United States Patent (19)

Size: px
Start display at page:

Download "United States Patent (19)"

Transcription

1 United States Patent (19) Upshaw et al. 54 TOTAL ANATOMICAL KNEE PROSTHESIS 75) Inventors: Jackson E. Upshaw, Corpus Christi, Tex.; Charles Edward Meisch, Jersey City, N.J. (73) Assignee: Howmedica, Inc., New York, N.Y. 21 Appl. No.: 764,844 (22 Filed: Feb. 2, ) Int. C.... A61F1/24 52 U.S. Cl.... 3/1911; 128/92 C (58) Field of Search... 3/1911, 1.91, 1.9, 3/1; 128/92 C, 92 CA (56) References Cited U.S. PATENT DOCUMENTS 3,728,742 4/1973 Averill et al.... 3/1911 3,774,244 11/1973 Walker /1911 3,798,679 3/1974 Ewald /1911 3,816,855 6/1974 Saleh /1.91-3,869,731 3/1975 Waugh et al /1.91 3,924,277 12/1975 Freeman et al /1911 3,964,106 6/1976 Hutter, Jr. et al / ) 4,081,866 45) Apr. 4, 1978 FOREIGN PATENT DOCUMENTS 1,390,494 4/1975 United Kingdom... 3/1911 OTHER PUBLICATIONS The Spherocentric Knee, by Matthews et al., Clinical Orthopaedics, No. 94, July-Aug. 1973, pp Howmedica Knee System Bicompartmental With Cru ciate Retention (Trade Brochure), 1975, showing Townley Total Knee Prosthesis. Howmedica Knee System Bicompartmental Without Cruciate Retention (Trade Brochure), 1975, showing Total Condylar Knee Prosthesis. Primary Examiner-Ronald L. Frinks Attorney, Agent, or Firm-Pennie & Edmonds 57) ABSTRACT A prosthetic knee joint comprising cooperating femoral and tibial components that allow controlled rotational movement during extension and flexion, simulating the anatomical movement characteristics of the natural knee joint. 9 Claims, 10 Drawing Figures

2 U.S. Patent April 4, 1978 Sheet 1 of 2 4,081,866

3 U.S. Patent April 4, 1978 Sheet 2 of 2 4,081,866

4 1. TOTAL ANATOMICAL KNEE PROSTHESS BACKGROUND OF THE INVENTION This invention is concerned with a prosthetic replace ment device and more particularly a total knee joint, providing simulation of the normal movement charac teristics of the articulating surfaces of the natural knee joint, in particular rotation and derotation during flex ion and extension. While the knee joint is usually con sidered to be a hinge joint, which implies that its move ments are flexion and extension about a horizontal axis, the large size and incongruent shapes of the articulating condylar surfaces of the femur are such that the normal movement of the knee also allows for controlled rota tion and the translatory movement of the knee joint actually occurs about three spatial axes. A large number of various forms of knee arthroplasty have been proposed in recent years in an attempt to provide the equivalent of these general patterns of movement and articular geometry. Generally, there are two major types of knee prostheses: hinged and non hinged. In one form, the knee is resected and replaced by a metal hinged-type device with deep penetration of the intermedullary canal in both the femur and the tibia by means of flared and thick distal fixation stems. Such devices have been previously decribed by Shiers, Young, and Walldius. While these devices provide sta bility during flexion-extension of the knee, they only permit motion about a single axis and do not allow for abduction-adduction rotation during flexion and exten sion. The range of movement is limited and patients are seldom able to flex the knee beyond 90'. Moreover, implantation requires the removal of a significant amount of the bone with a shortening of the limb if for any reason the prosthesis must be removed for subse quent arthrodesis. More recent prostheses using a different approach attempt to structurally resurface both of the articulating surfaces of the knee to provide a non-hinged type pros thesis. Such devices have been previously described as unicondylar, such as the POLYCENTRIC prosthesis, or dual condylar, such as the GEOMEDIC prosthesis. Each, however, relies upon identical femoral condylar articulating surfaces with identical longitudinal and transverse cross-sections. Such condylar articulating features are different from the normal knee and they do not allow for the same movement found in the normal knee, providing only a partial duplication of the natural knee movement. Still others create a mold of the distal femoral con dyles providing circumduction in different planes and requiring the use of a long intermedullary canal stem and severance of both the collateral and cruciate liga ments. Such devices have been described by Ewald, Helfet, Aufranc and Turner. Even with the use of meth ylmethacrylate for cement fixation, these devices have unstable characteristics since the complexity of the knee movement tends to cause considerable torsional stress and eventual wear and weakening of the joint. SUMMARY OF THE INVENTION The object of this invention is to provide an im proved knee prosthesis that will provide for a greater range of anatomical motion about the three spatial axes that control movement in the normal knee while allow ing for retention of the collateral ligaments and the cruciate ligaments that lie within the fibrous capsule of 4,081, the knee joint. This objective is attained by the present invention by creating an improved weight bearing pros thesis wherein the femoral and tibial components coop erate to provide a mutual but restricted articulatory engagement. The femoral component is of the dual condylar type with a uniquely contoured configuration wherein the individual condylar support members have the same transverse cross-sectional profile but with different configurations in the longitudinal direction, providing articulation on a tibial component with con cave superior converging surfaces, The prosthetic knee joint comprises cooperating fem oral and tibial component, said femoral component having bone fixation means for implantation in the human femur and a pair of spaced condylar support members joined by an intercondylar segment. The con dylar support members comprise a medial member and a lateral member with the longitudinal axis of said me dial member being disposed at an anteriorly convergent angle of from about 3 to 7 degrees with respect to the longitudinal axis of said femoral component. Each of said condylar support members has a down wardly facing convex articulating surface with interior and exterior sides whose profile in transverse cross-sec tion is defined by a circular arc extending upwardly to the interior sides of said articulating surface and whose longitudinal cross-sectional configuration is defined by a condylar curve having at least three radii of curva ture. Each said curve comprises a central section and a pair of terminal sections and the radius of curvature of the posterior terminal section of each said curve is smaller than the radii of curvature of the central and anterior terminal sections of said curve. The condylar curve of said lateral member has at least one central portion radius of curvature larger than the central por tion radii of said medial member. The tibial component has bone fixation means for implantation in the human tibia and has a pair of spaced plateau members joined by an intercondylar eminence segment. The plateau members comprise a medial and lateral bearing surface, each with interior and exterior sides, wherein the longitudinal axis of the medial and lateral bearing members are both canted, being disposed at an anteriorly convergent angle of from about 3 to 7 degrees with respect to the longitudinal axis of said tibial component. The angle of convergence of each of said bearing members is substantially equal to the angle of convergence of said medial condylar support mem ber. Each of said bearing members has an upwardly facing concave articulating surface for cooperating with the corresponding convex articulating surface of said condylar support member defined by a circular arc whose radius of curvature is at least as large as the largest radius of curvature of said corresponding condy lar support member. The plateau bearing surfaces each have in transverse cross-section a profile defined by a portion of a circular quadrant smoothly merging to a portion that is substan tially horizontally tangent to said quadrant, said quad rant portion curving upwardly to the interior side of said bearing surface to form side walls for guiding the articulating movement of the condylar support mem bers. This unique configuration has been found to pro vide sufficient rotation-derotation during flexion and extension to approximate anatomic motion. As the pros thesis approaches its allowed limit of movement, it is checked or further limited by guide wall surfaces that rise above the bearing surfaces of the tibial plateau and

5 3 form a continuous circumflexed wall on the interior and posterior sides of said bearing surfaces. Better weight distribution has also been found by providing concaved bearing surfaces that are as wide or preferably wider 4,081,866 than the corresponding femoral condylar members. To 5 provide for added stability, the present invention also employs a non-symmetrical patellar articulating surface that, together with an intercondylar support base, con nects the medial and lateral support members to each other. 10 DETAILED DESCRIPTION OF THE DRAWINGS The present invention will be better understood by reference to the accompanying drawings that illustrate 15 a practical embodiment of a total knee prosthesis, wherein: FIG. 1 is a diagramatic perspective view of a total knee prosthesis as it would appear in the human knee after implantation; 20 FIG. 2 is an anterior plan view of the prosthesis shown in FIG. 1; FIG. 3 is a posterior cross-sectional view of the pros thesis shown in FIG. 1; FIG. 4 is a superior elevational view of the femoral 25 component shown in FIG. 3. FIGS. 5 and 6 are views of the medial and lateral condylar curvilinear profiles, respectively; FIG. 7 is a superior elevational view of the tibial component shown in FIG. 3; 30 FIG. 8 is an inferior elevational view of the tibial component shown in FIG. 7; FIG. 9 is a lateral elevational view of the tibial com ponent of FIG.7; and FIG. 10 is a partial posterior plan view of the lateral 35 side of the femoral component. Referring more particularly to FIG. 1 of the draw ings, after surgical exposure of the knee joint and suit-i ably preparing and osteotomizing the surfaces of the femur and tibia, reference number 10 shows generally a 40 total knee prosthesis implanted in the left leg compris ing a dual condylar femoral component shown at 12 and a tibial component shown at 13. Various ligaments and tendons which interconnect the bones and regulate and determine the articulating motion of the knee joint have 45 not been shown but the general outline of the lower end of the femur and the upper end of the tibia have been illustrated. Reference numerals 14 and 16 designate, respectively, a pair of spaced femoral condylar support members with the lateral condylar member shown at and the medial condylar member shown at 16. The condylar support members are connected by an inter condylar segment or support base 18 and a non-symmet rical patellar articulating surface flange 20 that helps to 4. niently received in a resected area of the femur. To improve the anchoring of the femoral component of the femur, the inferior side of the patellar articulating sur face 20 is provided with a serrated face 30 so that is has a waffled appearance which, after receiving surgical cement, facilitates securing the femoral component 12 to the femur, providing more positive cement fixation. With this arrangement, the fixation studs 22 and 26 can be relatively short as compared to the conventional intermedullar stems or fixation fins used in other dual condylar prostheses. m In accordance with the present invention, condylar curves of the femoral condylar members 14 and 16 are uniquely formed in that each curve is generated from different radii of curvature. As shown in FIGS. 5 and 6, the condylar curve of each condylar member has at least three sections. The condylar curve of medial con dylar support member 16 is divided into an anterior terminal section 32, a central section 34, and a posterior terminal section 36. Likewise, condylar curve of lateral condylar support member 14 is divided into an anterior terminal section 38, a central section 40 and a posterior terminal section 42. Each section may possess one or more radii, the same radii preferably being used togen erate the terminal sections 32 and 38 of condylar mem bers 14 and 16. Likewise, terminal sections 36 and 42 preferably employ identical radii. However, the radii of curvature of posterior terminal sections 36 and 42 of condylar members 14 and 16 are smaller than the radii of curvature of the central and anterior terminal sec tions. As shown in FIG. 6, the radius of curvature of the central section 40 of the condylar curve of lateral con dylar member 14 or average radius of curvature is larger than the radius of curvature or average radius of curvature of the central section 34 of the condylar curve of medial condylar member 16. The differing dimensions of the lateral and medial condylar curves resulting from the use of a radius of curvature in the lateral condylar curve larger than the radius of curva ture 34 of the medial condylar curve as described above promote the desired rotational motion during flexion and extension. While the curvilinear surfaces of condylar support members 14 and 16 are different in longitudinal cross section, the transverse cross-sectional profile of the two articulating surfaces can be identical. As shown in FIG. 4, each condylar member has an interior side 44 and 44 and an exterior side 46 and 46' and the transverse cross sectional profile for each condylar support member 14 and 16 is defined by a portion of a circular arc that extends primarily in an upward and inward direction on the interior side 44 of each condylar member in the area that lies next to the cruciate ligaments over a substantial insure stability and maintain correct alignment of the 55 portion of said transverse cross-section. condyles even if drifting in the bone occurs after long When condylar support members 14 and 16 are term use. The shape of each said articulating surface is joined anteriorly through a patellar articulating surface in longitudinal cross-section defined by a condylar member 20, an interior intercondylar notch 48 is formed curve. The condylar curves of the lateral condylar by the confluence of the upwardly curved transverse support member 14 and the medial condylar support 60 cross-sectional portions of the condyles. This notch member 16 are non-identical as is fully described in allows for controlled interaction with intercondylar reference to FIGS. 5 and 6. eminence notch 19 of the tibial component 13 to allow The femoral component also includes stud 22 extend adequate articulation while preventing anterior dis ing upwardly from inner surface 24 of the lateral condy placement with knee motion and minimizing a floating lar support member 14 and a stud 26 extending up- 65 wardly from inner surface 28 of the medial condylar support member 16 for anchoring the femoral compo nent to the femur. Such anchoring means are conve or shifting femoral component. The patellar articulating flange 20 adds stability to the prosthesis while providing a concaved bearing sur face 50 for receiving the natural patella or a replace

6 5 ment patella prosthesis. In some embodiments a non symmetrical flange may be desired. It has been found that the controlled rotation move ment desired for simulating the anatomical movement characteristics of the natural knee joint can be further promoted by canting one of the condylar members. As shown in FIG. 4, the medial condylar member 16 is disposed at an anteriorly convergent angle of from about 3 to 7 degrees with respect to the longitudinal axis A of the femoral component 12, while the lateral condy lar member 14 is preferably substantially parallel to longitudinal axis A. In accordance with the present invention, tibial com ponent 13 has a superior articulating plateau surface comprising two concave condylar bearing members 15 and 17 as shown in FIGS. 1 and 7. As shown in FIG. 9, each of the concave surfaces of these bearing members has a shape whose longitudinal cross-section is defined by a circular arc whose radius is larger than or equal to the largest radius of curvature of the corresponding condylar support member. The plateau bearing members 15 and 17 are con nected anteriorly by an intercondylar eminence mem ber 19 that rises substantially above the circumduction plane of the plateau bearing members 15 and 17. As shown in FIGS. 7 and 8, the intercondylar eminence member 19 only joins the bearing members at the ante rior part of the tibia, thus creating an opening in the posterior intercondylar area to allow for retention of the cruciate ligaments. Each of the plateau bearing members 15 and 17 is disposed at an anteriorly conver gent angle of from about 3 to 7 degrees with respect to the longitudinal axis B of the tibial component 13. The angle of convergence of both the medial and lateral plateau bearing members is substantially equal to the angle of convergence of the medial condylar support member 16. The transverse cross-sectional profile of the plateau bearing members 15 and 17 is defined by a por tion of a circular quadrant 25 that smoothly merges into a portion 27 that is substantially horizontally tangent to said quadrant. The radius of curvature for said circular quadrant is substantially equal to the corresponding radius of curvature of said condylar support members 14 and 16 in their transverse cross-section. The circular quadrant curves upwardly at the interior sides 21 and 21' from each bearing surface to form interior condylar guide side walls 29 and 31. The guide side walls 29 and 31 extend around and along a portion of the posterior end of each plateau bearing surface. These guide walls, together with the uniquely contoured femoral compo nent, have been found to be particularly effective in providing the controlled movement necessary in a pros thesis when simulating the anatomical movement of the natural knee. For implanting the tibial component 13 in the tibia, this invention employs a downwardly directed bone fixation fin 33 underneath the intercondylar eminence member 19 for anchoring the tibial component anteri orly in the tibia. In addition, the tibial component as shown in FIGS. 3 and 8 has a pair of spaced fixation fins 35 and 37 depending from the underside of each bearing surface member 15 and 17 for further anchoring the tibial component, usually in a resected area of the tibia. As in the case of the patellar articulating surface 20, the anterior portion of the lower surface of the concaved bearing surface is provided with serrations 39 and 39' which permit the tibial component 13 to be firmly an chored by the use of suitable cement in the upper end of 4,081, the tibia after the latter has been suitably prepared surgi cally. It has been found that the prosthetic device described herein allows for maximum articulation that closely approximates the anatomical movement of the natural knee joint while inhibiting dislocation and providing enhanced stability. This prosthesis is intended for use in patients who have erosion of the articulating surfaces but have retention of both the collateral and cruciate ligaments of the knee and have maintained fairly good musculo-skeletal function. The femoral component 12 should have a surface that will provide a minimum of friction and may be cast integrally of VITALLIUM or other cobalt-chromium base alloy or stainless steel, each of which can be highly polished to insure a minimum of wear, or any other rigid tissue compatible material of adequate strength. The tibial component 13 may be manufactured sepa rately and may also be a highly polished metallic com ponent, but is preferably formed of a suitable ceramic or high density organic polymer material, for example, ultra high molecular weight polyethylene. While a prosthesis for a left knee has been shown and described, it is to be understood that in providing a prosthesis for the right knee, a similarly constructed femoral component, but in the mirror image of a femo ral component 12, would be used, together with an identical tibial component 13. While the foregoing description discloses a preferred embodiment of the invention, numerous modifications and alterations may be made therein without departing from the spirit and the scope of the invention asset forth in the appended claims. What is claimed is: 1. A prosthetic knee joint comprising cooperating femoral and tibial components, said femoral component having bone fixation means for implantation in the human femur and a pair of spaced condylar support members joined by an intercondylar segment, said condylar support members comprising a medial member and a lateral member, the longitudinal axis of said medial mem ber being disposed at an anteriorly convergent angle of from about 3 to 7 degrees with respect to the longitudinal axis of said femoral component, each of said condylar support members having a downwardly facing convex articulating surface with interior and exterior sides whose profile in transverse cross-section is defined by a circular arc extending upwardly to the interior side of said articulating surface and whose longitudinal cross sectional configuration is defined by a condylar curve having at least three radii of curvature, each said curve comprising a central section and a pair of terminal sections, the radius of curvature of the posterior terminal section of each said curve being smaller, than the radii of curvature of the central and anterior terminal sections of said curve, the condylar curve of said lateral member having at least one central portion radius of curvature larger than the central portion radii of said medial mem ber, said tibial component having bone fixation means for implantation in the humantibia and having a pair of spaced plateau members joined by an intercondylar eminence segment, said plateau members compris ing a medial and lateral bearing surface, each with interior and exterior sides, wherein the longitudinal

7 4,081,866 7 axis of the medial and lateral bearing members is disposed at an anteriorly convergent angle of from about 3 to 7 with respect to the longitudinal axis of said tibial component, said angle of convergence of each of said bearing members being substantially 5 equal to the angle of convergence of said medial condylar support member, each of said bearing members having an upwardly facing concave artic ulating surface for cooperating with the corre sponding convex articulating surface of said con dylar support member, defined by a circular arc whose radius of curvature is at least as large as the largest radius of curvature of said corresponding condylar support member, and 15 said plateau bearing surfaces each having in trans verse cross-section a profile defined by a portion of a circular quadrant smoothly merging to a portion that is substantially horizontally tangent to said quadrant, said quadrant portion curving upwardly 20 to the interior side of said bearing surface to form side walls for guiding the articulating movement of the condylar support members. 2. A prosthetic knee joint according to claim 1, wherein the longitudinal axis of said lateral condylar 25 member is substantially parallel to the longitudinal axis of said femoral component. 3. A prosthetic knee joint according to claim 1, wherein the radii of curvature for said circular quadrant portions of said plateau bearing surfaces are greater than the corresponding radii of curvature of said condy lar support members in their transverse cross-section. 4. A prosthetic knee joint according to claim 1, wherein said condylar support members are anteriorly connected by a patellar articulating flange and provide circumduction in one plane. 5. A prosthetic knee joint according to claim 4, wherein said flange is non-symmetrical and has a con cave bearing suface for receiving the patella. 6. A prosthetic knee joint according to claim 1, wherein said interior side walls extend in a continuous circumflex manner to form both interior and posterior guiding means. 7. A prosthetic knee joint according to claim 1, wherein said condylar support members have an inner surface on which upwardly extending fixation means are located and adapted to be received in a resected area of the femur for anchoring the femoral component in place thereon. 8. A prosthetic knee joint according to claim 1, wherein said tibial fixation means are fins extending downwardly from the under surface of each spaced plateau member and adapted to be received in a re sected area of the tibia for anchoring the tibial compo nent in place thereon. 9. A prosthetic knee joint according to claim 1, wherein said spaced condylar articulating members are constructed of metal and said tibial component is con structed of plastic material. sk k k

I lllll llllllll Ill lllll lllll lllll lllll lllll

I lllll llllllll Ill lllll lllll lllll lllll lllll (12) United States Patent Masini I lllll llllllll Ill lllll lllll lllll lllll lllll 111111111111111111111111111111111 US006558426Bl (10) Patent No.: US 6,558,426 Bl (45) Date of Patent: May 6, 2003 (54)

More information

( 12 ) United States Patent

( 12 ) United States Patent ( 12 ) United States Patent Ingwer et al. US009907655B2 ( 10 ) Patent No. : US 9, 907, 655 B2 ( 45 ) Date of Patent : Mar. 6, 2018 ( 54 ) COMPONENTS FOR ARTIFICIAL JOINTS ( 56 ) References Cited U. S.

More information

(12) United States Patent

(12) United States Patent (12) United States Patent Brown et al. USOO6494.914B2 (10) Patent No.: (45) Date of Patent: US 6,494.914 B2 Dec. 17, 2002 (54) UNICONDYLAR FEMORAL PROSTHESIS AND INSTRUMENTS (75) Inventors: David Ray Brown,

More information

Res., vol. 5, No. 4, (1987), pp

Res., vol. 5, No. 4, (1987), pp USOO5997.577A United States Patent (19) 11 Patent Number: 5,997,577 Herrington et al. (45) Date of Patent: *Dec. 7, 1999 54) KNEE JOINT PROSTHESIS 5,330,534 7/1994. Herrington et al.... 623/20 76 Inventors:

More information

(12) Patent Application Publication (10) Pub. No.: US 2012/ A1

(12) Patent Application Publication (10) Pub. No.: US 2012/ A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0265315 A1 Kusogullariet al. US 20120265315A1 (43) Pub. Date: Oct. 18, 2012 (54) SHOULDER PROSTHESIS (75) Inventors: Levent

More information

United States Patent (19)

United States Patent (19) United States Patent (19) Herrington et al. 54) KNEE JOINT PROSTHESIS WITH INTERCHANGEABLE COMPONENTS 75) Inventors: Stephen M. Herrington, Warsaw, Ind.; Adolph V. Lombardi, Jr., Columbus; Bradley K. Vaughn,

More information

Knee Replacement Implants

Knee Replacement Implants Knee Replacement Implants During knee replacement surgery, an orthopaedic surgeon will resurface your damaged knee with artificial components, called implants. There are many different types of implants.

More information

JOINT RULER. Surgical Technique For Knee Joint JRReplacement

JOINT RULER. Surgical Technique For Knee Joint JRReplacement JR JOINT RULER Surgical Technique For Knee Joint JRReplacement INTRODUCTION The Joint Ruler * is designed to help reduce the incidence of flexion, extension, and patellofemoral joint problems by allowing

More information

Partial Knee Replacement

Partial Knee Replacement Partial Knee Replacement A partial knee replacement removes damaged cartilage from the knee and replaces it with prosthetic implants. Unlike a total knee replacement, which removes all of the cartilage,

More information

United States Patent (19) Jackson et al.

United States Patent (19) Jackson et al. United States Patent (19) Jackson et al. 54 ARTIFICIAL KNEE JOINT (75) Inventors: Robert W. Jackson; Frederick P. Dewar; David L. MacIntosh; John P. Kostuik; Robin Black, all of Toronto, Canada 73) Assignee:

More information

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1 US 2007 O185493A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/0185493 A1 Feibel et al. (43) Pub. Date: Aug. 9, 2007 (54) CLAVICULAR BONE PLATE (30) Foreign Application

More information

(12) Patent Application Publication (10) Pub. No.: US 2009/ A1

(12) Patent Application Publication (10) Pub. No.: US 2009/ A1 (19) United States US 20090305855A1 (12) Patent Application Publication (10) Pub. No.: US 2009/0305855A1 Terre (43) Pub. Date: Dec. 10, 2009 (54) ABDOMINAL EXERCISE MACHINE (57) ABSTRACT An abdominal exercise

More information

PARTIAL KNEE REPLACEMENT

PARTIAL KNEE REPLACEMENT PARTIAL KNEE REPLACEMENT A partial knee replacement removes damaged cartilage from the knee and replaces it with prosthetic implants. Unlike a total knee replacement, which removes all of the cartilage,

More information

(12) United States Patent

(12) United States Patent USOO9468532B2 (12) United States Patent Perer (10) Patent No.: (45) Date of Patent: US 9.468,532 B2 Oct. 18, 2016 (54) SEMI CONSTRAINED POLYAXIAL ENDOPROSTHETIC ANKLE JOINT REPLACEMENT IMPLANT (71) (72)

More information

Total Knee Replacement

Total Knee Replacement Total Knee Replacement A total knee replacement, also known as total knee arthroplasty, involves removing damaged portions of the knee, and capping the bony surfaces with man-made prosthetic implants.

More information

United States Patent (19) Lerman

United States Patent (19) Lerman United States Patent (19) Lerman (54) KNEE BRACE (75) Inventor: Max Lerman, Beverly Hills, Calif. 73) Assignee: U.S. Manufacturing Co., Pasadena, Calif. (21) Appl. No.: 285,424 22 Filed: Jul. 20, 1981

More information

Knee Joint Anatomy 101

Knee Joint Anatomy 101 Knee Joint Anatomy 101 Bone Basics There are three bones at the knee joint femur, tibia and patella commonly referred to as the thighbone, shinbone and kneecap. The fibula is not typically associated with

More information

TOTAL KNEE ARTHROPLASTY (TKA)

TOTAL KNEE ARTHROPLASTY (TKA) TOTAL KNEE ARTHROPLASTY (TKA) 1 Anatomy, Biomechanics, and Design 2 Femur Medial and lateral condyles Convex, asymmetric Medial larger than lateral 3 Tibia Tibial plateau Medial tibial condyle: concave

More information

(12) United States Patent (10) Patent No.: US 6,413,232 B1

(12) United States Patent (10) Patent No.: US 6,413,232 B1 USOO6413232B1 (12) United States Patent (10) Patent No.: US 6,413,232 B1 Townsend et al. (45) Date of Patent: Jul. 2, 2002 (54) ORTHOPEDIC KNEE BRACE HAVING AN 5,807,294. A 9/1998 Cawley et al. ADJUSTABLE

More information

Section of total knee replacement. Total Knee Replacement System. Knieendoprothesen System. Système de prothèse totale de genou

Section of total knee replacement. Total Knee Replacement System. Knieendoprothesen System. Système de prothèse totale de genou Section of total knee replacement Total Knee Replacement System Knieendoprothesen System Système de prothèse totale de genou Introduction: This knee system features great versality with its modular component

More information

(12) Patent Application Publication (10) Pub. No.: US 2010/ A1

(12) Patent Application Publication (10) Pub. No.: US 2010/ A1 (19) United States US 2010.0125336A1 (12) Patent Application Publication (10) Pub. No.: US 2010/0125336A1 Johnson et al. (43) Pub. Date: May 20, 2010 (54) REVERSE SHOULDER PROSTHESIS (75) Inventors: Garth

More information

(12) Patent Application Publication (10) Pub. No.: US 2015/ A1

(12) Patent Application Publication (10) Pub. No.: US 2015/ A1 (19) United States US 20150.045902A1 (12) Patent Application Publication (10) Pub. No.: US 2015/0045902 A1 Perer (43) Pub. Date: Feb. 12, 2015 (54) SEMI CONSTRAINED POLYAXIAL (52) U.S. Cl. ENDOPROSTHETIC

More information

United States Patent (19) Labour et al.

United States Patent (19) Labour et al. United States Patent (19) Labour et al. (54) KNEE BRACE FOR PREVENTING LATERAL DISPLACEMENT OF THE PATELLA 76) Inventors: Donald Labour, 82 Wellsmere Rd., Roslindale, Mass. 02167; James R. Cannon, 22 Karen

More information

TRK REVISION KNEE Surgical Technique

TRK REVISION KNEE Surgical Technique 1 TRK REVISION KNEE Surgical Technique 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. INTERCONDYLAR RESECTION...... page FEMORAL STEM...... page NON CEMENTED FEMORAL STEM...... page TRIAL FEMORAL COMPONENTS...... page

More information

Revolution. Unicompartmental Knee System

Revolution. Unicompartmental Knee System Revolution Unicompartmental Knee System While Total Knee Arthroplasty (TKA) is one of the most predictable procedures in orthopedic surgery, many patients undergoing TKA are in fact excellent candidates

More information

United States Patent (19)

United States Patent (19) United States Patent (19) Koenig (54) (75) 73 21 22 (51) (52) (58) (56) ORTHOPEDICTOE IMPLANT Inventor: Assignee: Appl. No.: Fied: Int. Cl.... 4, 156,296 4,205,400 4,231,121 4,242,759 4,3, 136 4,568,348

More information

(12) Patent Application Publication (10) Pub. No.: US 2009/ A1

(12) Patent Application Publication (10) Pub. No.: US 2009/ A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0039210 A1 Yates et al. US 20090039210A1 (43) Pub. Date: Feb. 12, 2009 (54) (76) (21) (22) (60) CPAP HOSE SUPPORT SYSTEM Inventors:

More information

Distal Cut First Femoral Preparation

Distal Cut First Femoral Preparation Surgical Technique Distal Cut First Femoral Preparation Primary Total Knee Arthroplasty LEGION Total Knee System Femoral preparation Contents Introduction...3 DCF femoral highlights...4 Preoperative planning...6

More information

United States Patent (19) Wilson

United States Patent (19) Wilson United States Patent (19) Wilson 54 PROSTHETIC HIP 75) Inventor: Michael T. Wilson, Concord, Calif. 73) Assignee: Thomas Haslam, Houston, Tex.; a part interest 21 Appl. No.: 11,127 22 Filed: Feb. 12, 1979

More information

Piersch (45) Date of Patent: Jun. 29, 1993

Piersch (45) Date of Patent: Jun. 29, 1993 United States Patent (19) 11) USOO5222902A Patent Number: 5,222,902 Piersch (45) Date of Patent: Jun. 29, 1993 54 INTERLOCKING BLOCKS 3,890,738 6/1975 Bassani... 44.6/1 3,900,985 8/1975 Yoen... 44.6/124

More information

Intramedullary Tibial Preparation

Intramedullary Tibial Preparation Surgical Technique Intramedullary Tibial Preparation Primary Total Knee Arthroplasty LEGION Total Knee System Intramedullary tibial preparation Contents Introduction...2 IM tibial highlights...3 Preoperative

More information

Dual Articular.

Dual Articular. Dual Articular 2000 www.biomet.co.uk D e s i g n R a t i o n a l e The Dual Articular Knee has been in use since 1991 and offers a flexible reconstructive solution for total knee surgery; for both revision

More information

(12) Patent Application Publication (10) Pub. No.: US 2016/ A1

(12) Patent Application Publication (10) Pub. No.: US 2016/ A1 US 20160135857A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0135857 A1 Marrero, SR. (43) Pub. Date: May 19, 2016 (54) CURVEDTIBIOTALARFUSION NAIL AND Publication Classification

More information

Luminus Flex Total Knee System (Fixed Type) The Innovative Technology for Knee Replacement

Luminus Flex Total Knee System (Fixed Type) The Innovative Technology for Knee Replacement Luminus Flex Total Knee System (Fixed Type) The Innovative Technology for Knee Replacement Intro The Luminus-Flex Total Knee system takes its name from the English word "Luminous" An adjective meaning

More information

United States Patent (19) Groesch et al.

United States Patent (19) Groesch et al. United States Patent (19) Groesch et al. 54 DUMMY FOR CAR CRASH TESTING 75) Inventors: Lothar Groesch; Gabriel Netzer, both of Stuttgart; Lothar Kassing, Nufringen, all of Fed. Rep. of Germany 73) Assignee:

More information

The Knee. Prof. Oluwadiya Kehinde

The Knee. Prof. Oluwadiya Kehinde The Knee Prof. Oluwadiya Kehinde www.oluwadiya.sitesled.com The Knee: Introduction 3 bones: femur, tibia and patella 2 separate joints: tibiofemoral and patellofemoral. Function: i. Primarily a hinge joint,

More information

To describe he knee joint, ligaments, structure & To list the main features of other lower limb joints

To describe he knee joint, ligaments, structure & To list the main features of other lower limb joints To describe he knee joint, ligaments, structure & neurovascular supply To demonstrate the ankle joint anatomy To list the main features of other lower limb joints To list main groups of lymph nodes in

More information

(12) Patent Application Publication (10) Pub. No.: US 2016/ A1

(12) Patent Application Publication (10) Pub. No.: US 2016/ A1 US 2016O1 OO694A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0100694 A1 PELLETER (43) Pub. Date: Apr. 14, 2016 (54) KNEE PILLOW Publication Classification (71) Applicant:

More information

( 12 ) United States Patent 10 Patent No.: US 9, 788, 975 B2

( 12 ) United States Patent 10 Patent No.: US 9, 788, 975 B2 HAO WAKATI AKILIA UNUI CONTOH US009788975B2 ( 12 ) United States Patent 10 Patent No : US 9, 788, 975 B2 Li ( 45 ) Date of Patent : Oct 17, 2017 ( 54 ) METHOD OF ESTIMATING SOFT TISSUE ( 56 ) References

More information

(12) United States Patent

(12) United States Patent US008556757B2 (12) United States Patent Kilshaw (10) Patent No.: (45) Date of Patent: Oct. 15, 2013 (54) BICYCLE GEAR MECHANISM (76) Inventor: Richard J. Kilshaw, Lake Oswego, OR (US) *) Notice: Subject

More information

United States Patent (19)

United States Patent (19) United States Patent (19) Truax (54) DENTAL UNDERCUT APPLICATION DEVICE AND METHOD OF USE 75) Inventor: Lloyd H. Truax, Rochester, Minn. 73) Assignee: Tru-Tain, Inc., Rochester, Minn. (21) Appl. No.: 782,159

More information

CONTRIBUTING SURGEON. Barry Waldman, MD Director, Center for Joint Preservation and Replacement Sinai Hospital of Baltimore Baltimore, MD

CONTRIBUTING SURGEON. Barry Waldman, MD Director, Center for Joint Preservation and Replacement Sinai Hospital of Baltimore Baltimore, MD CONTRIBUTING SURGEON Barry Waldman, MD Director, Center for Joint Preservation and Replacement Sinai Hospital of Baltimore Baltimore, MD System Overview The EPIK Uni is designed to ease the use of the

More information

Resurfacing Distal Femur. Orthopaedic Salvage System

Resurfacing Distal Femur. Orthopaedic Salvage System Resurfacing Distal Femur Orthopaedic Salvage System Primary Arthroplasty OSS 3cm Resurfacing Distal Femur Distal Femoral Resection Drill and ream the distal femur in the following sequence: (Figure 1)

More information

United States Patent (19)

United States Patent (19) United States Patent (19) Kesling 54) ORTHODONTIC HOOKASSEMBLY AND APPLIANCE 75 Inventor: Christopher K. Kesling, LaPorte, Ind. 73 Assignee: TP Orthodontics, Inc., LaPorte, Ind. 21 Appl. No.: 852,046 22

More information

(12) United States Patent

(12) United States Patent (12) United States Patent Clark et al. USOO6306138B1 (10) Patent No.: US 6,306,138 B1 (45) Date of Patent: Oct. 23, 2001 (54) ACL FIXATION PIN AND METHOD (75) Inventors: Ron Clark, Pleasant Grove, UT (US);

More information

Biomechanics of the Knee. Valerie Nuñez SpR Frimley Park Hospital

Biomechanics of the Knee. Valerie Nuñez SpR Frimley Park Hospital Biomechanics of the Knee Valerie Nuñez SpR Frimley Park Hospital Knee Biomechanics Kinematics Range of Motion Joint Motion Kinetics Knee Stabilisers Joint Forces Axes The Mechanical Stresses to which

More information

Exercise 13. Articulations and Body Movements

Exercise 13. Articulations and Body Movements Exercise 13 Articulations and Body Movements Articulations Articulations, or joints, are points where a bone is connected to one or more other bones. Articulations hold the skeleton together. Articulations

More information

CLINICAL AND OPERATIVE APPROACH FOR TOTAL KNEE REPLACEMENT DR.VINMAIE ORTHOPAEDICS PG 2 ND YEAR

CLINICAL AND OPERATIVE APPROACH FOR TOTAL KNEE REPLACEMENT DR.VINMAIE ORTHOPAEDICS PG 2 ND YEAR CLINICAL AND OPERATIVE APPROACH FOR TOTAL KNEE REPLACEMENT DR.VINMAIE ORTHOPAEDICS PG 2 ND YEAR Evolution of TKR In 1860, Verneuil proposed interposition arthroplasty, involving the insertion of soft tissue

More information

IIII. United States Patent (19) Nolan et al. 11 Patent Number: 5,776,150 45) Date of Patent: Jul. 7, 1998

IIII. United States Patent (19) Nolan et al. 11 Patent Number: 5,776,150 45) Date of Patent: Jul. 7, 1998 United States Patent (19) Nolan et al. 54) SUTURE ASSIST DEVICE 75) Inventors: Leo J. Nolan; John P. Measamer, both of Cincinnati; James D. Staley, Jr., Loveland; Robert F. Welch, Maineville, all of Ohio

More information

Copyright 2003 Pearson Education, Inc. publishing as Benjamin Cummings. Dr. Nabil Khouri MD, MSc, Ph.D

Copyright 2003 Pearson Education, Inc. publishing as Benjamin Cummings. Dr. Nabil Khouri MD, MSc, Ph.D Dr. Nabil Khouri MD, MSc, Ph.D Pelvic Girdle (Hip) Organization of the Lower Limb It is divided into: The Gluteal region The thigh The knee The leg The ankle The foot The thigh and the leg have compartments

More information

The Knee Joint By Prof. Dr. Muhammad Imran Qureshi

The Knee Joint By Prof. Dr. Muhammad Imran Qureshi The Knee Joint By Prof. Dr. Muhammad Imran Qureshi Structurally, it is the Largest and the most complex joint in the body because of the functions that it performs: Allows mobility (flexion/extension)

More information

Surgical Technique. VISIONAIRE FastPak Instruments for the LEGION Total Knee System

Surgical Technique. VISIONAIRE FastPak Instruments for the LEGION Total Knee System Surgical Technique VISIONAIRE FastPak Instruments for the LEGION Total Knee System VISIONAIRE FastPak for LEGION Instrument Technique* Nota Bene The technique description herein is made available to the

More information

United States Patent (19) Martin

United States Patent (19) Martin United States Patent (19) Martin 54 DENTAL INSTRUMENT 76 Inventor: James A. Martin, Wieand Rd., P.O. Box 77, Milford Square, Pa. 18935 21 Appl. No.: 831,321 22 Filed: Feb. 20, 1986 Related U.S. Application

More information

Total Knee Original System Primary Surgical Technique

Total Knee Original System Primary Surgical Technique Surgical Procedure Total Knee Original System Primary Surgical Technique Where as a total hip replacement is primarily a bony operation, a total knee replacement is primarily a soft tissue operation. Excellent

More information

The Knee. Tibio-Femoral

The Knee. Tibio-Femoral The Knee Tibio-Femoral Osteology Distal Femur with Proximal Tibia Largest Joint Cavity in the Body A modified hinge joint with significant passive rotation Technically, one degree of freedom (Flexion/Extension)

More information

United States Patent (19) 11 Patent Number: 5,336,266 Caspari et al. 45 Date of Patent: Aug. 9, 1994

United States Patent (19) 11 Patent Number: 5,336,266 Caspari et al. 45 Date of Patent: Aug. 9, 1994 O USOO5336266A United States Patent (19) 11 Patent Number: Caspari et al. Date of Patent: Aug. 9, 1994 (54) KNEE JOINT PROSTHESIS 4,309,778 1/1982 Buechel et al.. 4,340,978 7/1982 Buechel et al.. 76) Inventors:

More information

(12) United States Patent

(12) United States Patent USOO9408723B2 (12) United States Patent Br?nemark et al. (54) CONNECTION DEVICE (71) Applicant: Integrum AB, Mölndal (SE) (72) Inventors: Rickard Branemark, Mölndal (SE); Birger Roos, Järfalla (SE); Erik

More information

76 Inventors: late Stella YErin, 5,479,944 1/1996 Petruson /858

76 Inventors: late Stella YErin, 5,479,944 1/1996 Petruson /858 USOO593.1799A United States Patent (19) 11 Patent Number: 5,931,799 Guastella et al. (45) Date of Patent: Aug. 3, 1999 54 PARASEPTAL SPLINT FOR USE IN 4,340,040 7/1982 Straith... 606/204.45 SURGICAL NASAL

More information

ANATOMIC. Navigated Surgical Technique 4 in 1 TO.G.GB.016/1.0

ANATOMIC. Navigated Surgical Technique 4 in 1 TO.G.GB.016/1.0 ANATOMIC Navigated Surgical Technique 4 in 1 TO.G.GB.016/1.0 SCREEN LAYOUT Take screenshot Surgical step Dynamic navigation zone Information area and buttons 2 SCREEN LAYOUT Indicates action when yellow

More information

Extramedullary Tibial Preparation

Extramedullary Tibial Preparation Surgical Technique Extramedullary Tibial Preparation Primary Total Knee Arthroplasty LEGION Total Knee System Extramedullary tibial preparation Contents Introduction...2 EM tibial highlights...3 Preoperative

More information

Abramsohn Retractor 1

Abramsohn Retractor 1 Abramsohn Retractor 1 Calibrated Femoral Tibial Spreaders Small Medium Large Designed to remain in position, with the femur and tibia separated, without the need of an assistant, and to minimize crushing

More information

(12) United States Patent

(12) United States Patent US007094007B2 (12) United States Patent Satran et al. (10) Patent No.: (45) Date of Patent: Aug. 22, 2006 (54) TANGENTIAL CUTTING INSERT AND MILLING CUTTER (75) Inventors: Amir Satran, Kfar Vradim (IL);

More information

BIOMECHANICAL MECHANISMS FOR DAMAGE: RETRIEVAL ANALYSIS AND COMPUTATIONAL WEAR PREDICTIONS IN TOTAL KNEE REPLACEMENTS

BIOMECHANICAL MECHANISMS FOR DAMAGE: RETRIEVAL ANALYSIS AND COMPUTATIONAL WEAR PREDICTIONS IN TOTAL KNEE REPLACEMENTS Journal of Mechanics in Medicine and Biology Vol. 5, No. 3 (2005) 469 475 c World Scientific Publishing Company BIOMECHANICAL MECHANISMS FOR DAMAGE: RETRIEVAL ANALYSIS AND COMPUTATIONAL WEAR PREDICTIONS

More information

CONSENSUS ORTHOPEDICS INC. CONSENSUS KNEE SYSTEM

CONSENSUS ORTHOPEDICS INC. CONSENSUS KNEE SYSTEM CONSENSUS ORTHOPEDICS INC. CONSENSUS KNEE SYSTEM IMPORTANT INFORMATION FOR SURGEON: PLEASE READ PRIOR TO IMPLANTING THIS DEVICE IN A CLINICAL SETTING. THE SURGEON SHOULD BE FAMILIAR WITH THE SURGICAL TECHNIQUE.

More information

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1 US 20040121286A1 (19) United States (12) Patent Application Publication (10) Pub No: US 2004/0121286 A1 Aravena et al (43) Pub Date: (54) ORGANIC SHAPED INTERFACE FOR Related US Application Data DENTAL

More information

[ICESTM-2018] ISSN Impact Factor

[ICESTM-2018] ISSN Impact Factor GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES MODELING AND FINITE ELEMENT ANALYSIS OF KNEE JOINT PROSTHESIS U.D.S.Prathap varma *1,S.Rajesh 2, B.Suresh Kumar 3 & P.Rama Murthy Raju 4 *1 M.TechScholar,

More information

and K n e e J o i n t Is the most complicated joint in the body!!!!

and K n e e J o i n t Is the most complicated joint in the body!!!! K n e e J o i n t K n e e J o i n t Is the most complicated joint in the body!!!! 1-Consists of two condylar joints between: A-The medial and lateral condyles of the femur and The condyles of the tibia

More information

United States Patent (19) Annoni

United States Patent (19) Annoni United States Patent (19) Annoni (54. TOOTH TRANSILLUMINATING LIGHT HOLDER 76) Inventor: Jerry D. Annoni, 450 Maple Ave., Vallejo, Calif. 94591 (21) Appl. No.: 427,850 22 Filed: Sep. 29, 1982 51) Int.

More information

Pre-Op Planning for your knee replacement surgery

Pre-Op Planning for your knee replacement surgery Pre-Op Planning for your knee replacement surgery Are You Considering Knee Replacement Surgery? Knee pain can be the result of injury, biomechanical problems, or disease. When stiffness and pain in your

More information

Endo-Model Unicondylar Sled Prosthesis. with MITUS Instrument Set. Implants & Instruments

Endo-Model Unicondylar Sled Prosthesis. with MITUS Instrument Set. Implants & Instruments Endo-Model Unicondylar Sled Prosthesis with MITUS Instrument Set Implants & Presented by: Waldemar Link GmbH & Co. KG Barkhausenweg 10 22339 Hamburg, Germany P.O. Box 63 05 52 22315 Hamburg, Germany Tel.:

More information

Uniglide. Unicompartmental Knee Replacement Mk III surgical technique

Uniglide. Unicompartmental Knee Replacement Mk III surgical technique Uniglide Unicompartmental Knee Replacement Mk III surgical technique Uniglide Contents Operative summary 4 Pre-operative assessment 6 Preparation 7 Incision 7 Approach 7 Medial procedure 8 Tibial preparation

More information

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0149040 A1 Haines et al. US 2005O149040A1 (43) Pub. Date: Jul. 7, 2005 (54) (76) (21) (22) (60) METHODS AND APPARATUS FOR ORTHOPEDIC

More information

United States Patent (19) 11 Patent Number: 4,821,355 Burkhardt (45) Date of Patent: Apr. 18, 1989

United States Patent (19) 11 Patent Number: 4,821,355 Burkhardt (45) Date of Patent: Apr. 18, 1989 United States Patent (19) 11 Patent Number: 4,821,5 Burkhardt () Date of Patent: Apr. 18, 1989 (54) SELF-ADJUSTING ORTHOPEDIC 4,447,922 5/1984 Brochu... 5/434 CERVICAL PLLOW 4,528,705 7/1985 Greenawalt...

More information

(12) (10) Patent No.: US 7,156,853 B2. Muratsu (45) Date of Patent: Jan. 2, 2007

(12) (10) Patent No.: US 7,156,853 B2. Muratsu (45) Date of Patent: Jan. 2, 2007 United States Patent US007 156853B2 (12) () Patent No.: US 7,156,853 B2 Muratsu (45) Date of Patent: Jan. 2, 2007 (54) MEASURING APPARATUS FOR TOTAL 5,911,723 A * 6/1999 Ashby et al.... 606, 88 KNEE REPLACEMENT

More information

Anatomy and Physiology 1 Chapter 9 self quiz Pro, Dima Darwish,MD.

Anatomy and Physiology 1 Chapter 9 self quiz Pro, Dima Darwish,MD. Anatomy and Physiology 1 Chapter 9 self quiz Pro, Dima Darwish,MD. 1) Joints can be classified structurally as A) bony. B) fibrous. C) cartilaginous. D) synovial. E) All of the answers are correct. 2)

More information

United States Patent (19)

United States Patent (19) United States Patent (19) Fung (54) DENTAL CROWN 76) Inventor: John Fung, 627 George Street, Sydney, NSW 2000, Australia (21) Appl. No.: 969,186 (22) PCT Filed: Jul. 5, 1991 (86). PCT No.: PCT/AU91/00300

More information

(12) United States Patent (10) Patent No.: US 7,128,575 B1. Sohn (45) Date of Patent: Oct. 31, 2006

(12) United States Patent (10) Patent No.: US 7,128,575 B1. Sohn (45) Date of Patent: Oct. 31, 2006 US007128575B1 (12) United States Patent (10) Patent No.: US 7,128,575 B1 Sohn (45) Date of Patent: Oct. 31, 2006 (54) TOOTHELEVATOR 1,762,888 A 6/1930 Roberts... 433/159 2,030,798 A 2/1936 Krajeski......

More information

Biomechanics of. Knee Replacement. Mujda Hakime, Paul Malcolm

Biomechanics of. Knee Replacement. Mujda Hakime, Paul Malcolm Biomechanics of Knee Replacement Mujda Hakime, Paul Malcolm 1 Table of contents Knee Anatomy Movements of the Knee Knee conditions leading to knee replacement Materials Alignment and Joint Loading Knee

More information

Femoral / Tibial Augmentation. Orthopaedic Salvage System

Femoral / Tibial Augmentation. Orthopaedic Salvage System Femoral / Tibial Augmentation Orthopaedic Salvage System OSS Tibial Block Augments Preparation To utilize the OSS tibial block augments (available as 10mm universal and 20mm side-specific components),

More information

Evolution. Medial-Pivot Knee System The Bi-Cruciate-Substituting Knee. Key Aspects

Evolution. Medial-Pivot Knee System The Bi-Cruciate-Substituting Knee. Key Aspects Evolution Medial-Pivot Knee System The Bi-Cruciate-Substituting Knee Key Aspects MicroPort s EVOLUTION Medial-Pivot Knee System was designed to recreate the natural anatomy that is lost during a total

More information

TOTAL KNEE ARTHROPLASTY SYSTEM

TOTAL KNEE ARTHROPLASTY SYSTEM SURGICAL TECHNIQUE TOTAL KNEE ARTHROPLASTY SYSTEM 90-SRK-700000 B.0 0 Contents 1. Implant Sizing 2. Surgical Technique a. Incision and Exposure b. Distal Femoral Resection c. Tibial Resection d. Femoral

More information

Masterclass. Tips and tricks for a successful outcome. E. Verhaven, M. Thaeter. September 15th, 2012, Brussels

Masterclass. Tips and tricks for a successful outcome. E. Verhaven, M. Thaeter. September 15th, 2012, Brussels Masterclass Tips and tricks for a successful outcome September 15th, 2012, Brussels E. Verhaven, M. Thaeter Belgium St. Nikolaus-Hospital Orthopaedics & Traumatology Ultimate Goal of TKR Normal alignment

More information

TKA Gap Planning. Supporting healthcare professionals

TKA Gap Planning. Supporting healthcare professionals TKA Gap Planning The NAVIO TKA Gap Planning stage helps you adjust the plan based on gap information between the femur and tibia implants. Supporting healthcare professionals Interactive Views Four interactive

More information

(12) United States Patent (10) Patent No.: US 7, B2

(12) United States Patent (10) Patent No.: US 7, B2 US007052479B2 (12) United States Patent (10) Patent No.: US 7,052.479 B2 Drennan (45) Date of Patent: May 30, 2006 (54) TRACTION DEVICE 3,762.405 A * 10/1973 De George... 602/23 3,771,519 A * 11/1973 Haake......

More information

Surgical Technique. VISIONAIRE Disposable Instruments for the LEGION Total Knee System

Surgical Technique. VISIONAIRE Disposable Instruments for the LEGION Total Knee System Surgical Technique VISIONAIRE Disposable Instruments for the LEGION Total Knee System VISIONAIRE and LEGION Disposable instrument technique* Note: All disposable instruments are interchangeable with the

More information

(12) Patent Application Publication (10) Pub. No.: US 2014/ A1

(12) Patent Application Publication (10) Pub. No.: US 2014/ A1 (19) United States US 2014001 1160A1 (12) Patent Application Publication (10) Pub. No.: US 2014/0011160 A1 JOrneus et al. (43) Pub. Date: Jan. 9, 2014 (54) (71) (72) (73) (21) (22) (30) ABUTMENT SYSTEMAND

More information

(12) United States Patent (10) Patent No.: US 7.690,305 B2

(12) United States Patent (10) Patent No.: US 7.690,305 B2 US0076903 05B2 (12) United States Patent (10) Patent No.: US 7.690,305 B2 Harjula et al. (45) Date of Patent: Apr. 6, 2010 (54) INCREMENT CHARGE FOR 4,408,534 A * 10, 1983 Araki et al.... 102.288 FIN-STABILIZED

More information

Joints Outline 8.1 Joints are classified into three structural and three functional categories (p. 251; Table 8.1) A. Joints are classified by

Joints Outline 8.1 Joints are classified into three structural and three functional categories (p. 251; Table 8.1) A. Joints are classified by Joints Outline 8.1 Joints are classified into three structural and three functional categories (p. 251; Table 8.1) A. Joints are classified by structure and by function: Structural classification focuses

More information

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1 (19) United States US 20030236572A1 (12) Patent Application Publication (10) Pub. No.: US 2003/0236572 A1 Bertram, III (43) Pub. Date: Dec. 25, 2003 (54) TOTAL JOINT REPLACEMENTS USING MAGNETISM TO CONTROL

More information

(12) United States Patent (10) Patent No.: US 6,796,977 B2

(12) United States Patent (10) Patent No.: US 6,796,977 B2 USOO6796977B2 (12) United States Patent (10) Patent No.: US 6,796,977 B2 Yap et al. (45) Date of Patent: Sep. 28, 2004 (54) VARIABLE GRAFTTENSIONER 5,397.357 * 3/1995 Schmieding et al.... 606/86 5,415,651

More information

To classify the joints relative to structure & shape

To classify the joints relative to structure & shape To classify the joints relative to structure & shape To describe the anatomy of the hip joint To describe the ankle joint To memorize their blood & nerve supply JOINTS: Joints are sites where skeletal

More information

Mako Partial Knee Medial bicompartmental

Mako Partial Knee Medial bicompartmental Mako Partial Knee Medial bicompartmental Surgical reference guide Mako Robotic-Arm Assisted Surgery Table of contents Implant compatibility.... 3 Pre-operative planning.... 4 Intra-operative planning....

More information

(12) Patent Application Publication (10) Pub. No.: US 2014/ A1

(12) Patent Application Publication (10) Pub. No.: US 2014/ A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0288562 A1 Von Zabern et al. US 20140288562A1 (43) Pub. Date: Sep. 25, 2014 (54) (71) (72) (21) (22) SYSTEMAND METHOD FOR PERFORMING

More information

United States Patent (19) James

United States Patent (19) James United States Patent (19) James 54 DEVICE FOR DISPENSING MEDICAMENTS (75) Inventor: Michael James, Welwyn Garden City, England Allen & Hanburys Limited, London, 73 Assignee: England (21) Appl. No.: 767,518

More information

The Knee. Two Joints: Tibiofemoral. Patellofemoral

The Knee. Two Joints: Tibiofemoral. Patellofemoral Evaluating the Knee The Knee Two Joints: Tibiofemoral Patellofemoral HISTORY Remember the questions from lecture #2? Girth OBSERVATION TibioFemoral Alignment What are the consequences of faulty alignment?

More information

SE CE. E. E. C. alignment.

SE CE. E. E. C. alignment. USOO6478799B1 (12) United States Patent (10) Patent No.: US 6,478,799 B1 Williamson (45) Date of Patent: Nov. 12, 2002 (54) INSTRUMENTS AND METHODS FOR USE FOREIGN PATENT DOCUMENTS N PERFORMING KNEE SURGERY

More information

Zimmer FuZion Instruments. Surgical Technique (Beta Version)

Zimmer FuZion Instruments. Surgical Technique (Beta Version) Zimmer FuZion Surgical Technique (Beta Version) INTRO Surgical Technique Introduction Surgical goals during total knee arthroplasty (TKA) include establishment of normal leg alignment, secure implant fixation,

More information

LPS SYSTEM POCKET GUIDE

LPS SYSTEM POCKET GUIDE LPS SYSTEM POCKET GUIDE Implants Procedural Uses Instruments & Trials L P S Limb Preservation System L P S Limb Preservation System The purpose of this document is to review the LPS (Limb Preservation

More information

(12) United States Patent

(12) United States Patent USOO951 0624B2 (12) United States Patent Li et al. (10) Patent No.: (45) Date of Patent: US 9,510,624 B2 Dec. 6, 2016 (54) DISPOSABLE ELECTRONIC CIGARETTE (75) Inventors: Yonghai Li, Shenzhen (CN); Zhongli

More information

(12) Patent Application Publication (10) Pub. No.: US 2008/ A1

(12) Patent Application Publication (10) Pub. No.: US 2008/ A1 US 20080082047A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2008/0082047 A1 Harmon (43) Pub. Date: Apr. 3, 2008 (54) VEIN HOLDER (52) U.S. Cl.... 604/115 (76) Inventor: Stoney

More information