Ec DOS: Escherichia coli Direct Oxygen Sensor

Size: px
Start display at page:

Download "Ec DOS: Escherichia coli Direct Oxygen Sensor"

Transcription

1 Ec DS: Escherichia coli Direct xygen Sensor 1

2 Heme-based gas sensor protein Signal (2,, C etc.) or redox state FixL, HemAT, sgc CooA, Ec DS Sensor domain (Heme) Functional domain Protein structural change Sensor domain (Heme) Functional domain Regulation of catalysis and transcription 2

3 Heme-based gas sensor proteins FixL 2 ass/disso His kinase/nitrogen fixation Ec DS Heme redox, 2 Phosphodiesterase HemAT 2 ass/disso Methylation/aerotaxis regulation sgc ass/disso Guanylate cyclase/smooth muscle viagla CooA C ass/disso Transcription regulation PAS2 C ass/disso Transcription regulation CBS C ass/disso Cystathionine -synthase 3

4 2 Sensor 2 Sensor 2 Sensor C Sensor Sensor C Sensor Fig. 1. Families of heme-based sensors. A distinctive heme-binding domain defines each family of sensors. Subgroups (red boxes) within the families couple their heme-binding domain to different transmitters for signal transduction. Those proteins specifically named are ones that have been purified and established as heme proteins. The physiological functions, if known, are highlighted in green. The last line in each category notes the numbers and kingdom of additional members expected from sequence homology.

5 Fig. 2. Classification schema of biological heme-based sensors. Heme-based sensors and their domain organization are illustrated. Individual globin-coupled sensors are assigned to their respective class based on the known/putative functions of their signaling domains. The name ERERQR is a name given to the domain between the globin and DUF1 domain and based on the ERERQR motif it contains[7]. Color-coding corresponds to the SMART domains as represented in the figure key.

6 Heme-bound domain -PAS domain -(GAF domain) -Globin domain 6

7 J. Biol. Inorg. Chem. 8, 1 (2003) Mechanisms of ligand discrimination by heme proteins PAS domain Fig. 3 A Structure of the heme domain of BjFixL. The FG loop is shown in green. B Comparison of the structure of FG loop and conformation of Arg220 in the unliganded on (blue) and liganded off (tan) state [32, 33]

8 Function of Ec DS Escherichia coli Direct xygen Sensor (Ec DS) Gilles-Gonzales, M. A. et al. (2000) C and inhibit catalysis. Ec DS (Fe 2+ ) Ec DS (Fe 3+ ) 3, 5 -cyclic AMP 5 -AMP Heme redox state regulates the function. 8

9 ligomerization of Full-length and PAS-A PAS-A PAS-B Phosphodiesterase Fe Tetramer Dimer Fe Fe Fe Fe <Full-length> <PAS-A domain> 9

10 Fe (III) Fe (II) Ligand: H 2 Met95 Global structural change of FG-loop 10

11 Structure of Ec DS PAS Fe(II) complex FG loop Fe(III) complex FG loop Met95 distal side H ー Fe Fe His77 proximal side His77 FG loop is rigid Active FG loop is flexible Inactive 11

12 Redox-induced scissor-type subunit motion of Ec DSH 12

13 Domains Responsible for ligomerization PAS-A PAS-B Fe dimerization phosphodiesterase WT PAS-A tetramerization DPAS-B D A B C D ligo. Heme Catal. 4 2 X 4 X 4 X 4 X 1 X 4 1 X Catalysis Heme X Tetramer 13

14 Activation of Wild Type by Isolated Heme-PAS-A PAS-A PAS-A PAS-A Fe 3+ Fe 2+ PAS-B PDE e - PAS-B PDE activity: <1 activity: 5 +PAS-A Fe 2+ PAS-B PDE activity: >25 apo +H77A PAS-A apo PAS-A Fe 2+ PAS-B PDE activity: 5 +PAS-A Fe 3+ Fe 3+ PAS-A Fe 2+ PAS-B PDE activity: 5 14

15 method Protein microarray Genomics Proteomics Comprehensive analysis of cellular proteins verview of the protein microarray technology Tissues Cells Body fluids Total protein Protein microarray Protein functional analysis Protein quantification analysis 15

16 (His) 6 -tagged Ec DS: Extra peptide attached to the -terminal Anti-(His) 6 tag K d = M The extra peptide tightly binds to its antibody (Y). (a): His-tag(extra peptide)of the protein tightly binds to its antibody on the plate. Protein freedom and sensitivity substantially improved. Detection of more natural protein-protein interaction is possible. Development of the novel ultrasensitive protein microarray. 16

17 mab, Fab fragment of monoclonal antibody against (His) 6 tag Cy5, cyanine5 (FITC, fluorescein isothiocyanate) Upper: Interaction between His-tag and its antibody enhances the sensitivity. More freedom. Lower: o interaction between His-tag and its antibody. Low freedom. Low sensitivity. 17

18 egative 200 µg/ml 400 µg/ml 600 µg/ml 800 µg/ml 1000 µg/ml egative 200 µg/ml 400 µg/ml 600 µg/ml 800 µg/ml 1000 µg/ml egative 200 µg/ml 400 µg/ml 600 µg/ml 800 µg/ml 1000 µg/ml (a) Cy5 labeled PAS fragment Fe2+ (b) Cy5 labeled PAS fragment Fe3+ (a) (b) 1 mg/ml Ec DS egative Control 1 mg/ml Ec DS egative Control Reduced Ec DS Fe2+ xidized Ec DS Fe3+ (c ) Cy5 labeled PAS fragment 1 mg/ml Ec DS egative Control (c) + K3Fe(C)6 IC 50 = 30 M (a) Fe 2+ : High protein-protein interaction. (b) Fe 3+ : Low protein-protein interaction. (c): xidizing agent added to (b). o interaction Catalytic activity is associated with 18 protein-protein interaction

19 +Substrate: High interaction +Inhibitor: Low interaction Inactive mutants: Low interaction 19

20 The novel protein microarray proved that the catalytic activity of Ec DS is closely associated with the proteinprotein interaction. 20

21 Cover Art of Analytical Chemistry About the Cover Protein Microarray System for Detecting Protein-Protein Interactions Using an Anti-His-Tag Antibody and Fluorescence Scanning ovember 15, 2004 / Volume 76 / Issue Art director Julie Farrar overlaid the structure of heme with some "stop light" images created to resemble the authors' results. Print Close Window Read this Article Theoretically, detection of 10 fg protein is feasible. 21

22 1.Profound protein structural changes occur upon heme redox change. 2.Isolated heme-bound PAS domain functions. 3.Protein-protein interaction is associated with catalysis. 1). Sasakura, Y. et al. (2002) J. Biol. Chem. 277, ). Sato, A. et al. (2002) J. Biol. Chem. 277, ). Yoshimura, T. et al. (2003) J. Biol. Chem. 278, ). Taguchi, S. et al. (2004) J. Biol. Chem. 279, ). Kurokawa, H. et al. (2004) J. Biol. Chem. 279, The novel ultrasensitive protein microarray and its application 6). Sasakura, Y. et al. (2004) Anal. Chem. 76, Cover art 7). Sasakura, Y. et al. (2005) Biochemistry 44, ). Sasakura, Y. et al. (2005) Acc. Chem. Res. 39,

23 Physiological Role of Ec DS? Turnover 0.1 min -1 toward camp c-di-gmp? Knockout E. coli Growth Development Differentiation camp 23

24 Constructed Ec DS -knockout E. coli (Ddos) aerobic growth native W3110 Ddos W3110 native BL21 (DE3) Ddos BL21 (DE3) anaerobic growth native W3110 Ddos W3110 Bar = 10 m Knockout of Ec DS caused cell filamentation. 24

25 Intracellular camp level in Ddos and native W3110 native W3110 (x1 diluted) f mol / well Ddos W3110 (x10 diluted) f mol / well x 10 / Knockout of Ec DS caused excess intracellular camp. filamentation 25

26 Input signals and output of c-di-gmp metabolism Ute Römling et al., Molecular Microbiology, 2005, 57,

27 Function of Ec DS 2, C, Signal transmitter PAS domain Fe 2+ Sensor domain PDE domain Effector domain H 2 H H - P P - c-di-gmp H H H 2 Ec DS H 2 H H H - P P - - H l-di-gmp H H 2 27

28 2 2 Fe (II) Fe (II) DCSs Ec DS 2 Fe (II) 2 Fe (II) AxPDEA1 FixL DevS, DosT Inactive Forms Active Forms

29 Functional domain Inactive Functional domain Active 2 2 Fe Fe Heme domain of Ec DS Heme domain of Ec DS

30 Initial velocity of the PDE reaction (min -1 ) Catalytic activities of the Fe(II) Met95 mutants Fe(II) Arg97 Met95 PDB ID: 1V9Z Fe(II)- 2 Met95 Arg97 WT M95A M95L M95H Fe(II) M95A and M95L: gas-independent. Fe(II) WT, M95H and Arg97: gas-dependent. Thus, Met95 plays a critical role in catalytic regulation. PDB ID: 1VB6 Tanaka et al. J. Biol. Chem. 282, (2007).

31 Fe(II) 及び Fe(II) 2 体の結晶構造 Fe(II) Fe(II) 2 Met95 がヘムから脱離することでロック解除 J. Biol. Chem. 282, (2007), J. Am. Chem. Soc. 129, 3556 (200

32 1). Sasakura, Y. et al. (2002) J. Biol. Chem. 277, ). Sato, A. et al. (2002) J. Biol. Chem. 277, ). Yoshimura, T. et al. (2003) J. Biol. Chem. 278, ). Taguchi, S. et al. (2004) J. Biol. Chem. 279, ). Kurokawa, H. et al. (2004) J. Biol. Chem. 279, ). El-Mashtoly, S. F. et al. (2007) J. Am. Chem. Soc. 129, ). Tanaka, A., et al. (2007) J. Biol. Chem. 282, ). El-Mashtoly, S. F. et al. (2008) J. Biol. Chem. 283,

33 c-di-gmp metabolism in E. coli dos (yddu) yddv yddv and dos are organized as a bicistronic operon. DGC: Diguanylate cyclase signal PDE: Phosphodiesterase signal 2 GTP YddV DGC PDE DS pgpg biofil c-di- GMP motilit 33 33

34 Function of YddV 2? Signal Sensor domain YddV-heme Globin fold Fe 2+ GGDEF sequence DGC domain 2GTP c-di-gmp

35 A254 µmol c-di-gmp / µmol YddV Fe(III) 8x GTP 1 h Diguanylate cyclase activity Retention time (min) c-di-gmp 6 7 h Fe(III) Fe(II)- 2, Fe(II)-C Fe(II) Time (min) Fe(III) Fe(II)- 2, Fe(II)-C Fe(II) v 0 (min -1 ) active semi-active 0 inactive 35

36 2 2 Fe (II) Fe (II) YddV Ec DS 2 Fe (II) 2 Fe (II) AxPDEA1 FixL DevS, DosT Inactive Forms Active Forms

37 Functional domain Inactive Functional domain Active 2 2 Fe Fe Heme domain of GCS Heme domain of GCS

38 A254 [nucleotide] (µm) Coupling reaction by YddV and DS Fe(III) YddV Fe(III) DS Fe(III) DS GTP c-di-gmp pgpg GMP min min -1 8x GMP 1 h 3 GTP pgpg GTP GMP 4 2 GDP 5 8 pgpg Retention time (min) Time (min) DGC reaction is rate-determining step. 38

39 Activation mechanism triggered by min -1 Inactive Tyr43 Fe Gln60 e - His H H H Fe 3+ Fe 2+ His98 autooxidation His min-1 Active Stable Semi-Active (Intermediate) min -1 Biochemistry 49, (2010). 39

Sensing Mechanism of Globin-coupled Oxygen Sensor AfGcHK

Sensing Mechanism of Globin-coupled Oxygen Sensor AfGcHK Sensing Mechanism of Globin-coupled Oxygen Sensor AfGcHK 1 Two-component signal transduction system (1) Signal redox, temperature, osmolarity etc. sensor (2) Autophospholylation ATP HK His - P ADP (HK)

More information

Biol220 Cell Signalling Cyclic AMP the classical secondary messenger

Biol220 Cell Signalling Cyclic AMP the classical secondary messenger Biol220 Cell Signalling Cyclic AMP the classical secondary messenger The classical secondary messenger model of intracellular signalling A cell surface receptor binds the signal molecule (the primary

More information

Vets 111/Biov 111 Cell Signalling-2. Secondary messengers the cyclic AMP intracellular signalling system

Vets 111/Biov 111 Cell Signalling-2. Secondary messengers the cyclic AMP intracellular signalling system Vets 111/Biov 111 Cell Signalling-2 Secondary messengers the cyclic AMP intracellular signalling system The classical secondary messenger model of intracellular signalling A cell surface receptor binds

More information

Cell Signaling part 2

Cell Signaling part 2 15 Cell Signaling part 2 Functions of Cell Surface Receptors Other cell surface receptors are directly linked to intracellular enzymes. The largest family of these is the receptor protein tyrosine kinases,

More information

The elements of G protein-coupled receptor systems

The elements of G protein-coupled receptor systems The elements of G protein-coupled receptor systems Prostaglandines Sphingosine 1-phosphate a receptor that contains 7 membrane-spanning domains a coupled trimeric G protein which functions as a switch

More information

Receptor mediated Signal Transduction

Receptor mediated Signal Transduction Receptor mediated Signal Transduction G-protein-linked receptors adenylyl cyclase camp PKA Organization of receptor protein-tyrosine kinases From G.M. Cooper, The Cell. A molecular approach, 2004, third

More information

Cell Biology Lecture 9 Notes Basic Principles of cell signaling and GPCR system

Cell Biology Lecture 9 Notes Basic Principles of cell signaling and GPCR system Cell Biology Lecture 9 Notes Basic Principles of cell signaling and GPCR system Basic Elements of cell signaling: Signal or signaling molecule (ligand, first messenger) o Small molecules (epinephrine,

More information

Regulation of cell function by intracellular signaling

Regulation of cell function by intracellular signaling Regulation of cell function by intracellular signaling Objectives: Regulation principle Allosteric and covalent mechanisms, Popular second messengers, Protein kinases, Kinase cascade and interaction. regulation

More information

Effects of Second Messengers

Effects of Second Messengers Effects of Second Messengers Inositol trisphosphate Diacylglycerol Opens Calcium Channels Binding to IP 3 -gated Channel Cooperative binding Activates Protein Kinase C is required Phosphorylation of many

More information

FUNDAMENTALS OF BIOCHEMISTRY, CELL BIOLOGY AND BIOPHYSICS Vol. I - Biochemistry of Vitamins, Hormones and Other Messenger Molecules - Chris Whiteley

FUNDAMENTALS OF BIOCHEMISTRY, CELL BIOLOGY AND BIOPHYSICS Vol. I - Biochemistry of Vitamins, Hormones and Other Messenger Molecules - Chris Whiteley BIOCHEMISTRY OF VITAMINS, HORMONES AND OTHER MESSENGER MOLECULES Chris Whiteley Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa Keywords: phosphorylation, phosphorylase,

More information

Supplemental Data Functional characterization of core components of the Bacillus subtilis c- di-

Supplemental Data Functional characterization of core components of the Bacillus subtilis c- di- Supplemental Data Functional characterization of core components of the Bacillus subtilis c- di- GMP signaling pathway Xiaohui Gao 1,3, Sampriti Mukherjee 2, Paige M. Matthews 1, Loubna A. Hammad 1, Daniel

More information

Heme-based CO sensors. CooA. Cystathionine b-synthase (CBS)

Heme-based CO sensors. CooA. Cystathionine b-synthase (CBS) Heme-based CO sensors CooA Cystathionine b-synthase (CBS) 1 Carbon monoxide (CO): Simple! Heme Fe(II) complex, Metal complex NO, H 2 S : Complicated! Heme iron complex, Protein modification, Other molecules

More information

Chapter 11. Cell Communication. Signal Transduction Pathways

Chapter 11. Cell Communication. Signal Transduction Pathways Chapter 11 Cell Communication Signal Transduction Pathways Signal-Transduction Pathway Signal on a cell s surface is converted into a specific cellular response Local signaling (short distance) - Paracrine

More information

Hormones and Signal Transduction. Dr. Kevin Ahern

Hormones and Signal Transduction. Dr. Kevin Ahern Dr. Kevin Ahern Signaling Outline Signaling Outline Background Signaling Outline Background Membranes Signaling Outline Background Membranes Hormones & Receptors Signaling Outline Background Membranes

More information

Excerpt from J. Mol. Biol. (2002) 320, :

Excerpt from J. Mol. Biol. (2002) 320, : Excerpt from J. Mol. Biol. (2002) 320, 1095 1108: Crystal Structure of the Ternary Complex of the Catalytic Domain of Human Phenylalanine Hydroxylase with Tetrahydrobiopterin and 3-(2-Thienyl)-L-alanine,

More information

Porphyrins: Chemistry and Biology

Porphyrins: Chemistry and Biology Porphyrins: Chemistry and Biology 20.109 Lecture 6 24 February, 2011 Goals Explore some essential roles of heme in biology Appreciate how ature has used the same cofactor to achieve diverse functions Gain

More information

Biosignals, Chapter 8, rearranged, Part I

Biosignals, Chapter 8, rearranged, Part I Biosignals, Chapter 8, rearranged, Part I Nicotinic Acetylcholine Receptor: A Ligand-Binding Ion Channel Classes of Receptor Proteins in Eukaryotes, Heterotrimeric G Proteins Signaling View the Heterotrimeric

More information

Signal Transduction: Information Metabolism. Chem 454: Regulatory Mechanisms in Biochemistry University of Wisconsin-Eau Claire

Signal Transduction: Information Metabolism. Chem 454: Regulatory Mechanisms in Biochemistry University of Wisconsin-Eau Claire Signal Transduction: Information Metabolism Chem 454: Regulatory Mechanisms in Biochemistry University of Wisconsin-Eau Claire Introduction Information Metabolism How cells receive, process and respond

More information

G-Protein Signaling. Introduction to intracellular signaling. Dr. SARRAY Sameh, Ph.D

G-Protein Signaling. Introduction to intracellular signaling. Dr. SARRAY Sameh, Ph.D G-Protein Signaling Introduction to intracellular signaling Dr. SARRAY Sameh, Ph.D Cell signaling Cells communicate via extracellular signaling molecules (Hormones, growth factors and neurotransmitters

More information

Tuesday, Sept. 14, Is an enzyme a rigid system?

Tuesday, Sept. 14, Is an enzyme a rigid system? Tuesday, Sept. 14, Is an enzyme a rigid system? Early researchers thought of enzymes as rigid entities, recognizing their substrates the way a lock would recognize a key. Today's researchers, however,

More information

Chapter 11: Enzyme Catalysis

Chapter 11: Enzyme Catalysis Chapter 11: Enzyme Catalysis Matching A) high B) deprotonated C) protonated D) least resistance E) motion F) rate-determining G) leaving group H) short peptides I) amino acid J) low K) coenzymes L) concerted

More information

Chapter 11 Cell Communication Guided Reading. 3. How do intercellular connections function in cell to cell communication?

Chapter 11 Cell Communication Guided Reading. 3. How do intercellular connections function in cell to cell communication? AP Biology TEXT: Biology, Campbell and Reece 7 th Edition Name Chapter 11 Cell Communication Guided Reading This chapter is often considered difficult as you have not covered it in an introductory biology

More information

Membrane associated receptor transfers the information. Second messengers relay information

Membrane associated receptor transfers the information. Second messengers relay information Membrane associated receptor transfers the information Most signals are polar and large Few of the signals are nonpolar Receptors are intrinsic membrane proteins Extracellular and intracellular domains

More information

Lecture 15. Signal Transduction Pathways - Introduction

Lecture 15. Signal Transduction Pathways - Introduction Lecture 15 Signal Transduction Pathways - Introduction So far.. Regulation of mrna synthesis Regulation of rrna synthesis Regulation of trna & 5S rrna synthesis Regulation of gene expression by signals

More information

File name: Supplementary Information Description: Supplementary figures and supplementary tables. File name: Peer review file Description:

File name: Supplementary Information Description: Supplementary figures and supplementary tables. File name: Peer review file Description: File name: Supplementary Information Description: Supplementary figures and supplementary tables. File name: Peer review file Description: Supplementary Figure 1. Schematic of Ras biochemical coupled assay.

More information

Use of a camp BRET Sensor to Characterize a Novel Regulation of camp by the Sphingosine-1-phosphate/G 13 Pathway

Use of a camp BRET Sensor to Characterize a Novel Regulation of camp by the Sphingosine-1-phosphate/G 13 Pathway Use of a camp BRET Sensor to Characterize a Novel Regulation of camp by the Sphingosine-1-phosphate/G 13 Pathway SUPPLEMENTAL DATA Characterization of the CAMYEL sensor and calculation of intracellular

More information

Cell Communication. Chapter 11. Biology. Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Cell Communication. Chapter 11. Biology. Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 11 Cell Communication PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

Cell Communication. Chapter 11. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Cell Communication. Chapter 11. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 11 Cell Communication PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

Chapter 10. Regulatory Strategy

Chapter 10. Regulatory Strategy Chapter 10 Regulatory Strategy Regulation of enzymatic activity: 1. Allosteric Control. Allosteric proteins have a regulatory site(s) and multiple functional sites Activity of proteins is regulated by

More information

Asma Karameh BAHAA NAJJAR. Ebaa' Alzayadneh

Asma Karameh BAHAA NAJJAR. Ebaa' Alzayadneh 26 Asma Karameh BAHAA NAJJAR Ebaa' Alzayadneh Generally speaking, all cells have been programmed during development to response to specific set of extracellular signals produced by other cells.these signals

More information

Amino Acids. Review I: Protein Structure. Amino Acids: Structures. Amino Acids (contd.) Rajan Munshi

Amino Acids. Review I: Protein Structure. Amino Acids: Structures. Amino Acids (contd.) Rajan Munshi Review I: Protein Structure Rajan Munshi BBSI @ Pitt 2005 Department of Computational Biology University of Pittsburgh School of Medicine May 24, 2005 Amino Acids Building blocks of proteins 20 amino acids

More information

Chapter 15: Signal transduction

Chapter 15: Signal transduction Chapter 15: Signal transduction Know the terminology: Enzyme-linked receptor, G-protein linked receptor, nuclear hormone receptor, G-protein, adaptor protein, scaffolding protein, SH2 domain, MAPK, Ras,

More information

Chapter 20. Cell - Cell Signaling: Hormones and Receptors. Three general types of extracellular signaling. endocrine signaling. paracrine signaling

Chapter 20. Cell - Cell Signaling: Hormones and Receptors. Three general types of extracellular signaling. endocrine signaling. paracrine signaling Chapter 20 Cell - Cell Signaling: Hormones and Receptors Three general types of extracellular signaling endocrine signaling paracrine signaling autocrine signaling Endocrine Signaling - signaling molecules

More information

Review II: The Molecules of Life

Review II: The Molecules of Life Review II: The Molecules of Life Judy Wieber BBSI @ Pitt 2007 Department of Computational Biology University of Pittsburgh School of Medicine May 24, 2007 Outline Introduction Proteins Carbohydrates Lipids

More information

Tala Saleh. Ahmad Attari. Mamoun Ahram

Tala Saleh. Ahmad Attari. Mamoun Ahram 23 Tala Saleh Ahmad Attari Minna Mushtaha Mamoun Ahram In the previous lecture, we discussed the mechanisms of regulating enzymes through inhibitors. Now, we will start this lecture by discussing regulation

More information

Crystallization-grade After D After V3 cocktail. Time (s) Time (s) Time (s) Time (s) Time (s) Time (s)

Crystallization-grade After D After V3 cocktail. Time (s) Time (s) Time (s) Time (s) Time (s) Time (s) Ligand Type Name 6 Crystallization-grade After 447-52D After V3 cocktail Receptor CD4 Resonance Units 5 1 5 1 5 1 Broadly neutralizing antibodies 2G12 VRC26.9 Resonance Units Resonance Units 3 1 15 1 5

More information

MCB*4010 Midterm Exam / Winter 2008

MCB*4010 Midterm Exam / Winter 2008 MCB*4010 Midterm Exam / Winter 2008 Name: ID: Instructions: Answer all 4 questions. The number of marks for each question indicates how many points you need to provide. Write your answers in point form,

More information

Lecture 19: Review of regulation

Lecture 19: Review of regulation Chem*3560 Lecture 19: Review of regulation What is meant by cooperative allosteric regulation? Positive cooperativity - characteristic is the sigmoidal binding/activity curve T-state has weaker affinity,

More information

Signal Transduction Cascades

Signal Transduction Cascades Signal Transduction Cascades Contents of this page: Kinases & phosphatases Protein Kinase A (camp-dependent protein kinase) G-protein signal cascade Structure of G-proteins Small GTP-binding proteins,

More information

Propagation of the Signal

Propagation of the Signal OpenStax-CNX module: m44452 1 Propagation of the Signal OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section,

More information

Neurotransmitter Systems II Receptors. Reading: BCP Chapter 6

Neurotransmitter Systems II Receptors. Reading: BCP Chapter 6 Neurotransmitter Systems II Receptors Reading: BCP Chapter 6 Neurotransmitter Systems Normal function of the human brain requires an orderly set of chemical reactions. Some of the most important chemical

More information

Receptors and Drug Action. Dr. Subasini Pharmacology Department Ishik University, Erbil

Receptors and Drug Action. Dr. Subasini Pharmacology Department Ishik University, Erbil Receptors and Drug Action Dr. Subasini Pharmacology Department Ishik University, Erbil Receptors and Drug Action Receptor Receptor is defined as a macromolecule or binding site located on the surface or

More information

Cell Communication. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Cell Communication. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 11 Cell Communication PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

Patrick, An Introduction to Medicinal Chemistry 4e Chapter 5 Receptors and signal transduction

Patrick, An Introduction to Medicinal Chemistry 4e Chapter 5 Receptors and signal transduction atrick, An Introduction to Medicinal Chemistry 4e Answers to end-of-chapter questions 1) The diagram in the question shows two important hydrogen bonding interactions where AT acts both as a hydrogen bond

More information

8-Br-cAMP SQ/DDA NKH477 AC IBMX PDE AMP. camp IP 3 R. Control + ESI-09. Control + H89. peak [Ca 2+ ] c (nm) log [PTH(1-34)] (/M) log [PTH(1-34)] (/M)

8-Br-cAMP SQ/DDA NKH477 AC IBMX PDE AMP. camp IP 3 R. Control + ESI-09. Control + H89. peak [Ca 2+ ] c (nm) log [PTH(1-34)] (/M) log [PTH(1-34)] (/M) peak [Ca 2+ ] c peak [Ca 2+ ] c A 8-Br- peak [Ca 2+ ] c peak [Ca 2+ ] c AC IBMX SQ/DDA NKH477 PDE AMP PKA EPAC IP 3 R B 5 + SQ/DDA H89 ESI-9 C 5 + H89 25 25-9 -7-5 log [PTH(1-34)] -9-7 -5 log [PTH(1-34)]

More information

P450 CYCLE. All P450s follow the same catalytic cycle of;

P450 CYCLE. All P450s follow the same catalytic cycle of; P450 CYCLE All P450s follow the same catalytic cycle of; 1. Initial substrate binding 2. First electron reduction 3. Oxygen binding 4. Second electron transfer 5 and 6. Proton transfer/dioxygen cleavage

More information

Sarah Jaar Marah Al-Darawsheh

Sarah Jaar Marah Al-Darawsheh 22 Sarah Jaar Marah Al-Darawsheh Faisal Mohammad Receptors can be membrane proteins (for water-soluble hormones/ligands) or intracellular (found in the cytosol or nucleus and bind to DNA, for lipid-soluble

More information

Lecture: CHAPTER 13 Signal Transduction Pathways

Lecture: CHAPTER 13 Signal Transduction Pathways Lecture: 10 17 2016 CHAPTER 13 Signal Transduction Pathways Chapter 13 Outline Signal transduction cascades have many components in common: 1. Release of a primary message as a response to a physiological

More information

MBG301. Class IV. Classification of GPCRs according to their effector function (according to Lodish)

MBG301. Class IV. Classification of GPCRs according to their effector function (according to Lodish) MBG301 Class IV Classification of GPCRs according to their effector function (according to Lodish) 1. Adenylcyclase activation by GPCRs 2. Ion channel regulation by GPCRs 3. Phospholipase C (PLC) activation

More information

Signal-Transduction Cascades - 2. The Phosphoinositide Cascade

Signal-Transduction Cascades - 2. The Phosphoinositide Cascade Signal-Transduction Cascades - 2 The Phosphoinositide Cascade Calcium ion as a second messenger Tyrosine kinase and receptor dimerization scribd.com Faisal Khatib JU The Phosphoinositide Cascade Used by

More information

Plasma membranes. Plasmodesmata between plant cells. Gap junctions between animal cells Cell junctions. Cell-cell recognition

Plasma membranes. Plasmodesmata between plant cells. Gap junctions between animal cells Cell junctions. Cell-cell recognition Cell Communication Cell Signaling Cell-to-cell communication is essential for multicellular organisms Communicate by chemical messengers Animal and plant cells have cell junctions that directly connect

More information

Revision. General functions of hormones. Hormone receptors. Hormone derived from steroids Small polypeptide Hormone

Revision. General functions of hormones. Hormone receptors. Hormone derived from steroids Small polypeptide Hormone االله الرحمن الرحيم بسم Revision General functions of hormones. Hormone receptors Classification according to chemical nature Classification according to mechanism of action Compare and contrast between

More information

Which DNA sequence is most likely to form a hairpin structure? x indicates any nucleotide.

Which DNA sequence is most likely to form a hairpin structure? x indicates any nucleotide. Which DNA sequence is most likely to form a hairpin structure? x indicates any nucleotide. A. xxxgtcagtxxxxtatgcgxxx B. xxxtcgtatxxxxgtccgaxxx C. xxxcactgtxxxxgtactgxxx D. xxxgtcagtxxxxcctagaxxx E. xxxgtcatcxxxxgatgacxxx

More information

Biochemie 4. Cell communication - GPCR

Biochemie 4. Cell communication - GPCR Biochemie 4 Cell communication - GPCR 1 Lecture outline General principles - local and long-distance signaling - classes of receptors - molecular switches and second messengers Receptor tyrosine kinases

More information

Lipids and Membranes

Lipids and Membranes Lipids and Membranes Presented by Dr. Mohammad Saadeh The requirements for the Pharmaceutical Biochemistry I Philadelphia University Faculty of pharmacy Membrane transport D. Endocytosis and Exocytosis

More information

An Introduction to Enzyme and Coenzyme Chemistry, 2nd Ed. T. D. H. Bugg, Blackwell Science, Oxford, 2004

An Introduction to Enzyme and Coenzyme Chemistry, 2nd Ed. T. D. H. Bugg, Blackwell Science, Oxford, 2004 Combinatorial synthesis of linchpin β-turn mimic 1 2 DCC, BT 1 2 n -tbu 1 n -tbu 1) 2 FMC DCC, BT 2) piperidine 1 2 2 n -tbu 3 DCC, BT 1 2 n -tbu 3 1) Ph 3 P 2) cyclization 3) CF 3 C 2 2 1 n 3 2 Evaluated

More information

G-Proteins Receptors and 2nd Messenger Mechanism

G-Proteins Receptors and 2nd Messenger Mechanism G-Proteins Receptors and 2nd Messenger Mechanism (A lot of information in this sheet is repeated over and over. In my opinion, this is the easiest lecture, enjoy ) Recap: Receptors are specific protein

More information

Cell Communication. Chapter 11. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Cell Communication. Chapter 11. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 11 Cell Communication PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

Cell Communication. Chapter 11. Biology. Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Cell Communication. Chapter 11. Biology. Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 11 Cell Communication PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

Receptors Families. Assistant Prof. Dr. Najlaa Saadi PhD Pharmacology Faculty of Pharmacy University of Philadelphia

Receptors Families. Assistant Prof. Dr. Najlaa Saadi PhD Pharmacology Faculty of Pharmacy University of Philadelphia Receptors Families Assistant Prof. Dr. Najlaa Saadi PhD Pharmacology Faculty of Pharmacy University of Philadelphia Receptor Families 1. Ligand-gated ion channels 2. G protein coupled receptors 3. Enzyme-linked

More information

- Biosignaling: Signal transduction. References: chapter 8 of Lippincots chapter 1 3 of Lehningers

- Biosignaling: Signal transduction. References: chapter 8 of Lippincots chapter 1 3 of Lehningers Basic concepts of Metabolism Metabolism and metabolic pathway Metabolic Map Catabolism Anabolism - Regulation of Metabolism Signals from within the cell (Intracellular) Communication between cells. - Biosignaling:

More information

Cell Communication. Local and Long Distance Signaling

Cell Communication. Local and Long Distance Signaling Cell Communication Cell to cell communication is essential for multicellular organisms Some universal mechanisms of cellular regulation providing more evidence for the evolutionary relatedness of all life

More information

Life History of A Drug

Life History of A Drug DRUG ACTION & PHARMACODYNAMIC M. Imad Damaj, Ph.D. Associate Professor Pharmacology and Toxicology Smith 652B, 828-1676, mdamaj@hsc.vcu.edu Life History of A Drug Non-Specific Mechanims Drug-Receptor Interaction

More information

Chapter 9. Cellular Signaling

Chapter 9. Cellular Signaling Chapter 9 Cellular Signaling Cellular Messaging Page 215 Cells can signal to each other and interpret the signals they receive from other cells and the environment Signals are most often chemicals The

More information

INTERACTION DRUG BODY

INTERACTION DRUG BODY INTERACTION DRUG BODY What the drug does to the body What the body does to the drug Receptors - intracellular receptors - membrane receptors - Channel receptors - G protein-coupled receptors - Tyrosine-kinase

More information

Supplementary Figure 1 (previous page). EM analysis of full-length GCGR. (a) Exemplary tilt pair images of the GCGR mab23 complex acquired for Random

Supplementary Figure 1 (previous page). EM analysis of full-length GCGR. (a) Exemplary tilt pair images of the GCGR mab23 complex acquired for Random S1 Supplementary Figure 1 (previous page). EM analysis of full-length GCGR. (a) Exemplary tilt pair images of the GCGR mab23 complex acquired for Random Conical Tilt (RCT) reconstruction (left: -50,right:

More information

SUPPORTING INFORMATION. Lysine Carbonylation is a Previously Unrecognized Contributor. to Peroxidase Activation of Cytochrome c by Chloramine-T

SUPPORTING INFORMATION. Lysine Carbonylation is a Previously Unrecognized Contributor. to Peroxidase Activation of Cytochrome c by Chloramine-T Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2019 SUPPORTING INFORMATION Lysine Carbonylation is a Previously Unrecognized Contributor to

More information

Imaging energy status in live cells with a fluorescent biosensor of the intracellular ATP-to-ADP. ratio

Imaging energy status in live cells with a fluorescent biosensor of the intracellular ATP-to-ADP. ratio Imaging energy status in live cells with a fluorescent biosensor of the intracellular ATP-to-ADP ratio Mathew Tantama, Juan Ramón Martínez-François, Rebecca Mongeon, Gary Yellen* Department of Neurobiology,

More information

Lab Results: 1. Document the initial and final egg masses. 2. Calculate the percent change

Lab Results: 1. Document the initial and final egg masses. 2. Calculate the percent change Lab Results: 1. Document the initial and final egg masses. 2. Calculate the percent change 3. Draw an arrow showing which way water traveled (in or out of the egg) on your post lab. CHI- SQUARE: What if

More information

Chapter 7. Heme proteins Cooperativity Bohr effect

Chapter 7. Heme proteins Cooperativity Bohr effect Chapter 7 Heme proteins Cooperativity Bohr effect Hemoglobin is a red blood cell protein that transports oxygen from the lungs to the tissues. Hemoglobin is an allosteric protein that displays cooperativity

More information

Signal Transduction Pathways. Part 2

Signal Transduction Pathways. Part 2 Signal Transduction Pathways Part 2 GPCRs G-protein coupled receptors > 700 GPCRs in humans Mediate responses to senses taste, smell, sight ~ 1000 GPCRs mediate sense of smell in mouse Half of all known

More information

Lecture 9: Cell Communication I

Lecture 9: Cell Communication I 02.05.10 Lecture 9: Cell Communication I Multicellular organisms need to coordinate cellular functions in different tissues Cell-to-cell communication is also used by single celled organisms to signal

More information

PHSI3009 Frontiers in Cellular Physiology 2017

PHSI3009 Frontiers in Cellular Physiology 2017 Overview of PHSI3009 L2 Cell membrane and Principles of cell communication L3 Signalling via G protein-coupled receptor L4 Calcium Signalling L5 Signalling via Growth Factors L6 Signalling via small G-protein

More information

Cellular Signaling Pathways. Signaling Overview

Cellular Signaling Pathways. Signaling Overview Cellular Signaling Pathways Signaling Overview Signaling steps Synthesis and release of signaling molecules (ligands) by the signaling cell. Transport of the signal to the target cell Detection of the

More information

Cell Communication. Chapter 11. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Cell Communication. Chapter 11. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 11 Cell Communication PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

Computational Biology I LSM5191

Computational Biology I LSM5191 Computational Biology I LSM5191 Aylwin Ng, D.Phil Lecture 6 Notes: Control Systems in Gene Expression Pulling it all together: coordinated control of transcriptional regulatory molecules Simple Control:

More information

HORMONES (Biomedical Importance)

HORMONES (Biomedical Importance) hormones HORMONES (Biomedical Importance) Hormones are the chemical messengers of the body. They are defined as organic substances secreted into blood stream to control the metabolic and biological activities.

More information

Signaling. Dr. Sujata Persad Katz Group Centre for Pharmacy & Health research

Signaling. Dr. Sujata Persad Katz Group Centre for Pharmacy & Health research Signaling Dr. Sujata Persad 3-020 Katz Group Centre for Pharmacy & Health research E-mail:sujata.persad@ualberta.ca 1 Growth Factor Receptors and Other Signaling Pathways What we will cover today: How

More information

*Today s lecture is from chapter 15 from a book called Stryer the doctor gave us the website:

*Today s lecture is from chapter 15 from a book called Stryer the doctor gave us the website: *Today s lecture is from chapter 15 from a book called Stryer the doctor gave us the website: You can Google it (Pubmed) or www.ncbi.nlm.nih.gov/books/nbk21205/,the book also has lots of medical articles

More information

Innate Immunity & Inflammation

Innate Immunity & Inflammation Innate Immunity & Inflammation The innate immune system is an evolutionally conserved mechanism that provides an early and effective response against invading microbial pathogens. It relies on a limited

More information

Statin inhibition of HMG-CoA reductase: a 3-dimensional view

Statin inhibition of HMG-CoA reductase: a 3-dimensional view Atherosclerosis Supplements 4 (2003) 3/8 www.elsevier.com/locate/atherosclerosis Statin inhibition of HMG-CoA reductase: a 3-dimensional view Eva Istvan * Department of Molecular Microbiology, Howard Hughes

More information

Mechanisms of Hormone Action

Mechanisms of Hormone Action Mechanisms of Hormone Action General principles: 1. Signals act over different ranges. 2. Signals have different chemical natures. 3. The same signal can induce a different response in different cells.

More information

Principles of cell signaling Lecture 4

Principles of cell signaling Lecture 4 Principles of cell signaling Lecture 4 Johan Lennartsson Molecular Cell Biology (1BG320), 2014 Johan.Lennartsson@licr.uu.se 1 Receptor tyrosine kinase-induced signal transduction Erk MAP kinase pathway

More information

Cell Signaling (part 1)

Cell Signaling (part 1) 15 Cell Signaling (part 1) Introduction Bacteria and unicellular eukaryotes respond to environmental signals and to signaling molecules secreted by other cells for mating and other communication. In multicellular

More information

Judy Wieber. Department of Computational Biology. May 27, 2008

Judy Wieber. Department of Computational Biology. May 27, 2008 Review II: The Molecules of Life Judy Wieber BBSI @ Pitt 2008 Department of Computational Biology University it of Pittsburgh School of Medicine i May 27, 2008 Outline Introduction Proteins Carbohydrates

More information

Signal Transduction: G-Protein Coupled Receptors

Signal Transduction: G-Protein Coupled Receptors Signal Transduction: G-Protein Coupled Receptors Federle, M. (2017). Lectures 4-5: Signal Transduction parts 1&2: nuclear receptors and GPCRs. Lecture presented at PHAR 423 Lecture in UIC College of Pharmacy,

More information

Student number. University of Guelph Department of Chemistry and Biochemistry Structure and Function In Biochemistry

Student number. University of Guelph Department of Chemistry and Biochemistry Structure and Function In Biochemistry University of Guelph Department of Chemistry and Biochemistry 19356 Structure and Function In Biochemistry Midterm Test, March 3, 1998. Time allowed, 90 min. Answer questions 120 on the computer scoring

More information

Cellular signaling is primarily chemical

Cellular signaling is primarily chemical Lecture 23: Cellular Signaling, using chemotaxis as a model system Reading: Alberts Ch 16, Pollard Chapter 24, and Phillips Ch 19.4 Cellular signaling is primarily chemical Cells can detect both chemical

More information

number Done by Corrected by Doctor Nayef Karadsheh

number Done by Corrected by Doctor Nayef Karadsheh number 11 Done by حسام أبو عوض Corrected by Moayyad Al-Shafei Doctor Nayef Karadsheh 1 P a g e General Regulatory Aspects in Metabolism: We can divide all pathways in metabolism to catabolicand anabolic.

More information

GPCR. 2. Briefly describe the steps in PKA activation by a GPCR signal. You are encouraged to include a sketch.

GPCR. 2. Briefly describe the steps in PKA activation by a GPCR signal. You are encouraged to include a sketch. Biochemical Signaling Many of the most critical biochemical signaling pathways originate with an extracellular signal being recognized by a GPCR or a RTK. In this activity, we will explore these two signaling

More information

Supplementary Figure 1.TRIM33 binds β-catenin in the nucleus. a & b, Co-IP of endogenous TRIM33 with β-catenin in HT-29 cells (a) and HEK 293T cells

Supplementary Figure 1.TRIM33 binds β-catenin in the nucleus. a & b, Co-IP of endogenous TRIM33 with β-catenin in HT-29 cells (a) and HEK 293T cells Supplementary Figure 1.TRIM33 binds β-catenin in the nucleus. a & b, Co-IP of endogenous TRIM33 with β-catenin in HT-29 cells (a) and HEK 293T cells (b). TRIM33 was immunoprecipitated, and the amount of

More information

By the name of Allah

By the name of Allah By the name of Allah Receptors function and signal transduction ( Hormones and receptors Types) We were talking about receptors of the neurotransmitters; we have 2 types of receptors: 1- Ionotropic receptors

More information

Incorporation of photo-caged lysine (pc-lys) at K273 of human LCK allows specific control of the enzyme activity.

Incorporation of photo-caged lysine (pc-lys) at K273 of human LCK allows specific control of the enzyme activity. Supplementary Figure 1 Incorporation of photo-caged lysine (pc-lys) at K273 of human LCK allows specific control of the enzyme activity. (a) Modeling of the kinase domain of LCK with ATP (left) or pc-lys

More information

Life Science 1A Final Exam. January 19, 2006

Life Science 1A Final Exam. January 19, 2006 ame: TF: Section Time Life Science 1A Final Exam January 19, 2006 Please write legibly in the space provided below each question. You may not use calculators on this exam. We prefer that you use non-erasable

More information

PCB 3023 Exam 4 - Form A First and Last Name

PCB 3023 Exam 4 - Form A First and Last Name PCB 3023 Exam 4 - Form A First and Last Name Student ID # (U Number) A Before beginning this exam, please complete the following instructions: 1) Write your name and U number on the first page of this

More information

Supplementary Material

Supplementary Material Supplementary Material HLA-DM Captures Partially Empty HLA-DR Molecules for Catalyzed Peptide Removal Anne-Kathrin Anders, Melissa J. Call, Monika-Sarah E. D. Schulze, Kevin D. Fowler, David A. Schuert,

More information

Chemistry 135, First Exam. September 23, Chem 135, Exam 1 SID:

Chemistry 135, First Exam. September 23, Chem 135, Exam 1 SID: Chemistry 135, First Exam September 23, 2015 This exam will be worth 15% of your overall grade. Please read all instructions/questions carefully and provide answers in the space provided. There should

More information

Molecular Cell Biology - Problem Drill 19: Cell Signaling Pathways and Gene Expression

Molecular Cell Biology - Problem Drill 19: Cell Signaling Pathways and Gene Expression Molecular Cell Biology - Problem Drill 19: Cell Signaling Pathways and Gene Expression Question No. 1 of 10 1. Which statement about cell signaling is correct? Question #1 (A) Cell signaling involves receiving

More information

Designer Affinity Reagents. Reagents. Types of Affinity. M13 Bacteriophage. 900 nm x 10 nm. Brian Kay Src SH3 domain.

Designer Affinity Reagents. Reagents. Types of Affinity. M13 Bacteriophage. 900 nm x 10 nm. Brian Kay Src SH3 domain. Designer Affinity Reagents Brian Kay bkay@uic.edu Types of Affinity Reagents Src SH3 domain Lysozyme Src SH3 domain FN3 monobody Peptide Ligand Antibody Fragment Scaffold M13 Bacteriophage 900 nm 10 nm

More information

Reading Packet 2- Cells Unit. Chapter 6: A Tour of the Cell 1. What is resolving power?

Reading Packet 2- Cells Unit. Chapter 6: A Tour of the Cell 1. What is resolving power? AP Biology Reading Packet 2- Cells Unit Name Chapter 6: A Tour of the Cell 1. What is resolving power? 2. How is an electron microscope different from a light microscope and what is the difference between

More information