04RC2. The biology of vulnerable plaques. Jozef L. Van Herck 1, Christiaan J. Vrints 1, Arnold G. Herman 2

Size: px
Start display at page:

Download "04RC2. The biology of vulnerable plaques. Jozef L. Van Herck 1, Christiaan J. Vrints 1, Arnold G. Herman 2"

Transcription

1 04RC2 The biology of vulnerable plaques Jozef L. Van Herck 1, Christiaan J. Vrints 1, Arnold G. Herman 2 1 Department of Cardiology, Antwerp University Hospital, Edegem, Belgium 2 Department of Pharmacology, University of Antwerp, Wilrijk, Belgium Saturday, June 12, :00-16:45 Room: 101d Ischaemic heart disease remains the leading cause of death in the Western world. Acute coronary syndromes, including acute myocardial infarction, unstable angina and sudden death, are often the first clinical presentation of underlying coronary artery disease. It was previously thought that progressive luminal narrowing from continued growth of smooth muscle cells in atherosclerotic plaques was the main cause of myocardial infarction. However, it has become clear that the majority of acute coronary syndromes result from rupture of atherosclerotic plaques that did not cause flow limitation before the acute event. Coronary atherosclerotic plaques can remain silent for decades, but suddenly become unstable, triggering thrombus formation and acute coronary syndromes. The term vulnerable plaque is used to define plaques that are thrombosis-prone and have a high probability of undergoing rapid progression [1]. A synonym for vulnerable plaque is a high risk or thrombosis-prone plaque [1]. Luminal thrombi can arise from three different plaque morphologies: plaque rupture, plaque erosion and calcified nodules. Plaque rupture is the major cause of coronary thrombi (55-60%), while plaque erosion and calcified nodule account for 30-35% and 3-7%, respectively [2]. Plaque rupture Plaque rupture is defined as an area of fibrous cap disruption, with an overlying thrombus in direct continuity with the underlying necrotic core. Post-mortem pathologic studies suggest that thin cap fibroatheroma (TCFA) are the precursor lesions for plaque rupture [2]. TCFA are characterized by a thin inflamed fibrous cap covering a large necrotic core, as opposed to stable plaques that contain large numbers of smooth muscle cells (SMC) and a large amount of extracellular matrix (ECM) (Figure 1). Other characteristics of TCFA include micro-calcifications and localised expansive enlargement of the vessel wall, known as positive remodeling. Rupture of the fibrous cap leads to exposure of the thrombogenic lipid core to the circulating blood, with activation of the coagulation cascade, aggregation of blood platelets and thrombus formation (Figure 1). Plaque rupture is the result of the interaction between intrinsic plaque features ( vulnerability ) and extrinsic stresses ( rupture triggers ). Plaque vulnerability predisposes a plaque to rupture, whereas rupture triggers may precipitate it [3]. In the next section, we first present the intrinsic features of a vulnerable plaque, followed by an overview of the extrinsic stresses. Intrinsic features of vulnerable plaques Critical fibrous cap thickness The stability of an atherosclerotic plaque is determined by the thickness of the fibrous cap, which prevents contact between the highly thrombogenic necrotic core and the circulating blood. In a post-mortem study of 41 ruptured coronary plaques, 95% of the fibrous caps were less than 65 µm thick (mean 23 µm) [4]. Based on this study, a thin fibrous cap in coronary plaques is usually defined as a cap with a thickness < 65 µm

2 Figure 1 Schematic presentation of a stable, unstable and ruptured atherosclerotic plaque Stable atherosclerotic plaque Unstable atherosclerotic plaque Plaque rupture and thrombus formation Smooth muscle cell Collagen fibers Endothelial cell Macrophage Necrotic core Neovessel - 2 -

3 Necrotic core The necrotic core is composed of free cholesterol, cholesterol crystals and cholesterol esters. The consistency of the necrotic core is determined by the relative composition: lipids in the form of cholesterol esters soften the necrotic core, whereas crystalline cholesterol has the opposite effect [3]. A soft core is considered more vulnerable because it is not able to bear the imposed circumferential stress, which is then redistributed to the fibrous cap [3]. In addition to the consistency, the size of the necrotic core is important for plaque stability. In approximately two thirds of ruptured plaques, the necrotic core occupies more than 25% of the plaque area [2]. Especially atherosclerotic plaques with a necrotic core occupying more than 40% of the plaque area appear to be vulnerable to plaque rupture [5]. Positive remodelling Pathological studies from patients with fatal coronary events have consistently shown that at sites of plaque rupture with superimposed occlusive thrombosis, the underlying lesion is large [6]. However, the majority of the culprit lesions do not cause significant luminal narrowing before the acute event [6]. One of the mechanisms that may explain why culprit lesions do not cause a significant stenosis is the process of arterial remodelling. Positive remodelling is a compensatory mechanism that maintains coronary arterial lumen size until plaques occupy about 40% of the vessel cross-sectional area [7]. Consequently, positive remodelling may prevent luminal stenosis despite a large plaque size. Pathological studies suggest a relationship between plaque composition and the degree of positive or negative remodelling. Patients with acute coronary syndromes are more likely to display positive remodelling of the culprit lesion [8]. By contrast, constrictive remodelling is associated with fibrotic and presumably more stable plaques. These results imply that positive remodelling should be seen as a double-edged sword. Although positive remodelling compensates for plaque growth and avoids luminal stenosis, it harbours potential vulnerable plaques, preventing their early detection by coronary angiography. Oligofocal disease Initial studies have suggested that a high percentage of the patients with acute coronary syndromes have multiple ruptured plaques. For example, Goldstein et al [9] found multiple complex angiographic lesions in 40% of patients with acute myocardial infarction, suggestive of multifocal plaque rupture. Many of these lesions were located in vessels not related to the acute event. Subsequent studies have reported a lower incidence of multiple plaque ruptures [10]. Currently, it is estimated that approximately 20% of patients with acute coronary syndromes has more than one disrupted plaque [10]. Therefore, rupture-prone plaques are oligofocal, rather than diffuse or multifocal. Neovascularisation In normal arteries, vasa vasorum-derived microvessels are limited to the adventitia and outer media. Diffusion of oxygen and other nutrients from the lumen is sufficient to nourish the intimal layer and the inner media of normal arteries. A progressive increase in plaque volume is associated with the development of zones of hypoxia in the atherosclerotic plaque. Hypoxia stimulates neovascularisation of the atherosclerotic plaque. New vessels sprout from the adventitial vasa vasorum through the media into the intimal lesion. Accumulating evidence links plaque angiogenesis with progressive and unstable vascular disease. Vessel density is increased two-fold in vulnerable plaques and four-fold in disrupted plaques compared with obstructive stable disease [11]. New vessels may serve as a pathway for recruitment of leucocytes to high-risk areas of the plaque [12]. Moreover, thin-walled new vessels are often leaky and fragile, and disruption of microvessels can result in intraplaque haemorrhage, contributing to enlargement of the necrotic core. Inflammation and matrix degradation Ruptured fibrous caps are heavily inflamed. At the actual rupture site, large numbers of inflammatory cells are present [2]. A macrophage density of 26% has been reported in the fibrous cap of ruptured plaques [2]. The inflammatory cells consist mainly of macrophages, but also include mast cells and T-lymphocytes

4 Macrophages, but also all other cell types in the atherosclerotic plaque, can produce a variety of proteolytic enzymes, capable of degrading the ECM. Three major families of enzymes participate in ECM degradation: matrix metalloproteinases, cysteine proteases (including cathepsins), and serine proteases (urokinase and plasmin). These proteolytic enzymes act together to degrade the ECM. Degradation of collagen can impair the tensile strength of the fibrous cap [13]. Disrupted fibrous caps contain less collagen than intact caps [5]. These results suggest an important role for proteolytic enzymes in plaque rupture. Apoptosis of macrophages Multiple factors, such as high concentrations of oxldl, tumour necrosis factor-α (TNF-α) and Fas-ligand, can induce apoptosis of macrophages. The effect of macrophage apoptosis on the progression of advanced atherosclerotic plaques is complex. Advanced atherosclerotic plaques have an impaired clearance of apoptotic cells [14]. Defective phagocytosis of apoptotic cells has a number of consequences that promotes the progression and complications of atherosclerotic plaques. Apoptotic cells that are not ingested become secondarily necrotic, which can cause tissue damage from released intracellular proteases and other noxious material of these cells. Non-cleared apoptotic cells are also an important source of tissue factor, which increases plaque thrombogenicity. In addition, inefficient removal of apoptotic cells contributes to enlargement of the necrotic core. In this regard, macrophage apoptosis could be detrimental for the stability of advanced atherosclerotic plaques as it will further decrease the scavenging capacity in the plaque. However, macrophages are an important source of inflammatory cytokines and proteolytic enzymes, thus a decrease in macrophages may also have plaque-stabilizing effects. Taken together, the final effect of macrophage apoptosis on plaque stability is still unclear and remains an area of active research [15]. Apoptosis of smooth muscle cells Various mediators secreted by macrophages and T lymphocytes, including IFN-γ, Fas-ligand, TNF-α, IL-1 and reactive oxygen species, can induce SMC apoptosis [16]. Apoptosis of SMCs is important for plaque stability. Plaque rupture sites typically show very few SMCs. Apoptosis of SMCs will lead to loss of cells that are responsible for the synthesis of interstitial collagen fibers. Because SMCs in atherosclerotic plaques show very low values of cell replication, a slight increase in SMC apoptosis will lead to a drastic decrease in SMC content, which in turn will have a major influence on collagen synthesis and plaque stability [16]. Calcification There is controversy about the role of calcification in the stability of atherosclerotic lesions, with possibly a different role for macro- and micro-calcifications. Large calcifications have been associated with a protective role against plaque rupture. However, micro-calcifications seem to play an active role in plaque rupture [17, 18]. Phagocytosis of micro-calcifications by macrophages triggers a pro-inflammatory response with increased secretion of inflammatory cytokines (such as TNF-α, IL-1 and IL-18) [17]. In addition, micro-calcifications in the fibrous cap can increase the local stress concentrations, raising the risk of plaque rupture [18]. Extrinsic factors Coronary plaques are constantly stressed by a variety of haemodynamic forces. It is likely that external forces can trigger plaque rupture at sites where the fibrous cap is thin and weak. For eccentric plaques, this is often the junction between the plaque and the adjacent normal intima, called the shoulder region of the plaque

5 Shear stress Whereas low shear stress is important for the distribution and growth of atherosclerotic lesions, it has been suggested that high shear stress is associated with plaque rupture [19]. When the atherosclerotic lesion begins to intrude the lumen, the fibrous cap becomes exposed to high shear stress. High shear stress may stimulate breakdown of the fibrous cap through a decrease in SMC production of collagen and an increase in macrophage secretion of matrix metalloproteinases (MMP) [19]. However, it remains uncertain whether high shear stress alone can disrupt an atherosclerotic plaque. The absolute stresses induced by wall shear are usually much smaller than the mechanical stresses imposed by blood and pulse pressure [3]. Blood and pulse pressure The blood pressure induces circumferential tension in the arterial wall. The circumferential wall tension (tensile stress) is given by Laplace s Law: σ = Pr/h where σ is the circumferential wall tension, P is the pressure in the vessel, r is the radius of the vessel and h is the thickness of the wall. Laplace s Law relates luminal pressure and radius to wall tension: the higher the blood pressure and the larger the luminal diameter, the more tension develops in the wall. Richardson et al [20] computed the distribution of circumferential stress within simulated plaques and observed that eccentric pools of soft material increase the stress on the adjacent fibrous cap, especially near the shoulders. Moreover, the calculated high-stress points correlate well with sites of cap disruption in ruptured plaques [20]. The pulse pressure (the pulsatile component of blood pressure) causes cyclic deformation and bending of the plaques. Eccentric plaques typically bend at their edges - the junction between the stiff plaque and the more compliant plaque-free vessel wall. The repetitive pulsatile stress may weaken the fibrous cap and ultimately lead to sudden cap rupture due to fatigue [3]. Vasospasm Plaque disruption and vasospasm frequently occur together [3]. Theoretically, vasospasm could induce plaque rupture by compressing the atheromatous core. However, onset of myocardial infarction is uncommon during or shortly after drug-induced spasm of even severely diseased coronary arteries, indicating that vasospasm rarely precipitates plaque disruption or luminal thrombosis. Plaque erosion About 30-35% of coronary thrombi are caused by plaque erosion [2]. Plaque erosion is defined as an acute thrombus in direct contact with the intima, in an area of absent endothelium. The thrombus appears to be superimposed on a de-endothelialized, but otherwise intact plaque. The underlying plaque is rich in SMCs and proteoglycan matrix. Most eroded lesions lack a necrotic core, but when present, there is no direct communication with the luminal thrombus. These plaques are often associated with constrictive remodeling [2]. Plaque erosion is associated with smoking, especially in women. On average, patients with plaque erosion are younger than those with plaque rupture. Plaque erosion accounts for more than 80% of coronary thrombi occurring in women < 50 years of age. In comparison with plaque rupture, thrombi of plaque erosions tend to embolize more frequently (74% vs 40%, respectively) [2]. Plaque with calcified nodule The least frequent lesion associated with coronary thrombosis is the calcified nodule [2]. Calcified nodules are plates of calcium in advanced plaques that have broken down into fragments and erupt into the lumen, resulting in thrombosis and intimal reaction. Calcified nodules tend to occur in older men

6 Key learning points The occurrence of acute coronary syndromes is more related to plaque composition than to plaque size. Most acute coronary syndromes are caused by rupture of atherosclerotic plaques. Plaque rupture is the result of the interaction between intrinsic plaque features ( vulnerability ) and extrinsic stresses ( rupture triggers ). Thin-cap fibroatheroma, the precursor lesions for plaque rupture, are characterized by a large necrotic core, covered by a thin inflamed fibrous cap. Other characteristics of TCFA include the presence of micro-calcifications and localised expansive enlargement of the vessel wall, known as positive remodelling. References 1. Schaar JA, Muller JE, Falk E, et al. Terminology for high-risk and vulnerable coronary artery plaques. Report of a meeting on the vulnerable plaque, June 17 and 18, 2003, Santorini, Greece. Eur Heart J 2004; 25: Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000; 20: Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation 1995; 92: Burke AP, Farb A, Malcom GT, et al. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med 1997; 336: Davies MJ, Richardson PD, Woolf N, Katz DR, Mann J. Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br Heart J 1993; 69: Fishbein MC, Siegel RJ. How big are coronary atherosclerotic plaques that rupture? Circulation 1996; 94: Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987; 316: Schoenhagen P, Ziada KM, Kapadia SR, et al. Extent and direction of arterial remodeling in stable versus unstable coronary syndromes : an intravascular ultrasound study. Circulation 2000; 101: Goldstein JA, Demetriou D, Grines CL, et al. Multiple complex coronary plaques in patients with acute myocardial infarction. N Engl J Med 2000; 343: Libby P. Atherosclerosis: disease biology affecting the coronary vasculature. Am J Cardiol 2006; 98: 3Q-9Q. 11. Moreno PR, Purushothaman KR, Fuster V, et al. Plaque neovascularization is increased in ruptured atherosclerotic lesions of human aorta: implications for plaque vulnerability. Circulation 2004; 110: de Boer OJ, van der Wal AC, Teeling P, Becker AE. Leucocyte recruitment in rupture prone regions of lipid-rich plaques: a prominent role for neovascularization? Cardiovasc Res 1999; 41: Lendon CL, Davies MJ, Born GV, Richardson PD. Atherosclerotic plaque caps are locally weakened when macrophages density is increased. Atherosclerosis 1991; 87: Schrijvers DM, De Meyer GRY, Kockx MM, Herman AG, Martinet W. Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arterioscler Thromb Vasc Biol 2005; 25: Martinet W, De Meyer GRY. Selective depletion of macrophages in atherosclerotic plaques: myth, hype, or reality? Circ Res 2007; 100: Kockx MM, Herman AG. Apoptosis in atherosclerosis: beneficial or detrimental? Cardiovasc Res 2000; 45: Nadra I, Mason JC, Philippidis P, et al. Proinflammatory activation of macrophages by basic calcium phosphate crystals via protein kinase C and MAP kinase pathways: a vicious cycle of inflammation and arterial calcification? Circ Res 2005; 96: Vengrenyuk Y, Carlier S, Xanthos S, et al. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci USA 2006; 103: Slager CJ, Wentzel JJ, Gijsen FJ, et al. The role of shear stress in the destabilization of vulnerable plaques and related therapeutic implications. Nat Clin Pract Cardiovasc Med 2005; 2: Richardson PD, Davies MJ, Born GV. Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 1989; 2:

Pathology of Coronary Artery Disease

Pathology of Coronary Artery Disease Pathology of Coronary Artery Disease Seth J. Kligerman, MD Pathology of Coronary Artery Disease Seth Kligerman, MD Assistant Professor Medical Director of MRI University of Maryland Department of Radiology

More information

Vulnerable Plaque Pathophysiology, Detection, and Intervention. VP: A Local Problem or Systemic Disease. Erling Falk, Denmark

Vulnerable Plaque Pathophysiology, Detection, and Intervention. VP: A Local Problem or Systemic Disease. Erling Falk, Denmark Vulnerable Plaque Pathophysiology, Detection, and Intervention VP: A Local Problem or Systemic Disease Erling Falk, Denmark Vulnerable Plaque Pathophysiology, Detection, and Intervention VP: A Local Problem

More information

Added Value of Invasive Coronary Imaging for Plaque Rupture and Erosion

Added Value of Invasive Coronary Imaging for Plaque Rupture and Erosion Assessment of Coronary Plaque Rupture and Erosion Added Value of Invasive Coronary Imaging for Plaque Rupture and Erosion Yukio Ozaki, MD, PhD, FACC, FESC Cardiology Dept., Fujita Health Univ. Toyoake,

More information

Pathology of the Vulnerable Plaque

Pathology of the Vulnerable Plaque Journal of the American College of Cardiology Vol. 47, No. 8 Suppl C 2006 by the American College of Cardiology Foundation ISSN 0735-1097/06/$32.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2005.10.065

More information

Pathology of Vulnerable Plaque Angioplasty Summit 2005 TCT Asia Pacific, Seoul, April 28-30, 2005

Pathology of Vulnerable Plaque Angioplasty Summit 2005 TCT Asia Pacific, Seoul, April 28-30, 2005 Pathology of Vulnerable Plaque Angioplasty Summit 25 TCT Asia Pacific, Seoul, April 28-3, 25 Renu Virmani, MD CVPath, A Research Service of the International Registry of Pathology Gaithersburg, MD Plaque

More information

Imaging Atheroma The quest for the Vulnerable Plaque

Imaging Atheroma The quest for the Vulnerable Plaque Imaging Atheroma The quest for the Vulnerable Plaque P.J. de Feijter 1. Department of Cardiology 2. Department of Radiology Coronary Heart Disease Remains the Leading Cause of Death in the U.S, Causing

More information

Chapter 43 Noninvasive Coronary Plaque Imaging

Chapter 43 Noninvasive Coronary Plaque Imaging hapter 43 Noninvasive oronary Plaque Imaging NIRUDH KOHLI The goal of coronary imaging is to define the extent of luminal narrowing as well as composition of an atherosclerotic plaque to facilitate appropriate

More information

Imaging Overview for Vulnerable Plaque: Data from IVUS Trial and An Introduction to VH-IVUS Imgaging

Imaging Overview for Vulnerable Plaque: Data from IVUS Trial and An Introduction to VH-IVUS Imgaging Imaging Overview for Vulnerable Plaque: Data from IVUS Trial and An Introduction to VH-IVUS Imgaging Gary S. Mintz,, MD Cardiovascular Research Foundation New York, NY Today, in reality, almost everything

More information

CHAPTER (2) THE VULNERABLE PLAQUE

CHAPTER (2) THE VULNERABLE PLAQUE CHAPTER (2) THE VULNERABLE PLAQUE UNSTABLE OR HIGH RISK ATHEROSCLEROTIC PLAQUE - Definition and Composition - Plaque Destabilization and Disruption - Fate of Disrupted Plaque - Clinical Presentation -

More information

TVA_C02.qxd 8/8/06 10:27 AM Page 19 PART 2. Pathology

TVA_C02.qxd 8/8/06 10:27 AM Page 19 PART 2. Pathology TVA_C2.qxd 8/8/6 :27 AM Page 19 2 PART 2 Pathology TVA_C2.qxd 8/8/6 :27 AM Page TVA_C2.qxd 8/8/6 :27 AM Page 21 2 CHAPTER 2 The pathology of vulnerable plaque Renu Virmani, Allen P Burke, James T Willerson,

More information

Ischemic heart disease

Ischemic heart disease Ischemic heart disease Introduction In > 90% of cases: the cause is: reduced coronary blood flow secondary to: obstructive atherosclerotic vascular disease so most of the time it is called: coronary artery

More information

High-risk vulnerable plaques. Kostis Raisakis G.Gennimatas General Hospital of Athens

High-risk vulnerable plaques. Kostis Raisakis G.Gennimatas General Hospital of Athens High-risk vulnerable plaques. Kostis Raisakis G.Gennimatas General Hospital of Athens Overview: 1 Definition-Pathology 2 3 Diagnostic Strategies Invasive Non Invasive Prognostic Value of Detection 4 Treatment

More information

This review will reconsider the current paradigm for

This review will reconsider the current paradigm for Lessons From Sudden Coronary Death A Comprehensive Morphological Classification Scheme for Atherosclerotic Lesions Renu Virmani, Frank D. Kolodgie, Allen P. Burke, Andrew Farb, Stephen M. Schwartz This

More information

C atastrophic atherosclerotic plaque rupture, the most

C atastrophic atherosclerotic plaque rupture, the most 1459 SIC RESERCH Influence of lumen shape and vessel geometry on plaque stresses: possible role in the increased vulnerability of a remodelled vessel and the shoulder of a plaque R Krishna Kumar, K R alakrishnan...

More information

Invasive Coronary Imaging Modalities for Vulnerable Plaque Detection

Invasive Coronary Imaging Modalities for Vulnerable Plaque Detection Invasive Coronary Imaging Modalities for Vulnerable Plaque Detection Gary S. Mintz, MD Cardiovascular Research Foundation New York, NY Greyscale IVUS studies have shown Plaque ruptures do not occur randomly

More information

PATHOPHYSIOLOGY OF ACUTE CORONARY SYNDROMES

PATHOPHYSIOLOGY OF ACUTE CORONARY SYNDROMES PATHOPHYSIOLOGY OF ACUTE CORONARY SYNDROMES Brian R. Holroyd, MD, FACEP, FRCPC Professor and Director, Division of Emergency Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton,

More information

IVUS Virtual Histology. Listening through Walls D. Geoffrey Vince, PhD The Cleveland Clinic Foundation

IVUS Virtual Histology. Listening through Walls D. Geoffrey Vince, PhD The Cleveland Clinic Foundation IVUS Virtual Histology Listening through Walls D. Geoffrey Vince, PhD Disclosure VH is licenced to Volcano Therapeutics Grant funding from Pfizer, Inc. Grant funding from Boston-Scientific Most Myocardial

More information

2yrs 2-6yrs >6yrs BMS 0% 22% 42% DES 29% 41% Nakazawa et al. J Am Coll Cardiol 2011;57:

2yrs 2-6yrs >6yrs BMS 0% 22% 42% DES 29% 41% Nakazawa et al. J Am Coll Cardiol 2011;57: Pathology of In-stent Neoatherosclerosis in BMS and DES 197 BMS, 103 SES, and 106 PES with implant duration >30 days The incidence of neoatherosclerosis was significantly greater in DES (31%) than BMS

More information

Acute Coronary Syndromes Compendium. Acute Coronary Syndromes: Pathology, Diagnosis, Genetics, Prevention, and Treatment

Acute Coronary Syndromes Compendium. Acute Coronary Syndromes: Pathology, Diagnosis, Genetics, Prevention, and Treatment Acute Coronary Syndromes Compendium Circulation Research Compendium on Acute Coronary Syndromes Acute Coronary Syndromes: Pathology, Diagnosis, Genetics, Prevention, and Treatment Mechanisms of Plaque

More information

Vulnerable Plaque. Atherothrombosis

Vulnerable Plaque. Atherothrombosis Vulnerable Plaque Nuove acquisizioni sull'aterosclerosi: placca vulnerabile Marina Camera Dip. Scienze Farmacologiche, Facoltà di Farmacia, Università degli Studi di Milano & Laboratorio di Biologia Cellulare

More information

Left main coronary artery (LMCA): The proximal segment

Left main coronary artery (LMCA): The proximal segment Anatomy and Pathology of Left main coronary artery G Nakazawa Tokai Univ. Kanagawa, Japan 1 Anatomy Difinition Left main coronary artery (LMCA): The proximal segment RCA AV LAD LM LCX of the left coronary

More information

Basic Mechanisms of Atherosclerosis and Plaque Rupture: Clinical Implications

Basic Mechanisms of Atherosclerosis and Plaque Rupture: Clinical Implications 12 th Annual Cardiovascular Disease Prevention Symposium February 8, 2013 KEYNOTE ADDRESS Basic Mechanisms of Atherosclerosis and Plaque Rupture: Clinical Implications Ira Tabas, M.D., Ph.D. Richard J.

More information

Blood Vessels. Dr. Nabila Hamdi MD, PhD

Blood Vessels. Dr. Nabila Hamdi MD, PhD Blood Vessels Dr. Nabila Hamdi MD, PhD ILOs Understand the structure and function of blood vessels. Discuss the different mechanisms of blood pressure regulation. Compare and contrast the following types

More information

Aneurysms & a Brief Discussion on Embolism

Aneurysms & a Brief Discussion on Embolism Aneurysms & a Brief Discussion on Embolism Aneurysms, overview = congenital or acquired dilations of blood vessels or the heart True aneurysms -involve all three layers of the artery (intima, media, and

More information

Assessment of plaque morphology by OCT in patients with ACS

Assessment of plaque morphology by OCT in patients with ACS Assessment of plaque morphology by OCT in patients with ACS Takashi Akasaka, M.D. Department of Cardiovascular Medicine Wakayama, Japan Unstable plaque Intima Lipid core Plaque rupture and coronary events

More information

Arteriosclerosis & Atherosclerosis

Arteriosclerosis & Atherosclerosis Arteriosclerosis & Atherosclerosis Arteriosclerosis = hardening of arteries = arterial wall thickening + loss of elasticity 3 types: -Arteriolosclerosis -Monckeberg medial sclerosis -Atherosclerosis Arteriosclerosis,

More information

State of the Art. Advances in Cardiovascular Imaging. ESC Congres Stockholm September 1, 2010 Frank E. Rademakers, MD, PhD, FESC

State of the Art. Advances in Cardiovascular Imaging. ESC Congres Stockholm September 1, 2010 Frank E. Rademakers, MD, PhD, FESC State of the Art Advances in Cardiovascular Imaging ESC Congres Stockholm September 1, 2010 Frank E. Rademakers, MD, PhD, FESC Coronary Artery Disease Content Patho Physiology Imaging requirements Economical

More information

Atherothrombosis and High-Risk Plaque Part I: Evolving Concepts

Atherothrombosis and High-Risk Plaque Part I: Evolving Concepts Journal of the American College of Cardiology Vol. 46, No. 6, 2005 2005 by the American College of Cardiology Foundation ISSN 0735-1097/05/$30.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2005.03.074

More information

ATHEROSCLEROSIS. Secondary changes are found in other coats of the vessel wall.

ATHEROSCLEROSIS. Secondary changes are found in other coats of the vessel wall. ATHEROSCLEROSIS Atherosclerosis Atherosclerosis is a disease process affecting the intima of the aorta and large and medium arteries, taking the form of focal thickening or plaques of fibrous tissue and

More information

Cottrell Memorial Lecture. Has Reversing Atherosclerosis Become the New Gold Standard in the Treatment of Cardiovascular Disease?

Cottrell Memorial Lecture. Has Reversing Atherosclerosis Become the New Gold Standard in the Treatment of Cardiovascular Disease? Cottrell Memorial Lecture Has Reversing Atherosclerosis Become the New Gold Standard in the Treatment of Cardiovascular Disease? Stephen Nicholls MBBS PhD @SAHMRI_Heart Disclosures Research support: AstraZeneca,

More information

Virtually all regional acute myocardial

Virtually all regional acute myocardial Heart 2000;83:361 366 CORONARY DISEASE The pathophysiology of acute coronary syndromes Michael J Davies St George s Hospital Medical School, Histopathology Department, London, UK Correspondence to: Professor

More information

Assessment of Vulnerable Plaque by IVUS and VH-IVUS

Assessment of Vulnerable Plaque by IVUS and VH-IVUS Assessment of Vulnerable Plaque by IVUS and VH-IVUS Akiko Maehara, MD Director of Intravascular Imaging & Physiology Core Laboratories Associate Director of MRI/MDCT Core Laboratory Cardiovascular Research

More information

Plaque Characteristics in Coronary Artery Disease. Chourmouzios Arampatzis MD, PhD, FESC

Plaque Characteristics in Coronary Artery Disease. Chourmouzios Arampatzis MD, PhD, FESC Plaque Characteristics in Coronary Artery Disease Chourmouzios Arampatzis MD, PhD, FESC Disclosure Statement of Financial Interest Regarding this Presentation NONE Atherosclerosis Model proposed by Stary

More information

Histopathology: Vascular pathology

Histopathology: Vascular pathology Histopathology: Vascular pathology These presentations are to help you identify basic histopathological features. They do not contain the additional factual information that you need to learn about these

More information

Multimodality Imaging Atlas of Coronary Atherosclerosis

Multimodality Imaging Atlas of Coronary Atherosclerosis JCC: CRDIOVSCUR IMGING VO. 3, NO. 8, 2010 2010 BY THE MERICN COEGE OF CRDIOOGY FOUNDTION ISSN 0735-1097/$36.00 PUBISHED BY ESEVIER INC. DOI:10.1016/j.jcmg.2010.06.006 IMGING VIGNETTE Multimodality Imaging

More information

THE EFFECT OF CALCIFIED PLAQUE ON STRESS WITHIN A FIBROUS THIN CAP ATHEROMA IN AN ATHEROSCLEROTIC CORONARY ARTERY USING FINITE ELEMENT ANALYSIS (FEA)

THE EFFECT OF CALCIFIED PLAQUE ON STRESS WITHIN A FIBROUS THIN CAP ATHEROMA IN AN ATHEROSCLEROTIC CORONARY ARTERY USING FINITE ELEMENT ANALYSIS (FEA) THE EFFECT OF CALCIFIED PLAQUE ON STRESS WITHIN A FIBROUS THIN CAP ATHEROMA IN AN ATHEROSCLEROTIC CORONARY ARTERY USING FINITE ELEMENT ANALYSIS (FEA) A Thesis Presented to the Faculty of California Polytechnic

More information

Tissue Characterization of Coronary Plaques Using Intravascular Ultrasound/Virtual Histology

Tissue Characterization of Coronary Plaques Using Intravascular Ultrasound/Virtual Histology REVIEW Korean Circulation J 2006;36:553-558 ISSN 1738-5520 c 2006, The Korean Society of Circulation Tissue Characterization of Coronary Plaques Using Intravascular Ultrasound/Virtual Histology Jang-Ho

More information

Ambiguity in Detection of Necrosis in IVUS Plaque Characterization Algorithms and SDH as Alternative Solution

Ambiguity in Detection of Necrosis in IVUS Plaque Characterization Algorithms and SDH as Alternative Solution Ambiguity in Detection of Necrosis in IVUS Plaque Characterization Algorithms and SDH as Alternative Solution Amin Katouzian, Ph.D., Debdoot Sheet, M.S., Abouzar Eslami, Ph.D., Athanasios Karamalis, M.Sc.,

More information

The 10 th International & 15 th National Congress on Quality Improvement in Clinical Laboratories

The 10 th International & 15 th National Congress on Quality Improvement in Clinical Laboratories The 10 th International & 15 th National Congress on Quality Improvement in Clinical Laboratories Cardiac biomarkers in atherosclerosis Najma Asadi MD-APCP Ross and Colleagues in 1973: Response to Injury

More information

Introduction. Introduction. 1.1 Definition and epidemiology ofatherosclerosis. 1.2 Pathogenesis ofatherosclerosis

Introduction. Introduction. 1.1 Definition and epidemiology ofatherosclerosis. 1.2 Pathogenesis ofatherosclerosis 1 1.1 Definition and epidemiology ofatherosclerosis 1.2 Pathogenesis ofatherosclerosis 1.2.1 Classification ofatherosclerosis 1.2.2 Hemodynamic forces 1.2.3 Dyslipidemia 1.2.4 Inflammation and Immunology

More information

FFR and outcome: The mechanistic link

FFR and outcome: The mechanistic link FFR and outcome: The mechanistic link Bernard De Bruyne Cardiovascular Center Aalst Belgium Mechanisms of Plaque Destabilization Stenosis Hemodynamics Thrombotic Occlusion Blood/ Platelets Histopathology

More information

actually rupture! Challenges to the vulnerable plaque concept

actually rupture! Challenges to the vulnerable plaque concept An Update on the Pathogenesis of the Acute Coronary Syndromes Peter Libby Brigham & Women s Hospital Harvard Medical School ADVANCES IN HEART DISEASE University of California San Francisco December 20,

More information

1 Functions of endothelial cells include all the following EXCEPT. 2 Response to vascular injury is characterised by

1 Functions of endothelial cells include all the following EXCEPT. 2 Response to vascular injury is characterised by airns ase Hospital mergency epartment Part 1 FM MQs 1 Functions of endothelial cells include all the following XPT Formation of von-willebrand factor Formation of collagen and proteoglycans Formation of

More information

Pathophysiology of Cardiovascular System. Dr. Hemn Hassan Othman, PhD

Pathophysiology of Cardiovascular System. Dr. Hemn Hassan Othman, PhD Pathophysiology of Cardiovascular System Dr. Hemn Hassan Othman, PhD hemn.othman@univsul.edu.iq What is the circulatory system? The circulatory system carries blood and dissolved substances to and from

More information

as a Mechanism of Stent Failure

as a Mechanism of Stent Failure In-Stent t Neoatherosclerosis e osc e os s as a Mechanism of Stent Failure Soo-Jin Kang MD., PhD. University of Ulsan College of Medicine, Heart Institute Asan Medical Center, Seoul, Korea Disclosure I

More information

The Severity of Coronary Atherosclerosis at Sites of Plaque Rupture With Occlusive Thrombosis

The Severity of Coronary Atherosclerosis at Sites of Plaque Rupture With Occlusive Thrombosis 1138 MORPHOLOGIC STUDIES The Severity of Coronary Atherosclerosis at Sites of Plaque Rupture With Occlusive Thrombosis JIAN-HUA QIAO, MD, MICHAEL C. FISHBEIN, MD, FACC Los Angeles. California Atherosclerotic

More information

Title for Paragraph Format Slide

Title for Paragraph Format Slide Title for Paragraph Format Slide Presentation Title: Month Date, Year Atherosclerosis A Spectrum of Disease: February 12, 2015 Richard Cameron Padgett, MD Executive Medical Director, OHVI Pt RB Age 38

More information

Journal of the American College of Cardiology Vol. 38, No. 1, by the American College of Cardiology ISSN /01/$20.

Journal of the American College of Cardiology Vol. 38, No. 1, by the American College of Cardiology ISSN /01/$20. Journal of the American College of Cardiology Vol. 38, No. 1, 2001 2001 by the American College of Cardiology ISSN 0735-1097/01/$20.00 Published by Elsevier Science Inc. PII S0735-1097(01)01315-8 Coronary

More information

1st Department of Cardiology, University of Athens, Hippokration Hospital, Athens, Greece

1st Department of Cardiology, University of Athens, Hippokration Hospital, Athens, Greece Konstantinos Toutouzas, Maria Riga, Antonios Karanasos, Eleftherios Tsiamis, Andreas Synetos, Maria Drakopoulou, Chrysoula Patsa, Georgia Triantafyllou, Aris Androulakis, Christodoulos Stefanadis 1st Department

More information

Detection of carotid plaque neovascularization with Superb Micro-Vascular Imaging

Detection of carotid plaque neovascularization with Superb Micro-Vascular Imaging Detection of carotid plaque neovascularization with Superb Micro-Vascular Imaging Yong Qiang Professor Ultrasonic Department, Beijing An-Zhen Hospital, Capital Medical University, China 1. Background Conventional

More information

Atherosclerosis 229 (2013) 124e129. Contents lists available at SciVerse ScienceDirect. Atherosclerosis

Atherosclerosis 229 (2013) 124e129. Contents lists available at SciVerse ScienceDirect. Atherosclerosis Atherosclerosis 229 (2013) 124e129 Contents lists available at SciVerse ScienceDirect Atherosclerosis journal homepage: www.elsevier.com/locate/atherosclerosis Coronary calcification identifies the vulnerable

More information

Dr Rodney Itaki Lecturer Anatomical Pathology Discipline. University of Papua New Guinea School of Medicine & Health Sciences Division of Pathology

Dr Rodney Itaki Lecturer Anatomical Pathology Discipline. University of Papua New Guinea School of Medicine & Health Sciences Division of Pathology Arterial Diseases Dr Rodney Itaki Lecturer Anatomical Pathology Discipline University of Papua New Guinea School of Medicine & Health Sciences Division of Pathology Disease Spectrum Arteriosclerosis Atherosclerosis

More information

PoS(FISBH2006)019. Imaging Vulnerable Plaque A radionuclide approach. H. William Strauss, M.D. 1

PoS(FISBH2006)019. Imaging Vulnerable Plaque A radionuclide approach. H. William Strauss, M.D. 1 A radionuclide approach H. William Strauss, M.D. 1 Section of Nuclear Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10021 United States E-mail: straussh@mskcc.org Frontiers in Imaging

More information

Pathology of Cardiovascular Interventions. Body and Disease 2011

Pathology of Cardiovascular Interventions. Body and Disease 2011 Pathology of Cardiovascular Interventions Body and Disease 2011 Coronary Artery Atherosclerosis Intervention Goals: Acute Coronary Syndromes: Treat plaque rupture and thrombosis Significant Disease: Prevent

More information

CT Imaging of Atherosclerotic Plaque. William Stanford MD Professor-Emeritus Radiology University of Iowa College of Medicine Iowa City, IA

CT Imaging of Atherosclerotic Plaque. William Stanford MD Professor-Emeritus Radiology University of Iowa College of Medicine Iowa City, IA CT Imaging of Atherosclerotic Plaque William Stanford MD Professor-Emeritus Radiology University of Iowa College of Medicine Iowa City, IA PREVALENCE OF CARDIOVASCULAR DISEASE In 2006 there were 80 million

More information

The aorta is an integral part of the cardiovascular system and should not be considered as just a conduit for blood supply from the heart to the

The aorta is an integral part of the cardiovascular system and should not be considered as just a conduit for blood supply from the heart to the The aorta is an integral part of the cardiovascular system and should not be considered as just a conduit for blood supply from the heart to the limbs and major organs. A range of important pathologies

More information

An aneurysm is a localized abnormal dilation of a blood vessel or the heart Types: 1-"true" aneurysm it involves all three layers of the arterial

An aneurysm is a localized abnormal dilation of a blood vessel or the heart Types: 1-true aneurysm it involves all three layers of the arterial An aneurysm is a localized abnormal dilation of a blood vessel or the heart Types: 1-"true" aneurysm it involves all three layers of the arterial wall (intima, media, and adventitia) or the attenuated

More information

ATHEROSCLEROSIS زيد ثامر جابر. Zaid. Th. Jaber

ATHEROSCLEROSIS زيد ثامر جابر. Zaid. Th. Jaber ATHEROSCLEROSIS زيد ثامر جابر Zaid. Th. Jaber Objectives 1- Review the normal histological features of blood vessels walls. 2-define the atherosclerosis. 3- display the risk factors of atherosclerosis.

More information

Coronary Artery Thermography

Coronary Artery Thermography Coronary Artery Thermography The 10th Anniversary, Interventional Vascular Therapeutics Angioplasty Summit 2005 TCT Asia Pacific Christodoulos Stefanadis Professor of Cardiology Athens Medical School In

More information

OCT. molecular imaging J Jpn Coll Angiol, 2008, 48: molecular imaging MRI positron-emission tomography PET IMT

OCT. molecular imaging J Jpn Coll Angiol, 2008, 48: molecular imaging MRI positron-emission tomography PET IMT 48 6 CT MRI PET OCT molecular imaging J Jpn Coll Angiol, 2008, 48: 456 461 atherosclerosis, imaging gold standard computed tomography CT magnetic resonance imaging MRI CT B intima media thickness IMT B

More information

From the Vulnerable Atherosclerotic Plaque to CAD Management

From the Vulnerable Atherosclerotic Plaque to CAD Management 33 rd Panhellenic Congress of Cardiology Athens, November 1-3, 2012 From the Vulnerable Atherosclerotic Plaque to CAD Management Filippos Triposkiadis, MD, FESC, FACC Professor of Cardiology Director,

More information

Innate Immunity in Atherosclerosis

Innate Immunity in Atherosclerosis Innate Immunity in Atherosclerosis Peter Libby Brigham & Women s Hospital Harvard Medical School IAS Amsterdam May 26, 2015 ACS Stable demand angina Characteristics of Atherosclerotic Plaques Associated

More information

Can We Identify Vulnerable Patients & Vulnerable Plaque?

Can We Identify Vulnerable Patients & Vulnerable Plaque? Can We Identify Vulnerable Patients & Vulnerable Plaque? We Know Enough to Treat High-Risk Lesions? Takashi Akasaka, MD, PhD Department of Cardiovascular Medicine, Japan Disclosure Statement of Financial

More information

MR Imaging of Atherosclerotic Plaques

MR Imaging of Atherosclerotic Plaques MR Imaging of Atherosclerotic Plaques Yeon Hyeon Choe, MD Department of Radiology, Samsung Medical Center, Sungkyunkwan University, Seoul MRI for Carotid Atheroma Excellent tissue contrast (fat, fibrous

More information

Review Article Optical Coherence Tomography Imaging in Acute Coronary Syndromes

Review Article Optical Coherence Tomography Imaging in Acute Coronary Syndromes SAGE-Hindawi Access to Research Cardiology Research and Practice Volume 2011, Article ID 312978, 7 pages doi:10.4061/2011/312978 Review Article Optical Coherence Tomography Imaging in Acute Coronary Syndromes

More information

Medical sciences 1 (2017) 1 9

Medical sciences 1 (2017) 1 9 Medical sciences 1 (2017) 1 9 TISSUE CHARACTERISTICS OF CULPRIT CORONARY LESIONS IN ACUTE CORONARY SYNDROME AND TARGET CORONARY LESIONS IN STABLE ANGINA PECTORIS: VIRTUAL HISTOLOGY AND INTRAVASCULAR ULTRASOUND

More information

The Site of Plaque Rupture in Native Coronary Arteries

The Site of Plaque Rupture in Native Coronary Arteries Journal of the American College of Cardiology Vol. 46, No. 2, 2005 2005 by the American College of Cardiology Foundation ISSN 0735-1097/05/$30.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2005.03.067

More information

Appearance of Lipid-Laden Intima and Neovascularization After Implantation of Bare-Metal Stents

Appearance of Lipid-Laden Intima and Neovascularization After Implantation of Bare-Metal Stents Journal of the American College of Cardiology Vol. 55, No. 1, 2010 2010 by the American College of Cardiology Foundation ISSN 0735-1097/10/$36.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2009.08.032

More information

Vascular disease. Structural evaluation of vascular disease. Goo-Yeong Cho, MD, PhD Seoul National University Bundang Hospital

Vascular disease. Structural evaluation of vascular disease. Goo-Yeong Cho, MD, PhD Seoul National University Bundang Hospital Vascular disease. Structural evaluation of vascular disease Goo-Yeong Cho, MD, PhD Seoul National University Bundang Hospital resistance vessels : arteries

More information

Pathophysiology of Atherosclerosis Plaque Progression

Pathophysiology of Atherosclerosis Plaque Progression Review Pathophysiology of Atherosclerosis Plaque Progression Kenichi Sakakura, MD, Masataka Nakano, MD, Fumiyuki Otsuka, MD, Elena Ladich, MD, Frank D. Kolodgie, PhD and Renu Virmani, MD CVPath Institute,

More information

Can IVUS Define Plaque Features that Impact Patient Care?

Can IVUS Define Plaque Features that Impact Patient Care? Can IVUS Define Plaque Features that Impact Patient Care? A Pichard L Satler, K Kent, R Waksman, W Suddath, N Bernardo, N Weissman, M Angelo, D Harrington, J Lindsay, J Panza. Washington Hospital Center

More information

Gary S. Mintz,, MD. IVUS Observations in Acute (vs Chronic) Coronary Artery Disease: Structure vs Function

Gary S. Mintz,, MD. IVUS Observations in Acute (vs Chronic) Coronary Artery Disease: Structure vs Function Gary S. Mintz,, MD IVUS Observations in Acute (vs Chronic) Coronary Artery Disease: Structure vs Function Important IVUS Observations: Remodeling Originally used (first by Glagov) ) to explain atherosclerosis

More information

IVUS Analysis. Myeong-Ki. Hong, MD, PhD. Cardiac Center, Asan Medical Center University of Ulsan College of Medicine, Seoul, Korea

IVUS Analysis. Myeong-Ki. Hong, MD, PhD. Cardiac Center, Asan Medical Center University of Ulsan College of Medicine, Seoul, Korea IVUS Analysis Myeong-Ki Hong, MD, PhD Cardiac Center, Asan Medical Center University of Ulsan College of Medicine, Seoul, Korea Intimal disease (plaque) is dense and will appear white Media is made of

More information

Assessment of vulnerable and unstable carotid atherosclerotic plaques on endarterectomy specimens

Assessment of vulnerable and unstable carotid atherosclerotic plaques on endarterectomy specimens 2028 Assessment of vulnerable and unstable carotid atherosclerotic plaques on endarterectomy specimens DOINA BUTCOVAN 1,2, VERONICA MOCANU 2, DANA BARAN 2, DIANA CIURESCU 1,3 and GRIGORE TINICA 1,3 1 Department

More information

Ανάπτυξης Ευάλωτων Αθηρωματικών Πλακών

Ανάπτυξης Ευάλωτων Αθηρωματικών Πλακών Σεμινάριο Ομάδων Εργασίας Ελληνική Καρδιολογική Εταιρεία 17-19 Φεβρουαρίου 2011 Shear Stress και Νέοι Μοριακοί Μηχανισμοί Ανάπτυξης Ευάλωτων Αθηρωματικών Πλακών Γιάννης Χατζηζήσης, MD, PhD, FAHA, FESC

More information

The PROSPECT Trial. A Natural History Study of Atherosclerosis Using Multimodality Intracoronary Imaging to Prospectively Identify Vulnerable Plaque

The PROSPECT Trial. A Natural History Study of Atherosclerosis Using Multimodality Intracoronary Imaging to Prospectively Identify Vulnerable Plaque The PROSPECT Trial Providing Regional Observations to Study Predictors of Events in the Coronary Tree A Natural History Study of Atherosclerosis Using Multimodality Intracoronary Imaging to Prospectively

More information

Assessment of Culprit Lesion Morphology in Acute Myocardial Infarction

Assessment of Culprit Lesion Morphology in Acute Myocardial Infarction Journal of the American College of Cardiology Vol. 50, No. 10, 2007 2007 by the American College of Cardiology Foundation ISSN 0735-1097/07/$32.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2007.04.082

More information

Prevalence of Coronary Artery Disease: A Tertiary Care Hospital Based Autopsy Study

Prevalence of Coronary Artery Disease: A Tertiary Care Hospital Based Autopsy Study Article History Received: 03 Feb 2016 Revised: 05 Feb 2016 Accepted: 08 Feb 2016 *Correspondence to: Dr. Alpana Jain Senior demonstrator SMS Medical College, Jaipur, Rajasthan, INDIA. dr.alpana.jain@gmail.com

More information

EAE Teaching Course. Magnetic Resonance Imaging. Competitive or Complementary? Sofia, Bulgaria, 5-7 April F.E. Rademakers

EAE Teaching Course. Magnetic Resonance Imaging. Competitive or Complementary? Sofia, Bulgaria, 5-7 April F.E. Rademakers EAE Teaching Course Magnetic Resonance Imaging Competitive or Complementary? Sofia, Bulgaria, 5-7 April 2012 F.E. Rademakers Complementary? Of Course N Engl J Med 2012;366:54-63 Clinical relevance Treatment

More information

Fielder XT: Initial and. Department of Cardiology, Asan Medical Center, Ulsan University of college of medicine

Fielder XT: Initial and. Department of Cardiology, Asan Medical Center, Ulsan University of college of medicine Fielder XT: Initial and Professional Use for CTO Seung-Whan Lee, MD, PhD D t t f C di l A M di l C t Department of Cardiology, Asan Medical Center, Ulsan University of college of medicine Plastic-Jacket

More information

Observe the effects of atherosclerosis on the coronary artery lumen

Observe the effects of atherosclerosis on the coronary artery lumen Clumps and Bumps: A Look at Atherosclerosis Activity 4B Activity Description This activity features actual photomicrographs of coronary artery disease in young people aged 18 24 years. Students will observe

More information

Quantitative Imaging of Transmural Vasa Vasorum Distribution in Aortas of ApoE -/- /LDL -/- Double Knockout Mice using Nano-CT

Quantitative Imaging of Transmural Vasa Vasorum Distribution in Aortas of ApoE -/- /LDL -/- Double Knockout Mice using Nano-CT Quantitative Imaging of Transmural Vasa Vasorum Distribution in Aortas of ApoE -/- /LDL -/- Double Knockout Mice using Nano-CT M. Kampschulte 1, M.D.; A. Brinkmann 1, M.D.; P. Stieger 4, M.D.; D.G. Sedding

More information

INFLAMM-O-WARS ACTIVITY 4B. Clumps and Bumps: A Look at Atherosclerosis. Student Activity Page 4B. Introduction. Background A LOOK AT ATHEROSCLEROSIS

INFLAMM-O-WARS ACTIVITY 4B. Clumps and Bumps: A Look at Atherosclerosis. Student Activity Page 4B. Introduction. Background A LOOK AT ATHEROSCLEROSIS Clumps and Bumps: A Look at Atherosclerosis Student Activity Page 4B Introduction Chances are that every one in your class knows somebody who has had a heart attack, but how many really understand what

More information

Blood Vessel Mechanics

Blood Vessel Mechanics Blood Vessel Mechanics Ying Zheng, Ph.D. Department of Bioengineering BIOEN 326 11/01/2013 Blood Vessel Structure A Typical Artery and a Typical Vein Pressure and Blood Flow Wall stress ~ pressure Poiseuille

More information

Coronary Artery Calcium Score

Coronary Artery Calcium Score Coronary Artery Calcium Score August 19, 2014 by Axel F. Sigurdsson MD 174 Comments essential for living organisms. Calcium is a chemical element that is Most of the calcium within the human body is found

More information

Plaque Imaging: What It Can Tell Us. Kenneth Snyder, MD, PhD L Nelson Hopkins MD FACS Elad Levy MD MBA FAHA FACS Adnan Siddiqui MD PhD

Plaque Imaging: What It Can Tell Us. Kenneth Snyder, MD, PhD L Nelson Hopkins MD FACS Elad Levy MD MBA FAHA FACS Adnan Siddiqui MD PhD Plaque Imaging: What It Can Tell Us Kenneth Snyder, MD, PhD L Nelson Hopkins MD FACS Elad Levy MD MBA FAHA FACS Adnan Siddiqui MD PhD Buffalo Disclosure Information FINANCIAL DISCLOSURE: Research and consultant

More information

Tissue repair. (3&4 of 4)

Tissue repair. (3&4 of 4) Tissue repair (3&4 of 4) What will we discuss today: Regeneration in tissue repair Scar formation Cutaneous wound healing Pathologic aspects of repair Regeneration in tissue repair Labile tissues rapid

More information

HEART HEALTH WEEK 2 SUPPLEMENT. A Beginner s Guide to Cardiovascular Disease ATHEROSCLEROSIS. Fatty deposits can narrow and harden the artery

HEART HEALTH WEEK 2 SUPPLEMENT. A Beginner s Guide to Cardiovascular Disease ATHEROSCLEROSIS. Fatty deposits can narrow and harden the artery WEEK 2 SUPPLEMENT HEART HEALTH A Beginner s Guide to Cardiovascular Disease ATHEROSCLEROSIS FIGURE 1 Atherosclerosis is an inflammatory process where cholesterol is deposited in the wall of arteries and

More information

Assessment of vulnerable plaque by OCT

Assessment of vulnerable plaque by OCT Assessment of vulnerable plaque by OCT Comparison with histology and possible clinical applications Takashi Akasaka, M.D. Department of Cardiovascular Medicine Wakayama, Japan Identification of vulnerable

More information

Who Cares About the Past?

Who Cares About the Past? Risk Factors, the New Calcium Score, Rheology and Atherosclerosis Progression Arthur Agatston 2/21/15 The Vulnerable Plaque vs. Plaque Burden CT Angiogram Is There a Role for Coronary Artery Calcium Scoring

More information

Vascular Biology Anatomy and Function of Blood Vessels in Health Fig. 1.1 Endothelial Function Three Layers of Arteries

Vascular Biology Anatomy and Function of Blood Vessels in Health Fig. 1.1 Endothelial Function Three Layers of Arteries 1 Vascular Biology Scott Kinlay, MBBS, PhD, FACC, FRACP Vascular Biology applies to processes affecting arteries, veins, and other blood vessels. This chapter will focus on the physiology and pathophysiology

More information

ACS pathophysiology: an Update חיים דננברג המרכז הרפואי הדסה ירושלים

ACS pathophysiology: an Update חיים דננברג המרכז הרפואי הדסה ירושלים ACS pathophysiology: an Update חיים דננברג המרכז הרפואי הדסה ירושלים Thrombus Formation and ACS Plaque Disruption/Fissure/Erosion Thrombus Formation Old Terminology: New Terminology: UA NQMI Non-ST-Segment

More information

La Trombosi Arteriosa

La Trombosi Arteriosa La Trombosi Arteriosa Prof. Giovanni Davì Medicina Interna Chieti Platelet activation and thrombosis Harrison 19 edizione Platelets are essential for primary hemostasis and repair of the endothelium They

More information

Pathogenesis and Early Management of Non ST-segment Elevation Acute Coronary Syndromes

Pathogenesis and Early Management of Non ST-segment Elevation Acute Coronary Syndromes Cardiol Clin 24 (2006) 19 35 Pathogenesis and Early Management of Non ST-segment Elevation Acute Coronary Syndromes Tomas H. Ayala, MD a, *, Steven P. Schulman, MD b,c a Division of Cardiology, University

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 3,900 116,000 120M Open access books available International authors and editors Downloads Our

More information

Assessment of Coronary Plaque Vulnerability with Optical Coherence Tomography

Assessment of Coronary Plaque Vulnerability with Optical Coherence Tomography Review Article Acta Cardiol Sin 2014;30:1 9 Assessment of Coronary Plaque Vulnerability with Optical Coherence Tomography Shiro Uemura, Tsunenari Soeda, Yu Sugawara, Tomoya Ueda, Makoto Watanabe and Yoshihiko

More information

Catch-up Phenomenon: Insights from Pathology

Catch-up Phenomenon: Insights from Pathology Catch-up Phenomenon: Insights from Pathology Michael Joner, MD CVPath Institute Inc. Gaithersburg, MD USA Path Lessons learned from the BMS and DES (1 st Gen) era Neointimal Thickness [mm] In Stent Re

More information

Coronary Atherosclerosis In Jammu Region - A Random Postmortem Study

Coronary Atherosclerosis In Jammu Region - A Random Postmortem Study ORIGINAL ARTICLE Coronary Atherosclerosis In Jammu Region - A Random Postmortem Study Sindhu Sharma, Jagriti Singh, P. Angmo, Chavi, K.K. Kaul Abstract Atherosclerosis is a complex and common disease contributing

More information