % with the concentrated supernatant under serum-free conditions, or % with the unconcentrated supernatant with a final serum concentration of 3%) (Fig. 4). The lentivirus transduction efficiency within the clonogenic progenitors was higher if cytokine support was used. When SCF was added, lentivirus transduction generated % GFP colonies, in contrast to the concentrated and unconcentrated oncoretrovirus MGIN controls, which resulted in and % GFP colonies, respectively. When transduction was performed with SCF, IL-6, and IL-3, % of the lentivirustransduced colonies were positive for GFP, in comparison to % (serum free) and % (with serum) of the oncoretrovirus controls. Heterogeneity of GFP expression within GFP colonies. Although lentivirus transduction resulted in a high percentage of GFP colonies, microscopy and FACS analysis of individual GFP colonies revealed that only a portion of the cells within each colony expressed the GFP gene (Fig. 5). The ratio of

4 11914 MIKKOLA ET AL. J. VIROL. FIG. 4. Transduction efficiency with lentivirus and oncoretrovirus vectors as judged by percent GFP colonies in methylcellulose assays. The transductions were performed under serum-free conditions (with the exception of unconcentrated MGIN supernatant, resulting in a final serum concentration of 3%) with an MOI of 100. The number of GFP colonies was scored by microscopy and confirmed by FACS (n 3 experiments). GFP cells within each colony was lowest when no cytokines were used during transduction ( %), in comparison with % when SCF was used alone and 45 11% when SCF, IL-6, and IL-3 were used during transduction. In contrast, % of the cells in GFP colonies transduced in the presence of IL-3, IL-6, and SCF with the MGIN oncoretrovirus, control vector were GFP (Fig. 5, bottom). Mosaicism of GFP expression was observed in transduced colonies from all lentivirus-vectors tested, irrespective of the nature of the internal promoter (data not shown). Analysis of secondary hematopoietic colonies for GFP expression and presence of the vector genome. To study whether the heterogeneity of GFP expression in the methylcellulose colonies was due to transcriptional silencing or true genetic mosaicism with respect to the presence of the proviral vector genome, individual GFP colonies were plated further for secondary colony assays. Purified hematopoietic progenitors were transduced in the presence of IL-3, IL-6, and SCF, then plated into methylcellulose cultures, and GFP hematopoietic colonies of various types or morphologies (colony-forming units mix [CFU-mix], colony-forming units granulocyte-macrophage [CFU-GM], etc.) were picked at days 5 to 6 and plated into secondary methylcellulose cultures. Individual secondary colonies were then scored for GFP expression by FACS and for the presence of vector genome in the daughter cells by PCR. Within the 30 secondary colonies that derived from 7 different primary GFP colonies, only 42% were GFP positive by both FACS and PCR (Table 1). None of the colonies were positive by FACS without being PCR positive, demonstrating the high sensitivity of the PCR assay. Approximately half of the colonies (46%) were negative both by FACS and by PCR. Some of the colonies (13%) were positive by PCR without demonstrating any expression of GFP by FACS, representing either integrated copies where the expression from the EF-1 promoter was silenced or cases where the GFP gene was amplified by PCR from a nonintegrated vector. The presence of GFP PCR daughter colonies in the progeny of primary GFP colonies indicates that the lentivirus gene transfer is not fully completed between the time of transduction and the time when the transduced progenitor divides. Therefore, the vector genome seems to integrate after proliferation in the methylcellulose culture starts, and as a consequence, vector integration is seen in only a portion of each progenitor s progeny cells. In contrast, all secondary colonies derived from the oncoretrovirus-transduced colonies expressed GFP and contained the proviral DNA, as detected by PCR. The difference between the number of secondary colonies containing the lentiviral and oncoretroviral DNA, respectively, is highly significant by the chi-square test (P 0.01). Effect of time and proliferation kinetics after transduction on heterogeneity of GFP expression and final gene transfer efficiency. To study the time course needed for completion of lentivirus gene transfer in mouse hematopoietic progenitor cells, the transduced cells were cultured for an extended period (an additional 24 to 72 h) before plating into methylcellulose clonal assays. By delaying the start of a clonal assay after transduction in SCF, the degree of mosaicism was reduced. The percentage of GFP cells within the GFP colonies increased from 34 8% at day 0 to 55 6% when the cells were plated at day 1 posttransduction and to 61 9 and 68 11% at days 2 and 3 posttransduction, respectively (Fig. 6A). The difference between day 0 and day 3 was significant (P 0.02), as was the difference between day 0 and day 2 (P 0.05), by Student s t test. The difference between day 0 and day 1 was not statistically significant (P 0.11). In an effort to analyze the effect of cytokine stimulation and proliferation kinetics after transduction on the final gene transfer efficiency as judged by the total percentage of GFP cells in FIG. 5. Mosaicism of GFP expression in lentivirus transduced hematopoietic colonies. (Top) GFP methylcellulose colonies 6 days after transduction of Lin c-kit Sca1 cells by a lentivirus vector with EF-1 as an internal promoter. Two colonies are shown with phase-contrast microscopy (lower panels) and fluorescent microscopy (upper panels). In each colony it can be seen that only a fraction of the cells are expressing the GFP transgene. (Bottom) FACS analysis of GFP expression within individual GFP methylcellulose colonies. Each circle represents a single colony.

5 VOL. 74, 2000 LENTIVIRUS GENE TRANSFER IN HEMATOPOIETIC PROGENITORS TABLE 1. Lentivirus transduced GFP primary hematopoietic colonies generate GFP secondary colonies lacking the provirus a Primary colony No. (%) of secondary colonies with the following phenotype: FACS PCR FACS PCR FACS PCR Lentivirus transduction A 3 (50%) 1 (17%) 2 (33%) B 2 (25%) 0 (0%) 6 (75%) C 5 (39%) 2 (15%) 6 (46%) D 1 (33%) 0 (0%) 2 (66%) E 6 (66%) 0 (0%) 3 (33%) F 2 (40%) 2 (40%) 1 (20%) G 1 (25%) 1 (25%) 2 (50%) Total 20 (42%) 6 (13%) 22 (46%) Oncoretrovirus transduction H 5 (100%) 0 (0%) 0 (0%) I 4 (100%) 0 (0%) 0 (0%) Total 9 (100%) 0 (0%) 0 (0%) a Cells were transduced as described in Materials and Methods in the presence of IL-3, IL-6, and SCF and were then plated into methylcellulose cultures. Primary GFP colonies (A through I) were picked and replated into secondary methylcellulose cultures. The secondary colonies were picked individually and analyzed by FACS, and the presence of the proviral DNA was detected by PCR. The difference between the oncoretroviral and lentiviral samples was highly significant by the chi-square test (P 0.01). the progeny, half of the transduced cells were grown for additional 48 h in liquid culture before plating into methylcellulose with SCF, IL-6, and IL-3, whereas half of the sample was plated directly after a 20-h transduction. Extended culture in SCF for an additional 48 h increased the percentage of GFP cells in methylcellulose culture twofold, from 12 3% to 23 2% (Fig. 6B). This difference is statistically significant (P 0.03). In contrast, when the transduction and extended culture were performed with more-efficient cytokine stimulation (SCF, IL-6, and IL-3), the initial gene transfer was higher but the extended culture did not provide any further significant increase in the ratio of GFP cells in methylcellulose (19 5% when cells were plated directly in comparison to 22 2% with extended culture) (Fig. 6B). Likewise, when the cells were transduced in the presence of SCF alone and split following 20 h of transduction in two parts, liquid culture with SCF alone or with the three cytokines SCF, IL-6, and IL-3 for an additional 5 days, the cells cultured under low proliferating conditions (SCF alone) showed a much higher percentage of GFP cells by FACS than the subgroup cultured under high proliferating conditions (21 4% versus 7 1%, respectively). These results demonstrate that the initial transduction efficiency is higher when the cells are stimulated with the three cytokines. However, intense proliferation following transduction does not lead to a higher proportion of transduced cells, since only a portion of the progeny cells from the initially transduced progenitors keep the vector permanently. Effect of a second hit on gene transfer efficiency. To evaluate whether transduction efficiency could be improved further by exposing the cells for two hits of viral transduction, the transduction time was increased by an additional 20 h by adding the same amount of fresh vector to the cells. Here, the second hit could be performed only with cytokine support due to reduction of viability under cytokine-depleted conditions. The exposure of the cells for a second hit was shown to improve the ratio of GFP colonies marginally, from 40 8% to 49 2% with transduction in the presence of SCF alone and from 51 14% to 61 9% with SCF, IL-6, and IL-3 (Fig. 7A). A clear difference, however, was seen when the total percentage of GFP cells in the methylcellulose culture was evaluated. As shown in Fig. 7B, the total numbers of GFP cells rose from 15 1% to 24 2% with SCF alone (statistically significant; P 0.05), and from 18 2% to 43 8% with SCF, IL-6, and IL-3 (statistically significant; P 0.05). When the transduction efficiency was high, e.g., when more than 60% of the colonies and 40% of the total cells were GFP positive, the second hit was also shown to increase the MFI of GFP-positive cells (data not shown). These results together suggest that the second exposure to the lentivirus vector may facilitate entry of more viral particles into the target cell population, as well as give more time to complete the integration process before plating for clonal assays, thus increasing the percentage of GFP cells in the progeny. Effect of exogenous dntp supplementation on gene transfer efficiency. In an attempt to further improve the gene transfer process in murine hematopoietic progenitors and stem cells, deoxynucleotides were added during transduction. Addition of 50 M dntps was shown to increase the total ratio of GFP cells under all conditions tested, from % to 14.4 FIG. 6. Effect of extended culture time on mosaicism within GFP colonies. (A) Transduction was performed with SCF for 20 h, after which the cells were cultured in SCF for an additional 1 to 3 days and plated in methylcellulose. The percentage of GFP-expressing cells in individual colonies was analyzed by FACS. Results for 10 GFP colonies from each day are shown (each colony is represented by an open circle). The mean value is indicated by a horizontal line among the circles. (B) Effect of 2 days of extended culture with SCF alone (open bars) or with IL-3, IL-6, and SCF (shaded bars) on the total percentage of GFP cells. After transduction with or without 2 days of extended culture, the cells were plated in methylcellulose. After methylcellulose culture the colonies in each plate were pooled, and the progeny cells were analyzed for GFP expression by FACS. The difference between day 0 and day 2 is statistically significant with SCF alone (P 0.03; n 3), but there is no significant difference between day 0 and day 2 when all three cytokines are used.

6 11916 MIKKOLA ET AL. J. VIROL. FIG. 7. Effect of a second vector hit on lentivirus transduction efficiency. Hematopoietic stem cells were transduced for 20 h with SCF alone or SCF, IL-3, and IL-6 and then either plated directly on methylcellulose or transduced for an additional 20 h with the addition of fresh viral supernatant. (A) The percentage of GFP colonies was scored by microscopy. The second hit does not increase the number of positive colonies significantly. (B) Total GFP cells within all colonies as determined by FACS analysis. The second hit increases the percentage of positive cells with SCF alone and with IL-3, IL-6, and SCF (P 0.05). For both panels, open bars indicate one transduction; shaded bars indicate two transductions (n 3 experiments). 0.6% (significant difference; P 0.01) if the transduction was performed without cytokine support, from % to % (significant difference; P 0.02) with SCF alone, and from % to % (significant difference; P 0.01) with SCF, IL-6, and IL-3 (Fig. 8). The ratio of GFP colonies in methylcellulose or the MFI was not changed, indicating that the improvement in the ratio of the GFP cells by addition of dntps was achieved mainly by a decrease in mosaicism within individual colonies. This was further shown by FACS analysis of individual colonies transduced without cytokine stimulation. The addition of exogenous dntps increased the mean percentage of GFP cells within the GFP colonies from % to % (n 10 colonies in each group). DISCUSSION The aim of this study was to investigate the capability of lentivirus vectors to transduce and express genes in primitive FIG. 8. The effect of exogenous nucleotides on lentivirus transduction efficiency was studied by supplementation with 50 M dntps during transduction. (A) The transduced cells were cultured in methylcellulose, and the number of GFP was colonies determined by microscopy. No significant difference in the number of positive colonies was seen with the addition of dntps. (B) Percentage of GFP cells (as determined by FACS analysis) with (shaded bars) or without (open bars) added exogenous nucleotides. The percentage of GFP cells increased significantly with the addition of dntps under all growth conditions shown (see the text). murine hematopoietic progenitor cells and their progeny, in an effort to create a mouse model for lentivirus gene transfer for future studies involving testing of new expression cassettes and therapeutic genes in a true in vivo model. Furthermore, the aim was to gain insight into the prerequisites for optimal gene transfer of hematopoietic cells by lentivirus vectors, by studying the gene transfer efficiency into quiescent as well as cytokine-stimulated primitive murine hematopoietic progenitor cells. Lin c-kit Sca1 cells were obtained from the bone marrow by depleting the cells expressing lineage-specific markers, and further sorting for c-kit Sca1 cells, resulting in a 1,000-fold enrichment for primitive hematopoietic progenitor and stem cells. In an effort to achieve high transgene expression levels in murine hematopoietic cells, different lentivirus vector were tested in these target cells and their progeny. Our results show that high expression levels of the GFP marker gene can be obtained by using the EF-1 promoter in the lentivirus vector. The expression level from the EF-1 lentivirus vector was similar to the level from the oncoretrovirus LTR in the MGIN vector, which expresses very well in hematopoietic cells (8). Using the EF-1 lentivirus vector, we studied how mouse hematopoietic progenitor cells can be transduced most efficiently. Our results demonstrate that the VSV-G-pseudotyped lentivirus vectors can transduce a high percentage of murine Lin c-kit Sca1 hematopoietic stem cells with or without cytokine stimulation, as judged by the ratio of GFP-positive colonies in clonogenic progenitor assays. However, the transduction efficiency was consistently higher when the transduction was performed with cytokine support. Supplementation with SCF during transduction increased the transduction efficiency, although SCF alone will not induce rapid cell division. The transduction efficiency was increased further by using SCF, IL-6, and IL-3, a combination that effectively stimulates proliferation of hematopoietic progenitor and stem cells. The oncoretrovirus control vector did not show significant transduction unless the cells were stimulated with SCF, IL-6, and IL-3. It is known that optimal oncoretrovirus transduction requires longer cytokine stimulation than the 20-h transduction protocol used here allows (8). These results demonstrate the superiority of lentivirus gene transfer to oncoretrovirus transduction when the cells to be transduced have undergone little or no activation. However, the efficiency of lentivirus transduction of murine hematopoietic progenitors was increased for cytokine-stimulated cells. This is consistent with the results of Sutton et al. (39), which showed that the efficiency of transduction of human CD34 hematopoietic cells is higher when they are in the G 1 or G 2 /S/M phase of the cell cycle than when they are in G 0. Cell cycle activity is probably not required for lentivirus vector transduction of hematopoietic progenitors, in contrast to murine hepatocytes, which need to be actively dividing in order to be efficiently transduced in vivo (34). Interestingly, when the daughter cells within individual GFP colonies in methylcellulose were analyzed for GFP expression by flow cytometry, only a portion of the cells were found to express GFP. In contrast, GFP expression was more homogeneous in colonies transduced with the oncoretrovirus control vector. The heterogeneity of GFP expression in the lentivirus transduced colonies was most evident if the transduction was performed without cytokine stimulation. The lack of GFP expression in a portion of cells within the progeny of a single transduced progenitor cell raised the question of whether the GFP mosaicism observed is true genetic mosaicism with respect to the presence of the integrated proviral vector genome or is due to transcriptional silencing of the internal promoter in the vector. To address this question, the

7 VOL. 74, 2000 LENTIVIRUS GENE TRANSFER IN HEMATOPOIETIC PROGENITORS progeny cells from individual GFP-positive colonies were plated into secondary methylcellulose culture, and the secondary colonies were analyzed for the presence of the viral genome and GFP expression. Interestingly, both GFP PCR as well as GFP PCR secondary colonies originating from the primary GFP colonies were found. Some of the colonies were positive by PCR without showing any detectable GFP expression by FACS. These colonies may represent colonies that contain the proviral genome but are transcriptionally inactive. The presence of both GFP PCR and GFP PCR secondary colonies in the progeny of a single cell demonstrates true genetic mosaicism with respect to the vector genome in the progeny cells, suggesting a latency of viral integration using these vectors, target cells, and transduction conditions. It is also possible that the vector has integrated initially but has subsequently been lost from the target cell. This possibility is not likely. To study whether vector mosaicism in the progeny cells was the result of delayed integration, we tested whether the degree of GFP heterogeneity within the colonies could be reduced by extending the time available for integration before the transduced cells were plated for clonal assays. The results show that the degree of GFP mosaicism could be reduced if the colony assay was started at later time points, suggesting that lentivirus integration cannot always be completed during the time from the beginning of transduction until progenitor proliferation starts. If the extended culture was performed under low proliferative conditions, with SCF alone, the number of positive colonies was maintained, and the final ratio of GFP cells in their progeny could be increased. In contrast, when the cells were cultured after transduction under high proliferative conditions, with SCF, IL-6, and IL-3, the total percentage of GFP cells was not increased by extended liquid culture. These results, taken together, show that although murine Lin c-kit Sca1 hematopoietic progenitor cells can be more readily transduced with cytokine stimulation than without, rapid cell division prior to integration may result in loss of the unintegrated vector genome from some of the progeny cells, lowering the total gene transfer efficiency. In support of the concept of delayed integration of lentivirus vectors is evidence that wildtype HIV-1 proviral DNA can persist as long as 3 weeks extrachromosomally in quiescent T cells prior to integrating upon T-cell activation (37). The results with the lentivirus transduction of mouse hematopoietic stem cells and progenitor cells point out that although viral entry with the VSV-G envelope in these target cells appears to be efficient, as shown by the high ratio of GFP colonies in the methylcellulose assay, there may be other bottlenecks that compromise the final gene transfer efficiency in the progeny. In addition to entry into the target cells, optimal gene transfer requires efficient reverse transcription of the viral RNA, transport into the nucleus, and integration in the genome of the target cell. Our aim was to see whether we could affect any of these processes and increase overall transduction efficiency as well as decrease the GFP mosaicism within the progeny cells. In an effort to maximize vector entry into the target cells, the cells were exposed for a second hit of vector together with prolongation of the transduction time by an additional 20 h. Indeed, a second exposure to the vector increased the final gene transfer efficiency twofold, as determined by the ratio of GFP cells in the progeny, with a modest increase in the ratio of GFP colonies. When the overall transduction efficiency was high, e.g., over 40% GFP cells, an increase in the MFI was also observed. These results show that the double transduction may be useful if high gene transfer efficiency is required. The beneficial effect may in part depend on entry of more viral copies into the target population, and in part on the extended time available to complete gene transfer before rapid proliferation of the target cells ensues. It is of interest in this context that a recent report demonstrates that the 99-nucleotide central DNA flap that creates a DNA triplex in HIV-1 will increase the nuclear import of HIV-1 and HIV-1-based vectors (42). It is possible that the presence of this sequence, which is lacking in our vectors, would increase gene transfer efficiency and reduce the mosaicism in the progeny of the target cells. The transduction efficiency of hematopoietic progenitors was lowest, and the mosaicism within the colonies was highest, when the cells were transduced without any cytokine support. Studies with wild-type HIV and other retroviruses have shown that reverse transcription of the virus cannot be efficiently completed in quiescent lymphocytes, or the mutation rate in the reverse transcripts may be higher (14, 17, 20, 21). One factor hindering reverse transcription may be nucleotide imbalances (24) in quiescent cells. Attempts have been made to improve retrovirus transduction efficiency by supplementing with nucleotides before transduction (43); however, no significant improvement due to dntps was seen in transducing rat neurons with lentivirus vectors (2). Interestingly, in hematopoietic progenitor cells, supplementation of the transduction mixture with 50 m dntps increased the ratio of GFP cells in the progeny roughly two-fold. The effect was seen most clearly in the unstimulated cells. The number of transduced colonies was not changed, although the overall ratio of the GFP cells within the colonies doubled, indicating that the mosaicism of GFP expression in the colonies could be reduced by providing exogenous nucleotides during transduction. This raises the possibility that reverse transcription might be a ratelimiting step for the rapid establishment of the lentiviral provirus in mouse hematopoietic progenitor cells. In conclusion, we have found that mouse Lin c-kit Sca1 hematopoietic stem and progenitor cells are sensitive targets for lentivirus gene transfer, and high expression levels can be achieved by using EF-1 as an internal promoter. However, the final gene transfer efficiency with the vector type used depends on the growth conditions during and after transduction. Cytokine stimulation or, alternatively, supplementation with nucleotides during transduction was associated with higher gene transfer efficiency, whereas rapid proliferation after transduction resulted in a lower ratio of GFP-expressing progeny cells. These findings may help in understanding the mechanisms affecting lentivirus gene transfer efficiency in hematopoietic progenitor and stem cells, and in developing optimal transduction protocols for these target cells. ACKNOWLEDGMENTS We thank Sverker Segren for cell sorting and Lilian Wittman and Kristina Sundgren for skillful assistance with the mice. David Bryder and Ole-Johan Borge are acknowledged for help and advice in isolation and culturing of mouse hematopoietic stem cells. This work was supported by grants to S.K. from Cancerfonden, Sweden, Barncancerfonden, Sweden, and The Swedish Gene Therapy Program. H.M. was supported by a postdoctoral fellowship from The Wennergren Foundation, and I.H. was supported by a postdoctoral fellowship from Cancerfonden. REFERENCES 1. Akkina, R. K., R. M. Walton, M. L. Chen, Q. X. Li, V. Planelles, and I. S. Chen High-efficiency gene transfer into CD34 cells with a human immunodeficiency virus type 1-based retroviral vector pseudotyped with vesicular stomatitis virus envelope glycoprotein G. J. Virol. 70: Blomer, U., L. Naldini, T. Kafri, D. Trono, I. M. Verma, and F. H. Gage Highly efficient and sustained gene transfer in adult neurons with a

8 11918 MIKKOLA ET AL. J. VIROL. lentivirus vector. J. Virol. 71: Bukowsky, A. A., J. P. Song, and L. Naldini Interaction of human immunodeficiency virus-derived vectors with wild-type virus in transduced cells. J. Virol. 73: Bukrinsky, M. I., S. Haggerty, M. P. Dempsey, N. Sharova, A. Adzhubel, L. Spitz., P. Lewis, D. Goldfarb, M. Emerman, and M. Stevenson A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature 365: Case, S. S., M. A. Price, C. T. Jordan, X. J. Yu, L. Wang, G. Bauer, D. L. Haas, D. Xu, R. Stripecke, L. Naldini, D. B. Kohn and G. M. Crooks Stable transduction of quiescent CD34 CD38 human hematopoietic cells by HIV-1-based lentiviral vectors. Proc. Natl. Acad. Sci. USA 96: Chalfie, M., Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher Green fluorescent protein as a marker for gene expression. Science 263: Cheng, L., J. Fu, A. Tsukamoto, and R. G. Hawley Use of green fluorescent protein variants to monitor gene transfer and expression in mammalian cells. Nat. Biotechnol. 14: Cheng, L., C. Du, D. Murray, X. Tong, Y. A. Zhang, B. P. Chen, and R. G. Hawley A GFP reporter system to assess gene transfer and expression in human hematopoietic progenitor cells. Gene Ther. 10: Correll, P. H., S. Colilla, and S. Karlsson Retroviral vector design for long-term expression in murine hematopoietic cells in vivo. Blood 84: Deglon, N., J. L. Tseng, J. C. Bensadoun, A. D. Zurn, Y. Arsenijevic, L. Pereira de Almeida, R. Zufferey, D. Trono, and P. Aebischer Selfinactivating lentiviral vector with enhanced transgene expression as potential gene transfer system in Parkinson s disease. Hum. Gene Ther. 1: Douglas, J., P. Kelly, J. T. Evans, and J. V. Garcia Efficient transduction of human lymphocytes and CD34 cells via human immunodeficiency virus-based gene transfer vectors. Hum. Gene Ther. 10: Dull, T., R. Zufferey, M. Kelly, R. J. Mandel, M. Nguyen, D. Trono, and L. Naldini A third-generation lentivirus vector system with a conditional packaging system. J. Virol. 72: Evans, J. T., P. F. Kelly, E. O Neill, and J. V. Garcia Human cord blood CD34 CD38 cell transduction via lentivirus-based gene transfer vectors. Hum. Gene Ther. 10: Gao, W. Y., A. Cara, R. C. Gallo, and F. Lori Low levels of deoxynucleotides in peripheral blood lymphocytes: a strategy to inhibit human immunodeficiency virus type 1 replication. Proc. Natl. Acad. Sci. USA 90: Giannoukakis, N., Z. Mi, A. Gambotto, A. Eramo, C. Ricordi, M. Trucco, and P. Robbins Infection of intact human islets by a lentiviral vector. Gene Ther. 9: Han, J. J., A. N. Mhatre, M. Wareing, R. Pettis, W. Q. Gao, R. N. Zufferey, D. Trono, and A. K. Lalwani Transgene expression in the guinea pig cochlea mediated by a lentivirus-derived gene transfer vector. Hum. Gene Ther. 11: Julias, J. G., and V. K. Pathak Deoxyribonucleoside triphosphate pool imbalances in vivo are associated with an increased retroviral mutation rate. J. Virol. 72: Kafri, T., U. Blomer, D. A. Peterson, F. H. Gage, and I. M. Verma. Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nat. Genet. 17: Kordower, J. H., J. Bloch, S. Y. Ma, Y. Chu, S. Palfi, B. Z. Roitberg, M. Emborg, P. Hantraye, N. Deglon, and P. Aebischer Lentiviral gene transfer to the nonhuman primate brain. Exp. Neurol. 160: Korin, Y. D., and J. Zack Progression to the G 1b phase of the cell cycle is required for completion of human immunodeficiency virus type 1 reverse transcription in T cells. J. Virol. 72: Korin, Y. D., and J. A. Zack Nonproductive human immunodeficiency virus type 1 infection in nucleoside-treated G 0 lymphocytes. J. Virol. 73: Lewis, P. F., and M. Emerman Passage through mitosis is required for oncoretroviruses but not for the human immundeficiency virus. J. Virol. 68: Matsomarino, P., C. Conti, P. Goldoni, B. Hauttecoeur, and N. Orsi Characterization of membrane components of the erythrocyte involved in vesicular stomatitis virus attachment and fusion at acidic ph. J. Gen. Virol. 68: Mayerhans, A., J. P. Vartanian, C. Hultgren, U. Plikat, A. Karlsson, L. Wang, S. Eriksson, and S. Wain-Hobson Restriction and enhancement of human immunodeficiency virus type 1 replication by modulation of intracellular deoxynucleoside triphosphate pools. J. Virol. 68: Medin, J. A., and S. Karlsson Viral vectors for gene therapy of hematopoietic cells. Immunotechnology 3: Miller, D. G., M. Adam, and A. D. Miller Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol. Cell. Biol. 10: Miyake, K., N. Suzuki, H. Matsuoka, T. Tohyama, and T. Shimada Stable integration of human immunodeficiency virus-based retroviral vectors into the chromosomes of non-dividing cells. Hum. Gene Ther. 9: Miyoshi, H., M. Takahashi, F. H Gage, and I. M. Verma Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector. Proc. Natl. Acad. Sci. USA 94: Miyoshi, H., U. Blomer, M. Takahashi, F. H. Gage, and I. M. Verma Development of self-inactivating lentivirus vector. J. Virol. 72: Miyoshi, H., K. A. Smith, D. E. Mosier, I. M. Verma, and B. E. Torbett Transduction of human CD34 cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors. Science 283: Naldini, L., U. Blomer, P. Gallay, D. Ory, R. Mulligan, F. Gage, I. Verma, and D. Trono In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272: Naldini, L., and I. Verma Lentiviral vectors, p In T. Friedmann (ed.), Development of gene therapy, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. 33. Ory, D. S., B. A. Neugebore, and R. Mulligan A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc. Natl. Acad. Sci. USA 93: Park, F., K. Ohashi, W. Chiu, L. Naldini, and M. A Kay Efficient lentiviral transduction of liver requires cell cycling in vivo. Nat. Genet. 24: Prasher, D. C., V. K. Eckenrode, W. W. Ward, F. G. Prendergast, and M. J. Cormier Primary structure of the Aequorea victoria green fluorescent protein. Gene 111: Reiser, J., G. Harmison, S. Kluepfel-Stahl, R. O. Brady, S. Karlsson, and M. Schubert Transduction of nondividing cells using pseudotyped defective high-titer HIV type 1 particles. Proc. Natl. Acad. Sci. USA 93: Stevenson, M., T. L. Stanwick, M. P. Dempsey, and C. A. Lamonica HIV-replication is controlled at the level of T cell activation and proviral integration. EMBO J. 9: Sutton, R. E., H. T. Wu, R. Rigg, E. Bohnlein, and P. O. Brown Human immunodeficiency virus type 1 vectors efficiently transduce human hematopoietic stem cells. J. Virol. 72: Sutton, R. E., M. J. Reitsma, N. Uchida, and P. O. Brown Transduction of human progenitor hematopoietic cells stem cells by human immunodeficiency virus type 1-based vectors is cell cycle dependent. J. Virol. 73: Uchida, N., R. E. Sutton, A. M. Friera, D. He, M. J. Reitsma, W. C. Chang, G. Veres, R. Scollay, and I. L. Weissman HIV, but not murine leukemia virus, vectors mediate high efficiency gene transfer into freshly isolated G 0 /G 1 human hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 95: Wang, X., B. Appukuttan, S. Ott, R. Patel, J. Irvine, J. Song, J. H. Park, R. Smith, and J. T. Stout Efficient and sustained transgene expression in human corneal cells mediated by a lentiviral vector. Gene Ther. 3: Zennou, V., C. Petit, D. Guetard, U. Nerhbass, L. Montagnier, and P. Charneau HIV-1 genome nuclear import is mediated by a central DNA flap. Cell 101: Zhang, H., L. X. Duan, G. Dornadula, and R. J. Pomerantz Increasing transduction efficiency of recombinant murine retrovirus vectors by initiation of endogenous reverse transcription: potential utility for genetic therapies. J. Virol. 69: Zufferey, R., D. Nagy, E. Mandel, L. Naldini, and D. Trono Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat. Biotechnol. 15: Zufferey, R., T. Dull, R. J. Mandel, A. Bukowsky, D. Quiroez, L. Naldini, and D. Trono Self-inactivating lentivirus vectors for safe and efficient in vivo gene delivery. J. Virol. 72: Zufferey, R., J. E. Donello, D. Trono, and T. J. Hope Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J. Virol. 73:

DNA context and promoter activity affect gene expression in lentiviral vectors

DNA context and promoter activity affect gene expression in lentiviral vectors ACTA BIOMED 2008; 79: 192-196 Mattioli 1885 O R I G I N A L A R T I C L E DNA context and promoter activity affect gene expression in lentiviral vectors Gensheng Mao 1, Francesco Marotta 2, Jia Yu 3, Liang

More information

VIROLOGY. Engineering Viral Genomes: Retrovirus Vectors

VIROLOGY. Engineering Viral Genomes: Retrovirus Vectors VIROLOGY Engineering Viral Genomes: Retrovirus Vectors Viral vectors Retrovirus replicative cycle Most mammalian retroviruses use trna PRO, trna Lys3, trna Lys1,2 The partially unfolded trna is annealed

More information

Certificate of Analysis

Certificate of Analysis Certificate of Analysis Catalog No. Amount Lot Number 631987 10 μg Specified on product label. Product Information plvx-ef1α-ires-mcherry is a bicistronic lentiviral expression vector that can be used

More information

Feb 11, Gene Therapy. Sam K.P. Kung Immunology Rm 417 Apotex Center

Feb 11, Gene Therapy. Sam K.P. Kung Immunology Rm 417 Apotex Center Gene Therapy Sam K.P. Kung Immunology Rm 417 Apotex Center Objectives: The concept of gene therapy, and an introduction of some of the currently used gene therapy vector Undesirable immune responses to

More information

A Stable System for the High-Titer Production of Multiply Attenuated Lentiviral Vectors

A Stable System for the High-Titer Production of Multiply Attenuated Lentiviral Vectors doi:10.1006/mthe.2000.0103, available online at http://www.idealibrary.com on IDEAL A Stable System for the High-Titer Production of Multiply Attenuated Lentiviral Vectors Natacha Klages, Romain Zufferey,

More information

Fayth K. Yoshimura, Ph.D. September 7, of 7 HIV - BASIC PROPERTIES

Fayth K. Yoshimura, Ph.D. September 7, of 7 HIV - BASIC PROPERTIES 1 of 7 I. Viral Origin. A. Retrovirus - animal lentiviruses. HIV - BASIC PROPERTIES 1. HIV is a member of the Retrovirus family and more specifically it is a member of the Lentivirus genus of this family.

More information

QuickTiter Lentivirus Titer Kit (Lentivirus-Associated HIV p24)

QuickTiter Lentivirus Titer Kit (Lentivirus-Associated HIV p24) Product Manual QuickTiter Lentivirus Titer Kit (Lentivirus-Associated HIV p24) Catalog Number VPK-107 VPK-107-5 96 assays 5 x 96 assays FOR RESEARCH USE ONLY Not for use in diagnostic procedures Introduction

More information

Pre-made Lentiviral Particles for Fluorescent Proteins

Pre-made Lentiviral Particles for Fluorescent Proteins Pre-made Lentiviral Particles for Fluorescent Proteins Catalog# Product Name Amounts Fluorescent proteins expressed under sucmv promoter: LVP001 LVP001-PBS LVP002 LVP002-PBS LVP011 LVP011-PBS LVP012 LVP012-PBS

More information

Certificate of Analysis

Certificate of Analysis Certificate of Analysis plvx-ef1α-ires-puro Vector Table of Contents Product Information... 1 Description... 2 Location of Features... 3 Additional Information... 3 Quality Control Data... 4 Catalog No.

More information

Certification Assays for HIV-1-Based Vectors: Frequent Passage of Gag Sequences without Evidence of Replication-Competent Viruses

Certification Assays for HIV-1-Based Vectors: Frequent Passage of Gag Sequences without Evidence of Replication-Competent Viruses ARTICLE doi:10.1016/j.ymthe.2003.08.003 Certification Assays for HIV-1-Based Vectors: Frequent Passage of Gag Sequences without Evidence of Replication-Competent Viruses Lakshmi Sastry, 1 Yi Xu, 2 Terry

More information

QuickTiter Lentivirus Quantitation Kit (HIV p24 ELISA)

QuickTiter Lentivirus Quantitation Kit (HIV p24 ELISA) New and Improved Product Manual QuickTiter Lentivirus Quantitation Kit (HIV p24 ELISA) Catalog Numbers VPK-108-HIV-p24 96 tests VPK-108-HIV-p24-5 5 x 96 tests FOR RESEARCH USE ONLY Not for use in diagnostic

More information

Development of a Sensitive Assay for Detection of Replication-Competent Recombinant Lentivirus in Large-Scale HIV-Based Vector Preparations

Development of a Sensitive Assay for Detection of Replication-Competent Recombinant Lentivirus in Large-Scale HIV-Based Vector Preparations METHOD doi:10.1016/s1525-0016(03)00167-9 Development of a Sensitive Assay for Detection of Replication-Competent Recombinant Lentivirus in Large-Scale HIV-Based Vector Preparations Paul Escarpe, Nathalie

More information

Gene transfer into stimulated and unstimulated T lymphocytes by HIV-1-derived lentiviral vectors

Gene transfer into stimulated and unstimulated T lymphocytes by HIV-1-derived lentiviral vectors (2000) 7, 596 604 2000 Macmillan Publishers Ltd All rights reserved 0969-7128/00 $15.00 www.nature.com/gt VIRAL TRANSFER TECHNOLOGY RESEARCH ARTICLE Gene transfer into stimulated and unstimulated T lymphocytes

More information

~Lentivirus production~

~Lentivirus production~ ~Lentivirus production~ May 30, 2008 RNAi core R&D group member Lentivirus Production Session Lentivirus!!! Is it health threatening to lab technician? What s so good about this RNAi library? How to produce

More information

The Choice of a Suitable Lentivirus Vector

The Choice of a Suitable Lentivirus Vector Transcriptional Targeting 17 2 The Choice of a Suitable Lentivirus Vector Transcriptional Targeting Francesco Lotti and Fulvio Mavilio 1. Oncoretroviral and Lentiviral Vectors Human immunodeficiency virus

More information

Development of Multigene and Regulated Lentivirus Vectors

Development of Multigene and Regulated Lentivirus Vectors JOURNAL OF VIROLOGY, Nov. 2000, p. 10589 10599 Vol. 74, No. 22 0022-538X/00/$04.00 0 Copyright 2000, American Society for Microbiology. All Rights Reserved. Development of Multigene and Regulated Lentivirus

More information

Carolyn Lutzko, 1,2 * Dinithi Senadheera, 1 Dianne Skelton, 1 Denise Petersen, 1 and Donald B. Kohn 1,2

Carolyn Lutzko, 1,2 * Dinithi Senadheera, 1 Dianne Skelton, 1 Denise Petersen, 1 and Donald B. Kohn 1,2 JOURNAL OF VIROLOGY, July 2003, p. 7341 7351 Vol. 77, No. 13 0022-538X/03/$08.00 0 DOI: 10.1128/JVI.77.13.7341 7351.2003 Copyright 2003, American Society for Microbiology. All Rights Reserved. Lentivirus

More information

Supplementary information. MARCH8 inhibits HIV-1 infection by reducing virion incorporation of envelope glycoproteins

Supplementary information. MARCH8 inhibits HIV-1 infection by reducing virion incorporation of envelope glycoproteins Supplementary information inhibits HIV-1 infection by reducing virion incorporation of envelope glycoproteins Takuya Tada, Yanzhao Zhang, Takayoshi Koyama, Minoru Tobiume, Yasuko Tsunetsugu-Yokota, Shoji

More information

Viral Vectors In The Research Laboratory: Just How Safe Are They? Dawn P. Wooley, Ph.D., SM(NRM), RBP, CBSP

Viral Vectors In The Research Laboratory: Just How Safe Are They? Dawn P. Wooley, Ph.D., SM(NRM), RBP, CBSP Viral Vectors In The Research Laboratory: Just How Safe Are They? Dawn P. Wooley, Ph.D., SM(NRM), RBP, CBSP 1 Learning Objectives Recognize hazards associated with viral vectors in research and animal

More information

Review and Public RAC Discussion of Protocol #

Review and Public RAC Discussion of Protocol # Review and Public RAC Discussion of Protocol #0508 725 A phase I pilot study of safety and feasibility of stem cell therapy for AIDS lymphoma using stem cells treated with a lentivirus vector encoding

More information

Supplementary Material

Supplementary Material Supplementary Material Nuclear import of purified HIV-1 Integrase. Integrase remains associated to the RTC throughout the infection process until provirus integration occurs and is therefore one likely

More information

Recombinant Protein Expression Retroviral system

Recombinant Protein Expression Retroviral system Recombinant Protein Expression Retroviral system Viruses Contains genome DNA or RNA Genome encased in a protein coat or capsid. Some viruses have membrane covering protein coat enveloped virus Ø Essential

More information

RESEARCH ARTICLE Gene transduction efficiency in cells of different species by HIV and EIAV vectors. Introduction. Results

RESEARCH ARTICLE Gene transduction efficiency in cells of different species by HIV and EIAV vectors. Introduction. Results (2002) 9, 932 938 2002 Nature Publishing Group All rights reserved 0969-7128/02 $25.00 www.nature.com/gt RESEARCH ARTICLE Gene transduction efficiency in cells of different species by HIV and EIAV vectors

More information

Retroviruses. ---The name retrovirus comes from the enzyme, reverse transcriptase.

Retroviruses. ---The name retrovirus comes from the enzyme, reverse transcriptase. Retroviruses ---The name retrovirus comes from the enzyme, reverse transcriptase. ---Reverse transcriptase (RT) converts the RNA genome present in the virus particle into DNA. ---RT discovered in 1970.

More information

Replication-competent Lentivirus Analysis of Clinical Grade Vector Products

Replication-competent Lentivirus Analysis of Clinical Grade Vector Products original article Replication-competent Lentivirus Analysis of Clinical Grade Vector Products Kenneth Cornetta 1 3, Jing Yao 1, Aparna Jasti 1, Sue Koop 1, Makhaila Douglas 1, David Hsu 4, Larry A Couture

More information

Jumpstart your research with ViraPower Lentiviral Expression Systems

Jumpstart your research with ViraPower Lentiviral Expression Systems ViraPower Lentiviral Expression Systems Jumpstart your research with ViraPower Lentiviral Expression Systems With ViraPower Lentiviral Systems you can: Efficiently transduce both dividing and non-dividing

More information

Constitutive Reporter Lentiviral Vectors Expressing Fluorescent Proteins

Constitutive Reporter Lentiviral Vectors Expressing Fluorescent Proteins Constitutive Reporter Lentiviral Vectors Expressing Fluorescent Proteins www.vectalys.com/products/ Constitutive Reporter Lentiviral Vectors Catalog Number referring to this User Manual: 0008VCT; 0009VCT;

More information

A phase I pilot study of safety and feasibility of stem cell therapy for AIDS lymphoma using stem cells treated with a lentivirus vector encoding

A phase I pilot study of safety and feasibility of stem cell therapy for AIDS lymphoma using stem cells treated with a lentivirus vector encoding A phase I pilot study of safety and feasibility of stem cell therapy for AIDS lymphoma using stem cells treated with a lentivirus vector encoding multiple anti-hiv RNAs John A. Zaia, M.D. John J. Rossi,

More information

CRISPRaTest Functional dcas9-activator Assay Kit v1 Last update: 2018/07/04 Cellecta, Inc.

CRISPRaTest Functional dcas9-activator Assay Kit v1 Last update: 2018/07/04 Cellecta, Inc. CRISPRaTest Functional dcas9-activator Assay Kit v1 Last update: 2018/07/04 Cellecta, Inc. Copyright (c) 2018 Cellecta, Inc. All Rights Reserved. Table of Contents 1. CRISPRaTest Functional dcas9-activator

More information

Nature Medicine: doi: /nm.2109

Nature Medicine: doi: /nm.2109 HIV 1 Infects Multipotent Progenitor Cells Causing Cell Death and Establishing Latent Cellular Reservoirs Christoph C. Carter, Adewunmi Onafuwa Nuga, Lucy A. M c Namara, James Riddell IV, Dale Bixby, Michael

More information

Nature Immunology: doi: /ni Supplementary Figure 1. Huwe1 has high expression in HSCs and is necessary for quiescence.

Nature Immunology: doi: /ni Supplementary Figure 1. Huwe1 has high expression in HSCs and is necessary for quiescence. Supplementary Figure 1 Huwe1 has high expression in HSCs and is necessary for quiescence. (a) Heat map visualizing expression of genes with a known function in ubiquitin-mediated proteolysis (KEGG: Ubiquitin

More information

ARTICLE doi: /mthe , available online at on IDEAL A B C FIG. 1. GFP expression of HIV-1 and FIV transduced h

ARTICLE doi: /mthe , available online at   on IDEAL A B C FIG. 1. GFP expression of HIV-1 and FIV transduced h doi:10.1006/mthe.2002.0725, available online at http://www.idealibrary.com on IDEAL ARTICLE Expression from Second-Generation Feline Immunodeficiency Virus Vectors Is Impaired in Human Hematopoietic Cells

More information

Rabies virus-like particles expressed in HEK293 cells

Rabies virus-like particles expressed in HEK293 cells Engineering Conferences International ECI Digital Archives Vaccine Technology IV Proceedings Spring 5-21-2012 Rabies virus-like particles expressed in HEK293 cells Diego Fontana Cell Culture Laboratory

More information

Development of a Self-Inactivating Lentivirus Vector

Development of a Self-Inactivating Lentivirus Vector JOURNAL OF VIROLOGY, Oct. 1998, p. 8150 5157 Vol. 72, No. 10 0022-538X/98/$04.00 0 Copyright 1998, American Society for Microbiology. All Rights Reserved. Development of a Self-Inactivating Lentivirus

More information

Pre-made Reporter Lentivirus for JAK-STAT Signaling Pathway

Pre-made Reporter Lentivirus for JAK-STAT Signaling Pathway Pre-made Reporter for JAK-STAT Signaling Pathway Cat# Product Name Amounts LVP937-P or: LVP937-P-PBS ISRE-GFP (Puro) LVP938-P or: LVP938-P-PBS ISRE-RFP (Puro) LVP939-P or: LVP939-P-PBS ISRE-Luc (Puro)

More information

Supplementary Information. Supplementary Figure 1

Supplementary Information. Supplementary Figure 1 Supplementary Information Supplementary Figure 1 1 Supplementary Figure 1. Functional assay of the hcas9-2a-mcherry construct (a) Gene correction of a mutant EGFP reporter cell line mediated by hcas9 or

More information

Pre-made Reporter Lentivirus for MAPK/ERK Signal Pathway

Pre-made Reporter Lentivirus for MAPK/ERK Signal Pathway Pre-made Reporter for MAPK/ERK Signal Pathway Cat# Product Name Amounts LVP957-P or: LVP957-P-PBS SRE-GFP (Puro) LVP958-P or: LVP958-P-PBS SRE-RFP (Puro) LVP959-P or: LVP959-P-PBS SRE-Luc (Puro) LVP960-P

More information

Gene Transfer Vector Derived from Jembrana Disease Virus: A Review

Gene Transfer Vector Derived from Jembrana Disease Virus: A Review American Journal of Biochemistry and Biotechnology Review Articles Gene Transfer Vector Derived from Jembrana Disease Virus: A Review 1,2 Asmarani Kusumawati, 3 Tenri A. Wanahari, 4 Pudji Astuti, 3 Basofi

More information

Lentiviral and Retroviral Vector Systems

Lentiviral and Retroviral Vector Systems 3 Lentiviral and Retroviral Vector Systems Renata Stripecke, PhD and Noriyuki Kasahara, MD, PhD CONTENTS INTRODUCTION BASIC PRINCIPLES OF RETROVIRAL VECTOR TECHNOLOGY APPLICATIONS OF RETROVIRAL GENE TRANSFER

More information

Fayth K. Yoshimura, Ph.D. September 7, of 7 RETROVIRUSES. 2. HTLV-II causes hairy T-cell leukemia

Fayth K. Yoshimura, Ph.D. September 7, of 7 RETROVIRUSES. 2. HTLV-II causes hairy T-cell leukemia 1 of 7 I. Diseases Caused by Retroviruses RETROVIRUSES A. Human retroviruses that cause cancers 1. HTLV-I causes adult T-cell leukemia and tropical spastic paraparesis 2. HTLV-II causes hairy T-cell leukemia

More information

QuickTiter Lentivirus Titer Kit (Lentivirus-Associated HIV p24)

QuickTiter Lentivirus Titer Kit (Lentivirus-Associated HIV p24) Product Manual QuickTiter Lentivirus Titer Kit (Lentivirus-Associated HIV p24) Catalog Number VPK-107 VPK-107-5 96 assays 5 x 96 assays FOR RESEARCH USE ONLY Not for use in diagnostic procedures Introduction

More information

Supplementary Information. Novel lentiviral vectors with mutated reverse transcriptase for mrna delivery of TALE nucleases

Supplementary Information. Novel lentiviral vectors with mutated reverse transcriptase for mrna delivery of TALE nucleases Supplementary Information Novel lentiviral vectors with mutated reverse transcriptase for mrna delivery of TALE nucleases Ulrike Mock 1, Kristoffer Riecken 1, Belinda Berdien 1, Waseem Qasim 2, Emma Chan

More information

Pre-made Reporter Lentivirus for NF-κB Signal Pathway

Pre-made Reporter Lentivirus for NF-κB Signal Pathway Pre-made Reporter for NF-κB Signal Pathway Cat# Product Name Amounts LVP965-P or: LVP965-P-PBS NFKB-GFP (Puro) LVP966-P or: LVP966-P-PBS NFKB-RFP (Puro) LVP967-P or: LVP967-P-PBS NFKB-Luc (Puro) LVP968-P

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11095 Supplementary Table 1. Summary of the binding between Angptls and various Igdomain containing receptors as determined by flow cytometry analysis. The results were summarized from

More information

Plasmid DNA and adenoviral vectors have been used in

Plasmid DNA and adenoviral vectors have been used in Multiply Attenuated, Self-Inactivating Lentiviral Vectors Efficiently Deliver and Express Genes for Extended Periods of Time in Adult Rat Cardiomyocytes In Vivo Sylvain Fleury, PhD; Eleonora Simeoni, PhD;

More information

Multi-plasmid approach

Multi-plasmid approach MISSION Lentiviral Packaging Mix Catalog Number SHP001 Storage Temperature 20 C TECHNICAL BULLETIN Product Description The MISSION Lentiviral Packaging Mix is an optimized formulation of two plasmids expressing

More information

Your Gene ATG GGT. pd1118 EF1a-ORF, Lenti-ElecD 7803 bp

Your Gene ATG GGT. pd1118 EF1a-ORF, Lenti-ElecD 7803 bp Mammalian Expression Vectors has mammalian expression vectors suitable for transient or stable expression. These vectors are available with features including various promoters, markers, and fusions. Lentiviral

More information

Transcriptional Targeting of Lentiviral Vectors by Long Terminal Repeat Enhancer Replacement

Transcriptional Targeting of Lentiviral Vectors by Long Terminal Repeat Enhancer Replacement JOURNAL OF VIROLOGY, Apr. 2002, p. 3996 4007 Vol. 76, No. 8 0022-538X/02/$04.00 0 DOI: 10.1128/JVI.76.8.3996 4007.2002 Copyright 2002, American Society for Microbiology. All Rights Reserved. Transcriptional

More information

Supplemental Materials and Methods Plasmids and viruses Quantitative Reverse Transcription PCR Generation of molecular standard for quantitative PCR

Supplemental Materials and Methods Plasmids and viruses Quantitative Reverse Transcription PCR Generation of molecular standard for quantitative PCR Supplemental Materials and Methods Plasmids and viruses To generate pseudotyped viruses, the previously described recombinant plasmids pnl4-3-δnef-gfp or pnl4-3-δ6-drgfp and a vector expressing HIV-1 X4

More information

HIV INFECTION: An Overview

HIV INFECTION: An Overview HIV INFECTION: An Overview UNIVERSITY OF PAPUA NEW GUINEA SCHOOL OF MEDICINE AND HEALTH SCIENCES DIVISION OF BASIC MEDICAL SCIENCES DISCIPLINE OF BIOCHEMISTRY & MOLECULAR BIOLOGY PBL MBBS II SEMINAR VJ

More information

Hybrid HIV/MSCV LTR Enhances Transgene Expression of Lentiviral Vectors in Human CD34 + Hematopoietic Cells

Hybrid HIV/MSCV LTR Enhances Transgene Expression of Lentiviral Vectors in Human CD34 + Hematopoietic Cells Hybrid HIV/MSCV Enhances Transgene Expression of Lentiviral Vectors in Human CD34 + Hematopoietic Cells JOHN KIM CHOI, a NGHIA HOANG, a ANTONINA M. VILARDI, a PATRICIA CONRAD, c STEPHEN G. EMERSON, b ALAN

More information

Supplemental Information

Supplemental Information Cell Host & Microbe, Volume 14 Supplemental Information HIV-1 Induces the Formation of Stable Microtubules to Enhance Early Infection Yosef Sabo, Derek Walsh, Denis S. Barry, Sedef Tinaztepe, Kenia de

More information

Haematopoietic stem cells

Haematopoietic stem cells Haematopoietic stem cells Neil P. Rodrigues, DPhil NIH Centre for Biomedical Research Excellence in Stem Cell Biology Boston University School of Medicine neil.rodrigues@imm.ox.ac.uk Haematopoiesis: An

More information

Choosing Between Lentivirus and Adeno-associated Virus For DNA Delivery

Choosing Between Lentivirus and Adeno-associated Virus For DNA Delivery Choosing Between Lentivirus and Adeno-associated Virus For DNA Delivery Presenter: April 12, 2017 Ed Davis, Ph.D. Senior Application Scientist GeneCopoeia, Inc. Outline Introduction to GeneCopoeia Lentiviral

More information

Woodchuck Hepatitis Virus Posttranscriptional Regulatory Element Enhances Expression of Transgenes Delivered by Retroviral Vectors

Woodchuck Hepatitis Virus Posttranscriptional Regulatory Element Enhances Expression of Transgenes Delivered by Retroviral Vectors JOURNAL OF VIROLOGY, Apr. 1999, p. 2886 2892 Vol. 73, No. 4 0022-538X/99/$04.00 0 Copyright 1999, American Society for Microbiology. All Rights Reserved. Woodchuck Hepatitis Virus Posttranscriptional Regulatory

More information

MATERIALS AND METHODS. Neutralizing antibodies specific to mouse Dll1, Dll4, J1 and J2 were prepared as described. 1,2 All

MATERIALS AND METHODS. Neutralizing antibodies specific to mouse Dll1, Dll4, J1 and J2 were prepared as described. 1,2 All MATERIALS AND METHODS Antibodies (Abs), flow cytometry analysis and cell lines Neutralizing antibodies specific to mouse Dll1, Dll4, J1 and J2 were prepared as described. 1,2 All other antibodies used

More information

Primate and Feline Lentivirus Vector RNA Packaging and Propagation by Heterologous Lentivirus Virions

Primate and Feline Lentivirus Vector RNA Packaging and Propagation by Heterologous Lentivirus Virions JOURNAL OF VIROLOGY, June 2001, p. 5129 5140 Vol. 75, No. 11 0022-538X/01/$04.00 0 DOI: 10.1128/JVI.75.11.5129 5140.2001 Copyright 2001, American Society for Microbiology. All Rights Reserved. Primate

More information

Human Immunodeficiency Virus

Human Immunodeficiency Virus Human Immunodeficiency Virus Virion Genome Genes and proteins Viruses and hosts Diseases Distinctive characteristics Viruses and hosts Lentivirus from Latin lentis (slow), for slow progression of disease

More information

Pre-made Lentiviral Particles for intracelular labeling: (LocLight TM Living cell imaging lentivirus for sub-cellular localization)

Pre-made Lentiviral Particles for intracelular labeling: (LocLight TM Living cell imaging lentivirus for sub-cellular localization) Pre-made Lentiviral Particles for intracelular labeling: (LocLight TM Living cell imaging lentivirus for sub-cellular localization) LocLight TM cell organelle labeling lentivirus is provided as 200ul/per

More information

HIV & AIDS: Overview

HIV & AIDS: Overview HIV & AIDS: Overview UNIVERSITY OF PAPUA NEW GUINEA SCHOOL OF MEDICINE AND HEALTH SCIENCES DIVISION OF BASIC MEDICAL SCIENCES DISCIPLINE OF BIOCHEMISTRY & MOLECULAR BIOLOGY PBL SEMINAR VJ TEMPLE 1 What

More information

Hepatitis B Antiviral Drug Development Multi-Marker Screening Assay

Hepatitis B Antiviral Drug Development Multi-Marker Screening Assay Hepatitis B Antiviral Drug Development Multi-Marker Screening Assay Background ImQuest BioSciences has developed and qualified a single-plate method to expedite the screening of antiviral agents against

More information

OCCUPATIONAL HEALTH CONSIDERATIONS FOR WORK WITH VIRAL VECTORS

OCCUPATIONAL HEALTH CONSIDERATIONS FOR WORK WITH VIRAL VECTORS OCCUPATIONAL HEALTH CONSIDERATIONS FOR WORK WITH VIRAL VECTORS GARY R. FUJIMOTO, M.D. PALO ALTO MEDICAL FOUNDATION ADJUNCT ASSOCIATE CLINICAL PROFESSOR OF MEDICINE DIVISION OF INFECTIOUS DISEASES AND GEOGRAPHIC

More information

Regulated Lentiviral Packaging Cell Line Devoid of Most Viral cis-acting Sequences

Regulated Lentiviral Packaging Cell Line Devoid of Most Viral cis-acting Sequences VIROLOGY 249, 167 174 (1998) ARTICLE NO. VY989327 Regulated Lentiviral Packaging Cell Line Devoid of Most Viral cis-acting Sequences Malvika Kaul,*, Hong Yu,*,1 Yacov Ron,* and Joseph P. Dougherty*,2 *Department

More information

Viral vectors. Part I. 27th October 2014

Viral vectors. Part I. 27th October 2014 Viral vectors Part I 27th October 2014 Prof. Józef Dulak, PhD, DSc Department of Medical Biotechnology Faculty of Biochemistry, Biophysics and Biotechnology Room 3.025/3.07 Phone 664-63-75 Email: jozef.dulak@uj.edu.pl

More information

L I F E S C I E N C E S

L I F E S C I E N C E S 1a L I F E S C I E N C E S 5 -UUA AUA UUC GAA AGC UGC AUC GAA AAC UGU GAA UCA-3 5 -TTA ATA TTC GAA AGC TGC ATC GAA AAC TGT GAA TCA-3 3 -AAT TAT AAG CTT TCG ACG TAG CTT TTG ACA CTT AGT-5 OCTOBER 31, 2006

More information

Efficient gene transfer into human primary blood lymphocytes by surface-engineered lentiviral vectors that display a T cell activating polypeptide

Efficient gene transfer into human primary blood lymphocytes by surface-engineered lentiviral vectors that display a T cell activating polypeptide GENE THERAPY Efficient gene transfer into human primary blood lymphocytes by surface-engineered lentiviral vectors that display a T cell activating polypeptide Marielle Maurice, Els Verhoeyen, Patrick

More information

Application of μmacs Streptavidin MicroBeads for the analysis of HIV-1 directly from patient plasma

Application of μmacs Streptavidin MicroBeads for the analysis of HIV-1 directly from patient plasma Excerpt from MACS&more Vol 8 1/2004 Application of μmacs Streptavidin MicroBeads for the analysis of HIV-1 directly from patient plasma L. Davis Lupo and Salvatore T. Butera HIV and Retrovirology Branch,

More information

doi: /mthe , available online at on IDEAL A B C D FIG. 1. Phenotypic analysis and transduction of primary hu

doi: /mthe , available online at   on IDEAL A B C D FIG. 1. Phenotypic analysis and transduction of primary hu Highly Efficient Lentiviral Vector-Mediated Transduction of Nondividing, Fully Reimplantable Primary Hepatocytes Tuan Huy Nguyen, 1 José Oberholzer, 2 Jacques Birraux, 3 Pietro Majno, 2 Philippe Morel,

More information

Gene Therapy for Sickle Cell Disease: A Safety/Efficacy Trial

Gene Therapy for Sickle Cell Disease: A Safety/Efficacy Trial Gene Therapy for Sickle Cell Disease: A Safety/Efficacy Trial Elizabeth Hexner A. Introduction Sickle cell disease (SCD) is an autosomal recessive disease of red blood cells (RBCs). A single amino acid

More information

DATA SHEET. Provided: 500 µl of 5.6 mm Tris HCl, 4.4 mm Tris base, 0.05% sodium azide 0.1 mm EDTA, 5 mg/liter calf thymus DNA.

DATA SHEET. Provided: 500 µl of 5.6 mm Tris HCl, 4.4 mm Tris base, 0.05% sodium azide 0.1 mm EDTA, 5 mg/liter calf thymus DNA. Viral Load DNA >> Standard PCR standard 0 Copies Catalog Number: 1122 Lot Number: 150298 Release Category: A Provided: 500 µl of 5.6 mm Tris HCl, 4.4 mm Tris base, 0.05% sodium azide 0.1 mm EDTA, 5 mg/liter

More information

Sequences in the 5 and 3 R Elements of Human Immunodeficiency Virus Type 1 Critical for Efficient Reverse Transcription

Sequences in the 5 and 3 R Elements of Human Immunodeficiency Virus Type 1 Critical for Efficient Reverse Transcription JOURNAL OF VIROLOGY, Sept. 2000, p. 8324 8334 Vol. 74, No. 18 0022-538X/00/$04.00 0 Copyright 2000, American Society for Microbiology. All Rights Reserved. Sequences in the 5 and 3 R Elements of Human

More information

Received 19 May 2004/Accepted 13 September 2004

Received 19 May 2004/Accepted 13 September 2004 JOURNAL OF VIROLOGY, Feb. 2005, p. 1666 1677 Vol. 79, No. 3 0022-538X/05/$08.00 0 doi:10.1128/jvi.79.3.1666 1677.2005 Copyright 2005, American Society for Microbiology. All Rights Reserved. Genetic Recombination

More information

GENE THERAPY: Twenty-First Century Medicine

GENE THERAPY: Twenty-First Century Medicine Annu. Rev. Biochem. 2005. 74:711 38 doi: 10.1146/annurev.biochem.74.050304.091637 Copyright c 2005 by Annual Reviews. All rights reserved First published online as a Review in Advance on March 11, 2005

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION a. Smo+/+ b. Smo+/+ 5.63 5.48 c. Lin- d. e. 6 5 4 3 Ter119 Mac B T Sca1 Smo+/+ 25 15 2 o BMT 2 1 5 * Supplementary Figure 1: Deletion of Smoothened does not alter the frequency of hematopoietic lineages

More information

EML Erythroid and Neutrophil Differentiation Protocols Cristina Pina 1*, Cristina Fugazza 2 and Tariq Enver 3

EML Erythroid and Neutrophil Differentiation Protocols Cristina Pina 1*, Cristina Fugazza 2 and Tariq Enver 3 EML Erythroid and Neutrophil Differentiation Protocols Cristina Pina 1*, Cristina Fugazza 2 and Tariq Enver 3 1 Department of Haematology, University of Cambridge, Cambridge, UK; 2 Dipartimento de Biotecnologie

More information

Supplemental Experimental Procedures

Supplemental Experimental Procedures Cell Stem Cell, Volume 2 Supplemental Data A Temporal Switch from Notch to Wnt Signaling in Muscle Stem Cells Is Necessary for Normal Adult Myogenesis Andrew S. Brack, Irina M. Conboy, Michael J. Conboy,

More information

Ready-to-use Lentiviral Particles for intracelular labeling

Ready-to-use Lentiviral Particles for intracelular labeling Ready-to-use Lentiviral Particles for intracelular labeling (LocLight TM Living cell imaging lentivirus for sub-cellular localization) LocLight TM cell organelle labeling lentivirus are provided as 200ul/per

More information

Choosing Optimal Viral Vector for T-cell Transduction. Viral vectors for blood cells

Choosing Optimal Viral Vector for T-cell Transduction. Viral vectors for blood cells Choosing Optimal Viral Vector for T-cell Transduction Max Mamonkin, PhD Center for Cell and Gene Therapy Baylor College of Medicine PACT Webinar Nov 08, 2018 Viral for blood cells Short/long term gene

More information

Nature Genetics: doi: /ng Supplementary Figure 1. HOX fusions enhance self-renewal capacity.

Nature Genetics: doi: /ng Supplementary Figure 1. HOX fusions enhance self-renewal capacity. Supplementary Figure 1 HOX fusions enhance self-renewal capacity. Mouse bone marrow was transduced with a retrovirus carrying one of three HOX fusion genes or the empty mcherry reporter construct as described

More information

Replication competent lentivirus (RCL) and replication competent retrovirus (RCR) testing of drug product. Kenneth Cornetta MD Indiana University

Replication competent lentivirus (RCL) and replication competent retrovirus (RCR) testing of drug product. Kenneth Cornetta MD Indiana University Replication competent lentivirus (RCL) and replication competent retrovirus (RCR) testing of drug product Kenneth Cornetta MD Indiana University Outline Risk from Exposure Risk of Exposure Clinical findings

More information

THE INFLUENCE OF SODIUM FLUORIDE ON THE CLONOGENECITY OF HUMAN HEMATOPOIETIC PROGENITOR CELLS: PRELIMINARY REPORT

THE INFLUENCE OF SODIUM FLUORIDE ON THE CLONOGENECITY OF HUMAN HEMATOPOIETIC PROGENITOR CELLS: PRELIMINARY REPORT 168 Fluoride Vol. 33 No. 4 168-173 2 Research Report THE INFLUENCE OF SODIUM FLUORIDE ON THE CLONOGENECITY OF HUMAN HEMATOPOIETIC PROGENITOR CELLS: PRELIMINARY REPORT Boguslaw Machaliński, a Maria Zejmo,

More information

Lenti-miRNA Expression Systems

Lenti-miRNA Expression Systems Lenti-miRNA Expression Systems Lenti-GFP-miRNA Vector Lenti-GFP-miRNA Premade Virus Lenti-miRNA Vector Lenti-miRNA Premade Virus Lenti-miRNA-Off Vector Lenti-miRNA-Off Premade Virus mh10001-mh14999 mh15001-mh19999

More information

Trans-Lentiviral TM Packaging System

Trans-Lentiviral TM Packaging System Trans-Lentiviral TM Packaging System The safest lentiviral system for expression TLP4614 - Trans-Lentiviral Packaging System, shrna TLP4615 - Trans-Lentiviral Packaging System, shrna (contains cell line)

More information

ARTICLE IN PRESS. The Effect of Age on Hepatic Gene Transfer with Self-Inactivating Lentiviral Vectors in Vivo

ARTICLE IN PRESS. The Effect of Age on Hepatic Gene Transfer with Self-Inactivating Lentiviral Vectors in Vivo IN PRESS The Effect of Age on Hepatic Gene Transfer with Self-Inactivating Lentiviral Vectors in Vivo Frank Park, 1, * Kazuo Ohashi, 2 and Mark A. Kay 2, * 1 Department of Medicine and Department of Pharmacology,

More information

on August 19, 2018 by guest

on August 19, 2018 by guest JOURNAL OF VIROLOGY, Nov. 1999, p. 9589 9598 Vol. 73, No. 11 0022-538X/99/$04.00 0 Copyright 1999, American Society for Microbiology. All Rights Reserved. A Lentivirus Packaging System Based on Alternative

More information

Clinical Significance of Human Immunodeficiency Virus Type 1 Replication Fitness

Clinical Significance of Human Immunodeficiency Virus Type 1 Replication Fitness CLINICAL MICROBIOLOGY REVIEWS, Oct. 2007, p. 550 578 Vol. 20, No. 4 0893-8512/07/$08.00 0 doi:10.1128/cmr.00017-07 Copyright 2007, American Society for Microbiology. All Rights Reserved. Clinical Significance

More information

A method to mathematically determine transduction efficiency of lentivirus in HeLa cells Research Article

A method to mathematically determine transduction efficiency of lentivirus in HeLa cells Research Article Gene Therapy and Molecular Biology Vol 15, page 138 Gene Ther Mol Biol Vol 15, 138-146, 2013 A method to mathematically determine transduction efficiency of lentivirus in HeLa cells Research Article Zhipin

More information

Development of a replication-competent lentivirus assay for dendritic cell-targeting lentiviral vectors

Development of a replication-competent lentivirus assay for dendritic cell-targeting lentiviral vectors Citation: Molecular Therapy Methods & Clinical Development (2015) 2, 15017; doi:10.1038/mtm.2015.17 All rights reserved 2329-0501/15 www.nature.com/mtm Article Development of a replication-competent lentivirus

More information

HIV Nuclear Entry: Clearing the Fog

HIV Nuclear Entry: Clearing the Fog Viruses 2010, 2, 1190-1194; doi:10.3390/v2051190 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Commentary HIV Nuclear Entry: Clearing the Fog Vaibhav B. Shah and Christopher Aiken * Department

More information

VIRUSES AND CANCER Michael Lea

VIRUSES AND CANCER Michael Lea VIRUSES AND CANCER 2010 Michael Lea VIRAL ONCOLOGY - LECTURE OUTLINE 1. Historical Review 2. Viruses Associated with Cancer 3. RNA Tumor Viruses 4. DNA Tumor Viruses HISTORICAL REVIEW Historical Review

More information

Plasmids Western blot analysis and immunostaining Flow Cytometry Cell surface biotinylation RNA isolation and cdna synthesis

Plasmids Western blot analysis and immunostaining Flow Cytometry Cell surface biotinylation RNA isolation and cdna synthesis Plasmids psuper-retro-s100a10 shrna1 was constructed by cloning the dsdna oligo 5 -GAT CCC CGT GGG CTT CCA GAG CTT CTT TCA AGA GAA GAA GCT CTG GAA GCC CAC TTT TTA-3 and 5 -AGC TTA AAA AGT GGG CTT CCA GAG

More information

Effective Targeting of Quiescent Chronic Myelogenous

Effective Targeting of Quiescent Chronic Myelogenous Cancer Cell, Volume 7 Supplemental Information Effective Targeting of Quiescent Chronic Myelogenous Leukemia Stem Cells by Histone Deacetylase Inhibitors in Combination with Imatinib Mesylate Bin Zhang,

More information

Fig. 1: Schematic diagram of basic structure of HIV

Fig. 1: Schematic diagram of basic structure of HIV UNIVERSITY OF PAPUA NEW GUINEA SCHOOL OF MEDICINE AND HEALTH SCIENCES DIVISION OF BASIC MEDICAL SCIENCES DISCIPLINE OF BIOCHEMISTRY & MOLECULAR BIOLOGY PBL SEMINAR HIV & AIDS: An Overview What is HIV?

More information

Generating kisspeptin cell lines to investigate their role in reproduction

Generating kisspeptin cell lines to investigate their role in reproduction Generating kisspeptin cell lines to investigate their role in reproduction Dakota C. Jacobs 1 Jadwiga M. Giebultowicz 2, and Patrick E. Chappell 3 1 Bioresource Research, 2 Department of Integrative Biology,

More information

Qin Yu and Casey D. Morrow 1. Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294

Qin Yu and Casey D. Morrow 1. Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294 Virology 254, 160 168 (1999) Article ID viro.1998.9542, available online at http://www.idealibrary.com on Complementarity between 3 Terminal Nucleotides of trna and Primer Binding Site Is a Major Determinant

More information

Julianne Edwards. Retroviruses. Spring 2010

Julianne Edwards. Retroviruses. Spring 2010 Retroviruses Spring 2010 A retrovirus can simply be referred to as an infectious particle which replicates backwards even though there are many different types of retroviruses. More specifically, a retrovirus

More information

Supplemental Information. Granulocyte-Monocyte Progenitors and. Monocyte-Dendritic Cell Progenitors Independently

Supplemental Information. Granulocyte-Monocyte Progenitors and. Monocyte-Dendritic Cell Progenitors Independently Immunity, Volume 47 Supplemental Information Granulocyte-Monocyte Progenitors and Monocyte-endritic ell Progenitors Independently Produce Functionally istinct Monocytes lberto Yáñez, Simon G. oetzee, ndre

More information

HIV Immunopathogenesis. Modeling the Immune System May 2, 2007

HIV Immunopathogenesis. Modeling the Immune System May 2, 2007 HIV Immunopathogenesis Modeling the Immune System May 2, 2007 Question 1 : Explain how HIV infects the host Zafer Iscan Yuanjian Wang Zufferey Abhishek Garg How does HIV infect the host? HIV infection

More information

Received 25 September 1995/Accepted 6 January 1996

Received 25 September 1995/Accepted 6 January 1996 JOURNAL OF VIROLOGY, Apr. 1996, p. 2581 2585 Vol. 70, No. 4 0022-538X/96/$04.00 0 Copyright 1996, American Society for Microbiology High-Efficiency Gene Transfer into CD34 Cells with a Human Immunodeficiency

More information