Early Life Origins of Obesity: Role of Hypothalamic Programming

Size: px
Start display at page:

Download "Early Life Origins of Obesity: Role of Hypothalamic Programming"

Transcription

1 Journal of Pediatric Gastroenterology and Nutrition 48:S31 S38 # 2009 by European Society for Pediatric Gastroenterology, Hepatology, and Nutrition and North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition Invited Review Early Life Origins of Obesity: Role of Hypothalamic Programming ysebastien G. Bouret The Saban Research Institute, Neuroscience Program, Children s Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA, and { Inserm, Jean-Pierre Aubert Research Center, U837, University Lille 2, Lille, France ABSTRACT The incidence of obesity is increasing at an alarming rate and this worldwide epidemic represents an ominous predictor of increases in diseases such as type 2 diabetes and metabolic syndrome. Epidemiological and animals studies suggest that maternal obesity and alterations in postnatal nutrition are associated with increased risks for obesity, hypertension, and type 2 diabetes in the offspring. Furthermore, there is also growing appreciation that developmental programming of neuroendocrine systems by the perinatal environment represents a possible cause for these diseases. This review article provides a synthesis of recent evidence concerning the actions of perinatal hormones and nutrition in programming the development and organization of hypothalamic circuits that regulate body weight and energy balance. Particular attention is given to the neurodevelopmental actions of insulin and leptin. JPGN 48:S31 S38, Key Words: Development Hormones Hypothalamus Leptin Programming. # 2009 by European Society for Pediatric Gastroenterology, Hepatology, and Nutrition and North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition A principal goal of brain development is to produce the necessary neural architecture for integrating information from the external environment with internal cues that reflect important aspects of an animal s physiological state. This integration allows the elaboration of adaptive behavioral and physiological responses that are essential for survival. However, disorders can arise when an individual is confronted with environmental conditions that differ markedly from those present during perinatal development. For example, epidemiological evidence has indicated that alterations in perinatal nutrition could predispose an individual toward obesity and other associated diseases such as type 2 diabetes, particularly in an environment with high availability of energy dense foods. Paradoxically, both maternal obesity and maternal energy deprivation during pregnancy may increase the incidence of obesity and type 2 diabetes in the offspring (1 4). Mothers who are obese or have type 2 diabetes during pregnancy also have an increased incidence of obese progeny. Similarly, maternal malnutrition during Address correspondence and reprint requests to Dr Sebastien G. Bouret, PhD, The Saban Research Institute, Neuroscience Program, Childrens Hospital Los Angeles, University of Southern California, 4650 Sunset Boulevard, MS#135, Los Angeles, CA 90027, USA ( sbouret@chla.usc.edu). The author reports no conflicts of interest. gestation produces offspring obesity and diabetes (1,2). Data from a variety of animal models have supported a link between the perinatal nutritional environment and the programming of energy balance set points. Interestingly, both energy restriction and overfeeding could cause lasting perturbations in energy balance (1,2,5). In this review, we will attempt to examine these observations within the neurobiological aspects of hypothalamic programming. NEURAL CONTROL OF ENERGY BALANCE Signals Communicating Nutrient Availability in the Environment to the Developing Brain Peripheral hormones represent important signals that regulate adiposity as well as central nervous system (CNS) circuits that control food intake. The bestcharacterized hormonal signals of adiposity are insulin and leptin (Fig. 1) (6). Insulin is secreted by the Islets of Langerhans in the pancreas to promote energy storage, and increased circulating insulin is observed in response to nutrient repletion and in states of obesity. Insulin receptors are expressed in the CNS (7) and injections of small amounts of insulin into the brain of insulin-deficient animals can eliminate hyperphagia (8). Deletion of the insulin receptor from the CNS S31

2 S32 BOURET FIG. 1. Organization of hypothalamic circuits regulating energy balance. These simplified schematic diagrams illustrate the possible routes and the neuronal populations relaying hormonal and nutrient signals from the periphery to the brain. Two distinct populations of neurons in the arcuate nucleus (ARH) one coexpressing neuropeptide Y (NPY) and agouti-related protein (AgRP) and the other containing proopiomelanocortin (POMC)-derived peptides and cocaine- and amphetamine-regulated transcript (CART) represent major routes for the regulation of body weight by peripheral hormones such as leptin. These neurons send direct projections to discrete populations of neurons located in the dorsomedial nuclei of the hypothalamus (DMH) and paraventicular nuclei of the hypothalamus (PVH) and in the lateral hypothalamic area (LHA). Each of these regions plays a major role in the control of ingestive behavior. Projections originating from the DMH and the ventromedial nucleus of the hypothalamus (VMH) and projecting to the PVH also represent important routes for the action of leptin at the hypothalamic level. me, median eminence; V3, third ventricle. The schematics have been modified with permission (6). resulted in obesity and insulin resistance (9), thus further adding support to the importance of insulin action in appetite regulation by the brain. Insulin levels are elevated and known to mediate compensatory responses (such as macrosomia) in the offspring of diabetic mothers (10). Leptin, a hormone secreted by fat cells, is a crucial signal of body energy stores and acts to downregulate feeding behavior and promote energy expenditure through a variety of neural and endocrine mechanisms. These include regulation of the autonomic nervous system and the synthesis of thyroid hormones (11). Thus, mice lacking leptin (Lep ob /Lep ob mice) are obese, diabetic, cold intolerant, and hypoactive (12,13). Similarly, mutations that affect the long form of the leptin receptor (LepRb) or its downstream signaling pathways result in a diabetic phenotype and infertility (14 17). Importantly, this receptor is highly expressed in regions of the CNS involved in energy balance, particularly the hypothalamus (18), and leptin acts directly on the CNS to mediate most of its action (19 21). Thus, leptin and insulin are particularly well suited to communicate nutrient availability in the environment to the hypothalamus during development.

3 EARLY LIFE ORIGINS OF OBESITY S33 Hypothalamic Circuits Controlling Energy Balance The hypothalamus is well known to regulate feeding and energy balance. Neurons in the arcuate nucleus of the hypothalamus (ARH) play an important role in this regulation. The ARH resides above the median eminence and shares connections with circumventricular organs, making it appropriate to receive and integrate signals from peripheral hormones such as leptin and insulin (Fig. 1). The ARH has long been associated with obesity (22), and it contains numerous leptin-sensitive neurons (18,23 26). Moreover, recent genetic studies have specifically demonstrated the importance of leptin receptor signaling in ARH neurons. Restoring ARH neurons leptin receptor signaling in leptin-deficient mice ameliorated body weight gain by reducing food intake and decreasing adipose tissue mass (21,27). These data indicate that the ARH is an important site of action for the central regulatory effects of leptin on energy balance. The ARH contains 2 populations of neurons that play particularly important roles in distributing leptin signals centrally. One subpopulation of ARH neurons coexpresses neuropeptide Y (NPY) and agouti-related peptide (AgRP) and acts as a major orexigenic signal (ie, promotes feeding). A separate subpopulation of ARH neurons expresses proopiomelanocortin (POMC)-derived peptides, such as alpha-melanocyte-stimulating hormone, and represents an important anorectic regulator (ie, inhibits feeding). These anatomically distinct populations of ARH neurons provide overlapping projections to other key parts of the hypothalamus that are implicated in the control of feeding. These hypothalamic parts include the paraventricular nuclei of the hypothalamus (PVH) and dorsomedial nuclei of the hypothalamus (DMH), as well as the lateral hypothalamic area (LHA). In addition to playing an important role in regulating food intake and body weight, a number of studies have suggested that the hypothalamus is a key component of peripheral glucose homeostasis. Infusion of insulin into the medio-basal hypothalamus (a region comprising the ARH and ventromedial nucleus of the hypothalamus, VMH) reduced hepatic gluconeogenesis by increasing hepatic insulin sensitivity (28). Furthermore, downregulation of insulin receptor signaling in the medio-basal hypothalamus induced insulin resistance in rats (28 30). Altogether these data show that hypothalamic insulin signaling is important for the regulation of glucose homeostasis. Recent data have also indicated that most of the effects of leptin on glucose homeostasis are mediated by its effects on the hypothalamus. Restoration of functional leptin receptors exclusively in the ARH of leptin-receptor-deficient animals significantly improved glucose homeostasis and insulin sensitivity (27,31). Thus, the hypothalamus appears to play a major role in the regulation of energy balance and glucose homeostasis and its core circuitry appears to mediate many of the metabolic effects of leptin and insulin (Fig. 1). DEVELOPMENT OF HYPOTHALAMIC FEEDING CIRCUITS Rodent Studies Hypothalamic development is initiated by cell proliferation in the neuroepithelium of the third ventricle. This involves generation of neuronal progenitors that ultimately produce postmitotic neurons (Fig. 2). These postmitotic neurons migrate to their appropriate location in various parts of the hypothalamus. Neuronal birthdating studies in rats revealed that ARH neurons are generated between embryonic day (E) 12 and E17, VMH neurons between E13 and E16, DMH neurons between E12 and E16, PVH neurons between E13 and E15, and LHA neurons between E12 and E14 [see (32)]. Although hypothalamic neuronal proliferation occurs primarily during mid-gestation, the development of neural projections from these neurons to their downstream target sites is initiated primarily postnatally (Fig. 2). Axonal tract tracing experiments performed in mice revealed that ARH projections reached their target nuclei within distinct temporal domains; innervation of the DMH occurred first on postnatal day (P) 6, followed by innervation of the PVH on P8-P10 (33). Projections to the LHA were established later in P12 (33). Immunohistochemical studies in rats showed that development of axonal projections from ARH NPY/AgRP neurons follow similar temporal domains (34). It is also interesting to note that a significant proportion of NPY could be produced by neurons in the DHM and LHA during the first weeks of postnatal life, in addition to what is already produced by ARH neurons (35). However, the precise role and function of these transient populations of NPY neurons remain unclear. Nevertheless, we should note that NPY is permanently induced in the DMH of obese FIG. 2. Critical periods of hypothalamic development in rodents. Schematic drawings summarizing major neurobiological events governing hypothalamic development. The growth of the hypothalamus after organogenesis can be described as occurring in 2 major phases: a phase of neuronal proliferation (neurogenesis) that takes place between embryonic days 12 and 16, followed by a phase of axonal extension that occurs between postnatal days 6 and 12.

4 S34 BOURET animals (specifically in the melanocortin 4 [MC4] receptor knockout and the lethal yellow [A(y)] mice), raising the possibility that this ectopic population of NPY neurons may play an important role in the development of obesity (36). Together, these data reveal the existence of 2 major critical periods (ie, mid-gestation and early postnatal life) during which alterations in the intrauterine environment may affect hypothalamic neurogenesis and/ or axonal outgrowth and, therefore, will have long-term consequences on nutrition and metabolism. Human and Non-human Primate Studies Limited information is available on how the hypothalamus develops in humans. Much of what we know about the development of hypothalamic neural pathways in primates has been inferred from studies in nonhuman primates. Hypothalamic neurogenesis in these animals occurs in the first quarter of gestation (37,38). Limited reports on human fetal chemoarchitecture and cytoarchitecture have suggested that early hypothalamic neurogenesis is limited to the 9th and 10th weeks of gestation (39 43). Although many of the hypothalamic feeding circuits develop during the first 2 weeks of life in rodents, these circuits appear to develop in utero in primates, including humans. In Japanese macaques, NPY/AgRP fibers innervate the PVH as early as gestational day 100 (ie, late second trimester of gestation) and a mature pattern of projections is apparent at gestational day 170 (44). Similarly, in human fetuses, NPY immunoreactive fibers are detected in the ARH and in the PVH as early as at 21 weeks of gestation (45). Thus, development of neural projection in humans occurs significantly later than neurogenesis. Whether the same developmental factors influence both neuronal proliferation and axonal extension is unknown. However, it is notable that these 2 developmental events occur during distinct temporal periods. Developmental Regulation of Leptin s Action on Metabolism In addition to its effects on appetite regulation in adults, leptin also regulates appetite-related neuropeptides in the hypothalamus during early development. Administration of leptin to P10 rats increased suppressor of cytokine signaling 3 (SOCS-3) and POMC mrna levels, but decreased NPY mrna levels in the ARH (46). Moreover, chronic neonatal leptin administration downregulated all subtypes of leptin receptor mrna and increased corticotropin-releasing factor receptor-2 mrna levels in the VMH (46). Furthermore, leptin induced cfos expression in ARH neurons (specifically in POMC neurons) as early as P6 (33). However, these transcriptional changes were not matched by a corresponding reduction in food intake in neonatal mice, because administration of leptin in lean or Lep ob /Lep ob mice did not affect milk/food intake, oxygen consumption, body weight, or adiposity until after weaning (46,47). Therefore, despite its regulatory action on hypothalamic neuropeptide expression, leptin does not appear to regulate food intake during early development. This decreased anorectic action of leptin before weaning may help the animals maximize food intake to support growth and to maintain high thermoregulatory metabolic rates to optimize survival until weaning. PERINATAL FACTORS INFLUENCING DEVELOPMENT OF HYPOTHALAMIC FEEDING PATHWAYS As noted above, a plethora of data from rodent to human studies have suggested that nutritional status during early development affects the later metabolic fate of the organism. Insulin and leptin thus likely represent the hormonal mediators for these environmental nutrient sensing systems that control this program (Fig. 3). Leptin It is now clear that in addition to playing an important role in the regulation of energy balance and neuroendocrine functions in mature animals, leptin also acts early in life as a developmental signal that promotes the formation of metabolic pathways. Elevated leptin levels are found particularly during the first 2 weeks of life in rodents (48 50) at a time when leptin is largely ineffective in altering body weight or food intake. Limited information is available on the origin of the neonatal leptin surge. It is probable that neonatal leptin is produced, at least in part, by fetal adipose tissue, as revealed by the elevated neonatal leptin mrna expression in white and brown adipose tissues that mirrors the circulating hormone concentrations (50). Alternatively, perinatal leptin may also be produced by other organs such as the stomach (51). Moreover, several studies have shown the important contribution of maternal milk to serum leptin levels in newborns (52,53). Interestingly, the neonatal leptin surge (48) appeared to coincide with the development of major hypothalamic feeding circuits (54). Neuroanatomical experiments further revealed that instead of regulating food intake and body weight, neonatal leptin is an important trophic factor for the development of hypothalamic circuits that control energy homeostasis. Injections of anterograde axonal tracers into the ARH of leptin-deficient mice demonstrated that leptin deficiency induced profound disruption in the formation of ARH circuits (55). The density of axons from arcuate nucleus neurons that innervate other hypothalamic sites involved in the control of energy homeostasis (such as the PVH, DMH, and LHA) is severely reduced in Lep ob /Lep ob neonates and remains diminished throughout life (55).

5 EARLY LIFE ORIGINS OF OBESITY S35 FIG. 3. Developmental programming of hypothalamic metabolic pathways. The developmental programming of hypothalamic neuroendocrine systems by the perinatal environment represents a possible mechanism by which maternal obesity, gestational diabetes, and alterations in perinatal nutrition predispose the offspring to develop metabolic syndrome and altered energy balance. The hormones insulin and leptin are well positioned to signal alterations in the nutritional environment to the central nervous system and alter the development and activity of these neural circuits, which may result in abnormal regulation of metabolism later in life. Similar disruptions were observed in other animal models of leptin receptor deficiency, such as in Zucker rats (54). Both orexigenic (NPY/AgRP) and anorexigenic (POMC) projections appeared to be affected by leptin deficiency (55), suggesting a widespread developmental effect of leptin on arcuate neurons involved in the regulation of metabolism. In vitro experiments also revealed that leptin could act directly on ARH neurons to induce axonal outgrowth (55). Furthermore, leptin appeared to exert its effects on axonal formation primarily during a restricted postnatal period, because daily injections of P4 to P12 Lep ob /Lep ob mice with leptin rescued a normal pattern of innervation by arcuate neurons of the PVH. On the contrary, injections of the hormone in mature animals remained largely ineffective in restoring a normal pattern of ARH projections (55). These data indicate that there is a critical period for the neurodevelopmental actions of leptin that seems to be restricted to the first few weeks of life. The existence of a critical period for the developmental effects of leptin suggests that changes in leptin levels during key periods of hypothalamic development may induce long-lasting and potentially irreversible effects on metabolism in adults. Leptin levels are directly regulated by nutritional factors, thus this hormone is well positioned to participate in developmental responses to nutritional changes. In support of this hypothesis, recent data have indicated that an ill-timed neonatal leptin surge may cause lasting effects on metabolism. Using a mouse model of intrauterine energy restriction, Yura et al (56) found that prenatal underfeeding resulted in an earlier leptin surge that was accompanied by deleterious effects on body weight regulation and glucose homeostasis. The premature leptin surge observed in the offspring of undernourished dams was also associated with a reduced anorectic effect of leptin and an altered hypothalamic response to leptin, as evidenced by a decreased leptininduced cfos immunoreactivity in the PVH (56). Similarly, the blunted postnatal leptin surge, as induced by the administration of a specific leptin antagonist from P2 to P13, was associated with long-term leptin insensitivity and increased susceptibility to diet-induced obesity (DIO) in rats (57). Taken together, these studies have suggested that the postnatal leptin surge is an important trophic factor for the development of hypothalamic feeding circuits and is critical for normal energy balance and hypothalamic regulation later in life. Insulin In addition to leptin, insulin also appears to exert important influences on the development of hypothalamic circuits that regulate energy homeostasis. Maternal injections of insulin between gestational day 15 and 20, a critical period for hypothalamic development, induced obesity in the offspring (58). The metabolic abnormalities observed in the offspring of insulin-injected dams

6 S36 BOURET were also accompanied by increased hypothalamic norepinephrine levels (58) and increased density of norepinephrine-containing fibers innervating the PVH (59). Similarly, maternal diabetes induced by streptozotocin injections resulted in hyperinsulinism associated with hypothalamic alterations such as decreased brain NPY mrna and protein expression (60), as well as altered neuronal morphology in the arcuate nucleus in the fetus (10). Furthermore, postnatal injections of insulin have been associated with morphological changes in the VMH (61). Together, these data suggest that changes in insulin levels (specifically hyperinsulinism) during pregnancy could induce alterations in hypothalamic organization that may affect metabolism of the offspring later in life. Polygenic Obesity It is increasingly accepted that obesity results from a combination of genetic and environmental factors. Dietinduced obesity in rats is a useful model to study the pathogenesis of human obesity because DIO rats, like humans, have a polygenic mode of inheritance. Moreover, these rats develop metabolic syndrome when a moderate amount of fat is added to the diet (62,63). One of the particular traits of DIO rats is that they exhibit leptin resistance characterized by elevated serum leptin and a decreased anorectic and thermogenic response to exogenous leptin (63 65). The body of evidence suggests that leptin resistance observed in DIO rats is mediated by central leptin insensitivity. For example, DIO rats have decreased expression of LepRb associated with attenuated leptin receptor signaling in the hypothalamus, particularly in the ARH (63,65,66). Interestingly, this reduction in hypothalamic leptin sensitivity occurred before the animals became obese and was established during early postnatal life (67). The diminished responsiveness of hypothalamic neurons to leptin appeared to impact the development of hypothalamic circuits. Thus, the density of axons emanating from the ARH and innervating the PVH appeared severely reduced in the progeny of DIO mothers compared with the offspring of diet-resistant (DR) dams (67). Moreover, ARH neurons derived from DIO rats were significantly less responsive to the neurotrophic action of leptin than ARH neurons in explants derived from DR rats (67). Thus, polygenic obesity appears to induce the abnormal organization of neural pathways involved in energy homeostasis; this may be the result of the diminished responsiveness of ARH neurons to the trophic actions of leptin during critical periods of postnatal development. Perinatal Nutrition It has been known for decades that changes in perinatal nutrition have long-term effects on metabolism (1,4,68). Previous studies have suggested that neonatal nutrition may also play an important role in the programming of hypothalamic feeding systems (Fig. 3). Using an animal model of divergent litter size, Plagemann et al (2) demonstrated that animals that were raised in small litters (3 pups per litter) showed increased body weight and adiposity during adult life. These metabolic abnormalities were associated with altered responsiveness of ARH and VMH neurons to insulin and leptin. Although leptin is a major stimulatory signal on VMH neurons in normal animals, it mainly inhibits VMH neurons in rats that are raised in small litters (69). Similarly, postnatal overnutrition induced a reduction in the inhibitory effect of leptin on ARH neurons (70). Moreover, ARH neurons of rats exposed to early postnatal overfeeding were less inhibited by insulin when compared with controls (71). Changes in postnatal nutrition also modified the response of VMH neurons to orexigenic peptides (NPY and AgRP) and of PVH neurons to anorexigenic neuropeptides (amsh) and cocaine- and amphetamine-regulated transcript (CART) (72 74). Taken together, these data indicate that alteration in nutrition during critical periods of postnatal development may induce permanent changes in the responsiveness of hypothalamic neurons to hormonal and peptidergic cues. Nutrition during prenatal life also appears to influence the programming of hypothalamic appetite networks. Maternal protein restriction induced hypoinsulinemia in the offspring and was associated with increased NPY levels in the PVH and LHA at weaning (75). Importantly, exposure to high doses of NPY during early postnatal development was linked to permanent changes in food intake in adults (76). Similarly, increased maternal nutrition in late pregnancy resulted in persistent changes in the hypothalamic expression of appetite-regulating genes in sheep (77). Offspring of dams fed with 40% excess nutrient intake in late pregnancy had a permanent increase in hypothalamic POMC mrna expression when compared with that of control animals (77). In addition to altering gene expression, maternal overnutrition also affected central leptin sensitivity, as demonstrated by the attenuated levels of leptin-induced phosphorylation of the signal transducer and activator of transcription 3 (pstat3, a key intracellular signaling pathway of LepRb) in offspring born from dams fed with a high-fat diet (78). CONCLUSIONS Previous studies during the past decade have indicated that normal metabolic regulation during adulthood not only requires a good matching of energy intake with energy expenditure but also is influenced by optimal fetal and postnatal environments. Although the mechanisms underlying this metabolic imprinting require further elucidation, the evidence accumulated to date indicates that perinatal hormones (particularly insulin and leptin)

7 EARLY LIFE ORIGINS OF OBESITY S37 represent key signals that program CNS (hypothalamic) development and function and exert lasting effects on body weight regulation and glucose homeostasis. A better understanding of how these metabolic hormones exert their neurotrophic effects may open new avenues for understanding pre- and perinatally acquired predisposition to obesity and diabetes. Furthermore, a more detailed determination of whether hypothalamic misprogramming can be reversed, and the definition of the precise limits of the critical period for plasticity may provide new preventive and/or therapeutic opportunities. REFERENCES 1. Levin B. Metabolic imprinting: critical impact of the perinatal environment on the regulation of energy homeostasis. Phil Trans R Soc Lond B 2006;361: Plagemann A. Perinatal nutrition and hormone-dependent programming of food intake. Horm Res 2006;65: Martin-Gronert MS, Ozanne SE. Programming of appetite and type 2 diabetes. Early Hum Dev 2005;81: Taylor PD, Poston L. Developmental programming of obesity in mammals. Exp Physiol 2007;92: Bouret SG, Simerly RB. Developmental programming of hypothalamic feeding circuits. Clin Genet 2006;70: Swanson LW. Brain Maps: Structure of the Rat Brain. 2nd revised ed. Amsterdam: Elsevier; Adamo MRM, LeRoith D. Insulin and insulin-like growth factor receptors in the nervous system. Mol Neurobiol 1989;3: Sipols AJ, Baskin DG, Schwartz MW. Effect of intracerebroventricular insulin infusion on diabetic hyperphagia and hypothalamic neuropeptide gene expression. Diabetes 1995;44: Bruning JC, Gautam D, Burks DJ, et al. Role of brain insulin receptor in control of body weight and reproduction. Science 2000;289: Plagemann A, Harder T, Janert U, et al. Malformations of hypothalamic nuclei in hyperinsulinemic offspring of rats with gestational diabetes. Dev Neurosci 1999;21: Ahima RS, Flier JS. Leptin. Annu Rev Physiol 2000;62: Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372: Tartaglia LA, Dembski M, Weng X, et al. Identification and expression cloning of a leptin receptor, OB-R. Cell 1995; 83: Chen H, Charlat O, Tartaglia LA, et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 1996;84: Lee G-H, Proenca R, Montez JM, et al. Abnormal splicing of the leptin receptor in diabetic mice. Nature 1996;379: Chua SC Jr, Chung WK, Wu-Peng XS, et al. Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 1996;271: Bates SH, Stearns WH, Dundon TA, et al. STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature 2003;421: Elmquist J, Bjorbaek C, Ahima R, et al. Distributions of leptin receptor mrna isoforms in the rat brain. J Comp Neurol 1998; 395: Cohen P, Zhao C, Cai X, et al. Selective deletion of leptin receptor in neurons leads to obesity. J Clin Invest 2001; 108: McMinn JE, Liu S-M, Liu H, et al. Neuronal deletion of Lepr elicits diabesity in mice without affecting cold tolerance or fertility. Am J Physiol Endocrinol Metab 2005;289:E Balthasar N, Coppari R, McMinn J, et al. Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron 2004;42: Elmquist JK, Elias CF, Saper CB. From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 1999; 22: Elias C, Saper C, Maratos-Flier E, et al. Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. J Comp Neurol 1998;402: Elmquist JK, Ahima RS, Maratos-Flier E, et al. Leptin activates neurons in ventrobasal hypothalamus and brainstem. Endocrinology 1997;138: Hubschle T, Thom E, Watson A, et al. Leptin-induced nuclear translocation of STAT3 immunoreactivity in hypothalamic nuclei involved in body weight regulation. J Neurosci 2001; 21: Cowley M, Smart J, Rubinstein M, et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 2001;411: Coppari R, Ichinose M, Lee CE, et al. The hypothalamic arcuate nucleus: a key site for mediating leptin s effects on glucose homeostasis and locomotor activity. Cell Metab 2005;1: Obici S, Zhang BB, Karkanias G, et al. Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med 2002;8: Obici S, Feng Z, Karkanias G, et al. Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nat Neurosci 2002;5: Gelling RW, Morton GJ, Morrison CD, et al. Insulin action in the brain contributes to glucose lowering during insulin treatment of diabetes. Cell Metab 2006;3: Morton GJ, Gelling RW, Niswender KD, et al. Leptin regulates insulin sensitivity via phosphatidylinositol-3-oh kinase signaling in mediobasal hypothalamic neurons. Cell Metab 2005;2: Markakis EA. Development of the neuroendocrine hypothalamus. Front Neuroendocrinol 2002;23: Bouret SG, Draper SJ, Simerly RB. Formation of projection pathways from the arcuate nucleus of the hypothalamus to hypothalamic regions implicated in the neural control of feeding behavior in mice. J Neurosci 2004;24: Grove KL, Allen S, Grayson BE, et al. Postnatal development of the hypothalamic neuropeptide Y system. Neuroscience 2003; 116: Singer LK, Kuper J, Brogan RS, et al. Novel expression of hypothalamic neuropeptide Y during postnatal development in the rat. Neuroreport 2000;11: Kesterson RA, Huszar D, Lynch CA, et al. Induction of neuropeptide Y gene expression in the dorsal medial hypothalamic nucleus in two models of the agouti obesity syndrome. Mol Endocrinol 1997;11: Keyser A. Development of the Hypothalamus in Mammals. New York: Marcel Dekker Inc; van Eerdenburg FJ, Rakic P. Early neurogenesis in the anterior hypothalamus of the rhesus monkey. Brain Res Dev Brain Res 1994;79: Bugnon C, Fellmann D, Bresson JL, et al. Immunocytochemical study of the ontogenesis of the CRH-containing neuroglandular system in the human hypothalamus. C R Acad Sci 1982;294: Burford GD, Robinson IC. Oxytocin, vasopressin and neurophysins in the hypothalamo-neurohypophysial system of the human fetus. J Endocrinol 1982;95: Ackland J, Ratter S, Bourne GL, et al. Characterization of immunoreactive somatostatin in human fetal hypothalamic tissue. Regul Pept 1983;5: Mai JK, Lensing-Hohn S, Ende AA, et al. Developmental organization of neurophysin neurons in the human brain. J Comp Neurol 1997;385:

8 S38 BOURET 43. Koutcherov Y, Mai JK, Ashwell KW, et al. Organization of human hypothalamus in fetal development. J Comp Neurol 2002;446: Grayson BE, Allen SE, Billes SK, et al. Prenatal development of hypothalamic neuropeptide systems in the nonhuman primate. Neuroscience 2006;143: Koutcherov Y. Organization of human hypothalamus in fetal development. J Comp Neurol 2002;446: Proulx K, Richard D, Walker CD. Leptin regulates appetite-related neuropeptides in the hypothalamus of developing rats without affecting food intake. Endocrinology 2002;143: Mistry A, Swick A, Romsos D. Leptin alters metabolic rates before acquisition of its anorectic effect in developing neonatal mice. Am J Physiol 1999;277:R Ahima R, Prabakaran D, Flier J. Postnatal leptin surge and regulation of circadian rhythm of leptin by feeding. Implications for energy homeostasis and neuroendocrine function. J Clin Invest 1998;101: Smith JT, Waddell BJ. Developmental changes in plasma leptin and hypothalamic leptin receptor expression in the rat: peripubertal changes and the emergence of sex differences. J Endocrinol 2003;176: Devaskar S, Ollesch C, Rajakumar R, et al. Developmental changes in ob gene expression and circulating leptin peptide concentration. Biochem Biophys Res Commun 1997;238: Oliver P, Picó C, De Matteis R, et al. Perinatal expression of leptin in rat stomach. Dev Dyn 2002;223: Casabiell X, Pineiro V, Tome MA, et al. Presence of leptin in colostrum and/or breast milk from lactating mothers: a potential role in the regulation of neonatal food intake. J Clin Endocrinol Metab 1997;82: McFadin EL, Morrison CD, Buff PR, et al. Leptin concentrations in periparturient ewes and their subsequent offspring. J Anim Sci 2002;80: Bouret S, Simerly RB. Development of leptin-sensitive circuits. J Neuroendocrinol 2007;19: Bouret SG, Draper SJ, Simerly RB. Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 2004; 304: Yura S, Itoh H, Sagawa N, et al. Role of premature leptin surge in obesity resulting from intrauterine undernutrition. Cell Metab 2005;1: Attig L, Solomon G, Ferezou J, et al. Early postnatal leptin blockage leads to a long-term leptin resistance and susceptibility to diet-induced obesity in rats. Int J Obes 2008;32: Jones AP, Pothos EN, Rada P, et al. Maternal hormonal manipulations in rats cause obesity and increase medial hypothalamic norepinephrine release in male offspring. Dev Brain Res 1995; 88: Jones A, Olster D, States B. Maternal insulin manipulations in rats organize body weight and noradrenergic innervation of the hypothalamus in gonadally intact male offspring. Dev Brain Res 1996;97: Singh BS, Westfall TC, Devaskar SU. Maternal diabetes-induced hyperglycemia and acute intracerebral hyperinsulinism suppress fetal brain neuropeptide Y concentrations. Endocrinology 1997; 138: Plagemann A, Harder T, Rake A, et al. Morphological alterations of hypothalamic nuclei due to intrahypothalamic hyperinsulinism in newborn rats. Int J Dev Neurosci 1999;17: Levin BE, Dunn-Meynell AA, Balkan B, et al. Selective breeding for diet-induced obesity and resistance in Sprague- Dawley rats. Am J Physiol Regul Integr Comp Physiol 1997; 273:R Levin BE, Dunn-Meynell AA, Banks WA. Obesity-prone rats have normal blood-brain barrier transport but defective central leptin signaling before obesity onset. Am J Physiol Regul Integr Comp Physiol 2004;286:R Gorski JN, Dunn-Meynell AA, Levin BE. Maternal obesity increases hypothalamic leptin receptor expression and sensitivity in juvenile obesity-prone rats. Am J Physiol Regul Integr Comp Physiol 2007;292:R Levin BE, Dunn-Meynell AA. Reduced central leptin sensitivity in rats with diet-induced obesity. Am J Physiol Regul Integr Comp Physiol 2002;283:R Irani BG, Dunn-Meynell AA, Levin BE. Altered hypothalamic leptin, insulin, and melanocortin binding associated with moderatefat diet and predisposition to obesity. Endocrinology 2007; 148: Bouret SG, Gorski JN, Patterson CM, et al. Hypothalamic neural projections are permanently disrupted in diet-induced obese rats. Cell Metab 2008;7: McMillen IC, Robinson JS. Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev 2005;85: Davidowa H, Plagemann A. Different responses of ventromedial hypothalamic neurons to leptin in normal and early postnatally overfed rats. Neurosci Lett 2000;293: Davidowa H, Plagemann A. Decreased inhibition by leptin of hypothalamic arcuate neurons in neonatally overfed young rats. Neuroreport 2000;11: Davidowa H, Plagemann A. Insulin resistance of hypothalamic arcuate neurons in neonatally overfed rats. Neuroreport 2007; 18: Davidowa H, Li Y, Plagemann A. Altered responses to orexigenic (AGRP, MCH) and anorexigenic (alpha-msh, CART) neuropeptides of paraventricular hypothalamic neurons in early postnatally overfed rats. Eur J Neurosci 2003;18: Li Y, Plagemann A, Davidowa H. Increased inhibition by agoutirelated peptide of ventromedial hypothalamic neurons in rats overweight due to early postnatal overfeeding. Neurosci Lett 2002; 330: Heidel E, Plagemann A, Davidowa H. Increased response to NPYof hypothalamic VMN neurons in postnatally overfed juvenile rats. Neuroreport 1999;10: Plagemann A, Waas T, Harder T, et al. Hypothalamic neuropeptide Y levels in weaning offspring of low-protein malnourished mother rats. Neuropeptides 2000;34: Varma A, He J, Weissfeld L, et al. Postnatal intracerebroventricular exposure to neuropeptide Y causes weight loss in female adult rats. Am J Physiol Regul Integr Comp Physiol 2003; 284:R Muhlhausler BS, Adam CL, Findlay PA, et al. Increased maternal nutrition alters development of the appetite-regulating network in the brain. FASEB J 2006;20: Ferezou-Viala J, Roy A-F, Serougne C, et al. Long-term consequences of maternal high-fat feeding on hypothalamic leptin sensitivity and diet-induced obesity in the offspring. Am J Physiol Regul Integr Comp Physiol 2007;293:R

Leptin, Nutrition, and the Programming of Hypothalamic Feeding Circuits

Leptin, Nutrition, and the Programming of Hypothalamic Feeding Circuits Lucas A, Makrides M, Ziegler EE (eds): Importance of Growth for Health and Development. Nestlé Nutr Inst Workshop Ser Pediatr Program, vol 65, pp 25 39, Nestec Ltd., Vevey/S. Karger AG, Basel, 2010. Leptin,

More information

Hypothalamic Neural Projections Are Permanently Disrupted in Diet-Induced Obese Rats

Hypothalamic Neural Projections Are Permanently Disrupted in Diet-Induced Obese Rats Short Article Hypothalamic Neural Projections Are Permanently Disrupted in Diet-Induced Obese Rats Sebastien G. Bouret, 1,2, * Judith N. Gorski, 3,4,5 Christa M. Patterson, 3,4 Stephen Chen, 1 Barry E.

More information

Early Life Effects on Hypothalamic Circuitry. By: The Mystery Gang

Early Life Effects on Hypothalamic Circuitry. By: The Mystery Gang Early Life Effects on Hypothalamic Circuitry By: The Mystery Gang Hypothalamic Circuits Controlling Energy Balance ARH (Arcuate nucleus of the Hypothalamus) Subgroup of Neurons 1: coexpress Neuropeptide

More information

CNS Control of Food Intake. Adena Zadourian & Andrea Shelton

CNS Control of Food Intake. Adena Zadourian & Andrea Shelton CNS Control of Food Intake Adena Zadourian & Andrea Shelton Controlling Food Intake Energy Homeostasis (Change in body adiposity + compensatory changes in food intake) Background Information/Review Insulin

More information

Metabolic Programming. Mary ET Boyle, Ph. D. Department of Cognitive Science UCSD

Metabolic Programming. Mary ET Boyle, Ph. D. Department of Cognitive Science UCSD Metabolic Programming Mary ET Boyle, Ph. D. Department of Cognitive Science UCSD nutritional stress/stimuli organogenesis of target tissues early period critical window consequence of stress/stimuli are

More information

Neurophysiology of the Regulation of Food Intake and the Common Reward Pathways of Obesity and Addiction. Laura Gunter

Neurophysiology of the Regulation of Food Intake and the Common Reward Pathways of Obesity and Addiction. Laura Gunter Neurophysiology of the Regulation of Food Intake and the Common Reward Pathways of Obesity and Addiction Laura Gunter The Brain as the Regulatory Center for Appetite The brain is the integration center

More information

Insulin-Leptin Interactions

Insulin-Leptin Interactions Insulin-Leptin Interactions Ahmed S., Al-Azzam N., Cao B. Karshaleva B., Sriram S., Vu K. If you understand a system, you can predict it. Agenda - Energy homeostasis Overview of leptin and insulin Signaling

More information

Postnatal Development of Hypothalamic Leptin Receptors

Postnatal Development of Hypothalamic Leptin Receptors CHAPTER ELEVEN Postnatal Development of Hypothalamic Leptin Receptors Elizabeth C. Cottrell,*,1 Julian G. Mercer, and Susan E. Ozanne* Contents I. Introduction 202 II. The Leptin System 203 A. Sources

More information

BIOL212 Biochemistry of Disease. Metabolic Disorders - Obesity

BIOL212 Biochemistry of Disease. Metabolic Disorders - Obesity BIOL212 Biochemistry of Disease Metabolic Disorders - Obesity Obesity Approx. 23% of adults are obese in the U.K. The number of obese children has tripled in 20 years. 10% of six year olds are obese, rising

More information

Copyright 2017 The Guilford Press

Copyright 2017 The Guilford Press This is a chapter excerpt from Guilford Publications. Eating Disorders and Obesity: A Comprehensive Handbook, Third Edition. Edited by Kelly D. Brownell and B. Timothy Walsh. Copyright 2017. Purchase this

More information

Yiying Zhang, PhD Research Scientist. Research Summary:

Yiying Zhang, PhD Research Scientist. Research Summary: Yiying Zhang, PhD Research Scientist Research Summary: Address: Naomi Berrie Diabetes Center at Columbia University Medical Center Russ Berrie Medical Science Pavilion 1150 St. Nicholas Avenue New York,

More information

Nutritional Programming of Hypothalamic Development: Critical Periods and Windows of Opportunity. Team FENAPS (Finesse)

Nutritional Programming of Hypothalamic Development: Critical Periods and Windows of Opportunity. Team FENAPS (Finesse) Nutritional Programming of Hypothalamic Development: Critical Periods and Windows of Opportunity Team FENAPS (Finesse) Overview Introduction Influence of Hypothalamus on Energy Control Critical Periods

More information

Internal Regulation II Energy

Internal Regulation II Energy Internal Regulation II Energy Reading: BCP Chapter 16 lookfordiagnosis.com Homeostasis Biologically, what is necessary for life is a coordinated set of chemical reactions. These reactions take place in

More information

Bi156 lecture 2, 1/6/12. Eating and weight regulation

Bi156 lecture 2, 1/6/12. Eating and weight regulation Bi156 lecture 2, 1/6/12 Eating and weight regulation Introduction: weight regulation in an affluent society In our society much effort and money is expended on regulation of weight. Failure to maintain

More information

Leptin Intro/Signaling. ATeamP: Angelo, Anthony, Charlie, Gabby, Joseph

Leptin Intro/Signaling. ATeamP: Angelo, Anthony, Charlie, Gabby, Joseph Leptin Intro/Signaling ATeamP: Angelo, Anthony, Charlie, Gabby, Joseph Overview Intro to Leptin Definition & Sources Physiology Bound vs. Free Receptors Signaling JAK/STAT MAPK PI3K ACC Experimental findings

More information

The hypothalamus has been the traditional focus of. Embryonic Birthdate of Hypothalamic Leptin- Activated Neurons in Mice

The hypothalamus has been the traditional focus of. Embryonic Birthdate of Hypothalamic Leptin- Activated Neurons in Mice ENERGY BALANCE-OBESITY Embryonic Birthdate of Hypothalamic Leptin- Activated Neurons in Mice Yuko Ishii and Sebastien G. Bouret The Saban Research Institute (Y.I., S.G.B.), Neuroscience Program, Children

More information

Figure 1: The leptin/melanocortin pathway Neuronal populations propagate the signaling of various molecules (leptin, insulin, ghrelin) to control

Figure 1: The leptin/melanocortin pathway Neuronal populations propagate the signaling of various molecules (leptin, insulin, ghrelin) to control Leptin Deficiency Introduction The leptin/melanocortin pathway plays a key role in the hypothalamic control of food intake. It is activated following the systemic release of the adipokine leptin (LEP)

More information

Developmental programming in maternal diabetes and obesity

Developmental programming in maternal diabetes and obesity Developmental programming in maternal diabetes and obesity Frans André Van Assche Department of Obstetrics and Gynecology, University Hospital, K. U. Leuven, Herestraat 49, 3000 Leuven, Belgium Corresponding

More information

The role of leptin receptor signaling in feeding and neuroendocrine function

The role of leptin receptor signaling in feeding and neuroendocrine function Review TRENDS in Endocrinology and Metabolism Vol.14 No.10 December 2003 447 The role of leptin receptor signaling in feeding and neuroendocrine function Sarah H. Bates and Martin G. Myers Jr Research

More information

DURING THE PAST 30 yr, we have witnessed a 7-fold

DURING THE PAST 30 yr, we have witnessed a 7-fold 0013-7227/04/$15.00/0 Endocrinology 145(6):2621 2626 Printed in U.S.A. Copyright 2004 by The Endocrine Society doi: 10.1210/en.2004-0231 Minireview: Leptin and Development of Hypothalamic Feeding Circuits

More information

Mary ET Boyle, Ph. D. Department of Cognitive Science UCSD

Mary ET Boyle, Ph. D. Department of Cognitive Science UCSD Mary ET Boyle, Ph. D. Department of Cognitive Science UCSD Is obesity a brain disorder? What is the evidence to support obesity is a brain disorder? Environmental, biological, and behavioral issues Over

More information

Chronic Stimulation of Leptin on Food Intake and Body Weight after Microinjection into the Ventromedial Hypothalamus of Conscious Rats

Chronic Stimulation of Leptin on Food Intake and Body Weight after Microinjection into the Ventromedial Hypothalamus of Conscious Rats TAJ December 2006; Volume 19 Number 2 ISSN 1019-8555 The Journal of Teachers Association RMC, Rajshahi Original Article Chronic Stimulation of Leptin on Food Intake and Body Weight after Micro into the

More information

Molecular and anatomical determinants of central leptin resistance

Molecular and anatomical determinants of central leptin resistance FEEDING REGULATION AND OBESITY 2005 Nature ublishing Group http://www.nature.com/natureneuroscience Molecular and anatomical determinants of central leptin resistance Heike Münzberg & Martin G Myers, Jr

More information

Amylinergic control of food intake in lean and obese rodents

Amylinergic control of food intake in lean and obese rodents Zurich Open Repository and Archive University of Zurich Main Library Winterthurerstr. 190 CH-8057 Zurich www.zora.uzh.ch Year: 2011 Amylinergic control of food intake in lean and obese rodents Boyle, C

More information

University of Groningen. Dietary lipid quality, environment and the developing brain Schipper, Anniek Lidewij

University of Groningen. Dietary lipid quality, environment and the developing brain Schipper, Anniek Lidewij University of Groningen Dietary lipid quality, environment and the developing brain Schipper, Anniek Lidewij IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you

More information

Hypothalamus. Small, central, & essential.

Hypothalamus. Small, central, & essential. Hypothalamus Small, central, & essential. Summary: You can t live without a hypothalamus. Located at the junction between the brain stem and the forebrain Medial hypothalamus: interface between the brain

More information

An important function of the central nervous

An important function of the central nervous Perspectives in Diabetes Insulin Signaling in the Central Nervous System A Critical Role in Metabolic Homeostasis and Disease From C. elegans to Humans Daniel Porte, Jr., 1,2,3 Denis G. Baskin, 3 and Michael

More information

Tanycytes as gatekeepers of the Metabolic Brain

Tanycytes as gatekeepers of the Metabolic Brain Tanycytes as gatekeepers of the Metabolic Brain Vincent Prevot Inserm team Development and Plasticity of the Postnatal Brain Jean-Pierre Aubert Research Centre, U837, Lille France Metabolic signals and

More information

Peripubertal, leptin-deficient ob/ob female mice were used in an investigation of

Peripubertal, leptin-deficient ob/ob female mice were used in an investigation of ESSICK-BROOKSHIRE, ELIZABETH ANN, M.S. The Effects of Peripherally Administered 17-β Estradiol and BIBP3226, a NPY Y1 Receptor Antagonist, on Food Intake, Body Mass, Reproductive Development and Behavior

More information

Ingestive Behaviors 21. Introduction. Page 1. control and story lines. (a review of general endocrinology) Integration (or the basic reflex arc model)

Ingestive Behaviors 21. Introduction. Page 1. control and story lines. (a review of general endocrinology) Integration (or the basic reflex arc model) Ingestive Behaviors 21 (a review of general endocrinology) A neuroendocrine system: components, a reflex arc, the endocrine system, the AN, endocrine / nervous systems as afferents and efferents, the theoretical

More information

Is ghrelin a signal for the development of metabolic systems?

Is ghrelin a signal for the development of metabolic systems? Commentaries Is ghrelin a signal for the development of metabolic systems? Kevin L. Grove and Michael A. Cowley Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science

More information

THE ROLE OF INSULIN RECEPTOR SIGNALING IN THE BRAIN. COGS 163 By: Pranav Singh Alexandra Villar

THE ROLE OF INSULIN RECEPTOR SIGNALING IN THE BRAIN. COGS 163 By: Pranav Singh Alexandra Villar THE ROLE OF INSULIN RECEPTOR SIGNALING IN THE BRAIN COGS 163 By: Pranav Singh Alexandra Villar INTRODUCTION Insulin is a hormone produced in the pancreas by the islets of Langerhans that regulates the

More information

! acts via the autonomic nervous system. ! maintaining body weight within tight limits. ! ventromedial (VMN) ! arcuate (ARC) ! neuropeptide Y (NPY)

! acts via the autonomic nervous system. ! maintaining body weight within tight limits. ! ventromedial (VMN) ! arcuate (ARC) ! neuropeptide Y (NPY) Brain Regulates energy homeostatis Glucose Sensing in the Brain Seminar 2012 Gareth Price! acts in response to circulating signals of nutrient states! acts via the autonomic nervous system Ensures a balance

More information

Ingestive Behaviors 33. Introduction. Page 1. control and story lines. (a review of general endocrinology) Integration (or the basic reflex arc model)

Ingestive Behaviors 33. Introduction. Page 1. control and story lines. (a review of general endocrinology) Integration (or the basic reflex arc model) Ingestive Behaviors 33 (a review of general endocrinology) A neuroendocrine system: components, a reflex arc, the endocrine system, the AN, endocrine / nervous systems as afferents and efferents, the theoretical

More information

Neonatal ghrelin programs development of hypothalamic feeding circuits

Neonatal ghrelin programs development of hypothalamic feeding circuits RESEAR CH AR TICLE Neonatal ghrelin programs development of hypothalamic feeding circuits Sophie M. Steculorum, 1,2 Gustav Collden, 2 Berengere Coupe, 1 Sophie Croizier, 1,2 Sarah Lockie, 3 Zane B. Andrews,

More information

1 Neuroregulation of Appetite

1 Neuroregulation of Appetite Chapter 1 / Neuroregulation of Appetite 3 1 Neuroregulation of Appetite Ofer Reizes, PhD, Stephen C. Benoit, PhD, and Deborah J. Clegg, PhD CONTENTS INTRODUCTION THE DUAL-CENTERS HYPOTHESIS CONTROL OF

More information

Chapter 12. Ingestive Behavior

Chapter 12. Ingestive Behavior Chapter 12 Ingestive Behavior Drinking a. fluid compartments b. osmometric thirst c. volumetric thirst Eating a. energy sources b. starting a meal c. stopping a meal d. eating disordersd Drinking a. fluid

More information

Chapter 24 Cholesterol, Energy Balance and Body Temperature. 10/28/13 MDufilho

Chapter 24 Cholesterol, Energy Balance and Body Temperature. 10/28/13 MDufilho Chapter 24 Cholesterol, Energy Balance and Body Temperature 10/28/13 MDufilho 1 Metabolic Role of the Liver Hepatocytes ~500 metabolic functions Process nearly every class of nutrient Play major role in

More information

Leptin-Insulin Signaling in the Brain. BY TEAM CEPHALIC Aman Hamdard, Kevin Artiga, Megan Imreh, Ronald Baldonado, and Sharri Mo

Leptin-Insulin Signaling in the Brain. BY TEAM CEPHALIC Aman Hamdard, Kevin Artiga, Megan Imreh, Ronald Baldonado, and Sharri Mo Leptin-Insulin Signaling in the Brain BY TEAM CEPHALIC Aman Hamdard, Kevin Artiga, Megan Imreh, Ronald Baldonado, and Sharri Mo Agenda Leptin in the Hypothalamus: Pathways and Roles Cross-talk between

More information

The role of leptin in leptin resistance and obesity

The role of leptin in leptin resistance and obesity Physiology & Behavior 88 (2006) 249 256 The role of leptin in leptin resistance and obesity Yi Zhang a,b, Philip J. Scarpace b, a Research Service, Department of Veterans Affairs Medical Center, Gainesville,

More information

Investigation of the role of nesfatin-1/nucb2 in the central nervous system. Ph.D. thesis Katalin Könczöl

Investigation of the role of nesfatin-1/nucb2 in the central nervous system. Ph.D. thesis Katalin Könczöl Investigation of the role of nesfatin-1/nucb2 in the central nervous system Ph.D. thesis Katalin Könczöl Semmelweis University János Szentágothai Doctoral School of Neurosciences Supervisor: Official reviewers:

More information

PERSPECTIVE. The hardship of obesity: a soft-wired hypothalamus. Tamas L Horvath FEEDING REGULATION AND OBESITY

PERSPECTIVE. The hardship of obesity: a soft-wired hypothalamus. Tamas L Horvath FEEDING REGULATION AND OBESITY FEEDING REGULATION AND OBESITY PERSPECTIVE The hardship of obesity: a soft-wired hypothalamus Tamas L Horvath Food intake and energy expenditure are determinants of metabolic phenotype and are regulated

More information

Hormonal Regulation of Food Intake

Hormonal Regulation of Food Intake Physiol Rev 85: 1131 1158, 2005; doi:10.1152/physrev.00015.2004. Hormonal Regulation of Food Intake SARAH STANLEY, KATIE WYNNE, BARBARA McGOWAN, AND STEPHEN BLOOM Endocrine Unit, Imperial College Faculty

More information

Leptin and the Central Nervous System Control of Glucose Metabolism

Leptin and the Central Nervous System Control of Glucose Metabolism Physiol Rev 91: 389 411, 2011; doi:10.1152/physrev.00007.2010. Leptin and the Central Nervous System Control of Glucose Metabolism GREGORY J. MORTON AND MICHAEL W. SCHWARTZ Diabetes and Obesity Center

More information

Central nervous system control of food intake

Central nervous system control of food intake insight review article Central nervous system control of food intake Michael W. Schwartz*, Stephen C. Woods, Daniel Porte Jr*, Randy J. Seeley & Denis G. Baskin* Departments of Medicine* and Biological

More information

Effects of Stress and Food During Prenatal Development. Presented by The Peptide Pods

Effects of Stress and Food During Prenatal Development. Presented by The Peptide Pods Effects of Stress and Food During Prenatal Development Presented by The Peptide Pods Nutritional programing of hypothalamic development: critical periods and windows of opportunity By: SG Bouret Presented

More information

The Epigenetics of Obesity: Individual, Social, and Environmental Influences. K. J. Claycombe, Ph.D.

The Epigenetics of Obesity: Individual, Social, and Environmental Influences. K. J. Claycombe, Ph.D. The Epigenetics of Obesity: Individual, Social, and Environmental Influences K. J. Claycombe, Ph.D. What can happen to our gene(s) that would cause obesity? Modification via Epigenetic alterations C

More information

Hormones. Prof. Dr. Volker Haucke Institut für Chemie-Biochemie Takustrasse 6

Hormones. Prof. Dr. Volker Haucke Institut für Chemie-Biochemie Takustrasse 6 Hormones Prof. Dr. Volker Haucke Institut für Chemie-Biochemie Takustrasse 6 Tel. 030-8385-6920 (Sekret.) 030-8385-6922 (direkt) e-mail: vhaucke@chemie.fu-berlin.de http://userpage.chemie.fu-berlin.de/biochemie/aghaucke/teaching.html

More information

Method of leptin dosing, strain, and group housing influence leptin sensitivity in high-fat-fed weanling mice

Method of leptin dosing, strain, and group housing influence leptin sensitivity in high-fat-fed weanling mice Am J Physiol Regul Integr Comp Physiol 284: R87 R100, 2003; 10.1152/ajpregu.00431.2002. Method of leptin dosing, strain, and group housing influence leptin sensitivity in high-fat-fed weanling mice HEATHER

More information

Obesity in aging: Hormonal contribution

Obesity in aging: Hormonal contribution Obesity in aging: Hormonal contribution Hormonal issues in obesity and aging Hormonal role in regulation of energy balance Genetic component in hormonal regulation Life style contribution to hormonal changes

More information

Homeostasis and Mechanisms of Weight Regulation

Homeostasis and Mechanisms of Weight Regulation Homeostasis and Mechanisms of Weight Regulation Purpose In this activity students will investigate how negative feedback mechanisms function to maintain homeostatic balance using a recently discovered

More information

THE ROLE OF DIETARY FAT IN HYPOTHALAMIC INSULIN AND LEPTIN RESISTANCE AND THE PATHOGENESIS OF OBESITY. Kelly Ann Posey.

THE ROLE OF DIETARY FAT IN HYPOTHALAMIC INSULIN AND LEPTIN RESISTANCE AND THE PATHOGENESIS OF OBESITY. Kelly Ann Posey. THE ROLE OF DIETARY FAT IN HYPOTHALAMIC INSULIN AND LEPTIN RESISTANCE AND THE PATHOGENESIS OF OBESITY By Kelly Ann Posey Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University

More information

Leptin part 2. Mary ET Boyle

Leptin part 2. Mary ET Boyle Leptin part 2 Mary ET Boyle Leptin Feedback: leptin levels drop during starvation, when fat depots are depleted to support the organism s basic energy needs, leptin levels rise during refeeding where fat

More information

Why Obesity Is A Chronic Disease

Why Obesity Is A Chronic Disease Why Obesity Is A Chronic Disease Arya M Sharma, MD, FRCP(C) Professor of Medicine Chair in Obesity Research & Management University of Alberta Edmonton, AB, Canada www.drsharma.ca Global Obesity Map 2014

More information

Motivation 1 of 6. during the prandial state when the blood is filled

Motivation 1 of 6. during the prandial state when the blood is filled Motivation 1 of 6 I. INTRODUCTION A. Motivation: a condition (usually internal) that initiates, activates, or maintains goal-directed behavior. B. Archery analogy 1. undrawn bow has no potential energy

More information

Comp Question 2012 NRSA proposal

Comp Question 2012 NRSA proposal Comp Question 2012 NRSA proposal For female mammals, reproduction is an energetically expensive function and many aspects of energy balance regulation are altered to meet the energy demands of pregnancy

More information

Low ambient temperature lowers cholecystokinin and leptin plasma concentrations in adult men

Low ambient temperature lowers cholecystokinin and leptin plasma concentrations in adult men ISPUB.COM The Internet Journal of Gastroenterology Volume 7 Number 2 Low ambient temperature lowers cholecystokinin and leptin plasma concentrations in adult men M Pizon, P Tomasic, K Sztefko, Z Szafran

More information

Ophthalmology, Radiation Oncology,

Ophthalmology, Radiation Oncology, Supporting Online Material Journal: Nature Neuroscience Article Title: Corresponding Author: All Authors: Affiliations: Tanycytes of the Hypothalamic Median Eminence Form a Diet- Responsive Neurogenic

More information

LESSON 3.3 WORKBOOK. How do we decide when and how much to eat?

LESSON 3.3 WORKBOOK. How do we decide when and how much to eat? Appetite The psychological desire to eat, driven by feelings of pleasure from the brain. Hunger The biological or physiological need to eat, caused by a release of hormones from the digestive tract. LESSON

More information

Comp Question 2012 NRSA proposal

Comp Question 2012 NRSA proposal Comp Question 2012 NRSA proposal For female mammals, reproduction is an energetically expensive function and many aspects of energy balance regulation are altered to meet the energy demands of pregnancy

More information

SAB Report to the Board of the Glass Packaging Institute

SAB Report to the Board of the Glass Packaging Institute SAB Report to the Board of the Glass Packaging Institute A Brief Overview of Significant Studies on BPA During 2013 November, 2013 Glass is ENDLESSLY Recyclable Introduction Number and diversity of studies

More information

Energy flow in the organism

Energy flow in the organism I. Parameters of energy metabolism, basal metabolic rate, measurements. II. Control of food intake, hunger and satiety Péter Sántha, 12.02. 2017. Energy flow in the organism NUTRIENTS PHYSICAL WORK HEAT

More information

Molecular and Physiological Adaptations to Weight Perturbation in Mice. Yann Ravussin. Submitted in partial fulfillment of the

Molecular and Physiological Adaptations to Weight Perturbation in Mice. Yann Ravussin. Submitted in partial fulfillment of the Molecular and Physiological Adaptations to Weight Perturbation in Mice Yann Ravussin Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee

More information

BIOLOGY - CLUTCH CH.45 - ENDOCRINE SYSTEM.

BIOLOGY - CLUTCH CH.45 - ENDOCRINE SYSTEM. !! www.clutchprep.com Chemical signals allow cells to communicate with each other Pheromones chemical signals released to the environment to communicate with other organisms Autocrine signaling self-signaling,

More information

THE ROLE OF ENDOCANNABINOID RECEPTOR ACTIVITY IN YOUNG AND AGED RATS WITH HIGH-FAT FEEDING

THE ROLE OF ENDOCANNABINOID RECEPTOR ACTIVITY IN YOUNG AND AGED RATS WITH HIGH-FAT FEEDING THE ROLE OF ENDOCANNABINOID RECEPTOR ACTIVITY IN YOUNG AND AGED RATS WITH HIGH-FAT FEEDING By MELANIE KAE JUDGE A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

More information

Neuro-Physiology Kamal Mohammed Lecturer Of Physiology LECTURE NO (-) Hypothalamus. Faculty Of Medicine Dept.Of Physiology

Neuro-Physiology Kamal Mohammed Lecturer Of Physiology LECTURE NO (-) Hypothalamus. Faculty Of Medicine Dept.Of Physiology LECTURE NO (-) Neuro-Physiology Kamal Mohammed Lecturer Of Physiology Hypothalamus Faculty Of Medicine Dept.Of Physiology Hypothalamus Less than 1% of the brain mass Many connect the hypothalamus to the

More information

REGULATION OF FOOD INTAKE AND NUTRITIONAL STATE

REGULATION OF FOOD INTAKE AND NUTRITIONAL STATE REGULATION OF FOOD INTAKE AND NUTRITIONAL STATE INTAKE OUTPUT CENTER OF SATIETY ncl. ventromedialis in hypothalamus - CENTER OF HUNGER (permanently active) lateral hypothalamus (nucleus under fasciculus

More information

The Obesity Epidemic: Metabolic Imprinting on Genetically Susceptible Neural Circuits

The Obesity Epidemic: Metabolic Imprinting on Genetically Susceptible Neural Circuits MINI REVIEW The Obesity Epidemic: Metabolic Imprinting on Genetically Susceptible Neural Circuits Barry E. Levin Submitted for publication February 28, 2000. Accepted for publication in final form May

More information

BIOM2010 (till mid sem) Endocrinology. e.g. anterior pituitary gland, thyroid, adrenal. Pineal Heart GI Female

BIOM2010 (till mid sem) Endocrinology. e.g. anterior pituitary gland, thyroid, adrenal. Pineal Heart GI Female BIOM2010 (till mid sem) Endocrinology Endocrine system Endocrine gland : a that acts by directly into the which then to other parts of the body to act on (cells, tissues, organs) : found at e.g. anterior

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 4,000 116,000 120M Open access books available International authors and editors Downloads Our

More information

letters to nature ... AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus

letters to nature ... AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus ... AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus Yasuhiko Minokoshi 1, Thierry Alquier 1, Noboru Furukawa 1, Young-Bum Kim 1, Anna Lee 1, Bingzhong

More information

Ingestive Behavior: Feeding & Weight Regulation. Hypovolemic vs. Osmotic Thirst

Ingestive Behavior: Feeding & Weight Regulation. Hypovolemic vs. Osmotic Thirst Ingestive Behavior: Feeding & Weight Regulation 1 Hypovolemic Thirst Receptors, CNS, Responses Salt Appetite Digestive components Glucose Homeostasis: Insulin & Glucagon Diabetes Mellitus 1 & 2 CNS Hypothalamic

More information

DEGREE (if applicable) State University of Paraiba, Brazil Bachelor 1993 Physical Therapist

DEGREE (if applicable) State University of Paraiba, Brazil Bachelor 1993 Physical Therapist BIOGRAPHICAL SKETCH NAME Jussara Marcia do Carmo era COMMONS USER NAME jdocarmo EDUCATION/TRAINING INSTITUTION AND LOCATION POSITION TITLE Associate Professor DEGREE (if applicable) YEAR(s) FIELD OF STUDY

More information

Neonatal Insulin Action Impairs Hypothalamic Neurocircuit Formation in Response to Maternal High-Fat Feeding

Neonatal Insulin Action Impairs Hypothalamic Neurocircuit Formation in Response to Maternal High-Fat Feeding Neonatal Insulin Action Impairs Hypothalamic Neurocircuit Formation in Response to Maternal High-Fat Feeding Merly C. Vogt, 1,2,4 Lars Paeger, 3,4 Simon Hess, 3,4 Sophie M. Steculorum, 1,2,4 Motoharu Awazawa,

More information

Neuroendocrinology an integrative approach

Neuroendocrinology an integrative approach Neuroendocrinology an integrative approach JP Advis DVM, Ph.D. Bartlett Hall, Animal ciences, Cook, (848) 932-9240, advis@aesop.rutgers.edu 06 Course website: rci.rutgers.edu/~advis Material to be covered:

More information

Gut hormones KHATTAB

Gut hormones KHATTAB Gut hormones PROF:ABD ALHAFIZ HASSAN KHATTAB Gut as an endocrine gland The talk will cover the following : Historical background. Why this subject is chosen. Gastro-intestinal hormones and their function.

More information

FLASH CARDS. Kalat s Book Chapter 10 Alphabetical

FLASH CARDS.   Kalat s Book Chapter 10 Alphabetical FLASH CARDS www.biologicalpsych.com Kalat s Book Chapter 10 Alphabetical AgRP AgRP Agouti-related peptide; synthesized in hypothalamus. Acts as an appetite stimulator. Also decreases metabolism. aldosterone

More information

Νευροφυσιολογία και Αισθήσεις

Νευροφυσιολογία και Αισθήσεις Biomedical Imaging & Applied Optics University of Cyprus Νευροφυσιολογία και Αισθήσεις Διάλεξη 16 Κίνητρα Συμπεριφοράς ή Υποκίνηση (Motivation) Introduction Types of behavior Unconscious reflexes Voluntary

More information

Maternal Obesity Induced by Diet in Rats Permanently Influences Central Processes Regulating Food Intake in Offspring

Maternal Obesity Induced by Diet in Rats Permanently Influences Central Processes Regulating Food Intake in Offspring Maternal Obesity Induced by Diet in Rats Permanently Influences Central Processes Regulating Food Intake in Offspring Shona L. Kirk, Anne-Maj Samuelsson, Marco Argenton, Hannah Dhonye, Theodosis Kalamatianos,

More information

Oral glucose lowering agents in gestational diabetes. Yes: E. Sobngwi (Cameroon) No: A. Vambergue (France)

Oral glucose lowering agents in gestational diabetes. Yes: E. Sobngwi (Cameroon) No: A. Vambergue (France) Oral glucose lowering agents in gestational diabetes Yes: E. Sobngwi (Cameroon) No: A. Vambergue (France) CONTROVERSIES Oral glucose lowering agents in gestational diabetes «NO» Pr Anne VAMBERGUE Department

More information

A possible role of neuropeptide Y, agouti-related protein and leptin receptor isoforms in hypothalamic programming by perinatal feeding in the rat

A possible role of neuropeptide Y, agouti-related protein and leptin receptor isoforms in hypothalamic programming by perinatal feeding in the rat Diabetologia (2005) 48: 140 148 DOI 10.1007/s00125-004-1596-z ARTICLE M. López. L. M. Seoane. S. Tovar. M. C. García. R. Nogueiras. C. Diéguez. R. M. Señarís A possible role of neuropeptide Y, agouti-related

More information

Retinoic Acid & Experimental Design Laboratory

Retinoic Acid & Experimental Design Laboratory Name: Date: Retinoic Acid & Experimental Design Laboratory Motivation Vitamin A deficiency claims the lives of over 600,000 children under the age of 5 annually 1. Maternal vitamin A deficiency leads to

More information

BIOLOGY 2402 Anatomy and Physiology Lecture. Chapter 18 ENDOCRINE GLANDS

BIOLOGY 2402 Anatomy and Physiology Lecture. Chapter 18 ENDOCRINE GLANDS BIOLOGY 2402 Anatomy and Physiology Lecture Chapter 18 ENDOCRINE GLANDS 1 ENDOCRINE GLANDS Homeostasis depends on the precise regulation of the organs and organ systems of the body. Together the nervous

More information

Chapter 1. General introduction. Part of this chapter is adapted from Adan et.al., Br.J.Pharmacol. 2006;149:815

Chapter 1. General introduction. Part of this chapter is adapted from Adan et.al., Br.J.Pharmacol. 2006;149:815 Chapter 1 General introduction Part of this chapter is adapted from Adan et.al., Br.J.Pharmacol. 2006;149:815 Chapter 1 B. Tiesjema, 2007 GENERAL INTRODUCTION NEURAL CIRCUITS INVOLVED IN ENERGY BALANCE

More information

Neurobiology of food intake in health and disease

Neurobiology of food intake in health and disease Neurobiology of food intake in health and disease Gregory J. Morton, Thomas H. Meek and Michael W. Schwartz Abstract Under normal conditions, food intake and energy expenditure are balanced by a homeostatic

More information

UNIVERSITY OF CALGARY. Obesity in Rats Raised in Small versus Large Litters. Danielle Tenley Reid A THESIS

UNIVERSITY OF CALGARY. Obesity in Rats Raised in Small versus Large Litters. Danielle Tenley Reid A THESIS UNIVERSITY OF CALGARY Prebiotic Fiber Supplementation Differentially Affects Metabolic Parameters Regulating Obesity in Rats Raised in Small versus Large Litters by Danielle Tenley Reid A THESIS SUBMITTED

More information

Hypothalamic Control of Posterior Pituitary

Hypothalamic Control of Posterior Pituitary Hypothalamic Control of Posterior Pituitary Hypothalamus neuron cell bodies produce ADH: supraoptic nuclei Oxytocin: paraventricular nuclei Transported along the hypothalamohypophyseal tract Stored in

More information

Hypothalamus & pituitary gland

Hypothalamus & pituitary gland Hypothalamus & pituitary gland Huiping Wang ( 王会平 ), PhD Department of Physiology Rm C541, Block C, Research Building, School of Medicine Tel: 88208292 Outline Hypothalamus Relationship between the hypothalamus

More information

Epigenetic Pathways Linking Parental Effects to Offspring Development. Dr. Frances A. Champagne Department of Psychology, Columbia University

Epigenetic Pathways Linking Parental Effects to Offspring Development. Dr. Frances A. Champagne Department of Psychology, Columbia University Epigenetic Pathways Linking Parental Effects to Offspring Development Dr. Frances A. Champagne Department of Psychology, Columbia University Prenatal & Postnatal Experiences Individual differences in brain

More information

Central Nervous System Regulation of Food Intake

Central Nervous System Regulation of Food Intake Central Nervous System Regulation of Food Intake Michael W. Schwartz Introduction Some 50 years ago, Gordon Kennedy introduced the hypothesis that body fat stores are subject to homeostatic regulation

More information

India is one of the diabetes capitals of the world and at the same time the capital

India is one of the diabetes capitals of the world and at the same time the capital Yajnik Undernutrition and Overnutrition During Pregnancy in India: C. S. Yajnik, MD, FRCP India is one of the diabetes capitals of the world and at the same time the capital for low birth weight (LBW)

More information

Glucose Sensing Neurons in the Ventromedial Hypothalamus

Glucose Sensing Neurons in the Ventromedial Hypothalamus Sensors 2010, 10, 9002-9025; doi:10.3390/s101009002 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Review Glucose Sensing Neurons in the Ventromedial Hypothalamus Vanessa H. Routh Department

More information

JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY 2009, 60, Suppl 3,

JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY 2009, 60, Suppl 3, JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY 2009, 60, Suppl 3, 17-35 www.jpp.krakow.pl P. GUILLOTEAU 1, R. ZABIELSKI 2, H.M. HAMMON 3, C.C. METGES 3 ADVERSE EFFECTS OF NUTRITIONAL PROGRAMMING DURING PRENATAL

More information

HIGH FOLATE, BUT NOT HIGH MULTIVITAMIN GESTATIONAL DIETS, AFFECT THE SEROTONERGIC REGULATION OF FOOD INTAKE IN FEMALE WISTAR OFFSPRING

HIGH FOLATE, BUT NOT HIGH MULTIVITAMIN GESTATIONAL DIETS, AFFECT THE SEROTONERGIC REGULATION OF FOOD INTAKE IN FEMALE WISTAR OFFSPRING HIGH FOLATE, BUT NOT HIGH MULTIVITAMIN GESTATIONAL DIETS, AFFECT THE SEROTONERGIC REGULATION OF FOOD INTAKE IN FEMALE WISTAR OFFSPRING by Abraham Poon A thesis submitted in conformity with the requirements

More information

Pituitary Leptin-A Paracrine Regulator of Gonadotropes: A Review

Pituitary Leptin-A Paracrine Regulator of Gonadotropes: A Review The Open Neuroendocrinology Journal, 2011, 4, 25-42 25 Pituitary Leptin-A Paracrine Regulator of Gonadotropes: A Review Noor Akhter, Christopher Crane and Gwen V. Childs* Open Access Department of Neurobiology

More information

SH2B1 Regulates Insulin Sensitivity and Glucose Homeostasis by Multiple Mechanisms. David L. Morris

SH2B1 Regulates Insulin Sensitivity and Glucose Homeostasis by Multiple Mechanisms. David L. Morris SH2B1 Regulates Insulin Sensitivity and Glucose Homeostasis by Multiple Mechanisms by David L. Morris A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

More information

Leptin: A metabolic signal affecting central regulation of reproduction in the pig

Leptin: A metabolic signal affecting central regulation of reproduction in the pig Domestic Animal Endocrinology 29 (2005) 186 192 Leptin: A metabolic signal affecting central regulation of reproduction in the pig C.R. Barb a,, G.J. Hausman a, K. Czaja b a USDA/ARS, Animal Physiology

More information

Hormonal regulation of. Physiology Department Medical School, University of Sumatera Utara

Hormonal regulation of. Physiology Department Medical School, University of Sumatera Utara Hormonal regulation of nutrient metabolism Physiology Department Medical School, University of Sumatera Utara Homeostasis & Controls Successful compensation Homeostasis reestablished Failure to compensate

More information

Role of fatty acids in the development of insulin resistance and type 2 diabetes mellitus

Role of fatty acids in the development of insulin resistance and type 2 diabetes mellitus Emerging Science Role of fatty acids in the development of insulin resistance and type 2 diabetes mellitus George Wolf Insulin resistance is defined as the reduced responsiveness to normal circulating

More information