Bryan Mendelson & Chin-Ho Wong

Size: px
Start display at page:

Download "Bryan Mendelson & Chin-Ho Wong"

Transcription

1 Changes in the Facial Skeleton With Aging: Implications and Clinical Applications in Facial Rejuvenation Bryan Mendelson & Chin-Ho Wong Aesthetic Plastic Surgery ISSN X Aesth Plast Surg DOI /s

2 Your article is published under the Creative Commons Attribution license which allows users to read, copy, distribute and make derivative works, as long as the author of the original work is cited. You may selfarchive this article on your own website, an institutional repository or funder s repository and make it publicly available immediately. 1 23

3 DOI /s REVIEW Changes in the Facial Skeleton With Aging: Implications and Clinical Applications in Facial Rejuvenation Bryan Mendelson Chin-Ho Wong Received: 13 October 2011 / Accepted: 9 February 2012 Ó The Author(s) This article is published with open access at Springerlink.com Abstract In principle, to achieve the most natural and harmonious rejuvenation of the face, all changes that result from the aging process should be corrected. Traditionally, soft tissue lifting and redraping have constituted the cornerstone of most facial rejuvenation procedures. Changes in the facial skeleton that occur with aging and their impact on facial appearance have not been well appreciated. Accordingly, failure to address changes in the skeletal foundation of the face may limit the potential benefit of any rejuvenation procedure. Correction of the skeletal framework is increasingly viewed as the new frontier in facial rejuvenation. It currently is clear that certain areas of the facial skeleton undergo resorption with aging. Areas with a strong predisposition to resorption include the midface skeleton, particularly the maxilla including the pyriform region of the nose, the superomedial and inferolateral aspects of the orbital rim, and the prejowl area of the mandible. These areas resorb in a specific and predictable manner with aging. The resultant deficiencies of the skeletal foundation contribute to the stigmata of the aging face. In patients with a congenitally weak skeletal structure, the Electronic supplementary material The online version of this article (doi: /s ) contains supplementary material, which is available to authorized users. This article includes a video clip available online for authorized users. B. Mendelson (&) The Centre for Facial Plastic Surgery, 109 Mathoura Road, Toorak, VIC 3142, Australia bmendelson@bigpond.com C.-H. Wong W Aesthetic Plastic Surgery, Mount Elizabeth Novena Hospital, 38 Irrawaddy Road, #08 42, Singapore , Singapore wchinho@hotmail.com skeleton may be the primary cause for the manifestations of premature aging. These areas should be specifically examined in patients undergoing facial rejuvenation and addressed to obtain superior aesthetic results. Level of Evidence IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors Keywords Aging Changes Correction Facial Rejuvenation Skeleton The facial skeleton is generally believed to expand continuously throughout life [1 4]. This is reflected in the progressive increase in certain facial anthropometric measurements with age such as the nasion-to-anterior nasal spine and the facial width [5, 6]. The fact that certain areas of the facial skeleton also undergo resorption with aging is not well appreciated or even accepted. For example, it has been thought that maxillary retrusion of the maxilla does not occur with aging in the fully dentate patient [6, 7]. However, contrary to this view, recent evidence clearly demonstrates that aging of the maxilla is primarily one of bone resorption [8 15]. Selective bone resorption in the facial skeleton is not without precedent. Most notably, in the process of differential growth, areas of bone resorption occur adjacent to areas of bone deposition. Differential growth enables the infant skull to assume the proportions of the adult form [16, 17]. This process continues to remodel the fully dentate mature, facial bone and alters the craniofacial morphology into one that is instantly recognizable as an aged skull.

4 Despite this, the concept that specific areas of the adult facial skeleton are susceptible to resorption remains controversial. Some authors have argued that the skeleton itself undergoes minimal changes with aging and that ongoing aging merely unmasks the underlying skeletal structure [18, 19]. To better define the extent of these bony changes with aging and to consolidate piecemeal information in the literature, a review of the literature was undertaken. The application of this knowledge to selectively correct areas of reduced bone projections in patients with deficiencies either inherent or due to aging is discussed. Methods and Materials A Pubmed search was performed using the keywords face, bony changes, and aging. To ensure the inclusion of all relevant studies, a subsearch then was performed with the keywords forehead, bone, and aging ; midface, bone, and aging; nose, bone, and aging ; and lower face, bone, and aging. The inclusion criteria specified studies that directly compared anthropometric facial skeleton measurements between matured adult and elderly dentate patients. The exclusion criteria ruled out pathologic cases, including those with congenital anomalies such as cleft lip and palate, craniofacial syndromes, or a history of craniofacial trauma. The papers were reviewed and the relevant data extracted. For the purpose of analysis and description, the face was divided into four regions: periorbital, midface, perinasal, and mandible. Results Consistent with previous reports, the facial skeleton has a general tendency to enlarge or expand continually with age [1 4]. The vertical height of the facial skeleton, for instance, increases continuously with age unless supervening factors such as tooth loss intervene. Males have more prominent brow ridges, differently shaped orbital rims, a larger pyriform aperture, and a larger jaw than females [20]. In addition, males and females differ in the rate and extent of facial bony changes with aging [21, 22]. Within the limits of these differences, however, the changes noted in the following discussion occur among both sexes. Selective resorption occurs in specific areas of the adult facial bone. Contrary to conventional beliefs, remodeling of the facial skeleton occurs unabated regardless of the state of the dentition, although the loss of dentition significantly accelerates bony resorption of the maxilla and mandible [23]. Periorbital Region The orbital aperture increases with age, in both area and width. Resorption is, however, uneven and site specific [8]. The superomedial and inferolateral aspects of the orbital rim, in particular, recede more, although the changes occur at different rates (Fig. 1). The inferolateral orbital rim changes manifest earlier, by middle age, whereas in the superomedial quadrant, recession may be noted only in old age. The inferomedial quadrant of the orbit also has a tendency to recede in old age, especially in males [8, 9]. In contrast, the central part of the superior and inferior orbital rims is more stable, with little if any resorption occurring with age [10, 12]. Pessa [10] found no significant changes in the orbital angle (superior-to-inferior midorbital rim points on the lateral view) with aging, indicating that either the orbital rims do not recede or that one does not recede more rapidly than the other. Mendelson et al. [12] directly measured the lengths of the orbital roof and floor with aging (at the midaxis of each orbit) and found no significant changes in Fig. 1 Orbital aging. The superomedial and inferolateral aspects of the orbit have the greatest tendency to resorb. This contributes to the stigmata of periorbital aging such as increased prominence of the medial fat pad, elevation of the medial brow, and lengthening of the lid cheek junction

5 these distances with aging, indicating that the central portion of the superior and inferior orbital rims do not recede with aging. Midface The midface skeleton is formed by the maxilla in the medial and middle thirds and by the body and arch of the zygoma in the lateral third. Contrary to conventional orthodontic teaching [4, 5], it has been clearly demonstrated recently that midface retrusion does occur with aging in dentulous patients [10]. The rate of bony resorption in the midface, however, is not uniform. The maxilla is more susceptible to age-related loss than the zygoma [24]. Pessa [10] measured the maxillary angle (superior-toinferior maxilla at the articulation of the inferior maxillary wing and alveolar arch) of young and old patients and demonstrated significant bone resorption with loss of projection of the maxilla. Shaw and Kahn [11] similarly noted a significant reduction of the maxillary angle with aging (Fig. 2). Using a more precise approach to measurement with standardized parasagittal computed tomography (CT) slices through the midaxis of the orbit to measure the angle between the floor of the orbit and the anterior maxilla, Mendelson et al. [12] confirmed the important finding that the maxilla retrudes with aging and quantitated the changes. The maxillary angle decreased by about 10 between young (age \ 30 years) and old (age [ 60 years) individuals. Perinasal Changes The characteristics of the aging nose are well known and include the following key changes. The nose lengthens and the tip droops, with the collumella and the lateral crurae displacing posteriorly [25]. Changes in the bony foundation that support the nose in youth, the paired nasal bone, and the ascending processes of the maxillae are responsible for many of the soft tissues changes seen in the nose with aging. Shaw and Khan [11] found that the piriform aperture, resembling the situation of the orbital aperture, enlarges with aging as the edges of the nasal bones recede with age. Similarly, bone loss is not uniform, with the greatest resorption occurring in the ascending process of the maxilla. The posterior displacement of the bone rim is greatest at the lower pyriform aperture, which is the critical area for support of the lateral crurae and the external nasal valves [26]. Pessa measured the length of the perpendicular line from the nasion to the pyriform on standardized lateral views of three-dimensional CT images and observed that the distance increases significantly with aging, indicating preferential bone loss in the lower part of the pyriform aperture (Fig. 3). This manifests clinically as posterior displacement of the alar base (relative to the fixed position of the medial canthus) (Fig. 4) [10, 14, 26]. Bone loss here contributes also to deepening of the nasolabial fold with age, which previously had been attributed solely to soft tissue laxity and descent [27]. The anterior nasal spine also recedes with aging (although at a slower rate), and this reduced skeletal support contributes to retraction of the collumella, with downward tip rotation and apparent lengthening of the nose with aging [25, 28]. Lower Face The dentate mandible is assumed to expand continuously with aging. This was substantiated by two longitudinal studies. Pecora et al. [29] found that the length of the mandible increases with age for both genders based on lateral cephalograms of 19 male and 20 female subjects. Pessa et al. [15], using frontal radiographs of eight males and eight females from the Bolton Brush Growth Study, found an increase in mandible width and height with increasing age. Fig. 2 The piriform (piriform angle) and the maxilla (maxillary angle) significantly recede with aging, from youth (left) to old age (right) [11]

6 Fig. 3 In youth, the piriform (P) lies anterior to the anterior lacrimal crest (A). With aging, the piriform comes to lie posterior to the anterior lacrimal crest as a result of selective bone resorption at the piriform (below) [49] in young subjects who have not yet reached skeletal maturity [15, 29], inadvertently giving a result that the mandible is larger than in the old-age group. For example, in the longitudinal study of Pessa et al. [15], the age range of the female young group was 5 17 years. Comparing these young subjects with mature subjects would most likely result in the latter appearing larger, thereby giving the impression of continuous expansion with aging. Shaw et al. [30] compared subject groups in three age ranges: 20 40, years, and older than 64 years (i.e., all subjects had attained full maturity). These standard parameters, based on linear measurements, will fail to detect in-between areas of reduced skeletal projection such as the prejowl region of the mandible that develops into an area of relative concavity [15] and contributes to the appearance of jowls [13]. Jowls appear at a younger age in patients with microgenia because of the relatively inadequate skeletal support in this area [31]. Fig. 4 The loss of bone in the pyriform area weakens the support of the lateral crura. Deepening of the maxilla results in posterior positioning of the nasolabial crease and adjacent upper lip The most recent study on aging of the mandible compared three-dimensional CT scans in a population of 120 young, middle-aged, and elderly subjects [30]. In contrast to earlier studies, although certain measurements increased significantly with aging, some measurements contracted. There were no significant changes in the bigonial width and ramus breadth with aging. Whereas the mandibular angle increased, the ramus height and mandibular body height and length decreased. These findings contradict the earlier studies, which suggest that the mandible expands continuously with age. This may be related to the measurement of normal growth Discussion More than 40 years ago, Enlow [16] followed the growth of the facial skeleton longitudinally from infancy to young adulthood by means of serial cephalometrograms and noted that the entire face becomes longer vertically, deeper in the anterior posterior plane, and wider in the transverse dimension. The following specific changes occur with growth: increasing protrusion of the glabella; expansion of the supraorbital ridges; lateral translation of the orbits; increase in the depth and lateral expansion of the cheeks; increase in length, width, and vertical dimensions of the nose; and increase in vertical height in the occlusal region associated with increased chin prominence. Enlow s [16] findings formed the basis for the widely accepted teaching that craniofacial growth is one of continuous expansion throughout life.

7 The traditional concepts of facial aging revolve around the theme of changes occurring in the soft tissues, with atrophic laxity leading to tissue descent. Facial rejuvenation techniques have focused on reversing these changes by repositioning and redraping of the tissues, with an emphasis on vectors of lift. Although these approaches are effective to a major degree, they do not necessarily produce a completely harmonious or natural rejuvenation. The recent addition of volume to the soft tissues using lipid filling has enabled better restoration of youthful volume and shape than mere lifting alone. Only during the current decade, with the application of three-dimensional CT analyses, has a more accurate understanding of facial skeletal aging been possible. The current review has gathered the isolated pieces of evidence which together unequivocally show that aging of the facial skeleton includes selective resorption at specific sites (Fig. 5) (see supplemental animation video). These changes are mainly in the periorbital and mid cheek and specifically include the superomedial and inferolateral aspects of the orbit, the medial suborbital and pyriform areas of the maxilla, and the prejowl area of the mandible [8 15]. These sites presumably reach their peak projection in early adulthood and gradually lose volume thereafter. Rebuilding these areas of lost skeletal support is another method for restoring projection and facilitating repositioning of the soft tissue. This method also is a fundamental element in achieving the goals of natural-appearing facial rejuvenations [32 35]. What are the general consequences of the resorption of the facial skeleton? The periosteum retrudes, altering the position of the outer surfaces of the bones. Accordingly, the location of the attachments of facial ligaments and muscles through the periosteum also moves. As a result, these structures may lose the mechanical advantage of their effect on the tissues they act upon. The areas most affected by reduced skeletal prominence correspond to those areas of the face that manifest the most prominent stigmata of aging [36] (Fig. 6). In the medial aspect of the upper lid, the brow position is noted to ascend paradoxically with aging, exaggerating the drooped look of the lateral brow [37]. The medial orbital fat pad also becomes more prominent with age, possibly associated with the recession of the superomedial orbital rim. The midcheek manifests the most complex soft tissue changes with aging. The development of the tear-trough deformity, malar mounds, and prominent nasolabial fold and groove may to a significant degree be attributed to the loss of projection of the maxilla with aging [12, 30]. The changes over the lower face are less complex, with the jowl appearing more prominent in relation to the area of reduced skeletal support in the prejowl area of the mandible [29]. In the midcheek, weakness of skeletal support medially contributes to the tear-trough deformity [24], and over the malar segment laterally, the changes manifest as malar mounds [38]. Additionally, the major loss of bone projection of the maxilla that contributes to the edge of the pyriform aperture, particularly inferiorly, results in less support of the alar base and upper lip part of the nasolabial groove. Whereas the traditional focus of nasolabial correction has always been on the descent of the heavy fold and the redraping of this from above, it may be more Fig. 5 Arrows indicate the areas of the facial skeleton susceptible to resorption with aging. The size of the arrow correlates with the amount of resorption Fig. 6 The darker areas are those of the greatest bone loss. The stigmata of aging, manifested by the facial soft tissues, corresponds with the areas of weakened skeletal support

8 logical to correct the depth of the upper lip position secondary to skeletal changes. The question of why certain sites are more prone to bony resorption than others has been the subject of little discussion. The maxilla is the bone that undergoes the most dramatic resorption with aging, the consequences of which are seen in the aging mid cheek. The maxilla differs in origin and function from the other bones that make up the orbital rim, being a bone of dental origin. In youth, the maxilla expands to accommodate the growing secondary dentition, which develops within the bone. Eruption of the secondary dentition results in a major reduction of the maxilla s volume, especially in its lower part. It is reasonable to speculate that the reverse, i.e., a lack of stress, may be a factor contributing to bone losses in these areas [4, 5]. It is interesting then to note that the sites identified as areas prone to bony resorption in the facial skeleton correspond to the more mobile part of the face during animation, especially the obicularis oculi covering the lateral brow, the lateral orbital crow s feet areas, and the inferolateral orbital rim. The mobility required for the function of these regions is structurally associated with a less ligamentous fixation of the soft tissues to the bone. Hence, the attachment of the muscles and ligament to the bone in these areas is attended by little stress. It is reasonable to speculate that the opposite, a lack of stress, may be a factor contributing to bone losses in these areas. Some people inherently age better than others. These individuals can be recognized in youth because they have a more attractive face with a strong skeletal structure, as evidenced by the presence of youthful bony features that provide good support to the overlying soft tissues. These features include a prominent supraorbital bar, a strong cheekbone, and a prominent jaw line [36, 38, 39]. Because these individuals innately have youthful bony contours, they start off high on the curve of bony support so that it takes longer for the bone loss of aging to manifest clinically. Conversely, people with poor facial skeletal support never have the ideal contours of youth and start off lower down the curve, and many appear old for their age, even in their 20 s. They are effectively predisposed to manifest aging changes prematurely. Features that portend poor support include a retrusive supraorbital bar, midface hypoplasia, poor zygomatic development (the extreme seen in Treacher Collins syndrome), and microgenia. Regardless of age, once these soft tissue changes are manifest, a significant degree of bony deficiency exists. Correction of the bony element has the potential to deliver a more harmonious facial rejuvenation. Those individuals who started low down the curve should be considered for a skeletal augmentation, not only to reverse the aging changes but also to bring their natural state higher up the curve so that the soft tissues are better supported for a more attractive look. With more youth, these individuals have more in reserve against future aging. Facial bone structures also explain the observation that we tend to age like our parents, a familial trait that we inherit from them. In recent years, augmentation for selected areas of the facial skeleton has become a powerful adjunct in our approach to facial rejuvenation. Although many materials can be used, we generally prefer the use of porous hydroxyapatite granules (Interpore International, Irvine, CA, USA) for their versatility and due to proven clinical experience. Hydroxyapatite is biocompatible, having the same mineral composition as bone, and in its porous form, hydroxyapatite is not prone to resorption because it supports fibrovascular ingrowth [40 45], contributing to long-term stability [46]. The granular form provides surgical flexibility, enabling small volume enhancements if need be, yet with minimal subperiosteal dissection. We have found this approach of directly addressing the underlying deficiency to be preferable to techniques that attempt to camouflage these changes such as extensive tissue redraping alone or the use of supraperiosteal soft tissue fillers. Certain bony features are subjectively perceived as masculine or feminine. In surgical enhancement of the skeleton, it is important to recognize this as a foremost consideration in rejuvenative procedures for either gender. Exaggeration of masculine features is not necessarily attractive in males. Perrett et al. [47] noted that a more feminized face on a male was deemed more attractive than a more masculinized face. This was true for both male and female observers and across different cultures. Moreover, these findings have been confirmed by others [15, 48]. The implication of this is that for both male and female patients, augmentation of the facial skeleton should be done conservatively, with just sufficient volume to restore the contours of youth. Exaggerated augmentations should be avoided. A significant limitation with use of the currently available data should be recognized. The ideal study would be linear to show the aging changes in the same individuals. With few exceptions, the available studies in this area are cross-sectional population studies based on comparisons among groups of individuals across different ages. This has inherent shortcomings due to the wide variation between normal individuals. A definitive documentation using longitudinal studies hopefully will be available in the future. Also, it is difficult to quantify the complex three-dimensional changes of the aging bone when two-dimensional measurements are used, as is the case in most of the published studies.

9 Conclusions The facial skeleton has a profound effect on an individual s appearance. A defining characteristic of youth is good skeletal structural support. Facial aging results from a combination of soft tissue and bony changes, with bone loss in specific areas of the facial skeleton contributing significantly to the features of the aging face. This comprehensive review highlights the specific areas known to resorb with aging. It is conceptually important to appreciate that in most individuals with premature aging, the facial skeleton can be inherently inadequate. Accordingly, the changes in the facial skeleton that result from the aging process must be addressed to obtain a natural-appearing facial rejuvenation. Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. References 1. Hellman M (1927) Changes in the human face brought about by development. Int J Orthod 13: Todd TW (1924) Thickness of the white male cranium. Anat Rec 27: Lasker GW (1953) The age factor in bodily measurements of adult male and female Mexicans. Hum Biol 25:50 4. Garn SM, Rohmann CG, Wagner B, Ascoli W (1967) Continuing bone growth during adult life: a general phenomenon. Am J Phys Anthropol 26: Behrents RG (1985) Growth in the aging craniofacial skeleton. University of Michigan Center for Human Growth and Development, Ann Arbor 6. Bartlett SP, Grossman R, Whitaker LA (1992) Age-related changes of the craniofacial skeleton: an anthropometric and histologic analysis. Plast Reconstr Surg 90: Cawood JI, Howell RA (1988) A classification of the edentulous jaws. Int J Oral Maxillofac Surg 17: Kahn DM, Shaw RB Jr (2008) Aging of the bony orbit: a threedimensional computed tomographic study. Aesthet Surg J 28: Pessa JE, Chen Y (2002) Curve analysis of the aging orbital aperture. Plast Reconstr Surg 109: Pessa JE (2000) An algorithm of facial aging: verification of Lambros s theory by three-dimensional stereolithography, with reference to the pathogenesis of midfacial aging, scleral show, and the lateral suborbital trough deformity. Plast Reconstr Surg 106: (discussion ) 11. Shaw RB Jr, Kahn DM (2007) Aging of the midface bony elements: a three-dimensional computed tomographic study. Plast Reconstr Surg 119: Mendelson BC, Hartley W, Scott M, McNab A, Granzow JW (2007) Age-related changes of the orbit and midcheek and the implications for facial rejuvenation. Aesthet Plast Surg 31: Pessa JE, Zadoo VP, Yuan C, Ayedelotte JD, Cuellar FJ, Cochran CS, Mutimer KL, Garza JR (1999) Concertina effect and facial aging: nonlinear aspects of youthfulness and skeletal remodeling, and why, perhaps, infants have jowls. Plast Reconstr Surg 103: Pessa JE, Zadoo VP, Mutimer KL, Haffner C, Yuan C, DeWitt AI, Garza JR (1998) Relative maxillary retrusion as a natural consequence of aging: combining skeletal and soft tissue changes into an integrated model of midfacial aging. Plast Reconstr Surg 102: Pessa JE, Slice DE, Hanz KR, Broadbent TH Jr, Rohrich RJ (2008) Aging and the shape of the mandible. Plast Reconstr Surg 121: Enlow DH (1966) A morphogenetic analysis of facial growth. Am J Phys Anthropol 52: Enlow DH (1968) The Human Face. Harper and Row, New York 18. Levine RA, Garza JR, Wang PT, Hurst CL, Dev VR (2003) Adult facial growth: applications to aesthetic surgery. Aesthet Plast Surg 27: Levine RA (2008) Aging of the midface bony elements. Plast Reconstr Surg 121: Rosas A, Bastir M (2002) Thin plate spline analysis of allometry and sexual dimorphism in the human craniofacial complex. Am J Phys Anthropol 117: Jacobson AL (1995) Radiographic cephalometry. Quintessence Publishing Co, Chicago 22. Ferrario VF, Sforza C, Poggio CE et al (1997) Effects of growth and development on cephalometrics shapes in orthodontic patients: a Fourier analysis. Eur J Orthod 19: Bolin A (1986) Proximal alveolar bone loss in a longitudinal radiographic investigation. Swed Dent J Suppl 35:1 24. Flowers RS (1991) Periorbital aesthetic surgery for men: eyelids and related structures. Clin Plast Surg 18: Rohrich RJ, Hollier LH Jr, Janis JE, Kim J (2004) Rhinoplasty with advancing age. Plast Reconstr Surg 114: Pessa JE, Peterson ML, Thompson JW, Cohran CS, Garza JR (1999) Pyriform augmentation as an ancillary procedure in facial rejuvenation surgery. Plast Reconstr Surg 103: Barton FE, Gyimesi I (1997) Anatomy of the nasolabial fold. Plast Reconstr Surg 100: Edelstein DR (1996) Aging of the normal adult nose. Laryngoscope 106: Pecora NG, Baccetti T, McNamara JA Jr (2006) The aging craniofacial complex: a longitudinal cephalometric study from late adolescence to late adulthood. Am J Orthod Dentofac Orthop 134: Shaw RB Jr, Katzel EB, Koltz PF, Kahn DM, Girotto JA, Langstein HN (2010) Aging of the mandible and its aesthetic implications. Plast Reconstr Surg 125: Romo T, Yalamanchili H, Sclafani AP (2005) Chin and prejowl augmentation in the management of the aging jawline. Facial Plast Surg 21: Rosen HM (1999) Treatment planning: aesthetic goals. In: Rosen HM (ed) Aesthetic perspectives in jaw surgery. Springer, New York, pp Terino EO, Edwards MC (2008) Alloplastic contouring for suborbital, maxillary, zygomatic deficiencies. Facial Plast Surg Clin North Am 16: Terino EO, Edward M (2008) The magic of midface threedimensional contour alterations combining alloplastic and soft tissue suspension technologies. Clin Plast Surg 35: Whitaker LA, Bartlett SP (1991) Skeletal alterations as a basis for facial rejuvenation. Clin Plast Surg 18: Le Louarn C, Buthiau D, Buis J (2007) Structural aging: the facial recurve concept. Aesthet Plast Surg 31: Matros E, Garcia JA, Yaremchuk MJ (2009) Changes in the eyebrow position and shape with aging. Plast Reconstr Surg 124:1296

10 38. Hinderer U (1975) Malar implants for improvement of the facial appearance. Plast Reconstr Surg 56: Gonzalez-Ulloa M (1974) Building out the malar prominences as an addition to rhytidectomy. Plast Reconstr Surg 53: Byrd HS, Hobar PC, Shewmake K (1993) Augmentation of the craniofacial skeleton with porous hydroxyapatite granules. Plast Reconstr Surg 91: Byrd HS, Hobar PC (1994) Augmentation of the cheekbones with porous hydroxyapatite granules. Perspect Plast Surg 8: O Hara KL, Urrego AF, Garri JI, O Hara CM, Bradley JP, Kawamoto HK (2006) Improved malar projection with transconjunctival hydroxyapatite granules. Plast Reconstr Surg 117: Waite PD, Matukas VJ (1986) Zygomatic augmentation with hydroxylapatite: a preliminary report. J Oral Maxillofac Surg 44: Moreira-Gonzalez A, Jackson IT, Miyawaki T, DiNick V, Yavuzer R (2003) Augmentation of the craniomaxillofacial region using porous hydroxyapatite granules. Plast Reconstr Surg 111: El Deeb M, Tompach PC, Morstad AT (1988) Porous hydroxylapatite granules and blocks as alveolar ridge augmentation materials: a preliminary report. J Oral Maxillofac Surg 46: Mendelson BC, Jacobson SR, Lavoipierre AM, Huggins RJ (2010) The fate of porous hydroxyapatite granules used in facial skeletal augmentation. Aesthet Plast Surg 34: Perrett DI, May KA, Yoshikawa S (1994) Facial shape and judgments of female attractiveness. Nature 368: Valenzano DR, Mennucci A, Tartarelli G, Cellerino A (2006) Shape analysis of female attractiveness. Vis Res 46: Pessa JE (1999) The effect of skeletal remodeling on the nasal profile: considerations for rhinoplasty in the older patient. Aesthet Plast Surg 23(4):

Mandibular Dimensional Changes with aging in Three Dimensional Computed Tomographic Study in 21 to 50 Year old Men and Women

Mandibular Dimensional Changes with aging in Three Dimensional Computed Tomographic Study in 21 to 50 Year old Men and Women Mandibular Dimensional Changes with aging in Three Dimensional Computed Tomographic Study in 21 to 50 Year old Men and Women Original Article Roshanak Ghaffari 1, Abolfath Hosseinzade 2, Hossein Zarabi

More information

Cephalometric Analysis

Cephalometric Analysis Cephalometric Analysis of Maxillary and Mandibular Growth and Dento-Alveolar Change Part III In two previous articles in the PCSO Bulletin s Faculty Files, we discussed the benefits and limitations of

More information

It is a common observation that the Asian face

It is a common observation that the Asian face INJECTABLES Ethnic and Gender Considerations in the Use of Facial Injectables: Asian Patients Steven Liew, FRACS Sydney, New South Wales, Australia Background: Asians have distinct facial characteristics

More information

PERIORBITAL ANATOMY - AN ESSENTIAL FOUNDATION FOR BLEPHAROPLASTY

PERIORBITAL ANATOMY - AN ESSENTIAL FOUNDATION FOR BLEPHAROPLASTY PERIORBITAL ANATOMY - AN ESSENTIAL FOUNDATION FOR BLEPHAROPLASTY William M. Ramsdell, M.D. 102 Westlake Dr, Ste 100 Austin, TX 78746 wmr@centexderm.com 512-327-7779 Private Practice ABSTRACT Background

More information

Severe Malocclusion: Appropriately Timed Treatment. This article discusses challenging issues clinicians face when treating

Severe Malocclusion: Appropriately Timed Treatment. This article discusses challenging issues clinicians face when treating Severe Malocclusion: The Importance of Appropriately Timed Treatment A Synchronized and Simultaneous Interdisciplinary Plan Using Cosmetic Dentistry Principles David M. Sarver, DMD, MS Abstract This article

More information

Soo Jin Kim, So Jung Kim, Jee Soo Park, Sung Wan Byun, and Jung Ho Bae

Soo Jin Kim, So Jung Kim, Jee Soo Park, Sung Wan Byun, and Jung Ho Bae Original rticle Yonsei Med J 2015 Sep;56(5):1395-1400 pissn: 0513-5796 eissn: 1976-2437 nalysis of -Related hanges in sian Facial Skeletons Using 3 Vector Mathematics on Picture rchiving and ommunication

More information

Sensitivity of a Method for the Analysis of Facial Mobility. II. Interlandmark Separation

Sensitivity of a Method for the Analysis of Facial Mobility. II. Interlandmark Separation Sensitivity of a Method for the Analysis of Facial Mobility. II. Interlandmark Separation CARROLL-ANN TROTMAN, B.D.S., M.A., M.S. JULIAN J. FARAWAY, PH.D. Objective: This study demonstrates a method of

More information

Postnatal Growth. The study of growth in growing children is for two reasons : -For health and nutrition assessment

Postnatal Growth. The study of growth in growing children is for two reasons : -For health and nutrition assessment Growth of The Soft Tissues Postnatal Growth Postnatal growth is defined as the first 20 years of growth after birth krogman 1972 The study of growth in growing children is for two reasons : -For health

More information

AESTHETIC ORTHOGNATHIC SURGERY

AESTHETIC ORTHOGNATHIC SURGERY c0435 ESTHETIC ORTHOGNTHIC SURGERY Stephen. aker, MD, DDS, and Harvey Rosen, MD, DMD CHPTER 87 s0010 p0010 s0020 p0015 s0025 p0020 s0030 p0025 s0035 p0030 s0040 p0035 s0045 p0040 1. What is orthognathic

More information

Jefferson Cephalometric Analysis--Face and Health Focused

Jefferson Cephalometric Analysis--Face and Health Focused Jefferson Cephalometric Analysis--Face and Health Focused Google: Jefferson Ceph Analysis Video Instruction for video instruction. Note: video instruction teaches how to find Center O. Center O is now

More information

CHAPTER 17 FACIAL AESTHETIC SURGERY. Christopher C. Surek, DO and Mohammed S. Alghoul, MD. I. BROW LIFT (Figures 1 and 2)

CHAPTER 17 FACIAL AESTHETIC SURGERY. Christopher C. Surek, DO and Mohammed S. Alghoul, MD. I. BROW LIFT (Figures 1 and 2) CHAPTER 17 FACIAL AESTHETIC SURGERY Christopher C. Surek, DO and Mohammed S. Alghoul, MD I. BROW LIFT (Figures 1 and 2) A. Open Coronal Brow Lift Technique 1. Coronal incision is made in the hair-bearing

More information

By JOHN MARQUIS CONVERSE, M.D., and DAUBERT TELSEY, D.D.S.

By JOHN MARQUIS CONVERSE, M.D., and DAUBERT TELSEY, D.D.S. THE TRIPARTITE OSTEOTOMY OF THE MID-FACE FOR ORBITAL EXPANSION AND CORRECTION OF THE DEFORMITY IN CRANIOSTENOSIS By JOHN MARQUIS CONVERSE, M.D., and DAUBERT TELSEY, D.D.S. Center for Craniofacial Anomalies

More information

LATERAL CEPHALOMETRIC EVALUATION IN CLEFT PALATE PATIENTS

LATERAL CEPHALOMETRIC EVALUATION IN CLEFT PALATE PATIENTS POLSKI PRZEGLĄD CHIRURGICZNY 2009, 81, 1, 23 27 10.2478/v10035-009-0004-2 LATERAL CEPHALOMETRIC EVALUATION IN CLEFT PALATE PATIENTS PRADEEP JAIN, ANAND AGARWAL, ARVIND SRIVASTAVA Department of Plastic

More information

Evaluation of the maxillary morphological changes following distraction in CLP patients decrease in the Ul to NF except for Case 6. me [35] instance,血e small maxillary advancement of 2.4 mm and maxillary

More information

/TLv/ A classification of the edentulous jaws. Trauma; Preprosthetic Surgery. iiiii!iii!iii! ] BASAL

/TLv/ A classification of the edentulous jaws. Trauma; Preprosthetic Surgery. iiiii!iii!iii! ] BASAL Trauma; Preprosthetic Surgery A classification of the edentulous jaws J. I. awood ~ and R. A. Howell 2 ~Maxillofacial Unit, Royal Infirmary, hester, UK, 2Liverpool Dental Hospital, Liverpool, UK J. L awood

More information

Vertical relation: It is the amount of separation between the maxilla and

Vertical relation: It is the amount of separation between the maxilla and Vertical relations Vertical relation: It is the amount of separation between the maxilla and the mandible in a frontal plane. Vertical dimension: It is the distance between two selected points, one on

More information

Core Curriculum Syllabus Emergencies in Otolaryngology-Head and Neck Surgery FACIAL FRACTURES

Core Curriculum Syllabus Emergencies in Otolaryngology-Head and Neck Surgery FACIAL FRACTURES Core Curriculum Syllabus Emergencies in Otolaryngology-Head and Neck Surgery A. General Considerations FACIAL FRACTURES Look for other fractures like skull and/or cervical spine fractures Test function

More information

MEDPOR. Plastic surgery

MEDPOR. Plastic surgery MEDPOR Plastic surgery MEDPOR biomaterial MEDPOR has been a trusted name in the industry since 1985, with hundreds of thousands of procedures performed, and hundreds of published clinical reports in reconstructive,

More information

Surgical Anatomy Relevant to the Transpalpebral Subperiosteal Elevation of the Midface

Surgical Anatomy Relevant to the Transpalpebral Subperiosteal Elevation of the Midface Surgical Anatomy Relevant to the Transpalpebral Subperiosteal Elevation of the Midface Gaby Doumit, MD, Msc, Bahar Bassiri Gharb, MD, PhD, Antonio Rampazzo, MD, PhD, Jennifer McBride, PhD, Francis Papay,

More information

Bones of the skull & face

Bones of the skull & face Bones of the skull & face Cranium= brain case or helmet Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. The cranium is composed of eight bones : frontal Occipital

More information

Intranasal Surgical Approach for Malar Alloplastic Augmentation

Intranasal Surgical Approach for Malar Alloplastic Augmentation INTERNATIONAL CONTRIBUTION Facial Surgery Intranasal Surgical Approach for Malar Alloplastic Augmentation Jose Abel de la Peña-Salcedo, MD; Miguel Angel Soto-Miranda, MD; and Jose Fernando Lopez-Salguero,

More information

The Fate of Porous Hydroxyapatite Granules Used in Facial Skeletal Augmentation

The Fate of Porous Hydroxyapatite Granules Used in Facial Skeletal Augmentation DOI 10.1007/s00266-010-9473-2 ORIGINAL ARTICLE The Fate of Porous Hydroxyapatite Granules Used in Facial Skeletal Augmentation Bryan C. Mendelson Steve R. Jacobson Alain M. Lavoipierre Richard J. Huggins

More information

ORTHOGNATHIC SURGERY

ORTHOGNATHIC SURGERY ORTHOGNATHIC SURGERY MEDICAL POLICY Effective Date: February 1, 2017 Review Dates: 1/93, 7/95, 10/97, 4/99, 10/00, 8/01, 12/01, 4/02, 2/03, 1/04, 1/05, 12/05, 12/06, 12/07, 12/08, 12/09, 12/10, 12/11,

More information

Case Report: Long-Term Outcome of Class II Division 1 Malocclusion Treated with Rapid Palatal Expansion and Cervical Traction

Case Report: Long-Term Outcome of Class II Division 1 Malocclusion Treated with Rapid Palatal Expansion and Cervical Traction Case Report Case Report: Long-Term Outcome of Class II Division 1 Malocclusion Treated with Rapid Palatal Expansion and Cervical Traction Roberto M. A. Lima, DDS a ; Anna Leticia Lima, DDS b Abstract:

More information

Sample Case #1. Disclaimer

Sample Case #1. Disclaimer ABO Sample Cases Disclaimer Sample Case #1 The following sample questions and answers were composed and vetted by a panel of experts in orthodontics and are intended to provide an example of the types

More information

Human, Male, Single gunshot wound

Human, Male, Single gunshot wound Human, Male, Single gunshot wound Product Number: Specimen Evaluated: Skeletal Inventory: BC-152 Bone Clones replica 1 intact cranium - left inferior nasal concha absent - middle nasal conchae absent 1

More information

Association of the Morphology of the Atlas Vertebra. with the Morphology of the Mandible

Association of the Morphology of the Atlas Vertebra. with the Morphology of the Mandible MDJ Association of the Morphology of the Atlas Vertebra with the Morphology of the Mandible Dr. Hadeel Ali Hussein Al-Hashimi, B.D.S., M.Sc.* Dr. Zina Zuhair Al-Azawi, B.D.S., M.Sc.** Abstract Anatomy

More information

Developing Facial Symmetry Using an Intraoral Device: A Case Report

Developing Facial Symmetry Using an Intraoral Device: A Case Report Developing Facial Symmetry Using an Intraoral Device: A Case Report by Theodore R. Belfor, D.D.S.; and G. Dave Singh, D.D.Sc., Ph.D., B.D.S. Dr. Theodore Belfor graduated from New York University College

More information

The history of face lift surgery encompasses a wide

The history of face lift surgery encompasses a wide Richard Ellenbogen, MD; Anthony Youn, MD; Dan Yamini, MD; and Steven Svehlak, MD Dr. Ellenbogen, Dr. Yamini, and Dr. Svehlak are in private practice in Los Angeles, CA. Dr. Youn is in private practice

More information

Patients with small lower jaws may derive aesthetic

Patients with small lower jaws may derive aesthetic Operative Strategies Enlarging the Deficient Mandible Michael J. Yaremchuk, MD; Yi-Chieh Chen, MD Dr. Yaremchuk is Clinical Professor of Surgery, Harvard Medical School and Chief of Craniofacial Surgery,

More information

What is Hemifacial Microsomia? By Pravin K. Patel, MD and Bruce S. Bauer, MD Children s Memorial Hospital, Chicago, IL

What is Hemifacial Microsomia? By Pravin K. Patel, MD and Bruce S. Bauer, MD Children s Memorial Hospital, Chicago, IL What is Hemifacial Microsomia? By Pravin K. Patel, MD and Bruce S. Bauer, MD Children s Memorial Hospital, Chicago, IL 773-880-4094 Early in the child s embryonic development the structures destined to

More information

Correction of Dentofacial Deformities (Orthognathic Surgery)

Correction of Dentofacial Deformities (Orthognathic Surgery) Correction of Dentofacial Deformities (Orthognathic Surgery) BDS, MSc, German board of Oral and Maxillofacial Surgery ( Berlin-Germany), Doctoral degree by LBMS Definition Orthognathic surgery is a combination

More information

Pre- and Postsurgical Facial Growth in Patients. with Crouzon's and Apert's Syndromes

Pre- and Postsurgical Facial Growth in Patients. with Crouzon's and Apert's Syndromes Pre- and Postsurgical Facial Growth in Patients with Crouzon's and Apert's Syndromes Sven KrRreiBora, D.D.S., Dr. Obpont. HowArRDp Apuss, D.D.S., M.S. Our report deals with 8 patients with Crouzon's and

More information

Human, Male, White, Calvarium cut

Human, Male, White, Calvarium cut Human, Male, White, Calvarium cut Product Number: Specimen Evaluated: Skeletal Inventory: BC-293 Bone Clones replica 1 intact cranium 1 intact mandible General observations: **NOTE The demographic features

More information

Understanding Midfacial Rejuvenation in the 21st Century

Understanding Midfacial Rejuvenation in the 21st Century 40 Understanding Midfacial Rejuvenation in the 21st Century Scott Randolph Chaiet, MD 1,2 Edwin F. Williams, III, MD, FACS 1,2 1 Department of Facial Plastic and Reconstructive Surgery, Williams Center

More information

TRAUMA TO THE FACE AND MOUTH

TRAUMA TO THE FACE AND MOUTH Dr.Yahya A. Ali 3/10/2012 F.I.C.M.S TRAUMA TO THE FACE AND MOUTH Bailey & Love s 25 th edition Injuries to the orofacial region are common, but the majority are relatively minor in nature. A few are major

More information

Chapter 7 Part A The Skeleton

Chapter 7 Part A The Skeleton Chapter 7 Part A The Skeleton Why This Matters Understanding the anatomy of the skeleton enables you to anticipate problems such as pelvic dimensions that may affect labor and delivery The Skeleton The

More information

ORIGINAL ARTICLE ABSTRACT CLINICAL SIGNIFICANCE

ORIGINAL ARTICLE ABSTRACT CLINICAL SIGNIFICANCE ORIGINAL ARTICLE Enameloplasty and Esthetic Finishing in Orthodontics Differential Diagnosis of Incisor Proclination The Importance of Appropriate Visualization and Records Part 2jerd_447 303..313 DAVID

More information

Midcheek Lift Using Facial Soft-Tissue Spaces of the Midcheek

Midcheek Lift Using Facial Soft-Tissue Spaces of the Midcheek COSMETIC Midcheek Lift Using Facial Soft-Tissue Spaces of the Midcheek Chin-Ho Wong, M.Med. (Surg.), F.A.M.S.(Plast. Surg.) Bryan Mendelson, F.R.C.S.(Ed.), F.R.A.C.S., F.A.C.S. Singapore; and Toorak, Victoria,

More information

Correlation Between Naso Labial Angle and Effective Maxillary and Mandibular Lengths in Untreated Class II Patients

Correlation Between Naso Labial Angle and Effective Maxillary and Mandibular Lengths in Untreated Class II Patients 9 International Journal of Interdisciplinary and Multidisciplinary Studies,2014,Vol 1,No.3,9-14. Available online at httt://www.ijims.com ISSN: 2348 0343 Correlation Between Naso Labial Angle and Effective

More information

Palatal Depth and Arch Parameter in Class I Open Bite, Deep Bite and Normal Occlusion

Palatal Depth and Arch Parameter in Class I Open Bite, Deep Bite and Normal Occlusion 26 Iraqi Orthod J 1(2) 2005 Palatal Depth and Arch Parameter in Class I Open Bite, Deep Bite and Normal Occlusion Ahmad A. Abdulmawjood, a Mahmood K. Ahmed, a and Ne am R. Al-Saleem a Abstract: This study

More information

Scientific Treatment Goals for Oral and Facial Harmony

Scientific Treatment Goals for Oral and Facial Harmony Scientific Treatment Goals for Oral and Facial Harmony AAO Lecture May 7, 2013 Philadelphia, PA Will A. Andrews, D.D.S. Optimal oral and facial harmony implies a state of maximum health, function and appearance

More information

Anatomy and Physiology. Bones, Sutures, Teeth, Processes and Foramina of the Human Skull

Anatomy and Physiology. Bones, Sutures, Teeth, Processes and Foramina of the Human Skull Anatomy and Physiology Chapter 6 DRO Bones, Sutures, Teeth, Processes and Foramina of the Human Skull Name: Period: Bones of the Human Skull Bones of the Cranium: Frontal bone: forms the forehead and the

More information

Maxillary Osteotomies and Bone Grafts for. Correction of Contoural and Occlusal

Maxillary Osteotomies and Bone Grafts for. Correction of Contoural and Occlusal Maxillary Osteotomies and Bone Grafts for Correction of Contoural and Occlusal Deformities* M. L. LEWIN, M.D. RAVELO V. ARGAMASO, M.D. ABRAHAM I. FINGEROTH, D.D.S. Bronx, New York One of the major aims

More information

Human, Female, Black, Shotgun wound

Human, Female, Black, Shotgun wound Human, Female, Black, Shotgun wound Product Number: Specimen Evaluated: Skeletal Inventory: BC-196 Bone Clones replica 1 intact cranium 2 fragments of mandible: - portion of left body, ramus, coronoid

More information

OPERATIVE CORRECTION BY OSTEOTOMY OF RECESSED MALAR MAXILLARY COMPOUND IN A CASE OF OXYCEPHALY

OPERATIVE CORRECTION BY OSTEOTOMY OF RECESSED MALAR MAXILLARY COMPOUND IN A CASE OF OXYCEPHALY OPERATIVE CORRECTION BY OSTEOTOMY OF RECESSED MALAR MAXILLARY COMPOUND IN A CASE OF OXYCEPHALY By Sir HAROLD GILLIES, C.B.E., F.R.C.S., and STEWART H. HARRISON, F.R.C.S., L.D.S., R.C.S. From the Plastic

More information

Anatomy of. External NOSE. By Dr Farooq Aman Ullah Khan PMC

Anatomy of. External NOSE. By Dr Farooq Aman Ullah Khan PMC Anatomy of External NOSE By Dr Farooq Aman Ullah Khan PMC 24 th Nov. 2017 The External Nose Descriptions of the nose always begin with that part of it which is covered by the skin, i.e., the EXPOSED PART

More information

Bone Clones Osteological Evaluation Report. 1 intact mandible

Bone Clones Osteological Evaluation Report. 1 intact mandible Human, Female, Asian Product Number: Specimen Evaluated: Skeletal Inventory: BC-211 Bone Clones replica 1 intact cranium 1 intact mandible General observations: In general, the molding process has preserved

More information

Homo and Maccrca. A Comparative Study of Facial Growth in

Homo and Maccrca. A Comparative Study of Facial Growth in A Comparative Study of Facial Growth in Homo and Maccrca DONALD H. ENLOW Department of Anatomy and Center for Human Growth and Development, The University of Michigan, Ann Arbor, Michigan ABSTRACT Sections

More information

Management of the Midface During Facial Rejuvenation

Management of the Midface During Facial Rejuvenation Management of the Midface During Facial Rejuvenation Andrew P. Trussler, M.D., 1 and H. Steve Byrd, M.D. 1 ABSTRACT The endoscopic midface lift procedure has evolved from experience with postreduction

More information

3. The Jaw and Related Structures

3. The Jaw and Related Structures Overview and objectives of this dissection 3. The Jaw and Related Structures The goal of this dissection is to observe the muscles of jaw raising. You will also have the opportunity to observe several

More information

McHenry Western Lake County EMS System Paramedic, EMT-B and PHRN Optional Continuing Education 2019 #1 Facial Trauma

McHenry Western Lake County EMS System Paramedic, EMT-B and PHRN Optional Continuing Education 2019 #1 Facial Trauma McHenry Western Lake County EMS System Paramedic, EMT-B and PHRN Optional Continuing Education 2019 #1 Facial Trauma The face is vital to human appearance and function. Facial injuries can impair a patient

More information

Facial planning for orthodontists and oral surgeons

Facial planning for orthodontists and oral surgeons ADVANCES IN ORTHODONTICS & DENTOFACIAL SURGERY Facial planning for orthodontists and oral surgeons G. William Arnett, DDS, FACD, a and Michael J. Gunson, DDS, MD b Santa Barbara, Calif The bite indicates

More information

The three-dimensional effects of orthodontic treatment on the facial soft tissues a preliminary study.

The three-dimensional effects of orthodontic treatment on the facial soft tissues a preliminary study. IN BRIEF l Orthodontic treatment can effect the appearance of the face in all three dimensions of space. The extent of these effects can be accurately assessed using an imaging technique such as three-dimensional

More information

Soft and Hard Tissue Changes after Bimaxillary Surgery in Chinese Class III Patients

Soft and Hard Tissue Changes after Bimaxillary Surgery in Chinese Class III Patients Original Article Soft and Hard Tissue Changes after Bimaxillary Surgery in Chinese Class III Patients Ming Tak Chew a Abstract: Cephalometric studies have shown that the Chinese race tends to have a greater

More information

Case Report. Orthognathic Correction of Class II Open Bite. Using the Piezoelectric System and MatrixORTHOGNATHIC Plating System.

Case Report. Orthognathic Correction of Class II Open Bite. Using the Piezoelectric System and MatrixORTHOGNATHIC Plating System. Case Report Orthognathic Correction of Class II Open Bite. Using the Piezoelectric System and MatrixORTHOGNATHIC Plating System. Orthognathic Correction of Class II Open Bite. Using the Piezoelectric System

More information

MANY PATIENTS SEEKING FACIAL

MANY PATIENTS SEEKING FACIAL PEER-REVIEW FACIAL REJUVENATION THE MIDFACE FILLING, LIFTING, OR BLEPHAROPLASTY? Fred Fedok describes the treatment options available to address the changes brought about by aging to the lower eyelid,

More information

Bone Clones Osteological Evaluation Report. 1 intact mandible

Bone Clones Osteological Evaluation Report. 1 intact mandible Human, Male, Black Bone Clones Osteological Evaluation Report Product Number: Specimen Evaluated: Skeletal Inventory: BC-203 Bone Clones replica 1 intact cranium 1 intact mandible General observations:

More information

Maxillary Sinus Measurements in Different Age Groups of Human Cadavers

Maxillary Sinus Measurements in Different Age Groups of Human Cadavers Tikrit Journal for Dental Sciences 1(2013)107-112 Maxillary Sinus Measurements in Different Age Groups of Human Cadavers Mohammad A. Abd-alla BDS, MSc., Ph.D. (1) Abdul-Jabbar J. Mahdi BDS, MSc., Ph.D.

More information

Three-Dimensional Analysis of Long-Term Midface Volume Change After Vertical Vector Deep-Plane Rhytidectomy

Three-Dimensional Analysis of Long-Term Midface Volume Change After Vertical Vector Deep-Plane Rhytidectomy Facial Surgery Three-Dimensional Analysis of Long-Term Midface Volume Change After Vertical Vector Deep-Plane Rhytidectomy Aesthetic Surgery Journal 2015, Vol 35(5) 491 503 2015 The American Society for

More information

A CROSS-SECTIONAL STUDY OF SOFT TISSUE FACIAL MORPHOMETRY IN CHILDREN AND ADOLESCENTS

A CROSS-SECTIONAL STUDY OF SOFT TISSUE FACIAL MORPHOMETRY IN CHILDREN AND ADOLESCENTS Malaysian Journal of Medical Sciences, Vol. 13, No. 1, January 2006 (25-29) ORIGINAL ARTICLE A CROSS-SECTIONAL STUDY OF SOFT TISSUE FACIAL MORPHOMETRY IN CHILDREN AND ADOLESCENTS Nizam Abdullah*, Lin Naing**,

More information

Chapter 7: Head & Neck

Chapter 7: Head & Neck Chapter 7: Head & Neck Osteology I. Overview A. Skull The cranium is composed of irregularly shaped bones that are fused together at unique joints called sutures The skull provides durable protection from

More information

MEDPOR. Oral maxillofacial surgery

MEDPOR. Oral maxillofacial surgery MEDPOR Oral maxillofacial surgery MEDPOR biomaterial MEDPOR has been a trusted name in the industry since 1985, with hundreds of thousands of procedures performed, and hundreds of published clinical reports

More information

Bones Ethmoid bone Inferior nasal concha Lacrimal bone Maxilla Nasal bone Palatine bone Vomer Zygomatic bone Mandible

Bones Ethmoid bone Inferior nasal concha Lacrimal bone Maxilla Nasal bone Palatine bone Vomer Zygomatic bone Mandible splanchnocranium - Consists of part of skull that is derived from branchial arches - The facial bones are the bones of the anterior and lower human skull Bones Ethmoid bone Inferior nasal concha Lacrimal

More information

It is now widely recognized that there is a critical. Dental Facial Aesthetics Aesthetic shaping of the neck/positive side effects on the gingiva

It is now widely recognized that there is a critical. Dental Facial Aesthetics Aesthetic shaping of the neck/positive side effects on the gingiva Dental Facial Aesthetics Aesthetic shaping of the neck/positive side effects on the gingiva Warren Roberts, DMD This article discusses the relationship between Platysma, a large muscle of the face and

More information

The goal of lower blepharoplasty is the restoration COSMETIC

The goal of lower blepharoplasty is the restoration COSMETIC COSMETIC Lysis of the Orbicularis Retaining Ligament and Orbicularis Oculi Insertion: A Powerful Modality for Lower Eyelid and Cheek Rejuvenation Jeffrey D. Schiller, M.D. New York, N.Y. Background: The

More information

Orthognathic surgery. Dr. Mohamed Rahil. ((Maxillofacial surgeon))

Orthognathic surgery. Dr. Mohamed Rahil. ((Maxillofacial surgeon)) Orthognathic surgery Dr. Mohamed Rahil ((Maxillofacial surgeon)) Tikrit dentistry college 2015 2016 Orthognathic surgery is the art and science of diagnosis, and treatment of facial disproportion. These

More information

Jaw relations and jaw relation records

Jaw relations and jaw relation records Lecture 11 Prosthodontics Dr. Osama Jaw relations and jaw relation records Jaw relations can be classified into 3 categories 1-Orientation jaw relation 2-Vertical jaw relation 3-Horizontal jaw relation

More information

NEUROCRANIUM VISCEROCRANIUM VISCEROCRANIUM VISCEROCRANIUM

NEUROCRANIUM VISCEROCRANIUM VISCEROCRANIUM VISCEROCRANIUM LECTURE 4 SKULL NEUROCRANIUM VISCEROCRANIUM VISCEROCRANIUM VISCEROCRANIUM CRANIUM NEUROCRANIUM (protective case around brain) VISCEROCRANIUM (skeleton of face) NASOMAXILLARY COMPLEX MANDIBLE (DESMOCRANIUM)

More information

Dr.Sepideh Falah-kooshki

Dr.Sepideh Falah-kooshki Dr.Sepideh Falah-kooshki MAXILLA Premaxillary/median palatal suture (radiolucent). Incisive fossa and foramen (radiolucent). Nasal passages (radiolucent). Nasal septum (radiopaque). Anterior nasal spine

More information

Scientific Forum. Nostrilplasty: Raising, Lowering, Widening, and Symmetry Correction of the Alar Rim

Scientific Forum. Nostrilplasty: Raising, Lowering, Widening, and Symmetry Correction of the Alar Rim Nostrilplasty: Raising, Lowering, Widening, and Symmetry Correction of the lar Rim Richard Ellenbogen, MD; and Greg azell, MD ackground: lthough the alar rim has frequently been neglected in correction

More information

Fundamental & Preventive Curvatures of Teeth and Tooth Development. Lecture Three Chapter 15 Continued; Chapter 6 (parts) Dr. Margaret L.

Fundamental & Preventive Curvatures of Teeth and Tooth Development. Lecture Three Chapter 15 Continued; Chapter 6 (parts) Dr. Margaret L. Fundamental & Preventive Curvatures of Teeth and Tooth Development Lecture Three Chapter 15 Continued; Chapter 6 (parts) Dr. Margaret L. Dennis Proximal contact areas Contact areas are on the mesial and

More information

Human, Male, White, Healed hammer blows

Human, Male, White, Healed hammer blows Human, Male, White, Healed hammer blows Product Number: Specimen Evaluated: Skeletal Inventory: BC-217 Bone Clones replica 1 intact cranium General observations: In general, the molding process has preserved

More information

Non-surgical management of skeletal malocclusions: An assessment of 100 cases

Non-surgical management of skeletal malocclusions: An assessment of 100 cases Non-surgical management of skeletal malocclusions: An assessment of 100 cases In early 1970 s reduced risks associated with surgical procedures allowed the treatment planning process for skeletal malocclusions

More information

Topic: Orthognathic Surgery Date of Origin: October 5, Section: Surgery Last Reviewed Date: December 2013

Topic: Orthognathic Surgery Date of Origin: October 5, Section: Surgery Last Reviewed Date: December 2013 Medical Policy Manual Topic: Orthognathic Surgery Date of Origin: October 5, 2004 Section: Surgery Last Reviewed Date: December 2013 Policy No: 137 Effective Date: March 1, 2014 IMPORTANT REMINDER Medical

More information

A Cephalometric Study

A Cephalometric Study Craniofacial Growth in Juvenile Macaca mulatta: A Cephalometric Study JOSE C. ELGOYHEN,2%3 MICHAEL L. RIOLO,3 LEE W. GRABER,3 ROBERT E. MOYERS4 AND JAMES A. McNAMARA, JR.5 3 Center for Human Growth and

More information

Closure of an Oronasal Fistula in an Irradiated Palate by Tissue and Bone Distraction Osteogenesis CASE REPORT

Closure of an Oronasal Fistula in an Irradiated Palate by Tissue and Bone Distraction Osteogenesis CASE REPORT Closure of an Oronasal Fistula in an Irradiated Palate by Tissue and Bone Distraction Osteogenesis Peter J. Taub, MD* James P. Bradley, MD* Henry K. Kawamoto, MD, DDS* Los Angeles, California Pittsburgh,

More information

MAHP Orthognathic Surgery Guidelines. Medical Policy Statement. Criteria

MAHP Orthognathic Surgery Guidelines. Medical Policy Statement. Criteria Introduction The word orthognathic comes from the Greek words for straighten and jaw. Orthognathic surgery is the surgical correction of abnormalities of the mandible and/or maxilla. 1 It involves the

More information

To successfully perform any facial injection,

To successfully perform any facial injection, INJECTABLES Newer Understanding of Specific Anatomic Targets in the Aging Face as Applied to Injectables: Facial Muscles Identifying Optimal Targets for Neuromodulators Jonathan M. Sykes, MD Patrick Trevidic,

More information

Surgical Anatomy of the Lower Face: The Premasseter Space, the Jowl, and the Labiomandibular Fold

Surgical Anatomy of the Lower Face: The Premasseter Space, the Jowl, and the Labiomandibular Fold Aesth Plast Surg (2008) 32:185 195 DOI 10.1007/s00266-007-9060-3 ORIGINAL ARTICLE Surgical Anatomy of the Lower Face: The Premasseter Space, the Jowl, and the Labiomandibular Fold Bryan C. Mendelson Æ

More information

Introduction to Occlusion and Mechanics of Mandibular Movement

Introduction to Occlusion and Mechanics of Mandibular Movement Introduction to Occlusion and Mechanics of Mandibular Movement Dr. Pauline Hayes Garrett Department of Endodontics, Prosthodontics, and Operative Dentistry University of Maryland, Baltimore Assigned reading

More information

International Journal of Current Medical and Pharmaceutical Research

International Journal of Current Medical and Pharmaceutical Research ISSN: 2395-6429 International Journal of Current Medical and Pharmaceutical Research Available Online at http://www.journalcmpr.com DOI: http://dx.doi.org/10.24327/23956429.ijcmpr20170169 RESEARCH ARTICLE

More information

Introduction. Images supplied. SUBJECT IMAGES (Victor Vinnetou) TARGET IMAGES (Mbuyisa Makhubu)

Introduction. Images supplied. SUBJECT IMAGES (Victor Vinnetou) TARGET IMAGES (Mbuyisa Makhubu) Victor Vinnetou and Mbuyisa Makhubu facial comparison case, compiled by Dr T Houlton, School of Anatomical Sciences, University of the Witwatersrand (3 June 2016) Introduction There currently exists an

More information

Anatomical Determinants of Facial Identity: The Central Importance of Retaining Ligaments and SMAS

Anatomical Determinants of Facial Identity: The Central Importance of Retaining Ligaments and SMAS Case Report imedpub Journals http://www.imedpub.com Vol. 3 No.1: 3 DOI: 10.4172/2472-1905.100026 Abstract Anatomical Determinants of Facial Identity: The Central Importance of Retaining Ligaments and SMAS

More information

30+ MEDPOR biomaterial. years of proven clinical history

30+ MEDPOR biomaterial. years of proven clinical history MEDPOR ENT surgery MEDPOR biomaterial MEDPOR has been a trusted name in the industry since 1985, with hundreds of thousands of procedures performed, and hundreds of published clinical reports in reconstructive,

More information

Prosthetic Options in Implant Dentistry. Hakimeh Siadat, DDS, MSc Associate Professor

Prosthetic Options in Implant Dentistry. Hakimeh Siadat, DDS, MSc Associate Professor Prosthetic Options in Dentistry Hakimeh Siadat, DDS, MSc Associate Professor Dental Research Center, Department of Prosthodontics & Dental s Faculty of Dentistry, Tehran University of Medical Sciences

More information

Intraoral mandibular distraction osteogenesis in facial asymmetry patients with unilateral temporomandibular joint bony ankylosis

Intraoral mandibular distraction osteogenesis in facial asymmetry patients with unilateral temporomandibular joint bony ankylosis Int. J. Oral Maxillofac. Surg. 2002; 31: 544 548 doi:10.1054/ijom.2002.0297, available online at http://www.idealibrary.com on Intraoral mandibular distraction osteogenesis in facial asymmetry patients

More information

Skeletal system. Prof. Abdulameer Al-Nuaimi. E. mail:

Skeletal system. Prof. Abdulameer Al-Nuaimi.   E. mail: Skeletal system Prof. Abdulameer Al-Nuaimi E-mail: a.al-nuaimi@sheffield.ac.uk E. mail: abdulameerh@yahoo.com Functions of Bone and The Skeletal System Support: The skeleton serves as the structural framework

More information

KJLO. A Sequential Approach for an Asymmetric Extraction Case in. Lingual Orthodontics. Case Report INTRODUCTION DIAGNOSIS

KJLO. A Sequential Approach for an Asymmetric Extraction Case in. Lingual Orthodontics. Case Report INTRODUCTION DIAGNOSIS KJLO Korean Journal of Lingual Orthodontics Case Report A Sequential Approach for an Asymmetric Extraction Case in Lingual Orthodontics Ji-Sung Jang 1, Kee-Joon Lee 2 1 Dream Orthodontic Clinic, Gimhae,

More information

Contemporary Implant Dentistry

Contemporary Implant Dentistry Contemporary Implant Dentistry C H A P T ER 1 4 O F C O N T E M P OR A R Y O R A L A N D M A X I L L OFA C IA L S U R G E RY B Y : D R A R A S H K H O J A S T EH Dental implant is suitable for: completely

More information

Our Experience with Endoscopic Brow Lifts

Our Experience with Endoscopic Brow Lifts Aesth. Plast. Surg. 24:90 96, 2000 DOI: 10.1007/s002660010017 2000 Springer-Verlag New York Inc. Our Experience with Endoscopic Brow Lifts Ozan Sozer, M.D., and Thomas M. Biggs, M.D. İstanbul, Turkey and

More information

The sebaceous glands (glands of Zeis) open directly into the eyelash follicles, ciliary glands (glands of Moll) are modified sweat glands that open

The sebaceous glands (glands of Zeis) open directly into the eyelash follicles, ciliary glands (glands of Moll) are modified sweat glands that open The Orbital Region The orbits are a pair of bony cavities that contain the eyeballs; their associated muscles, nerves, vessels, and fat; and most of the lacrimal apparatus upper eyelid is larger and more

More information

Fibular Bone Graft for Nasal Septal Reconstruction: A Case Report

Fibular Bone Graft for Nasal Septal Reconstruction: A Case Report 220 Nasal septal reconstruction Case Report Fibular Bone Graft for Nasal Septal Reconstruction: A Case Report Yakup Cil1* Diyarbakır Military Hospital, Department of Plastic Surgery 21000 Diyarbakır, Turkey

More information

Orthodontic Morphological Evaluation of Treacher Collins Syndrome

Orthodontic Morphological Evaluation of Treacher Collins Syndrome Cong. Anorn., 39: 243-253,1999 Original Orthodontic Morphological Evaluation of Treacher Collins Syndrome Sachio UMEMURA Department of Orthodontics, Ohu University School of Dentistry, 31-1 Misumido Tomita,

More information

The America Association of Oral and Maxillofacial Surgeons classify occlusion/malocclusion in to the following three categories:

The America Association of Oral and Maxillofacial Surgeons classify occlusion/malocclusion in to the following three categories: Subject: Orthognathic Surgery Policy Effective Date: 04/2016 Revision Date: 07/2018 DESCRIPTION Orthognathic surgery is an open surgical procedure that corrects anomalies or malformations of the lower

More information

The Application of Cone Beam CT Image Analysis for the Mandibular Ramus Bone Harvesting

The Application of Cone Beam CT Image Analysis for the Mandibular Ramus Bone Harvesting 44 The Application of Cone Beam CT Image Analysis for the Mandibular Ramus Bone Harvesting LivingWell Institute of Dental Research Lee, Jang-yeol, Youn, Pil-sang, Kim, Hyoun-chull, Lee Sang-chull Ⅰ. Introduction

More information

An Introduction to Dental Implants

An Introduction to Dental Implants An Introduction to Dental Implants Aims: This article provides an introduction to dental implants, outlining the categories of dental implants, the phases involved in implant dentistry and assessing a

More information

Use of Angular Measurements in Cephalometric Analyses

Use of Angular Measurements in Cephalometric Analyses Use of Angular Measurements in Cephalometric Analyses GEOFFREY F. WALKER and CHARLES J. KOWALSKI School of Dentistry, University of Michigan, Ann Arbor, Michigan 48104, USA Most cephalometric analyses

More information

The characteristics of profile facial types and its relation with mandibular rotation in a sample of Iraqi adults with different skeletal relations

The characteristics of profile facial types and its relation with mandibular rotation in a sample of Iraqi adults with different skeletal relations The characteristics of profile facial types and its relation with mandibular rotation in a sample of Iraqi adults with different skeletal relations Sara M. Al-Mashhadany, B.D.S., M.Sc. (1) Nagham M.J.

More information