THE HYPERKALEMIC SYNDROMES

Size: px
Start display at page:

Download "THE HYPERKALEMIC SYNDROMES"

Transcription

1 THE HYPERKALEMIC SYNDROMES

2 K + BALANCE Cells (3400 meq) ECF (60 meq) External K Pump insulin catechols Na intake Leak K ph; osmolality membrane integrity distal Na + renal { delivery output aldosterone lumen voltage

3 TWO KINDS OF HYPERKALEMIC SYNDROMES Fiber Activation Threshold Disorder Skeletal muscle TTX - sensitive - 60 { periodic paralysis heart generally unaffected Myocardium TTX - insensitive - 75 { cardiac standstill rare skeletal muscle paralysis

4 RENAL HANDLING OF K + I. Complete proximal reabsorption II. Aldo-mediated principal cell secretion

5 THE CCD PRINCIPAL CELL Na amiloride K Cl 2K ATPase - 20 mv - 80 mv 0 mv K Cl 3Na Predominant in late DCT and CCT Aldosterone- responsive Sensitive to: amiloride triamterene spironolactone

6 ENaC Epithelial Na Channel Each α subunit : amiloride-sensitive Na channel β and γ subunits: surface delivery of ENaC Liddle's syndrome: β subunit mutation pseudohypoaldo I: α or β subunit mutation ARDS : α subunit mutation News in Physiol. Sci. 12:55, 1997

7 MAJOR CAUSES OF HYPERKALEMIA I. Diminished Renal Excretion Reduced GFR ATN ESRD Reduced Tubular Secretion Addison s disease DCT disease Principal cell disease Potassium - sparing diuretics II. Transcellular Shifts Acidosis Cell destruction HPP Diabetic hyperglycemia Insulin - dependence plus aldosterone lack Depolarizing muscle paralysis

8 DISTAL CONVOLUTED TUBULE DISEASE GORDON S S SYNDROME (PSEUDOHYPOALDOSTERONISM II) 2K Na 3Na Cl aldo Cl K WNK 1, 4 mutations activate thiazide-sensitive NaCl transporter shunt Cl permeability; paracellin-mediated Na avid Cl V M K, H secretion: CCT low renin hypertension responsive to diuretics, Na restriction

9 GORDON'S SYNDROME A DCT DISEASE WNK: with no lysine WNK I: NCC activity WNK IV: function unknown Yang et al. JCI 111:1039, 2003

10 HYPERKALEMIC RTA SYNDROMES PRINCIPAL CELL DISORDERS DISORDER PRINCIPAL DEFECT PRINCIPAL FEATURES Pseudohypoaldosteronism I Interstitial disease Closed Na + channel Hyporeninemic hypoaldosteronism K + ; Na + wasting; RTA K + ; Na + wasting; RTA

11 PRINCIPAL CELL DISEASES Na + CHANNEL BLOCKADE (PSEUDOHYPOALDOSTERONISM I) Na 2K 3Na K Cl aldo K Cl Na Channel Blockade: Prototype: amiloride Rx Na wasting V M K, H secretion Aldosterone unresponsive α or β subunit mutations in ENaC

12 PRINCIPAL CELL DISEASES HYPORENINEMIC HYPOALDOSTERONISM (GENERALIZED DISTAL NEPHRON DISEASE) Na 2K 3Na K aldo Cl K Interstitial renal disease renin, aldosterone Na wasting Cl V M K, H secretion low renin hypertension furosemide benefits

13 TREATMENT REGIMENS FOR HYPERKALEMIA K + REMOVAL KAYEXALATE: APPROXIMATELY 1 meq K / Gm RESIN HEMODIALYSIS: (30-50 meq / MINUTES) K + CLEARANCE: 200 ml / MINUTE (85 meq / HR) PERITONEAL DIALYSIS: K + CLEARANCE: ml / MINUTE K + ENTRY INTO CELLS ( meq / HR) ALKALINIZATION: 0.6 meq K + / 0.1 ph UNIT GLUCOSE AND INSULIN: 0.5 meq K + / 25 Gm GLUCOSE

14 CARDIAC PROTECTION IN HYPERKALEMIA Ca ++ SCREENING OF SURFACE POTENTIAL

15 TWO KINDS OF HYPERKALEMIC SYNDROMES Fiber Activation Threshold Disorder Skeletal muscle TTX - sensitive - 60 { periodic paralysis heart generally unaffected Myocardium TTX - insensitive - 75 { cardiac standstill rare skeletal muscle paralysis

16 HYPERKALEMIC PERIODIC PARALYSIS A SKELETAL MEMBRANE DISORDER TTX - sensitive Na + channel mutations Chromosome 17 mutation HPP } allelic variants paramyotonia Human form: : often with familial inbreeding Equine form: inbred quarter-horses HPP: episodic; may occur with normal K + levels paramyotonia: : cold-sensitive K-sensitive; acetazolamide-responsive

17 PROPERTIES OF SOME Na + CHANNELS TTX - SENSITIVE TTX - INSENSITIVE Primary location Brain, Muscle Heart Activation voltages (mv)

18 THE GREAT HODGKIN-HUXLEY HUXLEY CONTRIBUTION Membrane potential Ionic fluxes Gating of channels Other stimuli Other transport mechanisms CLASSICAL CYCLE OF ELECTRICAL EXCITATION

19

20

21

22

23

24

25

26

27 CATION CHANNEL KINETICS

28 Na + CHANNEL INACTIVATION: KEY FEATURES 1. INACTIVATION IS NOT, STRICTLY, VOLTAGE - DEPENDENT 2. ACTIVATION GATES MUST OPEN BEFORE INACTIVATION GATES CLOSE 3. THE SEEMING VOLTAGE-DEPENDENCE OF INACTIVATION RELATES TO THE VOLTAGE- DEPENDENCE OF ACTIVATION GATE OPENING

29 VOLTAGE-GATED CATION CHANNELS Ptáček Am. J. Med. 104:58, 1998

30 SODIUM CHANNEL ACTIVITY: NORMAL RESTING OUT IN ACTIVATION V M = - 90 V M ~ + 20 LOW P Na HIGH P Na REPOLARIZATION INACTIVATION V M ~ - 70 LOW P Na V M ~ LOW - 50 P Na

31 HYPERKALEMIC PERIODIC PARALYSIS A SKELETAL MEMBRANE DISORDER TTX - sensitive Na + channel mutations Chromosome 17 mutation HPP } allelic variants paramyotonia Human form: : often with familial inbreeding Equine form: inbred quarter-horses HPP: episodic; may occur with normal K + levels paramyotonia: : cold-sensitive K-sensitive; acetazolamide-responsive

32 THE MAGNIFICENT FLAWED THOROUGHBRED Scientific American May, 1991

33 Pillars of the STUD BOOK James Weatherby, 1791 Godolphin Arabian 1725 Darley Arabian 1688 Byerley Turk 1690

34

35 THE GREAT RACES Scientific American May, 1991

36 QUARTER HORSES 1. Sprint races ~ 0.25 miles 2. Primarily aerobic 3. Selective in-breeding: very muscular 4. Continued in-breeding: HPP Laryngeal neuropathy Yearling osteoarthritis

37 THE HYPP INDEX HORSE

38

39

40

41 SODIUM CHANNEL ACTIVITY: HPP RESTING OUT IN ACTIVATION V M = - 90 V M + 20 LOW P Na HIGH P Na HPP : TTX - SENSITIVE MUSCLE FIBERS 1. FAILURE OF INACTIVATION GATES TO CLOSE 2. PERSISTENT TTX - SENSITIVE i Na

42 Na + CHANNEL DEFECT IN HPP

43 TWO KINDS OF HYPERKALEMIC SYNDROMES Fiber Activation Threshold Disorder Skeletal muscle TTX - sensitive - 60 { periodic paralysis heart generally unaffected Myocardium TTX - insensitive - 75 { cardiac standstill rare skeletal muscle paralysis

44

45 PARTIAL DEPOLARIZATION INACTIVATES CARDIAC ACTION POTENTIAL TSIEN & HESS, 1986

46 THE CARDIAC ACTION POTENTIALS GATING Ca ++ Na + Na + Ca ++ Na + Na + TSIEN & HESS, 1986

47 SODIUM CHANNEL ACTIVITY: HYPERKALEMIA RESTING OUT IN ACTIVATION V M = - 70 LOW P Na CARDIOTOXICITY V M LOW - 20 P Na 1. K + DEPOLARIZES V M 2. ACTIVATION GATES PARTIALLY OPEN 3. INACTIVATION GATES CLOSED 4. i Na BLOCKED

48 Na + CHANNELS SKELTAL MUSCLE TTX SENSITIVE CHANNEL LOW ACTIVATION VOLTAGE CARDIAC INSENSITIVE HIGH VOLTAGE

49 SODIUM CHANNEL ACTIVITY: NORMAL RESTING OUT IN ACTIVATION V M = - 90 V M ~ + 20 LOW P Na HIGH P Na REPOLARIZATION INACTIVATION V M ~ - 70 LOW P Na V M ~ LOW - 50 P Na

50 SODIUM CHANNEL ACTIVITY: HPP RESTING OUT IN ACTIVATION V M = - 90 LOW P Na V M + 20 HIGH P Na HPP : TTX - SENSITIVE MUSCLE FIBERS 1. FAILURE OF INACTIVATION GATES TO CLOSE 2. PERSISTENT TTX - SENSITIVE i Na

51 SODIUM CHANNEL ACTIVITY: HYPERKALEMIA RESTING OUT IN ACTIVATION V M = - 70 LOW P Na CARDIOTOXICITY V M LOW - 20 P Na 1. K + DEPOLARIZES V M 2. ACTIVATION GATES PARTIALLY OPEN 3. INACTIVATION GATES CLOSED 4. i Na BLOCKED

Potassium regulation. -Kidney is a major regulator for potassium Homeostasis.

Potassium regulation. -Kidney is a major regulator for potassium Homeostasis. Potassium regulation. -Kidney is a major regulator for potassium Homeostasis. Normal potassium intake, distribution, and output from the body. Effects of severe hyperkalemia Partial depolarization of cell

More information

Diuretics having the quality of exciting excessive excretion of urine. OED. Inhibitors of Sodium Reabsorption Saluretics not Aquaretics

Diuretics having the quality of exciting excessive excretion of urine. OED. Inhibitors of Sodium Reabsorption Saluretics not Aquaretics Diuretics having the quality of exciting excessive excretion of urine. OED Inhibitors of Sodium Reabsorption Saluretics not Aquaretics 1 Sodium Absorption Na Entry into the Cell down an electrochemical

More information

Renal Physiology - Lectures

Renal Physiology - Lectures Renal Physiology - Lectures Physiology of Body Fluids PROBLEM SET, RESEARCH ARTICLE Structure & Function of the Kidneys Renal Clearance & Glomerular Filtration PROBLEM SET Regulation of Renal Blood Flow

More information

Pharmacology I [PHL 313] Diuretics. Dr. Mohammad Nazam Ansari

Pharmacology I [PHL 313] Diuretics. Dr. Mohammad Nazam Ansari Pharmacology I [PHL 313] Diuretics Dr. Mohammad Nazam Ansari Renal Pharmacology Kidneys: Each adult kidney weighs 125-170g in males and 115-155g in females, represent 0.5% of total body weight, but receive

More information

NORMAL POTASSIUM DISTRIBUTION AND BALANCE

NORMAL POTASSIUM DISTRIBUTION AND BALANCE NORMAL POTASSIUM DISTRIBUTION AND BALANCE 98% of body potassium is contained within cells, principally muscle cells, and is readily exchangeable. Only 2% is in ECF. Daily intake exceeds the amount in ECF.

More information

Na + Transport 1 and 2 Linda Costanzo, Ph.D.

Na + Transport 1 and 2 Linda Costanzo, Ph.D. Na + Transport 1 and 2 Linda Costanzo, Ph.D. OBJECTIVES: After studying this lecture, the student should understand: 1. The terminology applied to single nephron function, including the meaning of TF/P

More information

Potassium secretion. E k = -61 log ([k] inside / [k] outside).

Potassium secretion. E k = -61 log ([k] inside / [k] outside). 1 Potassium secretion In this sheet, we will continue talking about ultrafiltration in kidney but with different substance which is K+. Here are some informations that you should know about potassium;

More information

RENAL SYSTEM 2 TRANSPORT PROPERTIES OF NEPHRON SEGMENTS Emma Jakoi, Ph.D.

RENAL SYSTEM 2 TRANSPORT PROPERTIES OF NEPHRON SEGMENTS Emma Jakoi, Ph.D. RENAL SYSTEM 2 TRANSPORT PROPERTIES OF NEPHRON SEGMENTS Emma Jakoi, Ph.D. Learning Objectives 1. Identify the region of the renal tubule in which reabsorption and secretion occur. 2. Describe the cellular

More information

NIH Public Access Author Manuscript Kidney Int. Author manuscript; available in PMC 2013 November 01.

NIH Public Access Author Manuscript Kidney Int. Author manuscript; available in PMC 2013 November 01. NIH Public Access Author Manuscript Published in final edited form as: Kidney Int. 2013 May ; 83(5): 779 782. doi:10.1038/ki.2012.468. Need to quickly excrete K +? Turn off NCC Alicia A. McDonough 1 and

More information

DIURETICS-4 Dr. Shariq Syed

DIURETICS-4 Dr. Shariq Syed DIURETICS-4 Dr. Shariq Syed AIKTC - Knowledge Resources & Relay Center 1 Pop Quiz!! Loop diuretics act on which transporter PKCC NKCC2 AIKTCC I Don t know AIKTC - Knowledge Resources & Relay Center 2 Pop

More information

Chapter 21. Diuretic Agents. Mosby items and derived items 2008, 2002 by Mosby, Inc., an affiliate of Elsevier Inc.

Chapter 21. Diuretic Agents. Mosby items and derived items 2008, 2002 by Mosby, Inc., an affiliate of Elsevier Inc. Chapter 21 Diuretic Agents Renal Structure and Function Kidneys at level of umbilicus Each weighs 160 to 175 g and is 10 to 12 cm long Most blood flow per gram of weight in body 22% of cardiac output (CO)

More information

Na concentration in the extracellular compartment is 140

Na concentration in the extracellular compartment is 140 هللامسب Na regulation: Na concentration in the extracellular compartment is 140 meq\l. Na is important because: -It determines the volume of extracellular fluid : the more Na intake will expand extracellular

More information

Virtual Mentor American Medical Association Journal of Ethics April 2007, Volume 9, Number 4:

Virtual Mentor American Medical Association Journal of Ethics April 2007, Volume 9, Number 4: Virtual Mentor American Medical Association Journal of Ethics April 2007, Volume 9, Number 4: 295-299. Clinical pearl Hyperkalemia: newer considerations by Amar D. Bansal and David S. Goldfarb, MD Maintenance

More information

DIURETICS-2. Dr. Shariq Syed. Shariq AIKC/TYB/2014

DIURETICS-2. Dr. Shariq Syed. Shariq AIKC/TYB/2014 DIURETICS-2 Dr. Syed Structure of Kidney Blood filtered by functional unit: Nephron Except for cells, proteins, other large molecules, rest gets filtered Structure of Kidney 3 major regions of nephron

More information

A case of DYSELECTROLYTEMIA. Dr. Prathyusha Dr. Lalitha janakiraman s unit

A case of DYSELECTROLYTEMIA. Dr. Prathyusha Dr. Lalitha janakiraman s unit A case of DYSELECTROLYTEMIA Dr. Prathyusha Dr. Lalitha janakiraman s unit CASE SUMMARY 4 month old, female infant 1 st born to NC parents, term, b.wt: 3.25kg No neonatal hospitalization Attained head control

More information

PRINCIPLES OF DIURETIC ACTIONS:

PRINCIPLES OF DIURETIC ACTIONS: DIURETIC: A drug that increases excretion of solutes Increased urine volume is secondary All clinically useful diuretics act by blocking Na + reabsorption Has the highest EC to IC ratio = always more sodium

More information

CALCINEURIN INHIBITORS AND HYPERKALEMIA. Sheena Surindran, MD 3/22/2011

CALCINEURIN INHIBITORS AND HYPERKALEMIA. Sheena Surindran, MD 3/22/2011 CALCINEURIN INHIBITORS AND HYPERKALEMIA Sheena Surindran, MD 3/22/2011 DISTAL TUBULE K SECRETION EFFECTS OF CYCLOSPORINE ON RAS AND POTASSIUM EXCRETION 10 pts on CsA and prednisone / 10 on AZT and prednisone

More information

3/19/2009. The task of the kidney in acid-base balance Excretion of the daily acid load. Buffering of an acid load. A o B - + H + B - A o +OH - C +

3/19/2009. The task of the kidney in acid-base balance Excretion of the daily acid load. Buffering of an acid load. A o B - + H + B - A o +OH - C + The task of the kidney in acid-base balance Excretion of the daily acid load Buffering of an acid load Oxidation of amino acids, fats and carbohydrates often lead to acid production. On an average American

More information

RENAL TUBULAR ACIDOSIS An Overview

RENAL TUBULAR ACIDOSIS An Overview RENAL TUBULAR ACIDOSIS An Overview UNIVERSITY OF PNG SCHOOL OF MEDICINE AND HEALTH SCIENCES DISCIPLINE OF BIOCHEMISTRY & MOLECULAR BIOLOGY CLINICAL BIOCHEMISTRY PBL MBBS IV VJ. Temple 1 What is Renal Tubular

More information

Normal range of serum potassium is meq/l true hyperkalemia manifests clinically as : Clinical presentation : muscle and cardiac dysfunction

Normal range of serum potassium is meq/l true hyperkalemia manifests clinically as : Clinical presentation : muscle and cardiac dysfunction Potassium Disorders hyperkalemia Potassium is mainly an cation? What is the major physiological role of potassium in the body? What is the major regulatory system of serum potassium level? Which part of

More information

Renal Pharmacology. Diuretics: Carbonic Anhydrase Inhibitors Thiazides Loop Diuretics Potassium-sparing Diuretics BIMM118

Renal Pharmacology. Diuretics: Carbonic Anhydrase Inhibitors Thiazides Loop Diuretics Potassium-sparing Diuretics BIMM118 Diuretics: Carbonic Anhydrase Inhibitors Thiazides Loop Diuretics Potassium-sparing Diuretics Renal Pharmacology Kidneys: Represent 0.5% of total body weight, but receive ~25% of the total arterial blood

More information

بسم هللا الرحمن الرحيم ** Note: the curve discussed in this page [TF]/[P] curve is found in the slides, so please refer to them.**

بسم هللا الرحمن الرحيم ** Note: the curve discussed in this page [TF]/[P] curve is found in the slides, so please refer to them.** بسم هللا الرحمن الرحيم ** Note: the curve discussed in this page [TF]/[P] curve is found in the slides, so please refer to them.** INULIN characteristics : 1 filtered 100 %. 2-Not secreted. 3-Not reabsorbed

More information

Low Efficacy Diuretics. Potassium sparing diuretics. Carbonic anhydrase inhibitors. Osmotic diuretics. Miscellaneous

Low Efficacy Diuretics. Potassium sparing diuretics. Carbonic anhydrase inhibitors. Osmotic diuretics. Miscellaneous University of Al Qadisiyah College of Pharmacy Dr. Bassim I Mohammad, MBChB, MSc, Ph.D Low Efficacy Diuretics 1. Potassium sparing diuretics 2. Carbonic anhydrase inhibitors 3. Osmotic diuretics 4. Miscellaneous

More information

11/05/1431. Urine Formation by the Kidneys Tubular Processing of the Glomerular Filtrate

11/05/1431. Urine Formation by the Kidneys Tubular Processing of the Glomerular Filtrate Urine Formation by the Kidneys Tubular Processing of the Glomerular Filtrate Chapter 27 pages 327 347 1 OBJECTIVES At the end of this lecture you should be able to describe: Absorptive Characteristics

More information

Therapeutics of Diuretics

Therapeutics of Diuretics (Last Updated: 08/22/2018) Created by: Socco, Samantha Therapeutics of Diuretics Thambi, M. (2017). The Clinical Use of Diuretics. Lecture presented at PHAR 503 Lecture in UIC College of Pharmacy, Chicago.

More information

Sodium and chlorine transport

Sodium and chlorine transport Kidney physiology 2 Sodium and chlorine transport The kidneys help to maintain the body's extracellular fluid (ECF) volume by regulating the amount of Na+ in the urine. Sodium salts (predominantly NaCl)

More information

Diuretics (Saluretics)

Diuretics (Saluretics) Diuretics (Saluretics) Diuretics increase urine excretion mainly by reabsorption of salts and water from kidney tubules These agents are ion transport inhibitors that decrease the reabsorption of Na+ at

More information

Kidneys in regulation of homeostasis

Kidneys in regulation of homeostasis Kidneys in regulation of homeostasis Assoc. Prof. MUDr. Markéta Bébarová, Ph.D. Department of Physiology Faculty of Medicine, Masaryk University This presentation includes only the most important terms

More information

BIOL 2402 Fluid/Electrolyte Regulation

BIOL 2402 Fluid/Electrolyte Regulation Dr. Chris Doumen Collin County Community College BIOL 2402 Fluid/Electrolyte Regulation 1 Body Water Content On average, we are 50-60 % water For a 70 kg male = 40 liters water This water is divided into

More information

Diuretic Agents Part-2. Assistant Prof. Dr. Najlaa Saadi PhD Pharmacology Faculty of Pharmacy University of Philadelphia

Diuretic Agents Part-2. Assistant Prof. Dr. Najlaa Saadi PhD Pharmacology Faculty of Pharmacy University of Philadelphia Diuretic Agents Part-2 Assistant Prof. Dr. Najlaa Saadi PhD Pharmacology Faculty of Pharmacy University of Philadelphia Potassium-sparing diuretics The Ion transport pathways across the luminal and basolateral

More information

Chapter 26 Fluid, Electrolyte, and Acid- Base Balance

Chapter 26 Fluid, Electrolyte, and Acid- Base Balance Chapter 26 Fluid, Electrolyte, and Acid- Base Balance 1 Body Water Content Infants: 73% or more water (low body fat, low bone mass) Adult males: ~60% water Adult females: ~50% water (higher fat content,

More information

Potassium A NNA VINNIKOVA, M. D.

Potassium A NNA VINNIKOVA, M. D. Potassium A NNA VINNIOVA, M. D. DIVISION OF NEPHROLOGY Graphics by permission from The Fluid, Electrolyte and Acid-Base Companion, S. Faubel and J. Topf, http://www.pbfluids.com Do you want to hear a Sodium

More information

Renal System Dr. Naim Kittana Department of Biomedical Sciences Faculty of Medicine & Health Sciences An-Najah National University

Renal System Dr. Naim Kittana Department of Biomedical Sciences Faculty of Medicine & Health Sciences An-Najah National University Renal System Dr. Naim Kittana Department of Biomedical Sciences Faculty of Medicine & Health Sciences An-Najah National University Declaration The content and the figures of this seminar were directly

More information

Renal Regulation of Sodium and Volume. Dr. Dave Johnson Associate Professor Dept. Physiology UNECOM

Renal Regulation of Sodium and Volume. Dr. Dave Johnson Associate Professor Dept. Physiology UNECOM Renal Regulation of Sodium and Volume Dr. Dave Johnson Associate Professor Dept. Physiology UNECOM Maintaining Volume Plasma water and sodium (Na + ) are regulated independently - you are already familiar

More information

Renal Physiology II Tubular functions

Renal Physiology II Tubular functions Renal Physiology II Tubular functions LO. 42, 43 Dr. Kékesi Gabriella Basic points of renal physiology 1. Glomerular filtration (GF) a) Ultrafiltration 2. Tubular functions active and passive a) Reabsorption

More information

Tubular Reabsorption & Secretion Lecture 5, 6. Objectives: Editing file. by the end of this lecture you will be able to:

Tubular Reabsorption & Secretion Lecture 5, 6. Objectives: Editing file. by the end of this lecture you will be able to: Index: Important Extra information Doctor s notes Only in female slides Only in male slides Tubular Reabsorption & Secretion Lecture 5, 6 Editing file Objectives: by the end of this lecture you will be

More information

WATER, SODIUM AND POTASSIUM

WATER, SODIUM AND POTASSIUM WATER, SODIUM AND POTASSIUM Attila Miseta Tamás Kőszegi Department of Laboratory Medicine, 2016 1 Average daily water intake and output of a normal adult 2 Approximate contributions to plasma osmolality

More information

Anna Vinnikova, M.D. Division of Nephrology Virginia Commonwealth University

Anna Vinnikova, M.D. Division of Nephrology Virginia Commonwealth University Metabolic Acidosis Anna Vinnikova, M.D. Division of Nephrology Virginia Commonwealth University Graphics by permission from The Fluid, Electrolyte and Acid-Base Companion, S. Faubel and J. Topf, http://www.pbfluids.com

More information

K+ Ann Crawford, RN, PhD, CNS, CEN

K+ Ann Crawford, RN, PhD, CNS, CEN Hyperkalemia: Management of a Critical Electrolyte Disturbance K+ Ann Crawford, RN, PhD, CNS, CEN Balancing Fluid Intracellular fluid (ICF) Extracellular fluid (ECF) Intravascular interstitial Hormonal

More information

BCH 450 Biochemistry of Specialized Tissues

BCH 450 Biochemistry of Specialized Tissues BCH 450 Biochemistry of Specialized Tissues VII. Renal Structure, Function & Regulation Kidney Function 1. Regulate Extracellular fluid (ECF) (plasma and interstitial fluid) through formation of urine.

More information

Renal-Related Questions

Renal-Related Questions Renal-Related Questions 1) List the major segments of the nephron and for each segment describe in a single sentence what happens to sodium there. (10 points). 2) a) Describe the handling by the nephron

More information

MS1 Physiology Review of Na+, K+, H + /HCO 3. /Acid-base, Ca+² and PO 4 physiology

MS1 Physiology Review of Na+, K+, H + /HCO 3. /Acid-base, Ca+² and PO 4 physiology MS1 Physiology Review of,, / /Acidbase, Ca+² and PO 4 physiology I. David Weiner, M.D. Professor of Medicine and Physiology University of Florida College of Medicine Basic principles Proximal tubule Majority

More information

Renal Quiz - June 22, 21001

Renal Quiz - June 22, 21001 Renal Quiz - June 22, 21001 1. The molecular weight of calcium is 40 and chloride is 36. How many milligrams of CaCl 2 is required to give 2 meq of calcium? a) 40 b) 72 c) 112 d) 224 2. The extracellular

More information

BLOCK REVIEW Renal Physiology. May 9, 2011 Koeppen & Stanton. EXAM May 12, Tubular Epithelium

BLOCK REVIEW Renal Physiology. May 9, 2011 Koeppen & Stanton. EXAM May 12, Tubular Epithelium BLOCK REVIEW Renal Physiology Lisa M. HarrisonBernard, Ph.D. May 9, 2011 Koeppen & Stanton EXAM May 12, 2011 Tubular Epithelium Reabsorption Secretion 1 1. 20, 40, 60 rule for body fluid volumes 2. ECF

More information

ACID-BASE BALANCE URINE BLOOD AIR

ACID-BASE BALANCE URINE BLOOD AIR ACIDBASE BALANCE URINE BLOOD AIR H 2 PO 4 NH 4 HCO 3 KIDNEY H H HCO 3 CELLS Hb H LUNG H 2 CO 3 HHb CO 2 H 2 O ph = 7.4 [HCO 3 ] = 24 meq/l PCO 2 = 40 mm Hg CO 2 PRIMARY RENAL MECHANISMS INVOLVED IN ACIDBASE

More information

Salt Sensitivity: Mechanisms, Diagnosis, and Clinical Relevance

Salt Sensitivity: Mechanisms, Diagnosis, and Clinical Relevance Salt Sensitivity: Mechanisms, Diagnosis, and Clinical Relevance Matthew R. Weir, MD Professor and Director Division of Nephrology University of Maryland School of Medicine Overview Introduction Mechanisms

More information

Physio 12 -Summer 02 - Renal Physiology - Page 1

Physio 12 -Summer 02 - Renal Physiology - Page 1 Physiology 12 Kidney and Fluid regulation Guyton Ch 20, 21,22,23 Roles of the Kidney Regulation of body fluid osmolarity and electrolytes Regulation of acid-base balance (ph) Excretion of natural wastes

More information

Fluid and electrolyte balance, imbalance

Fluid and electrolyte balance, imbalance Fluid and electrolyte balance, imbalance Body fluid The fluids are distributed throughout the body in various compartments. Body fluid is composed primarily of water Water is the solvent in which all solutes

More information

Moayyad Al-Shafei. - Saad Hayek. - Yanal Shafaqoj. 1 P a g e

Moayyad Al-Shafei. - Saad Hayek. - Yanal Shafaqoj. 1 P a g e - 5 - Moayyad Al-Shafei - Saad Hayek - Yanal Shafaqoj 1 P a g e In this lecture we are going to study the tubular reabsorption of Na+. We know that the body must maintain its homeostasis by keeping its

More information

014 Chapter 14 Created: 9:25:14 PM CST

014 Chapter 14 Created: 9:25:14 PM CST 014 Chapter 14 Created: 9:25:14 PM CST Student: 1. Functions of the kidneys include A. the regulation of body salt and water balance. B. hydrogen ion homeostasis. C. the regulation of blood glucose concentration.

More information

BIPN100 F15 Human Physiology (Kristan) Problem Set #8 Solutions p. 1

BIPN100 F15 Human Physiology (Kristan) Problem Set #8 Solutions p. 1 BIPN100 F15 Human Physiology (Kristan) Problem Set #8 Solutions p. 1 1. a. Proximal tubule. b. Proximal tubule. c. Glomerular endothelial fenestrae, filtration slits between podocytes of Bowman's capsule.

More information

Ch 19: The Kidneys. Functional unit of kidneys:?? Developed by John Gallagher, MS, DVM

Ch 19: The Kidneys. Functional unit of kidneys:?? Developed by John Gallagher, MS, DVM Ch 19: The Kidneys Homeostatic regulation of ECF volume and BP Osmolarity 290 mosm Ion balance Na+ and K+, etc. ph (acid-base balance Excretion of wastes & foreign substances Hormone production EPO Renin

More information

Functions of Proximal Convoluted Tubules

Functions of Proximal Convoluted Tubules 1. Proximal tubule Solute reabsorption in the proximal tubule is isosmotic (water follows solute osmotically and tubular fluid osmolality remains similar to that of plasma) 60-70% of water and solute reabsorption

More information

Faculty version with model answers

Faculty version with model answers Faculty version with model answers Urinary Dilution & Concentration Bruce M. Koeppen, M.D., Ph.D. University of Connecticut Health Center 1. Increased urine output (polyuria) can result in a number of

More information

Renal physiology II. Basic renal processes. Dr Alida Koorts BMS

Renal physiology II. Basic renal processes. Dr Alida Koorts BMS Renal physiology II Basic renal processes Dr Alida Koorts BMS 7-12 012 319 2921 akoorts@medic.up.ac.za Basic renal processes 1. filtration 2. reabsorption 3. secretion Glomerular filtration The filtration

More information

Renal Physiology Part II. Bio 219 Napa Valley College Dr. Adam Ross

Renal Physiology Part II. Bio 219 Napa Valley College Dr. Adam Ross Renal Physiology Part II Bio 219 Napa Valley College Dr. Adam Ross Fluid and Electrolyte balance As we know from our previous studies: Water and ions need to be balanced in order to maintain proper homeostatic

More information

Cortical distal nephron Cl transport in volume homeostasis and blood pressure regulation

Cortical distal nephron Cl transport in volume homeostasis and blood pressure regulation Am J Physiol Renal Physiol 305: F427 F438, 2013. First published May 1, 2013; doi:10.1152/ajprenal.00022.2013. Review Cortical distal nephron Cl transport in volume homeostasis and blood pressure regulation

More information

Chapter 15 Diuretic Agents

Chapter 15 Diuretic Agents Chapter 15 Diuretic Agents Diuretics Diuretics are agents that increase the rate of urine formation and salt excretion. Diuresis = increased water formation, but the term is also used to indicate increased

More information

Renal Reabsorption & Secretion

Renal Reabsorption & Secretion Renal Reabsorption & Secretion Topics for today: Nephron processing of filtrate Control of glomerular filtration Reabsorption and secretion Examples of solute clearance rates Hormones affecting kidney

More information

Renal physiology D.HAMMOUDI.MD

Renal physiology D.HAMMOUDI.MD Renal physiology D.HAMMOUDI.MD Functions Regulating blood ionic composition Regulating blood ph Regulating blood volume Regulating blood pressure Produce calcitrol and erythropoietin Regulating blood glucose

More information

DIURETICS CARBONIC ANHYDRASE INHIBITORS THIAZIDE THIAZIDE-LIKE OSMOTIC DIURETICS LOOP DIURETICS POTASSIUM SPARING DIURETICS

DIURETICS CARBONIC ANHYDRASE INHIBITORS THIAZIDE THIAZIDE-LIKE OSMOTIC DIURETICS LOOP DIURETICS POTASSIUM SPARING DIURETICS DIURETICS A diuretic is any substance that promotes diuresis, that is, the increased production of urine. This includes forced diuresis. There are several categories of diuretics. All diuretics increase

More information

After studying this lecture, you should be able to...

After studying this lecture, you should be able to... Reabsorption of Salt and Water After studying this lecture, you should be able to... 1. Define the obligatory water loss. 2. Describe the mechanism of Na ++ reabsorption in the distal tubule and explain

More information

Chapter 19 The Urinary System Fluid and Electrolyte Balance

Chapter 19 The Urinary System Fluid and Electrolyte Balance Chapter 19 The Urinary System Fluid and Electrolyte Balance Chapter Outline The Concept of Balance Water Balance Sodium Balance Potassium Balance Calcium Balance Interactions between Fluid and Electrolyte

More information

QUIZ/TEST REVIEW NOTES SECTION 2 RENAL PHYSIOLOGY FILTRATION [THE KIDNEYS/URINARY SYSTEM] CHAPTER 19

QUIZ/TEST REVIEW NOTES SECTION 2 RENAL PHYSIOLOGY FILTRATION [THE KIDNEYS/URINARY SYSTEM] CHAPTER 19 1 QUIZ/TEST REVIEW NOTES SECTION 2 RENAL PHYSIOLOGY FILTRATION [THE KIDNEYS/URINARY SYSTEM] CHAPTER 19 Learning Objectives: Differentiate the following processes: filtration, reabsorption, secretion, excretion

More information

Water Reabsorption and the Effect of Diuretics on Urine Formation Patricia J. Clark, Ph.D. Department of Biology, IUPUI

Water Reabsorption and the Effect of Diuretics on Urine Formation Patricia J. Clark, Ph.D. Department of Biology, IUPUI Water Reabsorption and the Effect of Diuretics on Urine Formation Patricia J. Clark, Ph.D. Department of Biology, IUPUI This activity may be done in conjunction with a more traditional urinalysis lab.

More information

Renal Tubular Acidosis

Renal Tubular Acidosis 1 Renal Tubular Acidosis Mohammad Tariq Ibrahim 6 th Grade Diyala College Of Medicine supervisor DR. Sabah Almaamoory 2 *Renal Tubular Acidosis:- RTA:- is a disease state characterized by a normal anion

More information

Collin County Community College RENAL PHYSIOLOGY

Collin County Community College RENAL PHYSIOLOGY Collin County Community College BIOL. 2402 Anatomy & Physiology WEEK 12 Urinary System 1 RENAL PHYSIOLOGY Glomerular Filtration Filtration process that occurs in Bowman s Capsule Blood is filtered and

More information

Faculty version with model answers

Faculty version with model answers Faculty version with model answers Fluid & Electrolytes Bruce M. Koeppen, M.D., Ph.D. University of Connecticut Health Center 1. A 40 year old, obese man is seen by his physician, and found to be hypertensive.

More information

Vertebrates possess kidneys: internal organs which are vital to ion and water balance and excretion.

Vertebrates possess kidneys: internal organs which are vital to ion and water balance and excretion. The Kidney Vertebrates possess kidneys: internal organs which are vital to ion and water balance and excretion. The kidney has 6 roles in the maintenance of homeostasis. 6 Main Functions 1. Ion Balance

More information

DIURETICS. Assoc. Prof. Bilgen Başgut

DIURETICS. Assoc. Prof. Bilgen Başgut DIURETICS Assoc. Prof. Bilgen Başgut Classification of Diuretics The best way to classify diuretics is to look for their Site of action in the nephron A. Diuretics that inhibit transport in the Proximal

More information

Non-Anion Gap Metabolic Acidosis. App.GoSoapbox.com then Join Now. Joel M. Topf, M.D.

Non-Anion Gap Metabolic Acidosis. App.GoSoapbox.com then Join Now. Joel M. Topf, M.D. Non-Anion Gap Metabolic Acidosis App.GoSoapbox.com 665-971-584 then Join Now Joel M. Topf, M.D. http://pbfluids.com @kidney_boy App.GoSoapbox.com 665-971-584 32 y.o. female with fatigue, weakness and muscle

More information

John Stokes Memorial Lecture. In Memorial DISCLOSURES. The classical body compartment model of Na+ balance

John Stokes Memorial Lecture. In Memorial DISCLOSURES. The classical body compartment model of Na+ balance John Stokes Memorial Lecture In Memorial Dr. John Stokes was a well known and highly respected clinician, researcher and educator He made seminal contributions to the field of electrolyte physiology through

More information

BIOL2030 Human A & P II -- Exam 6

BIOL2030 Human A & P II -- Exam 6 BIOL2030 Human A & P II -- Exam 6 Name: 1. The kidney functions in A. preventing blood loss. C. synthesis of vitamin E. E. making ADH. B. white blood cell production. D. excretion of metabolic wastes.

More information

5/18/2017. Specific Electrolytes. Sodium. Sodium. Sodium. Sodium. Sodium

5/18/2017. Specific Electrolytes. Sodium. Sodium. Sodium. Sodium. Sodium Specific Electrolytes Hyponatremia Hypervolemic Replacing water (not electrolytes) after perspiration Freshwater near-drowning Syndrome of Inappropriate ADH Secretion (SIADH) Hypovolemic GI disease (decreased

More information

Diuretic Agents Part-1. Assistant Prof. Dr. Najlaa Saadi PhD Pharmacology Faculty of Pharmacy University of Philadelphia

Diuretic Agents Part-1. Assistant Prof. Dr. Najlaa Saadi PhD Pharmacology Faculty of Pharmacy University of Philadelphia Diuretic Agents Part-1 Assistant Prof. Dr. Najlaa Saadi PhD Pharmacology Faculty of Pharmacy University of Philadelphia Kidneys eliminates waste products and regulates the volume, electrolyte and ph of

More information

Fundamentals of Pharmacology for Veterinary Technicians Chapter 8

Fundamentals of Pharmacology for Veterinary Technicians Chapter 8 Figure 8-1 Figure 8-2 Figure 8-3 Figure 8-4 Figure 8-5 Figure 8-7 Figure 8-8 Figure 8-9 TABLE 8-1 Blood Flow Through the Heart The right atrium receives blood from all tissues, except the lungs, through

More information

The principal functions of the kidneys

The principal functions of the kidneys Renal physiology The principal functions of the kidneys Formation and excretion of urine Excretion of waste products, drugs, and toxins Regulation of body water and mineral content of the body Maintenance

More information

Glomerular Capillary Blood Pressure

Glomerular Capillary Blood Pressure Glomerular Capillary Blood Pressure Fluid pressure exerted by blood within glomerular capillaries Depends on Contraction of the heart Resistance to blood flow offered by afferent and efferent arterioles

More information

Glucosuria: Diabetes Mellitus

Glucosuria: Diabetes Mellitus 172 PHYSIOLOGY CASES AND PROBLEMS Case 30 Glucosuria: Diabetes Mellitus David Mandel was diagnosed with type I (insulin-dependent) diabetes mellitus when he was 12 years old, right after he started middle

More information

Questions? Homework due in lab 6. PreLab #6 HW 15 & 16 (follow directions, 6 points!)

Questions? Homework due in lab 6. PreLab #6 HW 15 & 16 (follow directions, 6 points!) Questions? Homework due in lab 6 PreLab #6 HW 15 & 16 (follow directions, 6 points!) Part 3 Variations in Urine Formation Composition varies Fluid volume Solute concentration Variations in Urine Formation

More information

Introduction to Neurobiology

Introduction to Neurobiology Biology 240 General Zoology Introduction to Neurobiology Nervous System functions: communication of information via nerve signals integration and processing of information control of physiological and

More information

KD02 [Mar96] [Feb12] Which has the greatest renal clearance? A. PAH B. Glucose C. Urea D. Water E. Inulin

KD02 [Mar96] [Feb12] Which has the greatest renal clearance? A. PAH B. Glucose C. Urea D. Water E. Inulin Renal Physiology MCQ KD01 [Mar96] [Apr01] Renal blood flow is dependent on: A. Juxtaglomerular apparatus B. [Na+] at macula densa C. Afferent vasodilatation D. Arterial pressure (poorly worded/recalled

More information

1. What is the cause and pathophysiology of this patient s metabolic acidosis?

1. What is the cause and pathophysiology of this patient s metabolic acidosis? The Clinical Physiologist Section Editors: John W. Kreit, M.D., and Erik Swenson, M.D. Hypo-Hypo: A Complex Metabolic Disorder Brian L. Block 1, Samuel Bernard 1, and Richard M. Schwartzstein 2 1 Department

More information

The Urinary S. (Chp. 10) & Excretion. What are the functions of the urinary system? Maintenance of water-salt and acidbase

The Urinary S. (Chp. 10) & Excretion. What are the functions of the urinary system? Maintenance of water-salt and acidbase 10.1 Urinary system The Urinary S. (Chp. 10) & Excretion 10.1 Urinary system What are the functions of the urinary system? 1. Excretion of metabolic wastes (urea, uric acid & creatinine) 1. Maintenance

More information

Challenges in the Diagnosis and Treatment of Hyperkalemic Periodic Paralysis

Challenges in the Diagnosis and Treatment of Hyperkalemic Periodic Paralysis Periodic Paralysis Association: Annual Meeting Challenges in the Diagnosis and Treatment of Hyperkalemic Periodic Paralysis Robert C. Griggs, M.D. Professor of Neurology, Professor of Medicine, Pathology

More information

Major intra and extracellular ions Lec: 1

Major intra and extracellular ions Lec: 1 Major intra and extracellular ions Lec: 1 The body fluids are solutions of inorganic and organic solutes. The concentration balance of the various components is maintained in order for the cell and tissue

More information

Chapter 15. Diuretic Agents

Chapter 15. Diuretic Agents Chapter 15. Diuretic Agents Katzung PHARMACOLOGY, 9e > Section III. Cardiovascular-Renal Drugs > Chapter 15. Diuretic Agents > Diuretic Agents: Introduction Abnormalities in fluid volume and electrolyte

More information

LESSON ASSIGNMENT. After completing this lesson, you will be able to: 4-1. Identify the general characteristics of diuretics.

LESSON ASSIGNMENT. After completing this lesson, you will be able to: 4-1. Identify the general characteristics of diuretics. LESSON ASSIGNMENT LESSON 4 Diuretics. LESSON ASSIGNMENT Paragraphs 4-1 through 4-6. LESSON OBJECTIVES After completing this lesson, you will be able to: 4-1. Identify the general characteristics of diuretics.

More information

BIOL 221 Chapter 26 Fluids & Electrolytes. 35 slides

BIOL 221 Chapter 26 Fluids & Electrolytes. 35 slides BIOL 221 Chapter 26 Fluids & Electrolytes 35 slides 1 Body Water Content Total Body Water is the percentage of a person s weight that is water. TBW can easily vary due to: gender males have higher TBW

More information

Body Water Content Total Body Water is the percentage of a person s weight that is water. TBW can easily vary due to: gender

Body Water Content Total Body Water is the percentage of a person s weight that is water. TBW can easily vary due to: gender BIOL 221 Chapter 26 Fluids & Electrolytes 35 slides 1 Body Water Content Total Body Water is the percentage of a person s weight that is water. TBW can easily vary due to: gender males have higher TBW

More information

Chapter 7 Nerve Cells and Electrical Signaling

Chapter 7 Nerve Cells and Electrical Signaling Chapter 7 Nerve Cells and Electrical Signaling 7.1. Overview of the Nervous System (Figure 7.1) 7.2. Cells of the Nervous System o Neurons are excitable cells which can generate action potentials o 90%

More information

RENAL FUNCTION An Overview

RENAL FUNCTION An Overview RENAL FUNCTION An Overview UNIVERSITY OF PNG SCHOOL OF MEDICINE AND HEALTH SCIENCES DIVISION OF BASIC MEDICAL SCIENCES DISCIPLINE OF BIOCHEMISTRY & MOLECULAR BIOLOGY PBL MBBS II SEMINAR VJ. Temple 1 Kidneys

More information

Urine Formation. Urinary Physiology Urinary Section pages Urine Formation. Glomerular Filtration 4/24/2016

Urine Formation. Urinary Physiology Urinary Section pages Urine Formation. Glomerular Filtration 4/24/2016 Urine Formation Urinary Physiology Urinary Section pages 9-17 Filtrate Blood plasma minus most proteins Urine

More information

Principles of Renal Physiology. 4th Edition

Principles of Renal Physiology. 4th Edition Principles of Renal Physiology 4th Edition Principles of Renal Physiology 4th Edition Chris Lote Professor of Experimental Nephrology, University of Birmingham, UK SPRINGER SCIENCE+BUSINESS MEDIA, B.V.

More information

Total Body Potassium

Total Body Potassium Potassium Kate Driver BMLSc MAACB Immunochemistry Product Manager ANZ PI Diasorin Australia kate.driver@diasorin.com.au AACB QLD Branch Education Representative Australasian Association of Clinical Biochemists

More information

Human Physiology - Problem Drill 17: The Kidneys and Nephronal Physiology

Human Physiology - Problem Drill 17: The Kidneys and Nephronal Physiology Human Physiology - Problem Drill 17: The Kidneys and Nephronal Physiology Question No. 1 of 10 Instructions: (1) Read the problem statement and answer choices carefully, (2) Work the problems on paper

More information

Therapeutic Uses of Diuretics

Therapeutic Uses of Diuretics DIURETICS Diuretics are drugs that promote the output of urine excreted by the Kidneys. The primary action of most diuretics is the direct inhibition of a + transport at one or more of the four major anatomical

More information

Type 2 Pseudohypoaldosteronism: New Insights Into Renal Potassium, Sodium, and Chloride Handling

Type 2 Pseudohypoaldosteronism: New Insights Into Renal Potassium, Sodium, and Chloride Handling NEPHROLOGY GRAND ROUNDS Type 2 Pseudohypoaldosteronism: New Insights Into Renal Potassium, Sodium, and Chloride Handling Gregory Proctor, MD, and Stuart Linas, MD INDEX WORDS: Pseudohypoaldosteronism;

More information

Kidneys and Homeostasis

Kidneys and Homeostasis 16 The Urinary System The Urinary System OUTLINE: Eliminating Waste Components of the Urinary System Kidneys and Homeostasis Urination Urinary Tract Infections Eliminating Waste Excretion Elimination of

More information

BIOH122 Human Biological Science 2

BIOH122 Human Biological Science 2 BIOH122 Human Biological Science 2 Session 18 Urinary System 3 Tubular Reabsorption and Secretion Bioscience Department Endeavour College of Natural Health endeavour.edu.au Session Plan o Principles of

More information