Chem 263 Nov 26, 2013 O R' alkyl. acid. ethyl. acetic acid. ethyl acetate ethyl ethanoate

Size: px
Start display at page:

Download "Chem 263 Nov 26, 2013 O R' alkyl. acid. ethyl. acetic acid. ethyl acetate ethyl ethanoate"

Transcription

1 hem 263 ov 26, 2013 arboxylic Acids and Derivatives omenclature Esters Systematic names for esters are derived by first giving the name of the alkyl group attached to the oxygen, and then identifying the carboxylic acid portion of the molecule. In doing so, the -ic acid is replaced with -ate. When naming, the 1 carbon is always the carbon attached to the oxygen in the alkyl chain and the carbonyl in the acid portion. ' acid alkyl In the below example, the alkyl chain is identified as an ethyl group and the carboxylic acid is identified as acetic acid. Identification of the alkyl chain and dropping the -ic acid, replacing it with -ate, gives the name ethyl acetate. The systematic name for this compound would be ethyl ethanoate. acetic acid ethyl ethyl acetate ethyl ethanoate Amide ame the corresponding acid, drop -ic acid or oic acid, add amide. If there is alkyl group on the amide nitrogen, then precede the chemical name with -alkyl, such as -methyl. lassification:

2 1 Primary amide where there are two hydrogens attached to amide nitrogen If 1 = Formamide methanamide 1 Secondary amide where there is one hydrogen attached to amide nitrogen If 1 = -methylformamide 1 Tertiary amide where there is no hydrogen attached to amide nitrogen If 1 = dimethylformamide Usually amides are planar, because the lone pair on nitrogen can conjugate into the carbonyl

3 omenclature: Formamide. The corresponding parent acid is formic acid. Follow the rule above, drop ic acid and replace with amide, the above molecule is named as formamide. Systematically, it is known as methanamide. 2 3 omenclature: -ethylformamide. The letter at the beginning of the name indicates that the ethyl group is attached on the nitrogen. 3 3 omenclature:, -dimethylformamide (DMF). This is a very common polar aprotic solvent. Make sure you know its name and structure. It may also be named,dimethylmethanamide. arboxylate Salts The general form of a carboxylate salt is: M where M is usually a metal ion. arboxylate salts are named by first specifying the cation (such as sodium or ammonium), and then naming the carboxylic acid, where the ic acid is replaced with ate. a

4 This counterion in this molecule is sodium, so we include it first. The carboxylic acid is acetic acid, so we replace the ic acid with ate and get acetate. Therefore, this molecule is known as sodium acetate. Examples: 4 a 4 Ammonium benzoate Sodium benzoate Ammonium acetate omenclature examples: Arachidonic Acid Arachidonic acid is a polyunsaturated fatty acid, and is one of the essential fatty acids required by most mammals. It is a precursor in the production of eicosanoids: the prostaglandins, thromboxanes, prostacyclin and the leukotrienes (through enzymes including cyclooxygenase, lipoxygenase and peroxidase). hemically, arachidonic acid is a carboxylic acid with a 20-carbon chain and four cis double bonds. ecall from previous lecture, a 20-carbon alkane is named eicosane. To name the acid, you would drop -e, add oic acid. Since arachidonic acid has 4 double bonds, it would an eicosatetraene. All double bonds are cis, therefore are in Z configuration. Putting everything together, the systematic name is 5Z,8Z,11Z,14Zeicosatetraenoic acid. The molecule shown is a sleep hormone leamide. It has 18 carbons. An 18 carbon alkane is called octadecane. The corresponding alkene would be octadecene. The corresponding acid would be 9-octadecenoic acid, and for the amide the systematic name is 9Z-octadecenamide. 2

5 Below is an example of a molecule with two carboxylic acid groups. The first step to naming this compound is to find the parent alkane chain. Since it is a 6 carbon chain, it is a hexane. We then drop the -e and add -oic acid for the name to become hexanoic acid. Since there are two carboxylic acids present, the name becomes hexandioic acid. We notice that there is a double bond present in the molecule and therefore the name becomes hexendioic acid. The numbering of the chain should give the lowest number for the alkene, therefore the alkene is at 2 if you start numbering from the left, giving the name 2-hexendioic acid. Since the alkene is a trans double bond, the final name of this compound is 2E-hexendioic acid E-hexendioic acid Another naming example is given below. The first step is to find the parent alkane chain. This example once again has a 6 carbon chain and is a hexane. We then drop the -e and add -oic acid for the name to become hexanoic acid. There are two double bonds present in the molecule and therefore the name becomes hexadienoic acid. The numbering of the chain gives the carboxylic acid carbon 1 and therefore the alkenes are at 2 and 4 if you start numbering from the left giving the name 2,4-hexadienoic acid. Both alkenes are trans double bonds, therefore the final name for this molecule is 2E,4Ehexadienoic acid E,4E-hexadienoic acid The molecule shown is a sex pheromone for elephants. What kind of functional groups are present in this molecule?

6 alkene ester ecall for esters, you name the alkyl part first (drop e and add yl ) and then the ic acid of the parent acid is replaced with ate. The alkyl group attached to oxygen has 12 carbons. A 12 carbon alkane is named a dodecane, and the corresponding alkene would be dodecene. The parent acid is acetic acid. When replaced with -ate, it is acetate dodecenyl acetate The systematic name for this pheromone is 7Z-dodecenyl acetate. If any part of this molecule is changed (remove a carbon, or extend by a carbon on the acetate part, or change the configuration of the double bond), it would not work as sex pheromone. Examples A more difficult example is the following growth inhibitor of fleas used in anti-flea powders on dogs and cats. When naming this compound, first the alkyl chain should be identified. The longest chain is 2 carbons and therefore is a substituted ethyl group. When numbering from the carbon attached to the oxygen, the methyl substituent is at 1 giving a 1-methylethyl (or isopropyl) chain. The acid portion of this molecule is a little more difficult. Firstly, we should identify the longest chain in the acid portion to get the parent alkane name. Since the longest chain is 12 carbons, it is a dodecane. Secondly, there are two trans alkenes in this molecule at the 2 and 4 positions when numbering starts at the carbonyl carbon to give dodeca-2e,4e-diene. The parent name for the acid would then be dodeca-2e,4e-dienoic acid. Since the molecule is an ester, dropping the -ic acid and replacing it with -ate gives the name dodeca-2e,4e-dienoate. Lastly is the naming of the substituents on the parent acid chain. At positions 3, 7, and 11 are methyl groups and at 11 is a methoxy group. The 7 methyl group is a stereogenic center and is in the S configuration. By combining the acid portion of the name and the alkyl portion, the final name for this molecule is isopropyl 11-methoxy-3,7S,11- trimethyldodeca-2e,4e-dienoate. Instead of isopropyl, one can call the alkyl part 1- methylethyl. growth inhibitor of fleas used in anti-flea powder

7 isopropyl 11-methoxy-3,7S,11-trimethyldodeca-2E,4E-dienoate Lactones: cyclic esters The ring size of the lactone can be described by starting at the carbonyl carbon and designating the other carbons in the ring with Greek letters (shown in figure) until the oxygen atom is reached. $ # "!! $ # $!!!-lactone $-lactone #-lactone "-lactone You should be able to recognize all four lactones shown above and know that lactones are cyclic esters. bovolide Bovolide is responsible for the butter flavor. What kind of lactone is the above molecule? Answer: It is a γ-lactone. Specifically, an α,β-unsaturated γ-lactone.

8 glycoside This molecule is digitoxin from plant foxglove. It is a very toxic substance. In small amounts, it is a cardioactive drug. If taken in excess, it is a heart stimulant that can give instant heart attack. Is the at position 3 on the A ring α or β substituted? Answer: it is β. What kind of lactone does it have? Answer: it is γ-lactone, since the lactone is 5-member ring. Lactams: cyclic amides Similar to lactones, the ring size of the lactam is described by starting at the carbonyl carbon and designating the other carbons in the ring with Greek letters until the nitrogen atom is reached.!-lactam $-lactam #-lactam "-lactam The four-, five-, and six-member rings appear frequently in nature. Examples:

9 S 2 S 2 2 penicillin G 6-aminopenicillanic acid Properties of arboxylic Acids Since carboxylic acids are structurally related to both ketones and aldehydes, we would expect to see some similar structural properties. The carbonyl carbon of carboxylic acids is sp 2 hybridized with an approximate bond angle of 120. The electronegative oxygen also makes the carbonyl carbon partially positively charged and susceptible to nucleophilic attack. arboxylic acids with more than six carbons are only slightly soluble in water, but alkali metal salts of carboxylic acids are often quite water soluble because of their ionic nature. ther carboxylic acid derivatives, such as acid chlorides, anhydrides, and esters, are quite insoluble in water. Acid chlorides and anhydrides react with water, as we will see later. Some amide derivatives are also soluble in water. Like alcohols, carboxylic acids are strongly associated because of hydrogen bonding. Most carboxylic acids can exist as cyclic dimers held together by two hydrogen bonds, which are represented by the dashed lines. cyclic dimer This strong hydrogen bonding has a noticeable effect on boiling points, making carboxylic acids much higher boiling than the corresponding alcohols >100.

10 Dissociation of arboxylic Acids As the name implies, carboxylic acids are acidic. They therefore react with bases such as sodium hydroxide to give metal carboxylate salts. Like other Bronsted-Lowry acids discussed in previous courses, carboxylic acids dissociate slightly in dilute aqueous solution to give 3 + ( ) and carboxylate anions, -. The carboxylate anion is stabilized by resonance where the negative charge is delocalized over both oxygen atoms. emember that we use a double-headed arrow only when electrons are being moved (resonance forms) and not when atoms are moving As with all acids, we can define an acidity constant K a which equals the concentration of the carboxylate salt multiplied by the concentration of ( + ) divided by the concentration of the carboxylic acid. K a = [ - ] [ + ] [] For most carboxylic acids, K a is approximately Acetic acid, for example, has K a = , which corresponds to a pk a of 4.5 (pk a = -log K a ). In practical terms, K a values near 10-5 mean that only about one part in 100,000 is dissociated, as opposed to 100% dissociation found with strong mineral acids such as l and 2 S 4. Substituent Effects on Acidity The pk a value of a carboxylic acid is quite different when it is substituted. Since the dissociation of a carboxylic acid is an equilibrium reaction, any factor that stabilizes the carboxylate anion relative to the undissociated carboxylic acid will drive the equilibrium toward increased dissociation and result in increased acidity. For example, an electronwithdrawing group attached to the carboxyl should inductively withdraw electron density, thereby stabilizing the carboxylate anion and increase acidity. An electrondonating group would conversely do the opposite.

11 Electronegative substituents, such as halogens, make the carboxylate anion more stable by inductively withdrawing electrons. Fluoroacetic acid and trifluoroacetic acid are both stronger acids than acetic acid because they stabilize the carboxylate anion by inductively withdrawing electron density. F 2 F 3 pka = 4.5 pka = 2.6 pka = 0.2 Preparation of arboxylic Acids You have already seen most of the methods for the preparation of carboxylic acids so here is a review. xidative cleavage of an alkene with aqueous KMn 4 gives a carboxylic acid if the alkene has at least one vinylic hydrogen. KMn 4 old KMn 4 heat 2 xidation of an alkylbenzene derivative with KMn 4 gives a substituted benzoic acid derivative. Both primary and secondary alkyl groups can be oxidized but tertiary groups cannot. ' KMn 4 heat 2 xidation of primary alcohols and aldehydes yields carboxylic acids when oxidized with KMn 4 2 r 4 or Jones reagent (r 3, 2, 2 S 4 ). The oxidation of primary alcohols proceeds via an aldehyde intermediate, which is further oxidized to the carboxylic acid.

12 KMn 4 or Jones reagent 2 r 4 The haloform reaction converts a methyl ketone into a carboxylate salt plus a haloform (chloroform, l 3 ; bromoform, Br 3 ; or iodoform, I 3 ) and is the qualitative test for methyl ketones. X 2 a 3 a X a + + X 3 From alkyl halide (or Grignard reagent) and 2 : X Mg MgX : 2 MgX 2 l Br Mg MgBr l eactions of arboxylic Acids and Derivatives: Strong ucleophiles The strong nucleophiles (u: - ) that we have learned in this course are either hydride anion ( - ) or alkyl anion ( - ). As well, remember that attack by strong nucleophiles is not reversible.

13 ydride anion comes from hydride donor such as LiAl 4 or ab 4 (however, ab 4 is not strong enough reaction on carboxylic acid derivatives except for acid chlorides). Alkyl anion comes from M, where is an alkyl group and M is a metal (these reagents include Grignard reagents (MgX) and alkyl lithium reagents Li). Grignard reagents fail with carboxylic acids, but alkyl lithium reagents can be used. General mechanism: Y u This step is reversible with weak nucleophiles but irreversible with strong nucleophiles u Y u u u u u u Addition of nucleophile depends on stability of leaving group. You can easily transform the most reactive carboxylic acid derivatives to less reactive carboxylic acid derivatives but you cannot easily transform the least reactive derivative to the most reactive derivative. Most reactive toward uc l Least reactive toward uc

where R doesn t have to equal R or R

where R doesn t have to equal R or R hem 263 Nov 24, 2016 arboxylic Acids and Derivatives arboxylic acids are very important compounds in nature and serve as building blocks for preparing related derivatives such as esters and amides. The

More information

Fundamentals of Organic Chemistry CHEM 109 For Students of Health Colleges Credit hrs.: (2+1)

Fundamentals of Organic Chemistry CHEM 109 For Students of Health Colleges Credit hrs.: (2+1) Fundamentals of Organic Chemistry CHEM 109 For Students of Health Colleges Credit hrs.: (2+1) King Saud University College of Science, Chemistry Department CHEM 109 CHAPTER 7. CARBOXYLIC ACIDS AND THEIR

More information

1/3/2011. Chapter 17 Carboxylic Acids and Their Derivatives. Nucleophilic Addition- Elimination at the Acyl Carbon

1/3/2011. Chapter 17 Carboxylic Acids and Their Derivatives. Nucleophilic Addition- Elimination at the Acyl Carbon Introduction The carboxyl group (-CO 2 H) is the parent group of a family of compounds called acyl compounds or carboxylic acid derivatives Chapter 17 Carboxylic Acids and Their Derivatives. Nucleophilic

More information

Carboxylic Acids. The Importance of Carboxylic Acids (RCO 2 H)

Carboxylic Acids. The Importance of Carboxylic Acids (RCO 2 H) Carboxylic Acids The Importance of Carboxylic Acids (RCO 2 H) Starting materials for acyl derivatives (esters, amides, and acid chlorides) Abundant in nature from oxidation of aldehydes and alcohols in

More information

Chapter 18 Carboxylic Acids and Their Derivatives. Nucleophilic Addition- Elimination at the Acyl Carbon

Chapter 18 Carboxylic Acids and Their Derivatives. Nucleophilic Addition- Elimination at the Acyl Carbon Chapter 18 Carboxylic Acids and Their Derivatives. Nucleophilic Addition- Elimination at the Acyl Carbon Introduction The carboxyl group (-CO 2 H) is the parent group of a family of compounds called acyl

More information

Carboxylic Acids and their Derivatives I

Carboxylic Acids and their Derivatives I 2302272 Org Chem II Part I Lecture 5 Carboxylic Acids and their Derivatives I Instructor: Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th Recommended Textbook: Chapter 20 in Organic Chemistry,

More information

Chapter 18. Carboxylic Acids and Their Derivatives. Nucleophilic Addition-Elimination at the Acyl Carbon

Chapter 18. Carboxylic Acids and Their Derivatives. Nucleophilic Addition-Elimination at the Acyl Carbon Chapter 18 Carboxylic Acids and Their Derivatives. Nucleophilic Addition-Elimination at the Acyl Carbon Carboxylic Acids Organic compounds characterized by their acidity Contains COOH group (must be at

More information

10. CARBOXYLIC ACIDS AND THEIR DERIVATIVES 10.1 Nomenclature of Carboxylic Acids 10.2 Physical Properties of Carboxylic Acids 10.

10. CARBOXYLIC ACIDS AND THEIR DERIVATIVES 10.1 Nomenclature of Carboxylic Acids 10.2 Physical Properties of Carboxylic Acids 10. BOOKS 1) Organic Chemistry Structure and Function, K. Peter C. Vollhardt, Neil Schore, 6th Edition 2) Organic Chemistry, T. W. Graham Solomons, Craig B. Fryhle 3) Organic Chemistry: A Short Course, H.

More information

Chapter 20: Carboxylic Acids and Nitriles شیمی آلی 2

Chapter 20: Carboxylic Acids and Nitriles شیمی آلی 2 Chapter 20: Carboxylic Acids and Nitriles شیمی آلی 2 Dr M. Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran m-mehrdad@guilan.ac.ir Based on McMurry s Organic Chemistry, 7 th edition The

More information

R O R' Acid anhydride. Acid halide. Carboxylic acid. Ester O O O O. Nitrile Acyl phosphate Thioester. Amide

R O R' Acid anhydride. Acid halide. Carboxylic acid. Ester O O O O. Nitrile Acyl phosphate Thioester. Amide Chapter 10. Carboxylic Acids and Derivatives Carboxylic acid X Acid halide ' Acid anhydride Ester ' P N 2 C N S' Amide Nitrile Acyl phosphate Thioester The common structural feature of all these compounds

More information

Chapter 10. Carboxylic Acids and Derivatives. Naming Carboxylic Acids and Derivatives. Carboxylic Acids: RCOOH (RCO 2 H)

Chapter 10. Carboxylic Acids and Derivatives. Naming Carboxylic Acids and Derivatives. Carboxylic Acids: RCOOH (RCO 2 H) Chapter 10 Carboxylic Acids and Derivatives Naming Carboxylic Acids and Derivatives Carboxylic Acids: RCH (RC 2 H) The functional group of a carboxylic acid is a carboxyl group (carbonyl & hydroxyl group)

More information

Chapter 19: Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution 19.1: Nomenclature of Carboxylic Acid Derivatives (please read)

Chapter 19: Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution 19.1: Nomenclature of Carboxylic Acid Derivatives (please read) problem 18.33b - = 128.7 123.9 179.7 146.8 147.4 45.3 18.0 161 hapter 19: arboxylic Acid Derivatives: ucleophilic Acyl Substitution 19.1: omenclature of arboxylic Acid Derivatives (please read) carboxylic

More information

EXPERIMENT 8 (Organic Chemistry II) Carboxylic Acids Reactions and Derivatives

EXPERIMENT 8 (Organic Chemistry II) Carboxylic Acids Reactions and Derivatives EXPERIMENT 8 (rganic Chemistry II) Carboxylic Acids Reactions and Derivatives Pahlavan/Cherif Materials Medium test tubes (6) Test tube rack Beakers (50, 150, 400 ml) Ice Hot plate Graduated cylinders

More information

Chapter 20 Carboxylic Acids. Introduction

Chapter 20 Carboxylic Acids. Introduction hapter 20 arboxylic Acids Introduction arbonyl (-=) and hydroxyl (-H) on the same carbon is carboxyl group. arboxyl group is usually written -H or 2 H. Aliphatic acids have an alkyl group bonded to -H.

More information

Carboxylic Acids and Their Derivatives. Chapter 17. Carboxylic Acids and Their Derivatives

Carboxylic Acids and Their Derivatives. Chapter 17. Carboxylic Acids and Their Derivatives Chapter 17 Carboxylic Acids and Their Derivatives Chapter 17 suggested problems: 36, 38, 40, 42, 44, 52, 54, 56, 62, 64, 66, 70 Class Notes I. Carboxylic acids (organic acids) and their derivatives A.

More information

Esters of Carboxylic Acids These are derivatives of carboxylic acids where the hydroxyl group is replaced by an alkoxy group.

Esters of Carboxylic Acids These are derivatives of carboxylic acids where the hydroxyl group is replaced by an alkoxy group. Carboxylic acid Derivatives Carboxylic acid derivatives are described as compounds that can be converted to carboxylic acids via simple acidic or basic hydrolysis. The most important acid derivatives are

More information

CARBOXYLIC ACIDS AND THEIR DERIVATIVES: NUCLEOPHILIC ADDITION-ELIMINATION AT THE ACYL CARBON

CARBOXYLIC ACIDS AND THEIR DERIVATIVES: NUCLEOPHILIC ADDITION-ELIMINATION AT THE ACYL CARBON CARBOXYLIC ACIDS AND THEIR DERIVATIVES: NUCLEOPHILIC ADDITION-ELIMINATION AT THE ACYL CARBON RED ANT WAS SOURCE OF FORMIC ACID (RCOOH) Lecture 8 ORGANIC CHEMISTRY 2 Introduction The carboxyl group (-CO

More information

Chapter 20: Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution

Chapter 20: Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution hapter 20: arboxylic Acid Derivatives: ucleophilic Acyl Substitution 20.1: omenclature of arboxylic Acid Derivatives (please read) carboxylic acid -oic acid ' ester -oate ' lactone cyclic ester l acid

More information

Carboxylic Acids and Their Derivatives

Carboxylic Acids and Their Derivatives arboxylic Acids and Their Derivatives Families ontaining the arbonyl Group Family Y Z Y Z aldehyde or ketone carboxylic acid or -- ester or -- acid halide or -F,-l,-Br,-I acid anhydride or amide or -N

More information

13. Carboxylic Acids (text )

13. Carboxylic Acids (text ) 2009, Department of Chemistry, The University of Western ntario 13.1 13. Carboxylic Acids (text 14.1 14.9) A. Structure and Nomenclature The carboxylic acid functional group results from the connection

More information

Alehydes, Ketones and Carboxylic Acid

Alehydes, Ketones and Carboxylic Acid Alehydes, Ketones and Carboxylic Acid Aldehydes and Ketones: Introduction Aldedydes and ketones are organic compounds that contain carbon-oxygen doule bonds. The general formula for aldehydes is O C R

More information

Carboxylic Acid Derivatives Reading Study Problems Key Concepts and Skills Lecture Topics: Structures and reactivity of carboxylic acid derivatives

Carboxylic Acid Derivatives Reading Study Problems Key Concepts and Skills Lecture Topics: Structures and reactivity of carboxylic acid derivatives Carboxylic Acid Derivatives Reading: Wade chapter 21, sections 21-1- 21-16 Study Problems: 21-45, 21-46, 21-48, 21-49, 21-50, 21-53, 21-56, 21-58, 21-63 Key Concepts and Skills: Interpret the spectra of

More information

Physical properties: C L = L. Cl, NH 2, OCH 3, OH, OCR O O O NH 2 CH 3 N(CH 3 ) 2. Sol. in H 2 O

Physical properties: C L = L. Cl, NH 2, OCH 3, OH, OCR O O O NH 2 CH 3 N(CH 3 ) 2. Sol. in H 2 O Lecture Notes hem 51 S. King hapter 22 arboxylic Acids and their Derivatives: Nucleophilic Acyl Substitution I. Structure and Physical Properties: Type 2 carbonyl compounds (carboxylic acids and derivatives)

More information

Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution

Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Carboxylic Acid Derivatives Carboxylic acid derivatives. Acyl chloride Acid anhydride Ester Amide Nucleophilic acyl substitution 19.1 Nomenclature

More information

Paper 9: ORGANIC CHEMISTRY-III (Reaction Mechanism-2) Module17: Reduction by Metal hydrides Part-II CHEMISTRY

Paper 9: ORGANIC CHEMISTRY-III (Reaction Mechanism-2) Module17: Reduction by Metal hydrides Part-II CHEMISTRY Subject Chemistry Paper No and Title Module No and Title Module Tag 9: ORGANIC -III (Reaction Mechanism-2) 17: Reduction by Metal hydrides Part-1I CHE_P9_M17 Table of Contents 1. Learning Outcomes 2. Introduction

More information

Ch 21 Carboxylic Acid Derivatives and Nu Acyl Subst n

Ch 21 Carboxylic Acid Derivatives and Nu Acyl Subst n Ch 21 Carboxylic Acid Derivatives and Nu Acyl Subst n Acid Derivatives and their Names - Acid Halides have a Cl or Br instead of OH. Replace ic acid with yl halide, such as propionyl chloride (a common

More information

Organic Chemistry. Chapter 23. Hill, Petrucci, McCreary & Perry 4 th. Ed. Alkane to Substituent Group methane CH 4 methyl CH 3

Organic Chemistry. Chapter 23. Hill, Petrucci, McCreary & Perry 4 th. Ed. Alkane to Substituent Group methane CH 4 methyl CH 3 hapter 23 rganic hemistry ill, Petrucci, Mcreary & Perry 4 th Ed. Alkane to Substituent Group methane 4 methyl 3 ethane 3 3 ethyl 3 2 propane 3 2 3 propyl 3 2 2 isopropyl ( 3 ) 2 or 3 3 butyl 3 2 2 2 butane

More information

CH 3 C H 3 O. anhydride acid. ester amide. O acid O. amide. acid. amide. acid. nitriles

CH 3 C H 3 O. anhydride acid. ester amide. O acid O. amide. acid. amide. acid. nitriles C 21: Carboxylic Acid Derivatives Topics: aming Interconversion of Acid Derivatives eactions of each functional group Connections: anhydride acid ester amide acid ester amide acid amide 2 acid nitriles

More information

Chapters 13/14: Carboxylic Acids and Carboxylic Acid Derivatives

Chapters 13/14: Carboxylic Acids and Carboxylic Acid Derivatives CHM 201 (Elements of Organic Chemistry) Dr. Virgil Lee Cal Poly Pomona Chapters 13/14: Carboxylic Acids and Carboxylic Acid Derivatives resonance stabilized OH group donates electron density to carbonyl

More information

Prelab 6: Carboxylic Acids

Prelab 6: Carboxylic Acids The Structure of Carboxylic Acids Prelab 6: Carboxylic Acids Carboxylic acids contain a carboxyl functional group attached to a hydrocarbon (alkyl group) part. Carboxyl groups contain both a carbonyl group,

More information

Carboxylic Acids and Esters

Carboxylic Acids and Esters arboxylic Acids and Esters N Goalby hemrevise.org - absorption IR Spectrum for arboxylic acids Butanoic acid 1 Solubility in Water The smaller carboxylic (up to 4) acids dissolve in water in all proportions

More information

Loudon Chapter 21 Review: Carboxylic Acid Derivatives Jacquie Richardson, CU Boulder Last updated 3/20/2018

Loudon Chapter 21 Review: Carboxylic Acid Derivatives Jacquie Richardson, CU Boulder Last updated 3/20/2018 Loudon Chapter 21 eview: Carboxylic Acid Derivatives Jacquie ichardson, CU Boulder Last updated 3/20/2018 We learned how to make a lot of carboxylic acid derivatives from acids in Ch. 20, but now we ll

More information

Chem 263 Nov 21, 2013

Chem 263 Nov 21, 2013 hem 263 Nov 21, 2013 arbohydrates- emiacetal Formation You know from previous lectures that carbonyl compounds react with all kinds of nucleophiles. ydration and hemiacetal formation are typical examples.

More information

Lecture 19. Nucleophilic Acyl Substitution Y - + X - Y X R C X. April 2, Chemistry 328N

Lecture 19. Nucleophilic Acyl Substitution Y - + X - Y X R C X. April 2, Chemistry 328N Lecture 19 Nucleophilic Acyl Substitution X Y - - Y X X - Y April 2, 2019 hemistry 328N Acid-catalyzed Esterification (also called Fischer esterification) H H 3 H H H 2 H 3 Please study the mechanism hemistry

More information

Carboxylic Acids, Esters and Acyl Chlorides

Carboxylic Acids, Esters and Acyl Chlorides R hemistry A 432 arboxylic Acids, Esters and Acyl hlorides arboxylic Acids, Esters and Acyl hlorides arboxylic acids contain the functional group, attached to an alkyl stem. They are widely found in nature,

More information

Carboxylic Acid Derivatives

Carboxylic Acid Derivatives arboxylic Acid Derivatives The most important derivatives of carboxylic acids are l " ' ' acid halide acid anhydride an ester an amide Although not direct derivatives, nitriles, -, are related to carboxylic

More information

DERIVATIVES OF CARBOXYLIC ACIDS

DERIVATIVES OF CARBOXYLIC ACIDS 13 Rl RH RNH 2 RR RR DERIVATIVES F ARBXYLI AIDS HAPTER SUMMARY 13.1 Structure and Nomenclature of arboxylic Acid Derivatives A. Structure arboxylic acids and their derivatives can be expressed as variations

More information

A carboxylic acid is an organic compound that contains a carboxyl group, COOH

A carboxylic acid is an organic compound that contains a carboxyl group, COOH 1.6 Carboxylic Acids, Esters and Fats Carboxylic Acids A carboxylic acid is an organic compound that contains a carboxyl group, COOH These compounds are weak acids. Citrus fruits, crabapples, rhubarb,

More information

Carboxylic Acids and Nitriles. Chapters 20, 21 Organic Chemistry, 8th Edition John McMurry

Carboxylic Acids and Nitriles. Chapters 20, 21 Organic Chemistry, 8th Edition John McMurry Carboxylic Acids and Nitriles Chapters 20, 21 Organic Chemistry, 8th Edition John McMurry 1 Carboxylic Acid Derivatives 2 Carboxylic Acid Derivatives nitrile R = CH 3 acetonitrile 3 Structure and Bonding

More information

Ch. 21: CARBOXYLIC ACID DERIVATIVES AND NUCLEOPHILIC ACYL SUBSTITUTION REACTIONS Nomenclature of Carboxylic Acid Derivatives:

Ch. 21: CARBOXYLIC ACID DERIVATIVES AND NUCLEOPHILIC ACYL SUBSTITUTION REACTIONS Nomenclature of Carboxylic Acid Derivatives: h. 21: ABXYLI AID DEIVATIVES AND NULEPILI AYL SUBSTITUTIN EATINS Nomenclature of arboxylic Acid Derivatives: arboxylic acids "-oic acid" Examples: 3 2 Propanoic acid yclohexanecarboxylic acid 1 arboxylate

More information

Carboxylic Acids and Derivatives. Decarboxylation R H + CO 2. R OH Reaction type: Elimination. H H Malonic acid. Mechanism:

Carboxylic Acids and Derivatives. Decarboxylation R H + CO 2. R OH Reaction type: Elimination. H H Malonic acid. Mechanism: rganic hemistry arboxylic Acids and Derivatives Decarboxylation eaction type: Elimination 2 Malonic acid Mechanism: 235 rganic hemistry arboxylic Acids and Derivatives ucleophilic Acyl Substitution u Two

More information

Chapter 17 Carboxylic Acids, Esters, and Amides Prepared by Andrea D. Leonard University of Louisiana at Lafayette

Chapter 17 Carboxylic Acids, Esters, and Amides Prepared by Andrea D. Leonard University of Louisiana at Lafayette Chapter 17 Carboxylic Acids, Esters, and Amides Prepared by Andrea D. Leonard University of Louisiana at Lafayette Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

More information

Chem 263 B6 Notes March 30, 2006 Demo-In-Class: O

Chem 263 B6 Notes March 30, 2006 Demo-In-Class: O hem 263 B6 otes March 30, 2006 Demo-In-lass: + 2 carbon dioxide carbonic acid arbon dioxide ( 2 ) is a solid at -78. It is dry ice. When it is added to water, we made carbonated water (as in soda pop).

More information

Chap 7: Alcohols, Phenols, & Thiols

Chap 7: Alcohols, Phenols, & Thiols Chap 7: Alcohols, Phenols, & Thiols Objectives: Chap 7: Alcohols, Phenols, & Thiols (Chapter 7 and pages 283-285 & 296-297, A-1 & A-2 in lab manual) 1. Identify molecules as an alcohol, phenol, glycol,

More information

H O. rapidly reduces. They dissolve. because they can hydrogen bond to the water molecules.

H O. rapidly reduces. They dissolve. because they can hydrogen bond to the water molecules. 3.9 arboxylic Acids and Derivatives Naming arboxylic acids These have the ending oic acid but no number is necessary for the acid group as it must always be at the end of the chain. The numbering always

More information

Carboxylic Acids and Carboxylic Acid Deriva3ves. Nucleophilic Acyl Subs0tu0on (Addi0on- Elimina0on)

Carboxylic Acids and Carboxylic Acid Deriva3ves. Nucleophilic Acyl Subs0tu0on (Addi0on- Elimina0on) Carboxylic Acids and Carboxylic Acid Deriva3ves Nucleophilic Acyl Subs0tu0on (Addi0on- Elimina0on) 1 Carboxylic Compounds Acyl group bonded to X, an electronega3ve atom or leaving group Includes: X = halide

More information

Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions

Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions Dr. Ayad Kareem Department of Pharmaceutical Chemistry, Collage of Pharmacy Al-Mustansiriyah University (2017-2018). Closely related

More information

Lecture Notes Chemistry Mukund P. Sibi Lecture 31 Reactions at the Alpha-Carbon of Carbonyl Compounds

Lecture Notes Chemistry Mukund P. Sibi Lecture 31 Reactions at the Alpha-Carbon of Carbonyl Compounds Lecture Notes hemistry 342-2008 Mukund P. Sibi eactions at the Alpha-arbon of arbonyl ompounds Enolates are nucleophilic and undergo reaction with electrophiles. For example, one can do halogenation under

More information

Carbon s unique bonding pattern arises from the hybridization of the electrons.

Carbon s unique bonding pattern arises from the hybridization of the electrons. Unit 8 Neptune, the 8 th planet of our solar system Organic Chemistry Organic: compound containing carbon, excluding oxides and carbonates Carbon is an allotrope, meaning it has different bonding patterns.

More information

Alkane C-C single bond (propane) Alkene C=C double bond (propene) Alcohol - OH group (1-propanol) major. minor

Alkane C-C single bond (propane) Alkene C=C double bond (propene) Alcohol - OH group (1-propanol) major. minor Functional group* and name? Alkane - single bond (propane) *alkanes not really regarded as a functional group Alkene = double bond (propene) Addition of an unsymmetrical reagent to unsymmetrical alkene

More information

Chemistry 1120 Exam 1 Study Guide

Chemistry 1120 Exam 1 Study Guide Chemistry 1120 Exam 1 Study Guide Chapter 3 3.1 a) Know that alcohols contain a hydroxy (-OH) group. Determine the IUPAC name for a given structure by determining the longest chain. b) Determine the number

More information

Oregon State University

Oregon State University H 223 Worksheet 9 Notes Oregon State University 1. Draw a primary alcohol and name it. OH 1-propanol Note: A primary alcohol has the form RH 2 OH; a secondary alcohol has the form R 2 H OH; and a tertiary

More information

Chemistry Chapter 19

Chemistry Chapter 19 hemistry 2100 hapter 19 arboxyl Derivatives In this chapter, we study three classes of compounds derived from carboxylic acids; anhydrides, esters, and amides. Each is related to a carboxyl group by loss

More information

ORGANIC SYNTHESIS VIA ENOLATES

ORGANIC SYNTHESIS VIA ENOLATES 1 ORGANIC SYNTHESIS VIA ENOLATES Aldehydes and ketones undergo nucleophilic addition reaction at the carbonyl group. Further, α-hydrogen containing compounds are acidic in nature. In addition to carbonyl

More information

Lecture 20. Herman Emil Fischer Nobel Prize 1902 Sugars, Esters and Purines. April 4, Chemistry 328N

Lecture 20. Herman Emil Fischer Nobel Prize 1902 Sugars, Esters and Purines. April 4, Chemistry 328N Lecture 20 April 4, 2019 Herman Emil Fischer 1852-1919 Nobel Prize 1902 Sugars, Esters and Purines Acid-catalyzed Esterification (also called Fischer esterification) CH CH 3 H H H 2 CCH 3 Please study

More information

Chapter 21. Carboxylic Acid Derivatives. and Nucleophilic Acyl Substitution. Reactions. - many carboxylic acid derivatives are known:

Chapter 21. Carboxylic Acid Derivatives. and Nucleophilic Acyl Substitution. Reactions. - many carboxylic acid derivatives are known: hapter 21 arboxylic Acid Derivatives and ucleophilic Acyl Substitution eactions - many carboxylic acid derivatives are known: X ' carboxylic acid acid halide (X = F, l, Br, I) acid anhydride ' 2 ester

More information

Functional Derivatives of Carboxylic Acids

Functional Derivatives of Carboxylic Acids Functional Derivatives of Carboxylic Acids Derivatives of Carboxylic Acids are compounds in which the OH of a carboxyl group has been replaced by CI, OOCR, NH2, or OR'to convert acid chlorides,anhydrides,

More information

Chapter 21 The Chemistry of Carboxylic Acid Deriva7ves

Chapter 21 The Chemistry of Carboxylic Acid Deriva7ves Organic Chemistry, 5th ed. Marc Loudon Chapter 21 The Chemistry of Carboxylic Acid Deriva7ves Eric J. Kantorowski California Polytechnic State University San Luis Obispo, CA Chapter 21 Overview 21.1 Nomenclature

More information

Chemistry B11 Chapters 14 Amines, aldehydes, ketones and carboxylic acids

Chemistry B11 Chapters 14 Amines, aldehydes, ketones and carboxylic acids Chapters 4 Amines, aldehydes, ketones and carboxylic acids Amines: are derivatives from ammonia ( 3 ). Aliphatic amines: an amine in which nitrogen is bonded only to alkyl group or hydrogens. Aromatic

More information

CH 3. Lipids CHAPTER SUMMARY

CH 3. Lipids CHAPTER SUMMARY H 3 C H 3 C 15 H 3 C H Views of Cholesterol APTER SUMMARY 15.1 The Nature of can best be defined as biomolecules which are soluble to a great extent in solvents. In contrast to carbohydrates, proteins

More information

IR Spectroscopy Part II

IR Spectroscopy Part II IR Spectroscopy Part II Carbonyl - compounds For simple aldehydes and ketones, the stretching vibration of the carbonyl group is a strong infrared absorption beetwen 1710 and 1740 cm -1. Alkyl substituents

More information

6/9/2015. Unit 15: Organic Chemistry Lesson 15.2: Substituted Hydrocarbons & Functional Groups

6/9/2015. Unit 15: Organic Chemistry Lesson 15.2: Substituted Hydrocarbons & Functional Groups 1-chloropropane 2-methylpropane 1-iodobutane Ethanoic Acid Unit 15: Organic Chemistry Lesson 15.2: Substituted Hydrocarbons & Functional Groups 43 It Ain t Just Hydrocarbons There are all sorts of organic

More information

Chapter 15 Alcohols, Diols, and Thiols

Chapter 15 Alcohols, Diols, and Thiols Chapter 15 Alcohols, Diols, and Thiols 15.1 Sources of Alcohols Methanol Methanol is an industrial chemical end uses: solvent, antifreeze, fuel principal use: preparation of formaldehyde Methanol Methanol

More information

School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus Chemical Reactivity 120R. Organic Reactions

School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus Chemical Reactivity 120R. Organic Reactions Boiling point (o) School of hemistry and Physics, University of KwaZulu-atal, Westville ampus hemical eactivity 120 rganic ALKAES Saturated hydrocarbons - contain only carbon and hydrogen atoms, where

More information

Alcohol aldehydes cetones and carboxylic acids

Alcohol aldehydes cetones and carboxylic acids Alcohol aldehydes cetones and carboxylic acids 1 Classes of organic compounds 2 Alcohols Alcohols are organic compounds containing hydroxyl (-OH) group attached to C atom. In an alcohol, -OH group replaces

More information

10/29/ Stability of Alkenes. Stability of Alkenes. Stability of Alkenes

10/29/ Stability of Alkenes. Stability of Alkenes. Stability of Alkenes 7.5 Stability of cis and trans isomers Interconversion does not occur spontaneously Cis isomers are less stable than trans isomers because of the steric strain between the two larger substituents on the

More information

Carboxylic acid derivatives

Carboxylic acid derivatives Carboxylic acid derivatives Nucleophilic acyl substitution reaction Among the most important reactions of carboxylic acids are those that convert the carboxyl group into other acid derivatives by a nucleophilic

More information

Oxidizing Alcohols. Questions. Prediction. Analysis. Safety Precautions. Materials. Conclusions. Procedure. 74 MHR Unit 1 Organic Chemistry

Oxidizing Alcohols. Questions. Prediction. Analysis. Safety Precautions. Materials. Conclusions. Procedure. 74 MHR Unit 1 Organic Chemistry xidizing Alcohols SKILL FUS Predicting Performing and recording Analyzing and interpreting Acidified potassium permanganate solution, KMn 4(aq), acts as an oxidizing agent when it comes in contact with

More information

REACTIONS OF CARBOXYLIC ACID DERIVATIVES WITH NUCLEOPHILES A. Reactions of Acid Chlorides with Nucleophiles

REACTIONS OF CARBOXYLIC ACID DERIVATIVES WITH NUCLEOPHILES A. Reactions of Acid Chlorides with Nucleophiles 1016 CHAPTER 1 THE CHEMITRY F CARBXYLIC ACID DERIVATIVE 1.8 REACTI F CARBXYLIC ACID DERIVATIVE WITH UCLEPHILE ection 1.7 showed that all carboxylic acid derivatives hydrolyze to carboxylic acids. Water

More information

Infrared Spectroscopy

Infrared Spectroscopy Carbonyl Compounds Cl H H N 2 1810 cm -1 (band 1) 1800 cm -1 1760 cm -1 both present (band 2) 1735 cm -1 1725 cm -1 1715 cm -1 1710 cm -1 1690 cm -1 Inductive Effects esonance Effects stronger bond W W

More information

Carbonyl Chemistry VI + C O C. 1pm In Geology Room 112. Exam is Monday 11am-1pm. Chemistry /06/02

Carbonyl Chemistry VI + C O C. 1pm In Geology Room 112. Exam is Monday 11am-1pm. Chemistry /06/02 arbonyl hemistry VI Ō - + hemistry 391 11/06/02 Exam is Monday 11am-1pm 1pm In Geology Room 112 The Dibasic Acids h - My - Such - hemistry 391 11/06/02 Good- Apple- Pie- Fischer Esterification Esters can

More information

This is an addition reaction. (Other types of reaction have been substitution and elimination). Addition reactions are typically exothermic.

This is an addition reaction. (Other types of reaction have been substitution and elimination). Addition reactions are typically exothermic. Reactions of Alkenes Since bonds are stronger than bonds, double bonds tend to react to convert the double bond into bonds + X-Y X Y This is an addition reaction. (Other types of reaction have been substitution

More information

Identifying Functional Groups. (Chapter 2 in the Klein text)

Identifying Functional Groups. (Chapter 2 in the Klein text) Identifying Functional Groups (Chapter 2 in the Klein text) Basic Ideas A functional group is a substructure within a molecule that will have the potential to undergo chemical change, i.e. the group has

More information

TOPIC 4. CARBOXYLIC ACIDS AND THEIR DERIVATES: NUCLEOPHILIC ADDITION-ELIMINATION AT THE ACYL CARBON (Chapter 17)

TOPIC 4. CARBOXYLIC ACIDS AND THEIR DERIVATES: NUCLEOPHILIC ADDITION-ELIMINATION AT THE ACYL CARBON (Chapter 17) L TPI 4. ABXYLI AIDS AND TEI DEIVATES: NULEPILI ADDITIN-ELIMINATIN AT TE AYL ABN (hapter 17) BJETIVES 1. Name carboxylic acids and acid derivatives: acyl chlorides, anhydrides, esters, amides and nitriles

More information

Topic 4.5 COMPOUNDS CONTAINING THE CARBONYL GROUP. Aldehydes and Ketones Carboxylic Acids and their Salts Esters Acyl Chlorides and Acid Anhydrides

Topic 4.5 COMPOUNDS CONTAINING THE CARBONYL GROUP. Aldehydes and Ketones Carboxylic Acids and their Salts Esters Acyl Chlorides and Acid Anhydrides Topic 4.5 MPUNDS NTAINING TE ARBNYL GRUP Aldehydes and Ketones arboxylic Acids and their Salts Esters Acyl hlorides and Acid Anhydrides ALDEYDES AND KETNES 1. Introduction Aldehydes and ketones are collectively

More information

Chemistry B11 Chapters 13 Esters, amides and carbohydrates

Chemistry B11 Chapters 13 Esters, amides and carbohydrates Chapters 13 Esters, amides and carbohydrates Esters: esters are derived from carboxylic acids (the hydrogen atom in the carboxyl group of carboxylic acid is replaced by an alkyl group). The functional

More information

3150:112 SAMPLE TEST 2. Print out a copy Answer the questions on your own. Check the answers at GOBC Ans.pdf. Good Luck!

3150:112 SAMPLE TEST 2. Print out a copy Answer the questions on your own. Check the answers at GOBC Ans.pdf. Good Luck! SAMPLE TEST 2 3150:112 Print out a copy Answer the questions on your own. Check the answers at GOBC Ans.pdf. Good Luck! QUESTIONS 1-3 REFER TO TE FOLLOWING: A. C 2 O O B. C 2 O O O C 2 O C. O C 2 O 1.

More information

Chapter 9 Lecture Notes: Carboxylic Acids, Amines, and Amides

Chapter 9 Lecture Notes: Carboxylic Acids, Amines, and Amides Educational Goals Chapter 9 Lecture Notes: Carboxylic Acids, Amines, and Amides 1. Given the structure of a carboxylic acid, carboxylate ion, ester, amide, or amine molecule, be able to give the systematic

More information

Alkenes. Isomerism in the alkenes

Alkenes. Isomerism in the alkenes Alkenes Alkenes are a family of hydrocarbons (compounds containing carbon and hydrogen only) containing a carbon-carbon double bond. The first two are: ethene 2 4 propene 3 6 You can work out the formula

More information

Please read and sign the Honor Code statement below:

Please read and sign the Honor Code statement below: CHEM 3311 Exam #1 Name Dr. Minger June 6, 2016 Please read and sign the Honor Code statement below: I pledge that on my honor, as a University of Colorado at Boulder student, I have neither given nor received

More information

Level 3 Chemistry, 2007

Level 3 Chemistry, 2007 Level 3 hemistry, 2007 Annotated answers to this organic paper. Q1 QUESTIN NE Give the proper name that gives the structure a unique name (a) Give the systematic IUPA names for the following molecules

More information

Name the ester produced when methanol and pentanoic acid react. methyl pentanoate. Name the type of reaction used to make an ester

Name the ester produced when methanol and pentanoic acid react. methyl pentanoate. Name the type of reaction used to make an ester 1 Name the ester produced when methanol and pentanoic acid react methyl pentanoate 2 Name the type of reaction used to make an ester condensation reaction 3 Name the by-product of the reaction used to

More information

Chapter 13: Alcohols, Phenols, and Ethers

Chapter 13: Alcohols, Phenols, and Ethers Chapter 13: Alcohols, Phenols, and Ethers ALCOHOLS, PHENOLS, AND ETHERS Hydroxy group the OH functional group An alcohol has an OH group attached to an aliphatic carbon. General formula: R-OH A phenol

More information

ESTERS AND RELATED CARBOXYLIC ACID DERIVATIVES. Jack DeRuiter

ESTERS AND RELATED CARBOXYLIC ACID DERIVATIVES. Jack DeRuiter ESTES AD ELATED ABYLI AID DEIVATIVES I. Structure and Preparation Jack Deuiter Esters are derivatives of carboxylic acids that arise via replacement of the hydroxyl () portion of the acid function with

More information

Alkenes are very useful in syntheses -they allow us to convert into many of the other types of functional groups.

Alkenes are very useful in syntheses -they allow us to convert into many of the other types of functional groups. Chapter 7: Alkenes: reactions and synthesis Alkenes are very useful in syntheses -they allow us to convert into many of the other types of functional groups. 7.1 Preparation of alkenes: preview Addition

More information

3/14/2011. Worked Example Stability of Alkenes. 7.4 Alkene Stereochemistry and the E,Z Designation

3/14/2011. Worked Example Stability of Alkenes. 7.4 Alkene Stereochemistry and the E,Z Designation 7.4 Alkene Stereochemistry and the E,Z Designation E,Z system Sequence rules used to assign priorities to the substituent groups on the double-bond carbons (alkenes) E double bond For German entgegen meaning

More information

Lipids Definition. Definition: Water insoluble No common structure (though generally large R groups)

Lipids Definition. Definition: Water insoluble No common structure (though generally large R groups) Lipids Definition Definition: Water insoluble No common structure (though generally large R groups) Water Solubility (Hydrophilic) What makes molecules water soluble (hydrophilic)? Like dissolves like

More information

CHM 2200C April 28, (Please Print)

CHM 2200C April 28, (Please Print) M 2200 April 28, 2005 Final Exam Name KEY (Please Print) Points The test consists of six pages. Print your name legibly on each page now. A seventh page contains approximate pk values for some acids. You

More information

Chapter 8 Lecture Reactions of Alkenes

Chapter 8 Lecture Reactions of Alkenes Organic Chemistry, 9 th Edition L. G. Wade, Jr. Chapter 8 Lecture Reactions of Alkenes 2017 Pearson Education, Inc. Catalytic Hydrogenation of Alkenes Hydrogen (H 2 ) can be added across the double bond

More information

Chapter 9 Educational Goals

Chapter 9 Educational Goals Chapter 9 Educational Goals 1. Given the structure of a carboxylic acid, carboxylate ion, ester, amide, or amine molecule, be able to give the systematic names and vice versa. 2. Know and understand the

More information

4 Types of Organic Polar Reactions

4 Types of Organic Polar Reactions Objective 12 Apply Reactivity Principles to Electrophilic Addition Reactions 1: Alkenes Identify structural features (pi bond) and electrophiles Use curved arrows to predict product 4 Types of Organic

More information

Lab 6: Reactions of Organic Compounds and Qualitative Analysis

Lab 6: Reactions of Organic Compounds and Qualitative Analysis Lab 6: eactions of rganic Compounds and Qualitative Analysis bjectives: - To better understand several chemical reactions. - To identify an unknown chemical by testing its chemical and physical properties.

More information

Chapter 4 - Carbon Compounds

Chapter 4 - Carbon Compounds Chapter 4 - Carbon Compounds Carbon compounds organic compounds are tied up with living organisms. So much so, that as we have seen, the presence of methane might be considered an indicator of life. Methane

More information

Esterification. Preparation of β-d-glucose pentaacetate. Dr. Zerong Wang at UHCL. Table of contents

Esterification. Preparation of β-d-glucose pentaacetate. Dr. Zerong Wang at UHCL. Table of contents Esterification Preparation of β-d-glucose pentaacetate Table of contents Ester eaction with carboxylic acids eaction with esters: transesterification eaction with acid anhydrides eaction with acid halides

More information

Org/Biochem Final Lec Form, Spring 2012 Page 1 of 6

Org/Biochem Final Lec Form, Spring 2012 Page 1 of 6 Page 1 of 6 Missing Complete Protein and Question #45 Key Terms: Fill in the blank in the following 25 statements with one of the key terms in the table. Each key term may only be used once. Print legibly.

More information

Structure of Alkenes In ethene (ethylene) each carbon is bonded to 3 other atoms, with zero nonbonding electrons => sp 2 hybridization.

Structure of Alkenes In ethene (ethylene) each carbon is bonded to 3 other atoms, with zero nonbonding electrons => sp 2 hybridization. Structure and Synthesis of Alkenes Alkenes (olefins) are hydrocarbons which have carbon carbon double bonds. A double bond is a bond and a bond. Double bond B.D.E. bond B.D.E. = 146 kcal/mol = 83 kcal/mol

More information

Chemistry 2030 Introduction to Organic Chemistry Fall Semester 2012 Dr. Rainer Glaser

Chemistry 2030 Introduction to Organic Chemistry Fall Semester 2012 Dr. Rainer Glaser Chemistry 2030 Introduction to Organic Chemistry Fall Semester 2012 Dr. Rainer Glaser Examination #5: The Final Lipids, Carbohydrates, Nucleobases & DNA. Monday, December 10, 2012, 3 5 pm. Name: Question

More information

Carboxylic Acids. Carboxylic acid groups are always terminal groups with a carbonyl carbon also bound to a hydroxyl For example:

Carboxylic Acids. Carboxylic acid groups are always terminal groups with a carbonyl carbon also bound to a hydroxyl For example: Carboxylic Acids The functional group of carboxylic acids consists of a C=O with -OH bonded to the same carbon. Structure of Carboxyl Carbon is sp 2 hybridized. Bond angles are close to 120. O-H eclipsed

More information

Ch14. Carboxylic Acids. Combining the hydroxyl and carbonyl functional groups. To make more powerful functional groups. version 1.

Ch14. Carboxylic Acids. Combining the hydroxyl and carbonyl functional groups. To make more powerful functional groups. version 1. Ch14 Carboxylic Acids Combining the hydroxyl and carbonyl functional groups. To make more powerful functional groups. version 1.0 Nick DeMello, PhD. 2007-2015 Ch14 Carboxylic Acids & Esters Carboxylic

More information

CHEM 261 Mar 9, same

CHEM 261 Mar 9, same 93 EM 261 Mar 9, 2017 Review: ydrogenation The addition of 2 to an alkene Example: cyclohexene 2 Pd same or stereochemistry: 3 4 2 1 S R Aside: = deuterium = 2 (1 p + and 1 e - ) Product is a meso compound

More information