Cell Theory. Chapter 6. cell. fundamental unit of structure and function for all living organisms. arise only from previously existing cell

Size: px
Start display at page:

Download "Cell Theory. Chapter 6. cell. fundamental unit of structure and function for all living organisms. arise only from previously existing cell"

Transcription

1 Chapter 6 cell Cell Theory fundamental unit of structure and function for all living organisms arise only from previously existing cell Figure 5.4 The size range of cells WHY are your brain cells the same size as hamster brain cells? diffusion plasma membrane 1

2 light um (most organelles smaller) compound (one plane at a time) magnify in stages using multiple lenses DIFFERENTIAL INTERFERENCE confocal (eliminates blurring, 3D image) FLUORESCENCE Resolution - minimum distance two points can be apart and still be distinguished as two separate points electron um transmission (electrons absorbed differently, thin sections) scanning ATOMIC LEVEL!(electrons bounced off 3D image) scanning tunneling (scans with electrons or ions) 2

3 prokaryotic cells NO true nucleus Bacteria and Archaea nucleoid (no membrane); ribosomes? gram-positive or gram-negative Susceptibility of bacteria to antibiotics depends on cell wall structure. peptidoglycan Cells walls of bacteria complicated peptidoglycan - sugars Gram negative (do not pick up stain - Ecoli) Gram positive (DO pick up stain - Staph) Penicillin inactivates enzyme in cell wall No new cells can form (gram negative bacteria resist penicillin ) Killing bacteria Penicillin - replication cell wall can t form (bedpans, parachute silk and cantaloupe) H2O2 replication DNA (bacteria have no repair mechanism) Tetracycline - ribosomes 3

4 eukaryotic control center DNA, chromatin, chromosomes nuclear envelope: double membrane double lipid bilayer DNA copied to mrna, which travels to cytoplasm, where ribosomes make proteins nucleolus ribosomal RNA (rrna) and proteins form ribosomal subunits 0.25 µ m 1 µ m The Nucleus Surface of nuclear envelope Pore complexes (TEM) Ribosome Nuclear envelope: Inner membrane Outer membrane Nuclear pore Pore complex 1 µ m Nucleolus Chromatin Close-up of nuclear envelope Chromatin Nuclear lamina (TEM) Nucleus Rough ER Figure 6.9 Nucleolus Chromatin Nucleus Nuclear envelope: Inner membrane Outer membrane Nuclear pore Surface of nuclear envelope Ribosome Pore complex Rough ER 0.25 µm Close-up of nuclear envelope Chromatin Pore complexes (TEM) Nuclear lamina (TEM) single DNA + proteins = chromatin, chromosome chromatin chromosome before cell division nucleolus within nucleus site of ribosomal RNA (rrna) synthesis RNA, proteins enter/exit via pores nuclear lamina maintains shape Ribosome Nuclear envelope: Inner membrane Outer membrane Nuclear pore Pore complex Nucleolus Chromatin Nucleus Rough ER Close-up of nuclear Chromatin envelope Figure 6.9a 4

5 ribosomes: protein factories Ribosomes - made of ribosomal RNA and protein proteins synthesis in cytosol (free ribosomes) on outside of endoplasmic reticulum (ER) or of nuclear envelope (bound ribosomes) Figure 6.10 Figure µm Free ribosomes in cytosol Endoplasmic reticulum (ER) Ribosomes bound to ER Large subunit TEM showing ER and ribosomes Small subunit Diagram of a ribosome endomembrane system Nuclear envelope Endoplasmic reticulum Golgi apparatus Lysosomes Vacuoles Plasma membrane Either continuous or connected via transfer by vesicles 5

6 The Endoplasmic Reticulum: Biosynthetic Factory more than half of total membrane in many eukaryotic cells Continuous with nuclear envelope Smooth ER, few ribosomes Rough ER, studded with ribosomes Figure 6.11 Rough ER Smooth ER Nuclear envelope ER lumen Cisternae Ribosomes Transport vesicle Smooth ER Rough ER Transitional ER 200 nm Functions of Smooth ER enzymes of smooth ER in liver cells: detoxify drugs and poisons Synthesizes lipids Metabolizes carbohydrates Stores calcium ions Smooth ER 6

7 Functions of Rough ER secretory proteins, proteins bound for membrane via transport vesicles membrane factory Rough ER Golgi apparatus: shipping and receiving center flattened membranous sacs - cisternae Modifies products of the ER Manufactures certain macromolecules Sorts and packages materials into transport vesicles cis face ( receiving side of Golgi apparatus) Cisternae 0. trans face ( shipping side of Golgi apparatus) TEM of Golgi apparatus cis - faces ER trans - exit, towards plasma membrane Figure 6.12 cis face ( receiving side of Golgi apparatus) Cisternae 0. trans face ( shipping side of Golgi apparatus) TEM of Golgi apparatus 7

8 Figure Nucleus Rough ER Smooth ER cis Golgi trans Golgi Plasma membrane Lysosomes: Digestive Compartments membranous sac of hydrolytic enzymes - digests macromolecules hydrolyze proteins, fats, polysaccharides, and nucleic acids recycle defective organelles work best at ph 5 phagocytosis enzymes recycle cell s own organelles and macromolecules, autophagy Nucleus Vesicle containing two damaged organelles Mitochondrion fragment Lysosome Peroxisome fragment Digestive enzymes Lysosome Lysosome Plasma membrane Peroxisome Figure 6.13 Food vacuole Digestion Vesicle Mitochondrion Digestion (a) Phagocytosis (b) Autophagy 8

9 Figure 6.13 Nucleus Vesicle containing two damaged organelles Mitochondrion fragment Lysosome Peroxisome fragment Digestive enzymes Lysosome Lysosome Plasma membrane Digestion Peroxisome Food vacuole Vesicle Mitochondrion Digestion (a) Phagocytosis (b) Autophagy Vacuoles: Diverse Maintenance Compartments one or several vacuoles, derived from ER and Golgi food, contractile, central vacuoles variety of functions Central vacuole Cytosol Nucleus Central vacuole Cell wall Chloroplast Figure µm central vacuole - stockpiling proteins inorganic ions depositing metabolic byproducts storing pigments storing defensive compounds ALSO increases surface to volume ratio for whole cell tonoplast selective in transport into central vacuole 9

10 organelles with DNA mitochondria cellular respiration chloroplasts photosynthesis peroxisomes oxidation, H 2 O 2 The Evolutionary Origins of Mitochondria and Chloroplasts Mitochondria and chloroplasts similar to bacteria double membrane free ribosomes, circular DNA autonomous growth and reproduction Engulfing of oxygenusing nonphotosynthetic prokaryote, which becomes a mitochondrion Mitochondrion Nonphotosynthetic eukaryote Endoplasmic reticulum Nuclear envelope At least one cell Mitochondrion Nucleus Ancestor of eukaryotic cells (host cell) Engulfing of photosynthetic prokaryote Chloroplast Photosynthetic eukaryote Figure 6.16 Engulfing of oxygenusing nonphotosynthetic prokaryote, which becomes a mitochondrion Mitochondrion Endoplasmic reticulum Nuclear envelope Nucleus Ancestor of eukaryotic cells (host cell) Nonphotosynthetic eukaryote At least one cell Engulfing of photosynthetic prokaryote Chloroplast Mitochondrion Photosynthetic eukaryote 10

11 Mitochondria: Chemical Energy Conversion present in nearly all eukaryotic cells smooth outer membrane; inner membrane folded into cristae enzymes in intermembrane space and mitochondrial matrix - cellular respiration, ATP 10 µm Intermembrane space Outer membrane Mitochondria DNA Free Inner ribosomes membrane in the mitochondrial Cristae matrix Matrix (a) Diagram and TEM of mitochondrion Mitochondrial DNA Nuclear DNA 0. (b) Network of mitochondria in a protist cell (LM) Figure µm Intermembrane space Outer membrane Mitochondria DNA Inner Free membrane ribosomes in the Cristae mitochondrial Matrix matrix (a) Diagram and TEM of mitochondrion Mitochondrial DNA Nuclear DNA 0. (b) Network of mitochondria in a protist cell (LM) Chloroplasts: Capture of Light Energy found in leaves of plants and in algae chlorophyll, thylakoids, stroma Figure 6.18 Ribosomes Stroma 50 µm Inner and outer membranes Granum DNA Thylakoid Intermembrane space (a) Diagram and TEM of chloroplast Chloroplasts (red) (b) Chloroplasts in an algal cell 11

12 Peroxisomes: Oxidation specialized metabolic compartments bounded by a single membrane produce hydrogen peroxide and convert it to water Figure 6.19 Chloroplast Peroxisome Mitochondrion Cytoskeleton network of fibers throughout cytoplasm internal scaffolding for organelles, organellar activity Microtubules Microfilaments Intermediate filaments Figure µm support cell, maintain shape motor proteins monorails (a) ATP Microtubule Vesicle Motor protein Microtubule (ATP powered) of cytoskeleton Vesicles Receptor for motor protein 0.25 µm may help regulate biochemical activities (b) Figure

13 Three main types of fibers Microtubules are the thickest components Microfilaments, actin filaments, thinnest components Intermediate filaments are fibers in a middle range Table 6.1a 10 µm Column of tubulin dimers 25 nm α β Tubulin dimer Centrosomes and Centrioles microtubules grow out from a centrosome near nucleus The centrosome is a microtubule-organizing center animal centrosome has a pair of centrioles, each with nine triplets of microtubules arranged in a ring 13

14 cilia and flagella locomotor appendages Direction of swimming differ in their beating patterns (a) Motion of flagella 5 µm Direction of organism s movement Power stroke Recovery stroke (b) Motion of cilia 15 µm cell extensions Cilia Hair-like growths move back and forth to propel cell common in single-celled organisms, cells of simple animals (jellyfish, sponges), and our cells (lining of lungs) Flagella tail-like growths used for propulsion (sperm) Figure 6.23 Direction of swimming (a) Motion of flagella 5 µm Direction of organism s movement Power stroke Recovery stroke (b) Motion of cilia 15 µm 14

15 common structure core of microtubules, plasma membrane sheath basal body anchor motor protein, dynein, drives the bending movements Figure Outer microtubule doublet Dynein proteins Plasma membrane Central microtubule Radial spoke Microtubules Plasma membrane (b) Cross section of motile cilium Cross-linking proteins between outer doublets Basal body 0.5 µm 0. (a) Longitudinal section Triplet of motile cilium (c) Cross section of basal body Figure 6.24 Microtubules Plasma membrane Basal body 0. (b) Cross section of motile cilium Outer microtubule doublet Dynein proteins Central microtubule Radial spoke Cross-linking proteins between outer doublets Plasma membrane 0.5 µm 0. (a) Longitudinal section of motile cilium Triplet (c) Cross section of basal body flagellum - undulatory movement. Force generated parallel to the flagellum s axis. Cilia oars, alternating power and recovery strokes. force perpendicular to the cilia s axis. 15

16 bending of both driven by arms of a motor protein dynein Addition and removal of phosphate group (from ATP) causes conformation changes dynein Table 6.1b 10 µm Actin subunit 7 nm Table 6.1c 5 µm Keratin proteins Fibrous subunit (keratins coiled together) 8 12 nm 16

17 Figure 6.26 Microvillus Plasma membrane Microfilaments (actin filaments) Intermediate filaments 0.25 µm Extracellular components and connections plant cell walls extracellular matrix (ECM) of animal cells Plant Cell Walls protects cell, maintains shape, limits water absorption cellulose fibers embedded in other polysaccharides and protein Secondary cell wall Primary cell wall Middle lamella Central vacuole Cytosol Plasma membrane Plant cell walls Plasmodesmata 17

18 multiple layers Primary: relatively thin and flexible Middle lamella: thin layer between primary walls of adjacent cells Secondary (in some cells): added between the plasma membrane and the primary cell wall Plasmodesmata channels between adjacent plant cells Figure 6.28 Secondary cell wall Primary cell wall Middle lamella Central vacuole Cytosol Plasma membrane Plant cell walls Plasmodesmata Plant cell walls continuous w/ neighbors wood lots of secondary walls Note not like walls of prokaryotes Also other eukaryotes: fungi protists (paramecium, slime molds, algae) 18

19 Plasmodesmata channels that perforate plant cell walls water and small solutes can pass from cell to cell Interior of cell Cell walls Interior of cell 0.5 µm Plasmodesmata Plasma membranes Figure 6.31 Animal Cells Animal cells lack cell walls extracellular matrix ECM provides support, strength, and resilience Also problems AD - tangles Extracellular matrix (ECM) of an animal cell glycoprotein (aka proteoglycan) collagen 30-50% proteins in humans 19

20 Figure 6.30 Collagen EXTRACELLULAR FLUID Polysaccharide molecule Proteoglycan complex Fibronectin Core protein Integrins Plasma membrane Proteoglycan molecule Proteoglycan complex CYTOPLASM Functions of the ECM Support Adhesion Movement Regulation Collagen EXTRACELLULAR FLUID Polysaccharide molecule Proteoglycan complex Microfilaments Carbohydrates Fibronectin Core protein Integrins Plasma membrane Proteoglycan molecule Proteoglycan complex Microfilaments Carbohydrates CYTOPLASM Figure 6.32 Tight junctions prevent fluid from moving across a layer of cells Tight junction TEM 0.5 µm Tight junction Intermediate filaments Desmosome Gap junction TEM Ions or small molecules Space between cells Plasma membranes of adjacent cells Extracellular matrix TEM 0. 20

21 The Cell: A Living Unit Greater Than the Sum of Its Parts Cell functions rely on integration of structures and organelles example: coordination among cytoskeleton, lysosomes, and plasma membrane enables macrophage defense 5 µm Figure µm Figure 6.UN01 Nucleus (ER) (Nuclear envelope) 21

Human height. Length of some nerve and muscle cells. Chicken egg. Frog egg. Most plant and animal cells Nucleus Most bacteria Mitochondrion

Human height. Length of some nerve and muscle cells. Chicken egg. Frog egg. Most plant and animal cells Nucleus Most bacteria Mitochondrion 10 m 1 m 0.1 m 1 cm Human height Length of some nerve and muscle cells Chicken egg Unaided eye 1 mm Frog egg 100 µm 10 µm 1 µm 100 nm 10 nm Most plant and animal cells Nucleus Most bacteria Mitochondrion

More information

4 A Tour of the Cell CAMPBELL BIOLOGY IN FOCUS. Urry Cain Wasserman Minorsky Jackson Reece

4 A Tour of the Cell CAMPBELL BIOLOGY IN FOCUS. Urry Cain Wasserman Minorsky Jackson Reece CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 4 A Tour of the Cell Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: The Fundamental Units of Life All

More information

(a) TEM of a plasma. Fimbriae. Nucleoid. Ribosomes. Plasma membrane. Cell wall Capsule. Bacterial chromosome

(a) TEM of a plasma. Fimbriae. Nucleoid. Ribosomes. Plasma membrane. Cell wall Capsule. Bacterial chromosome 0 m m 0. m cm mm 00 µm 0 µm 00 nm 0 nm Human height Length of some nerve and muscle cells Chicken egg Frog egg Most plant and animal cells Most bacteria Smallest bacteria Viruses Proteins Unaided eye Light

More information

A TOUR OF THE CELL 10/1/2012

A TOUR OF THE CELL 10/1/2012 A TOUR OF THE CELL Chapter 6 KEY CONCEPTS: Eukaryotic cells have internal membranes that compartmentalize their functions The eukaryotic cell s genetic instructions are housed in the nucleus and carried

More information

Lecture 5- A Tour of the Cell

Lecture 5- A Tour of the Cell Lecture 5- A Tour of the Cell 1 In this lecture Prokaryotes vs. eukaryotes The organelles of the eukaryotic cell The cytoskeleton Extracellular components 2 What are cells? Cells are the fundamental unit

More information

A Tour of the Cell. Chapter 6. Slide 1. Slide 2. Slide 3. Overview: The Fundamental Units of Life

A Tour of the Cell. Chapter 6. Slide 1. Slide 2. Slide 3. Overview: The Fundamental Units of Life Slide 1 Chapter 6 A Tour of the Cell PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan

More information

A Tour of the Cell 4/10/12. Chapter 6. Overview: The Fundamental Units of Life

A Tour of the Cell 4/10/12. Chapter 6. Overview: The Fundamental Units of Life Chapter 6 LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson A Tour of the Cell Lectures by

More information

A Tour of the Cell. Chapter 7

A Tour of the Cell. Chapter 7 A Tour of the Cell Chapter 7 Cytology: Study of Cells Light Microscopes uses light & a set of lenses Magnification ratio of object s image size to its real size Resolution measures the clarity of the image

More information

The Golgi Apparatus: Shipping and Receiving Center. The Golgi apparatus. Functions of the Golgi apparatus. Lysosomes: Digestive Compartments

The Golgi Apparatus: Shipping and Receiving Center. The Golgi apparatus. Functions of the Golgi apparatus. Lysosomes: Digestive Compartments The Golgi Apparatus: Shipping and Receiving Center The Golgi apparatus Receives (on the cis-side) many of the transport vesicles produced in the rough ER Consists of flattened membranous sacs called cisternae

More information

LECTURE PRESENTATIONS

LECTURE PRESENTATIONS LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 6 A Tour of the Cell Lectures by

More information

Lectures by Erin Barley Kathleen Fitzpatrick Pearson Education, Inc Pearson Education, Inc. Figure 6.5. Bacterial chromosome

Lectures by Erin Barley Kathleen Fitzpatrick Pearson Education, Inc Pearson Education, Inc. Figure 6.5. Bacterial chromosome Chapter 6 LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson A Tour of the Cell Overview:

More information

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 6 1 A Tour of the Cell PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 6 1 A Tour of the Cell PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

A Tour of the Cell. Chapter 6. Biology. Edited by Shawn Lester. Inner Life of Cell. Eighth Edition Neil Campbell and Jane Reece

A Tour of the Cell. Chapter 6. Biology. Edited by Shawn Lester. Inner Life of Cell. Eighth Edition Neil Campbell and Jane Reece Chapter 6 A Tour of the Cell Inner Life of Cell Edited by Shawn Lester PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin

More information

Cytology. Light microscopy resolving power Electron microscopy TEM SEM Cell fractionation Ultracentrifuges

Cytology. Light microscopy resolving power Electron microscopy TEM SEM Cell fractionation Ultracentrifuges Chapter 7: A Tour of the Cell Cytology Light microscopy resolving power Electron microscopy TEM SEM Cell fractionation Ultracentrifuges Prokaryotic cells Nucleoid No organelles with membranes Ribosomes

More information

A. Major parts 1. Nucleus 2. Cytoplasm a. Contain organelles (see below) 3. Plasma membrane (To be discussed in Cellular Transport Lecture)

A. Major parts 1. Nucleus 2. Cytoplasm a. Contain organelles (see below) 3. Plasma membrane (To be discussed in Cellular Transport Lecture) Lecture 5: Cellular Biology I. Cell Theory Concepts: 1. Cells are the functional and structural units of living organisms 2. The activity of an organism is dependent on both the individual and collective

More information

AP Biology Summer Assignment

AP Biology Summer Assignment AP Biology Summer Assignment 2018-2019 AP Biology is a rigorous course and due to the large amount of material that needs to be covered during the school year, a summer assignment is essential. The first

More information

Cells. Variation and Function of Cells

Cells. Variation and Function of Cells Cells Variation and Function of Cells Cell Theory states that: 1. All living things are made of cells 2. Cells are the basic unit of structure and function in living things 3. New cells are produced from

More information

CH 4: A tour of the cell Overview: The Fundamental Units of Life. Concept 4.1: Biologists use microscopes and the tools of biochemistry to study cells

CH 4: A tour of the cell Overview: The Fundamental Units of Life. Concept 4.1: Biologists use microscopes and the tools of biochemistry to study cells CH 4: A tour of the cell Overview: The Fundamental Units of Life All organisms are made of cells The cell is the simplest collection of matter that is alive All cells are related by descent from earlier

More information

A Tour of the Cell CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE. Overview: The Fundamental Units of Life

A Tour of the Cell CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE. Overview: The Fundamental Units of Life 4 A Tour of the Cell CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION Overview: The

More information

BIOLOGY. A Tour of the Cell CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick

BIOLOGY. A Tour of the Cell CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 6 A Tour of the Cell Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Concept 6.2: Eukaryotic cells have internal

More information

All organisms are made of cells (cells are the basic units of life) Cell structure is highly correlated to cellular function

All organisms are made of cells (cells are the basic units of life) Cell structure is highly correlated to cellular function CELLS CHAPTER 6 I. CELL THEORY - All organisms are made of cells (cells are the basic units of life) Cell structure is highly correlated to cellular function All cells are related by their descent from

More information

CHAPTER 6: A TOUR OF THE CELL AP BIOLOGY 2011

CHAPTER 6: A TOUR OF THE CELL AP BIOLOGY 2011 CHAPTER 6: A TOUR OF THE CELL AP BIOLOGY 2011 1 IMPORTANCE OF CELLS ALL ORGANISMS ARE MADE OF CELLS CELLS ARE THE SMALLEST LIVING UNIT STRUCTURE IS CORRELATED TO FUNCTION ALL CELLS ARE RELATED BY THEIR

More information

Cytosol the fluid Cytoplasm cell interior, everything outside the nucleus but within the cell membrane, includes the organelles, cytosol, and

Cytosol the fluid Cytoplasm cell interior, everything outside the nucleus but within the cell membrane, includes the organelles, cytosol, and Cell Organelles Plasma Membrane comprised of a phospholipid bilayer and embedded proteins Outer surface has oligosaccharides separates the cells s contents from its surroundings Cytosol the fluid Cytoplasm

More information

LECTURE PRESENTATIONS

LECTURE PRESENTATIONS LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 6 A Tour of the Cell Lectures by

More information

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 6 A Tour of the Cell PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

ORGANELLES OF THE ENDOMEMBRANE SYSTEM

ORGANELLES OF THE ENDOMEMBRANE SYSTEM Membranes compartmentalize the interior of the cell and facilitate a variety of metabolic activities. Chloroplasts and a rigid cell wall are what distinguish a plant cell from an animal cell. A typical

More information

Plasma Membrane. comprised of a phospholipid bilayer and embedded proteins separates the cells s contents from its surroundings

Plasma Membrane. comprised of a phospholipid bilayer and embedded proteins separates the cells s contents from its surroundings Cell Organelles Plasma Membrane comprised of a phospholipid bilayer and embedded proteins separates the cells s contents from its surroundings Cytosol the fluid Cytoplasm cell interior, everything outside

More information

LECTURE PRESENTATIONS

LECTURE PRESENTATIONS LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 6 A Tour of the Cell Lectures by

More information

Early scientists who observed cells made detailed sketches of what they saw.

Early scientists who observed cells made detailed sketches of what they saw. Early scientists who observed cells made detailed sketches of what they saw. Early scientists who observed cells made detailed sketches of what they saw. CORK Early scientists who observed cells made detailed

More information

Ch. 6 Tour of the Cell

Ch. 6 Tour of the Cell Ch. 6 Tour of the Cell 2007-2008 Microscopy Scientists use microscopes to visualize cells too small to see with the naked eye In a light microscope (LM), visible light is passed through a specimen and

More information

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 6 A Tour of the Cell PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

Nucleic acids. Nucleic acids are information-rich polymers of nucleotides

Nucleic acids. Nucleic acids are information-rich polymers of nucleotides Nucleic acids Nucleic acids are information-rich polymers of nucleotides DNA and RNA Serve as the blueprints for proteins and thus control the life of a cell RNA and DNA are made up of very similar nucleotides.

More information

A Tour of the Cell. Chapter 4. Most cells are microscopic. Cells vary in size and shape

A Tour of the Cell. Chapter 4. Most cells are microscopic. Cells vary in size and shape Chapter 4 A Tour of the Cell Most cells are microscopic Cells vary in size and shape 10 m Human height 1 m Length of some nerve and muscle cells 100 mm (10 cm) 10 mm (1 cm) Chicken egg Unaided eye 1 mm

More information

CHAPTER 4 A TOUR OF THE CELL

CHAPTER 4 A TOUR OF THE CELL CHAPTER 4 A TOUR OF THE CELL Microscopes Con. 4.1 magnification: size resolution: clarity contrast: differences in parts Light Microscopy Techniques (p.68) a. Brightfield unstained b. Brightfield stained

More information

Chapter 7. (7-1 and 7-2) A Tour of the Cell

Chapter 7. (7-1 and 7-2) A Tour of the Cell Chapter 7 (7-1 and 7-2) A Tour of the Cell Microscopes as Windows to the World of Cells Cells were first described in 1665 by Robert Hooke. By the mid-1800s, the accumulation of scientific evidence led

More information

Microfilaments. myosin. In muscle cells. Microfilaments. Microfilaments. Video: Cytoplasmic Streaming. amoeboid movement. Pseudopodia.

Microfilaments. myosin. In muscle cells. Microfilaments. Microfilaments. Video: Cytoplasmic Streaming. amoeboid movement. Pseudopodia. Microfilaments Fig, 6-27a myosin Microfilaments protein func3ons in cellular mo3lity in addi3on to ac3n In muscle cells Thousands of ac3n filaments are arranged parallel to one another Thicker myosin filaments

More information

Chapter 6. A Tour of the Cell. Concept 6.1 Biologists use microscopes and the tools of biochemistry to study cells

Chapter 6. A Tour of the Cell. Concept 6.1 Biologists use microscopes and the tools of biochemistry to study cells Chapter 6 A Tour of the Cell Chapter Outline Concept 6.1 Biologists use microscopes and the tools of biochemistry to study cells In a light microscope (LM), visible light passes through the specimen and

More information

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 6 A Tour of the Cell PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

A Tour of the Cell. Chapter 6. PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece

A Tour of the Cell. Chapter 6. PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Chapter 6 A Tour of the Cell PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

Bell Work: What is the fundamental unit of life? 2014 Pearson Education, Inc.

Bell Work: What is the fundamental unit of life? 2014 Pearson Education, Inc. Bell Work: What is the fundamental unit of life? All organisms are made of cells The cell is the simplest collection of matter that can be alive All cells are related by their descent from earlier cells

More information

Chapter 6: A Tour of the Cell. 1. Studying Cells 2. Intracellular Structures 3. The Cytoskeleton 4. Extracellular Structures

Chapter 6: A Tour of the Cell. 1. Studying Cells 2. Intracellular Structures 3. The Cytoskeleton 4. Extracellular Structures Chapter 6: A Tour of the Cell 1. Studying Cells 2. Intracellular Structures 3. The Cytoskeleton 4. Extracellular Structures 1. Studying Cells Concepts of Microscopy MAGNIFICATION factor by which the image

More information

1. Studying Cells. Concepts of Microscopy 11/7/2016. Chapter 6: A Tour of the Cell

1. Studying Cells. Concepts of Microscopy 11/7/2016. Chapter 6: A Tour of the Cell Electron microscope Light microscope Unaided eye 11/7/2016 Chapter 6: A Tour of the Cell 1. Studying Cells 2. Intracellular Structures 3. The Cytoskeleton 4. Extracellular Structures 1. Studying Cells

More information

10/13/11. Cell Theory. Cell Structure

10/13/11. Cell Theory. Cell Structure Cell Structure Grade 12 Biology Cell Theory All organisms are composed of one or more cells. Cells are the smallest living units of all living organisms. Cells arise only by division of a previously existing

More information

A Tour of the Cell Chapter 4. Outline. Early contributors to Understanding Cells. Cell Theory. Cell Size s Matt Schleiden & Ted Schann

A Tour of the Cell Chapter 4. Outline. Early contributors to Understanding Cells. Cell Theory. Cell Size s Matt Schleiden & Ted Schann A Tour of the Cell Chapter 4 Outline History of the science behind cells Cell theory & its importance Why are cells small? Microscopes Cell structure and function Prokaryotic cells Eukaryotic cells Early

More information

A Tour of the Cell. Ch. 7

A Tour of the Cell. Ch. 7 A Tour of the Cell Ch. 7 Cell Theory O All organisms are composed of one or more cells. O The cell is the basic unit of structure and organization of organisms. O All cells come from preexisting cells.

More information

NOTES: CH 6 A Tour of the Cell

NOTES: CH 6 A Tour of the Cell NOTES: CH 6 A Tour of the Cell Overview: The Importance of Cells All organisms are made of cells The cell is the simplest collection of matter that can live Cell structure is correlated to cellular function

More information

4/12/17. Cells. Cell Structure. Ch. 2 Cell Structure and Func.on. Range of Cell Sizes BIOL 100

4/12/17. Cells. Cell Structure. Ch. 2 Cell Structure and Func.on. Range of Cell Sizes BIOL 100 Ch. 2 Cell Structure and Func.on BIOL 100 Cells Fundamental units of life Cell theory All living things are composed of one or more cells. The cell is the most basic unit of life. All cells come from pre-existing

More information

AP Biology Book Notes Chapter 4: Cells v Cell theory implications Ø Studying cell biology is in some sense the same as studying life Ø Life is

AP Biology Book Notes Chapter 4: Cells v Cell theory implications Ø Studying cell biology is in some sense the same as studying life Ø Life is AP Biology Book Notes Chapter 4: Cells v Cell theory implications Ø Studying cell biology is in some sense the same as studying life Ø Life is continuous v Small cell size is becoming more necessary as

More information

CHAPTER 6 A TOUR OF THE CELL

CHAPTER 6 A TOUR OF THE CELL Electron microscope Light microscope Unaided eye Overview: The Fundamental Units of Life All organisms are made of cells The cell is the simplest collection of matter that can live Cell structure is correlated

More information

10 m Human height 1 m Length of some nerve and muscle cells eye 100 mm (10 cm) Chicken egg aid n 10 mm

10 m Human height 1 m Length of some nerve and muscle cells eye 100 mm (10 cm) Chicken egg aid n 10 mm Biology 112 Unit Three Chapter Four 1 Cell Sizes Smallest Bacteria Largest Bird egg Longest Giraffe s Nerve Cell Most Cells Diameter of 0.7µm to 105 µm 2 10 m 1 m 100 mm (10 cm) 10 mm (1 cm) Human height

More information

Review from Biology A

Review from Biology A Chapter 4 Review from Biology A The Cell Theory All organisms are made of cells Cells come from pre-existing cells The cell is the simplest collection of matter that can live Scientists whose work you

More information

CELL PARTS TYPICAL ANIMAL CELL

CELL PARTS TYPICAL ANIMAL CELL AP BIOLOGY CText Reference, Campbell v.8, Chapter 6 ACTIVITY1.12 NAME DATE HOUR CELL PARTS TYPICAL ANIMAL CELL ENDOMEMBRANE SYSTEM TYPICAL PLANT CELL QUESTIONS: 1. Write the name of the cell part in the

More information

Chapter 4. A Tour of the Cell. Lecture by Richard L. Myers

Chapter 4. A Tour of the Cell. Lecture by Richard L. Myers Chapter 4 A Tour of the Cell PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Lecture by Richard L. Myers Introduction: Cells on the Move

More information

Chapter 4. A Tour of the Cell. Lecture by Richard L. Myers

Chapter 4. A Tour of the Cell. Lecture by Richard L. Myers Chapter 4 A Tour of the Cell PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Lecture by Richard L. Myers Introduction: Cells on the Move

More information

General Biology. The Fundamental Unit of Life The Cell. All organisms are made of cells The cell is the simplest collection of matter that can live

General Biology. The Fundamental Unit of Life The Cell. All organisms are made of cells The cell is the simplest collection of matter that can live General Biology Course No: BNG2003 Credits: 3.00 3. A Tour of the Cell Prof. Dr. Klaus Heese The Fundamental Unit of Life The Cell All organisms are made of cells The cell is the simplest collection of

More information

Chapter 4 A Tour of the Cell

Chapter 4 A Tour of the Cell Chapter 4 A Tour of the Cell PowerPoint Lectures for Campbell Biology: Concepts & Connections, Seventh Edition Reece, Taylor, Simon, and Dickey Lecture by Edward J. Zalisko The image The Introduction Cells

More information

Unit A: Cells. Ch. 4 A Tour of the Cell

Unit A: Cells. Ch. 4 A Tour of the Cell Unit A: Cells Ch. 4 A Tour of the Cell Standards By the end of this unit you should be able to: Recognize and explain the function of each organelle Look at micrographs/diagrams/pictures and correctly

More information

Cell Structure and Function

Cell Structure and Function Cell Theory Cell Structure and Function Chapter 6 Pg. 94-124 What is a cell? The basic functional unit of all living things. The Cell Theory states All organisms are made of one or more cells. Cells are

More information

Lysosomes. Vacuoles. Phagocytosis. One cell engulfing another. forms a food vacuole. fuses with lysosome. Autophagy. Lysosomes use enzymes

Lysosomes. Vacuoles. Phagocytosis. One cell engulfing another. forms a food vacuole. fuses with lysosome. Autophagy. Lysosomes use enzymes Lysosomes Phagocytosis One cell engulfing another forms a food vacuole fuses with lysosome Autophagy Lysosomes use enzymes to recycle the cell s own organelles and macromolecules Fig. 6-14 Nucleus 1 µm

More information

Chapter 4 A Tour of the Cell

Chapter 4 A Tour of the Cell Chapter 4 A Tour of the Cell PowerPoint Lectures Campbell Biology: Concepts & Connections, Eighth Edition REECE TAYLOR SIMON DICKEY HOGAN Lecture by Edward J. Zalisko Introduction Cells have a cytoskeleton

More information

Chapter 4. A Tour of the Cell. Lectures by Edward J. Zalisko

Chapter 4. A Tour of the Cell. Lectures by Edward J. Zalisko Chapter 4 A Tour of the Cell PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon, Jean L. Dickey, and Jane B.

More information

Cytology = the study of cells. Chapter 4 CELL STRUCTURE

Cytology = the study of cells. Chapter 4 CELL STRUCTURE Cytology = the study of cells Chapter 4 CELL STRUCTURE Cellular basis of life: Basic unit of life Lowest level with all attributes of life Organisms composed of one or more cells Cell structure correlated

More information

A Tour of the Cell Lecture 2, Part 1 Fall 2008

A Tour of the Cell Lecture 2, Part 1 Fall 2008 Cell Theory 1 A Tour of the Cell Lecture 2, Part 1 Fall 2008 Cells are the basic unit of structure and function The lowest level of structure that can perform all activities required for life Reproduction

More information

Chapter 6. A Tour of the Cell

Chapter 6. A Tour of the Cell Chapter 6 A Tour of the Cell PowerPoint lectures are originally from Campbell / Reece Media Manager and Instructor Resources for BIOLOGY, 7 th & 8 th Edition by N. A. Campbell & J. B. Reece Copyright 2005

More information

Eukaryotic cell. Premedical IV Biology

Eukaryotic cell. Premedical IV Biology Eukaryotic cell Premedical IV Biology The size range of organisms Light microscopes visible light is passed through the specimen and glass lenses the resolution is limited by the wavelength of the visible

More information

Fungal cell walls are rigid with less flexibility due to a combination of more sugar (more chitin) and protein flexibility.

Fungal cell walls are rigid with less flexibility due to a combination of more sugar (more chitin) and protein flexibility. Cell Structure Assignment Score. Name Sec.. Date. Working by yourself or in a group, answer the following questions about the Cell Structure material. This assignment is worth 40 points with the possible

More information

Ch. 4 Cells: The Working Units of Life

Ch. 4 Cells: The Working Units of Life Ch. 4 Cells: The Working Units of Life Originally prepared by Kim B. Foglia. Revised and adapted by Nhan A. Pham Types of cells Cell Size Why organelles? Specialized structures - specialized functions

More information

Bio10 Cell Structure SRJC

Bio10 Cell Structure SRJC 3.) Cell Structure and Function Structure of Cell Membranes Fluid mosaic model Mixed composition: Phospholipid bilayer Glycolipids Sterols Proteins Fluid Mosaic Model Phospholipids are not packed tightly

More information

11/1/2014. accumulate in brain.

11/1/2014. accumulate in brain. EU 4.A: Interactions within biological systems lead to complex properties. EU 4.B: Competition and cooperation are important aspects of biological systems. EU 4.C: Naturally occurring diversity among and

More information

Cell Structure. Cells. Why are cells so small? 9/15/2016. Schleiden and Schwann proposed Cell Theory in

Cell Structure. Cells. Why are cells so small? 9/15/2016. Schleiden and Schwann proposed Cell Theory in Cell Structure Cells Cells are sacs of fluid that are reinforced by proteins and surrounded by membranes. Inside the fluid float organelles. Organelles: structures inside the cell that are used for metabolic

More information

Organelles of the Cell & How They Work Together. Packet #7

Organelles of the Cell & How They Work Together. Packet #7 Organelles of the Cell & How They Work Together Packet #7 Introduction Introduction Organization of cells is basically similar in all cells. Additionally, most cells are tiny Ranging from 1 1000 cubic

More information

Chapter 4. A Tour of the Cell. RPTSE Biology Fall 2015, Dr. Jong B. Lee 1. Biology and Society: Antibiotics: Drugs that Target Bacterial Cells

Chapter 4. A Tour of the Cell. RPTSE Biology Fall 2015, Dr. Jong B. Lee 1. Biology and Society: Antibiotics: Drugs that Target Bacterial Cells Chapter 4 A Tour of the Cell Biology and Society: Antibiotics: Drugs that Target Bacterial Cells Antibiotics were first isolated from mold in 1928. The widespread use of antibiotics drastically decreased

More information

BIOLOGY. A Tour of the Cell CAMPBELL. Robert Hooke (1665) Antoni van Leeuwenhoek (1674) Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. A Tour of the Cell CAMPBELL. Robert Hooke (1665) Antoni van Leeuwenhoek (1674) Reece Urry Cain Wasserman Minorsky Jackson 6 A Tour of the Cell CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Robert Hooke (1665) Figure 1.1 The structure

More information

2011 Pearson Education, Inc.

2011 Pearson Education, Inc. Overview: The Fundamental Units of Life All organisms are made of cells The cell is the simplest collec=on of ma>er that can be alive Cell structure is correlated to cellular func=on All cells are related

More information

2011 Pearson Education, Inc.

2011 Pearson Education, Inc. Overview: The Fundamental Units of Life All organisms are made of cells The cell is the simplest collec=on of ma>er that can be alive Cell structure is correlated to cellular func=on All cells are related

More information

Chapter 4. A Tour of the Cell. Lectures by Edward J. Zalisko

Chapter 4. A Tour of the Cell. Lectures by Edward J. Zalisko Chapter 4 A Tour of the Cell PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon, Jean L. Dickey, and Jane B.

More information

Chapter 4. A Tour of the Cell. Lectures by Chris C. Romero, updated by Edward J. Zalisko

Chapter 4. A Tour of the Cell. Lectures by Chris C. Romero, updated by Edward J. Zalisko Chapter 4 A Tour of the Cell Lectures by Chris C. Romero, updated by Edward J. Zalisko PowerPoint Lectures for Campbell Essential Biology, Fourth Edition Eric Simon, Jane Reece, and Jean Dickey Campbell

More information

Organelles of the Cell & How They Work Together. Packet #5

Organelles of the Cell & How They Work Together. Packet #5 Organelles of the Cell & How They Work Together Packet #5 Developed by Mr. Barrow 2018 1 Introduction Organization of cells is basically similar in all cells. Additionally, most cells are tiny Ranging

More information

CELL PART OF THE DAY. Chapter 7: Cell Structure and Function

CELL PART OF THE DAY. Chapter 7: Cell Structure and Function CELL PART OF THE DAY Chapter 7: Cell Structure and Function Cell Membrane Cell membranes are composed of two phospholipid layers. Cell membrane is flexible, not rigid The cell membrane has two major functions.

More information

Organelles. copyright cmassengale 1

Organelles. copyright cmassengale 1 Organelles copyright cmassengale 1 Organelles Very small (Microscopic) Perform various functions for a cell Found in the cytoplasm May or may not be membrane-bound 2 Animal Cell Organelles Nucleolus Nucleus

More information

The Fundamental Unit of Life The Cell. General Biology. All organisms are made of cells. The cell is the simplest collection of matter that can live

The Fundamental Unit of Life The Cell. General Biology. All organisms are made of cells. The cell is the simplest collection of matter that can live Course No: BNG2003 Credits: 3.00 3. A Tour of the Cell General Biology The Fundamental Unit of Life The Cell All organisms are made of cells The cell is the simplest collection of matter that can live

More information

Cell Structure & Function. Source:

Cell Structure & Function. Source: Cell Structure & Function Source: http://koning.ecsu.ctstateu.edu/cell/cell.html Definition of Cell A cell is the smallest unit that is capable of performing life functions. http://web.jjay.cuny.edu/~acarpi/nsc/images/cell.gif

More information

A Tour of the cell. 2- Eukaryotic cells have internal membranes that compartmentalize their functions

A Tour of the cell. 2- Eukaryotic cells have internal membranes that compartmentalize their functions A Tour of the cell 1- To study cells, biologists use microscopes and the tools of biochemistry 2- Eukaryotic cells have internal membranes that compartmentalize their functions 3- The eukaryotic cell s

More information

Biological diversity & Unity. Chapter 7. Activities of life. How do we study cells? Light Microscope. Electron Microscope 9/7/2012

Biological diversity & Unity. Chapter 7. Activities of life. How do we study cells? Light Microscope. Electron Microscope 9/7/2012 Biological diversity & Unity Chapter 7 The cell: Basic unit of Life Underlying the diversity of life is a striking unity DNA is universal genetic language Cells are the basic unit of structure & function

More information

Chapter 4: Cell Structure and Function

Chapter 4: Cell Structure and Function Chapter 4: Cell Structure and Function Robert Hooke Fig. 4-2, p.51 The Cell Smallest unit of life Can survive on its own or has potential to do so Is highly organized for metabolism Senses and responds

More information

Organelles of the Cell & How They Work Together. Packet #5

Organelles of the Cell & How They Work Together. Packet #5 Organelles of the Cell & How They Work Together Packet #5 Developed by Mr. Barrow 2018 1 Introduction Organization of cells is basically similar in all cells. Additionally, most cells are tiny Ranging

More information

THE CELL Cells: Part 1

THE CELL Cells: Part 1 THE CELL Cells: Part 1 OBJECTIVES By the end of the lesson you should be able to: State the 2 types of cells Relate the structure to function for all the organelles TYPES OF CELLS There are two types of

More information

Cells. Stef Elorriaga 4/4/2016 BIO102

Cells. Stef Elorriaga 4/4/2016 BIO102 Cells Stef Elorriaga 4/4/2016 BIO102 1 The domains and kingdoms of life Three domains Bacteria Archaea Eukarya Six kingdoms Bacteria Archaea Protista Plantae Fungi Animalia 2 What is a cell? A cell is

More information

LECTURE 3 CELL STRUCTURE

LECTURE 3 CELL STRUCTURE LECTURE 3 CELL STRUCTURE HISTORY The cell was first discovered by Robert Hooke in 1665 examining very thin slices of cork and saw a multitude of tiny pores that remarked looked like the walled compartments

More information

A Tour of the Cell. reference: Chapter 6. Reference: Chapter 2

A Tour of the Cell. reference: Chapter 6. Reference: Chapter 2 A Tour of the Cell reference: Chapter 6 Reference: Chapter 2 Monkey Fibroblast Cells stained with fluorescent dyes to show the nucleus (blue) and cytoskeleton (yellow and red fibers), image courtesy of

More information

Ch. 6: A Tour of the Cell

Ch. 6: A Tour of the Cell Ch. 6: A Tour of the Cell 1. Compare the 2 Types of Cells PROKARYOTES BOTH EUKARYOTES Domain: Domain: Relative Size & Complexity: Relative Size & Complexity: No DNA in No Examples: Has Has Examples: 2.

More information

Human Epithelial Cells

Human Epithelial Cells The Cell Human Epithelial Cells Plant Cells Cells have an internal structure Eukaryotic cells are organized Protective membrane around them that communicates with other cells Organelles have specific jobs

More information

Objectives. To determine the differences between plant and animal cells To discover the structure and function of cellular organelles.

Objectives. To determine the differences between plant and animal cells To discover the structure and function of cellular organelles. Cell Organelles 3.2 Objectives To determine the differences between plant and animal cells To discover the structure and function of cellular organelles. Basic Cellular Structures Cell membrane (cytoplasmic

More information

Chapter 4. A Tour of the Cell. Lectures by Edward J. Zalisko

Chapter 4. A Tour of the Cell. Lectures by Edward J. Zalisko Chapter 4 A Tour of the Cell PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon, Jean L. Dickey, and Jane B.

More information

2. scanning electron microscope vs. transmission electron microscope. nucleus, nuclear envelope, nucleolus, ribosomes

2. scanning electron microscope vs. transmission electron microscope. nucleus, nuclear envelope, nucleolus, ribosomes Honors Biology Unit 2 Chapter 4 A TOUR OF THE CELL 1. light microscope 2. scanning electron microscope vs. transmission electron microscope 3. surface area to volume ratio 4. prokaryotic cell vs. animal

More information

Name 4 A Tour of the Cell Test Date Study Guide You must know: The difference between prokaryotic and eukaryotic cells. The structure and function of

Name 4 A Tour of the Cell Test Date Study Guide You must know: The difference between prokaryotic and eukaryotic cells. The structure and function of Name _ 4 A Tour of the Cell Test Date Study Guide You must know: The difference between prokaryotic and eukaryotic cells. The structure and function of organelles common to plant and animal cells. The

More information

Eukaryotic cells contain organelles that allow the specializations and the separation of functions within the cell.

Eukaryotic cells contain organelles that allow the specializations and the separation of functions within the cell. Section 3: Eukaryotic cells contain organelles that allow the specializations and the separation of functions within the cell. K What I Know W What I Want to Find Out L What I Learned Essential Questions

More information

The Jobs of Cells. Food & water storage. Vacuoles & vesicles. Vacuoles in plants 10/5/2015. plant cells

The Jobs of Cells. Food & water storage. Vacuoles & vesicles. Vacuoles in plants 10/5/2015. plant cells Cells have 3 main jobs make energy need energy for all activities need to clean up waste produced while making energy make proteins proteins do all the work in a cell, so we need lots of them make more

More information

Animal & Plant Cells Biology 20

Animal & Plant Cells Biology 20 Animal & Plant Cells Biology 20 Structures in Cells ALL cells start out as fully functional living things They must be able to create and maintain substances (compounds, ATP, ADP) and structures (membranes,

More information