Cell Structure and Function. The Basic Unit of Life

Similar documents
Organelles Found in a Generalized Animal Cell

Chapter 7 Notes. Section 1

LIFE IS CELLULAR. Cell Theory. Cells Are Small. Prokaryotic Cell 10/4/15. Chapter 7 Cell Structure and Function

Chapter Seven. A View of the Cell

Cellular Structure and Function. Chapter 7

Chapter 7: Cell Structure and Function

Chapter Seven. A View of the Cell

Unit 2 Notes: Cells. What you need to know:

Cell Structure and Function

8/7/18. UNIT 2: Cells Chapter 3: Cell Structure and Function. I. Cell Theory (3.1) A. Early studies led to the development of the cell theory

Notes Chapter 7 Cell Structure and Function Hooke looked at cork under a simple microscope and found tiny chambers he named cells.

The Cell. The building blocks of life

Interest Grabber. All living things are made up of cells. Some organisms are composed of only one cell. Other organisms are made up of many cells.

Cell Theory. Cells are the basic unit of life.

Lesson 1. Cell Theory - Statements - Exceptions. Categorizing Cells - Prokaryotes vs Eukaryotes

Eukaryotic Cell Structures

What did Robert Hooke call the boxes that he observed in cork? Cells

UNIT 2: Cells Chapter 3: Cell Structure and Function

A small, membrane-bound compartment capable of performing all the basic functions of life

Cell Theory Vocabulary Flashcards

CELL STRUCTURE AND FUNCTION. Chapter 7

Cell Theory Vocabulary Flashcards

Cell Structure & Interactions

Cell Structure and Function Chapter 3, Day 1 Notes

CHAPTER 4 - CELLS. All living things are made up of one or more cells. A cell is the smallest unit that can carry on all of the processes of life.

Cell Structure and and Function Chapter 4

Chapter 7. (7-1 and 7-2) A Tour of the Cell

Think About it. Prokaryotic v. Eukaryotic Cells. The Discovery of the Cell. The cell theory states: Exploring the Cell 10/10/2016

Plant Cells. Chapter 3

Eukaryotic Cell Structure

First to View Cells. copyright cmassengale

First discovered in 1665 since then every organism observed with microscopes shows cells

Cell Structure and Function

Name: Class: Date: Cell Structure and Transport Take Home Exam

Cellular Boundaries. Cell Organelles. The Nucleus and Cell Control. Cell Membrane. Cell Wall. Nucleus 10/11/2012. Cell Membrane Cell Wall

Organelles. copyright cmassengale 1

Cells and Homeostasis Vocabulary Key. Unicellular organism: An organism having only one cell but carries out all life functions

Study Guide for Biology Chapter 5

Slide 2 of 47. Copyright Pearson Prentice Hall. End Show

Lab 3: Cellular Structure and Function

The Cell. The smallest unit of life that can perform all life processes.

Chapter 4 Organization of the Cell

NOTES CELL UNIT WHAT IS A CELL? cell unicellular multicellular DISCOVERY OF CELLS Robert Hooke Anton van Leeuwenhoek THE CELL THEORY

The Cell. Biology 105 Lecture 4 Reading: Chapter 3 (pages 47 62)

Cell Structure and Function Cell Structure and function

Cell Boundaries Section 7-3

CELL PART OF THE DAY. Chapter 7: Cell Structure and Function

A View of the Cell CHAPTER 7

Cell Basics. Basic Unit of Life. Prokaryotic. Eukaryotic. Plant Cell. Has a nucleoid (not a nucleus) Bacteria. Very Complex.

Cell Category? Prokaryote

The Fundamental Unit of Life. Intext Exercise 1

History of the Cell. History of the Cell 10/24/2013. Unit 3: Cellular Structure and Function. Robert Hooke (1665) Robert Hooke (1665)

Objectives. To determine the differences between plant and animal cells To discover the structure and function of cellular organelles.

Cytoskeleton. Provide shape and support for the cell. Other functions of the cytoskeleton. Nucleolus. Nucleus

Plants, Animals, Fungi and Protists have Eukaryotic Cell(s)

CH 7 CELL STRUCTURE AND FUNCTION

Unit 2 Warm Ups. Equilibrium

Smallest living unit Most are microscopic

Cell Structure and Function

Lesson Overview. 7.2 Cell Structure

STRUCTURE AND FUNCTION OF THE CELL

Cell Anatomy Anatomy = the study of the structures and components of an organism

THE CELL Cells: Part 1

Look at the following images, what are some similarities and differences between the cells?

Cells. Prokaryotic vs. Eukaryotic Euakryotic cells are generally one to one hundred times bigger than prokaryotic cells

Cytosol the fluid Cytoplasm cell interior, everything outside the nucleus but within the cell membrane, includes the organelles, cytosol, and

Eukaryotic cells contain organelles that allow the specializations and the separation of functions within the cell.

The Cell. BIOLOGY OF HUMANS Concepts, Applications, and Issues. Judith Goodenough Betty McGuire


Mr. Powner Biology Cell Structure & Function Quiz Image Guide. Do NOT Write on this page. It is an Image guide for test questions.

BIOLOGY 111. CHAPTER 3: The Cell: The Fundamental Unit of Life

CELLS CELL THEORY. There are two types of cells: 9/26/2016 CELLULAR COMPONENTS & PROCESES. Which is more complicated? REMEMBER YOU ARE EUKARYOTIC!

Class IX Chapter 5 The Fundamental Unit of Life Science

3UNIT. Photosynthesis and. Cellular Respiration. Unit PreQuiz? General Outcomes. Unit 3 Contents. Focussing Questions

Chapter 7: Cells Review Packet Name: 1. endoplasmic reticulum The organelle made up of internal membranes where lipids and proteins are synthesized

CELL STRUCTURE & FUNCTION

Chapters 2 and 3. Pages and Pages Prayer Attendance Homework

Transport. Slide 1 of 47. Copyright Pearson Prentice Hall

Cell Structure and Function C H A P T E R 7

Human Epithelial Cells

Objectives. By the end of the lesson you should be able to: State the 2 types of cells Relate the structure to function for all the organelles

Organelles Defined. Class Copy CELL STUDY NOTES Class Copy

Basic Structure of a Cell. copyright cmassengale

Cell and Cell Membrane Structure and Function

CELL (PLASMA) MEMBRANE

Plant organelle used for storage. Some store starches and lipids and pigments. Named according to the color or pigment that they contain.

Household pin w/ bactera. Cell Structure and Function

Journey to the World of Cells

Chapter 3: Cell Structure and Function Assignment

1) All organisms are made up of one or more cells and the products of those cells.

Cell Structure and Function

Unit 2:The Cell. Section 3: Organelle Structure and Function Mrs. McNamara Biology

Modern Cell Theory. Plasma Membrane. Generalized Cell Structures. Cellular Form and Function. Three principle parts of a cell

Name Class Date. cell theory organelle eukaryotic cell. MAIN IDEA: Early studies led to the development of the cell theory.

Study Guide A. Answer Key. Cell Structure and Function

The Discovery of the Cell

LECTURE 3 CELL STRUCTURE

Warm Up (Discussion )

7-2 : Plasma Membrane and Cell Structures

Transcription:

Cell Structure and Function The Basic Unit of Life

The Discovery of the Cell Robert Hooke The word " cell was first used in late 1665 by Robert Hooke. He looked at thin slices of cork (plant cells) under the microscope.

Today we know that cells are not empty chambers, but contain much living matter. Cork seemed to be made of thousands of tiny, empty chambers. Hooke called these chambers cells because they reminded him of the tiny rooms in which he lived in the monastery.

Anton van Leeuwenhoek late 1600 s Leeuwenhoek made many simple microscopes to observe things in nature that interested him. He discovered the hidden world of microorganisms in a drop of water. He called them little beasties. He was the first to:. see and describe microorganisms under the microscope.

On the road to the cell theory. Matthias Schleiden German botanist Theodore Schwann Zoologist Schleiden said that all plants are made of cells. Schwann said that all animals are made of cells.

Virchow 1858 In 1858, Rudolph Virchow said that cells could only arise from preexisting cells.

The Cell Theory 2. Cells are the basic units of structure and function in living things. 3. New cells are produced from existing cells. 1. All living things are composed of cells.

Energy Requirements of Living Organisms Living organisms need a constant supply of energy to maintain themselves and to grow and reproduce. Heterotrophs Heterotrophs are consumers. Examples: All Animals The Fungi Heterotrophs cannot. make their own food They must get it from outside sources

Autotrophs Autotrophs can make their own food and are not dependent on outside sources for their food. Autotrophs are producers. Examples include: All green plants, some protists, and some bacteria.

All cells must be able to perform Ingestion: the following functions. Digestion The taking in of food and water. Breaking down food into small molecules that can be used by the cell.

Cyclosis: The movement of materials inside a cell. Respiration: Burning food for energy; the release of energy from food. Biosynthesis: Using the energy from food for growth and repair. Excretion: The removal of liquid waste from the cell.

Egestion: The removal of solid waste from the cell. Movement:

May be sexual. Reproduction or asexual.

Irritability: A substance made in one place, but used in another place Responding to a stimulus Secretion:

Structures of Animal Cells Organelles are the specialized structures found within a cell. Each organelle has a specific job or function. A cell is divided into 2 parts: Nucleus: The control center of the cell. Cytoplasm: The portion of the cell outside of the nucleus.

Organelles Found in a Generalized Animal Cell 1. Cell Membrane 2. Cytoplasm 3. Nucleus 4. Nuclear Membrane 5. Nucleoplasm 6. Nucleolus 7. Chromosomes 8. Vacuole 9. Ribosomes 10. Rough Endoplasmic Reticulum

Organelles Found in a Generalized Animal Cell 11. Golgi Apparatus 12. Lysosome 13. Mitochondria 14. Centrioles 15. Smooth Endoplasmic Reticulum

The nucleus is the control center of the cell. The Nucleus The nucleus contains nearly all of the cell s. DNA The DNA has the instructions for making proteins and other important molecules. The nucleus is surrounded by a. nuclear membrane chromosomes nucleolus nuclear membrane pores The nuclear membrane is a double membrane that is dotted with thousands of pores. These pores allows materials to move into and out of the nucleus.

The chromosomes are made of DNA and have two functions: To contain the genetic information that is passed from one generation to the next. To control the cell s activities. The Nucleoplasm is the semi-liquid portion inside the nucleus.

There are 2 subunits the large subunit and the small subunit. Nucleolus ribosome The nucleolus manufactures the subunits that make up ribosomes. Large subunit Small subunit These subunits then pass through the pores of the nucleus to the cytoplasm where they combine to form ribosomes.

Functions of the Nucleus The nucleus is the carrier of the genetic information because this is where the genes are found. The nucleus controls the reproduction of the cell. The nucleus controls all of the activities of the cell. The nucleus directs protein synthesis by sending messages out to the ribosomes.

Ribosomes may be found, free floating in the cytoplasm or they may be found attached. to the endoplasmic reticulum Ribosomes Ribosomes are the most numerous of the cell s organelles. Ribosomes are the site of protein synthesis. All proteins of the cell are made by the ribosomes.

Endoplasmic Reticulum The internal membrane system of a cell is known as the endoplasmic reticulum. This system of membranes is so extensive throughout the cell that it accounts for more than half the total membrane in a cell. It connects the nuclear membrane to the. cell membrane

Smooth endoplasmic reticulum The smooth endoplasmic reticulum has no. ribosomes The function of the smooth endoplasmic reticulum is to make: lipids that will be used in the cell membrane. Rough endoplasmi c reticulum The rough endoplasmic reticulum has ribosomes attached to it. This type of endoplasmic reticulum is involved in the making of. proteins Newly made proteins leave the ribosome and are inserted into spaces of the endoplasmic reticulum where they are modified and shaped into a functioning protein.

Golgi Apparatus Proteins that were produced in the rough endoplasmic reticulum now move to the Golgi apparatus. The Golgi apparatus appears as a stack of loosely connected membranes. The function of the Golgi is to modify, sort and package the proteins that have arrived from the endoplasmic reticulum. These proteins will either be stored inside the cell or be secreted to the outside of the cell. The finishing touches are put on proteins here before they are shipped off to their final destinations.

Lysosomes are filled with: very strong digestive enzymes. Lysosomes One function is the: digestion of carbohydrates, proteins, and lipids into small molecules that can be used by the rest of the cell. They recycle the cell's own organic materials, breaking them down into their building blocks, and returning them to the cytoplasm to be used again. Lysosomes are responsible for destroying old organelles that can no longer carry out their function.

Lysosomes help to clean up or destroy any debris that might build up inside the cell. Lysosomes are surrounded by a, thick membrane because the cell would be destroyed if the enzymes were released.

A vacuole is a storage area Vacuoles inside a cell. A vacuole may store water, salts, proteins, and carbohydrates.

Mitochondria The mitochondria is the powerhouse of the cell. The purpose of the mitochondria is: cellular respiration. Cellular respiration is the process of converting glucose or sugar molecules into a usable form of energy for the cell.

Mitochondria have an inner membrane and an outer membrane. The folds on the inner membrane are known as cristae. 100's or 1000's may be found in a cell. The cristae increase the surface area for respiration.

The Cytoskeleton The organelles of a cell do not float freely in the cytoplasm. Cells must have an internal framework and support system to give shape and organization to a cell.

The cytoskeleton is a network of protein tubes and fibers that helps the cell to maintain its shape. The cytoskeleton is also involved in movement. Two of the types of fibers found in the cytoskeleton are microfilaments and microtubules.

Microfilaments are Microfilaments Microfilaments also help cells to move. They can assemble and disassemble rapidly causing movement. solid, threadlike, protein structures. Microfilaments form extensive frameworks inside the cell to give support to the cell. They help to bear mechanical stress.

Microtubules are hollow structures. Functions include: Cell Shape The separation of chromosomes during cell division The formation of cilia and flagella

The Cell Membrane Also called the plasma membrane. Maintains the shape of the cell. Separates one animal cell from the next. Regulates the passage of materials into and out of the cell. Lipids Proteins Made mostly of lipids and proteins.

A plant cell has many of the same parts found inside an animal cell, but there are a few organelles that are only found in plant cells. The Plant Cell 1 Golgi Apparatus 2 Mitochondria 3 Central Vacuole 4 Chloroplasts 5 Ribosomes 6 Endoplasmic Reticulum 7 Nucleus 8 Cytoplasm 9 Cell Wall 10 Cell Membrane

Differences Between Plant and Animal Cells Animal Cells Structures never found in plant cells: Lysosomes Centrioles Flagella Structures never found in animal cells: Plastids (Chloroplasts) Central Vacuole Cell Wall Plant Cells

Large, Central Vacuole Central Vacuole A central vacuole is a very large vacuole found in mature plant cells. When filled with water, it creates turgor pressure to give strength and support to the cell. This allows the plant to support heavy structures such as flowers and leaves. It can also serve as a storage area for organic compounds

There are three types of plastics found in plant cells: Plastids Chloroplasts Chromoplasts Leukoplasts

thylakoids Chloroplasts are surrounded by an outer and an inner membrane. Chloroplasts Chloroplasts are only found in plant cells and other unicellular organisms that do. photosynthesis A chloroplast is where photosynthesis takes place. Chloroplasts absorb the energy from the sun and convert it to the chemical energy of a molecule of glucose or sugar. A chloroplast is similar to a solar power plant. Inside the chloroplast are large stacks of other membranes called. thylakoids These thylakoids contain the green pigment chlorophyll which is required for. photosynthesis

Chromo means color. Chromoplasts contain pigments of all colors except green. Chromoplasts give fruits and flowers their colors. Flowers need color to attract insects for pollination. Fruits need color to attract animals for seed dispersal.

Leukoplasts Leukoplasts have no color. This is an area of starch storage inside a cell.

Cell Wall The cell wall is a supporting structure found in the cells of plants and fungi. The main function of the cell wall is to provide support and protection for the cell. The cell wall is composed mostly of cellulose, a tough carbohydrate fiber.

The different levels of cellular organization include: Unicellular Colonial Multicellular

Unicellular Organisms A unicellular organism is composed of a single cell. Colonial Organisms Examples: bacteria, yeast, ameba 1. Unicellular organisms that live together in groups. 2. The cells have no relationship to each other. 3. There is no specialization or differentiation.

Multicellular Organisms 1. A multicellular organism is a group of cells that live and work together in one organism. 2. There is differentiation and cell specialization. 3. Advantage of having cell specialization: A cell that only has to do one function can be much more efficient at that one job. 4. Disadvantage of cell specialization: The cells are dependent upon one another. If one group of cells fails to do its job, the other cells will perish.

Levels of Organization 1. Cell Specialization: 2. Tissue: A cell that becomes specialized for just one function A group of similar cells all performing a similar activity 3. Organ: A group of several tissues functioning as a unit and performing the same function. 4. Organs work together to form systems. 5. Various systems work together to form a multicellular organism.

Prokaryotic and Eukaryotic Cells All cells have two characteristics in common: They are surrounded by a barrier called a cell membrane. They contain DNA. All cells fall into two broad groups, depending on whether or not they contain a nucleus. Prokaryotic Cells Eukaryotic Cells

Prokaryotic Cells Prokaryotic cells lack a nucleus and membrane-bound organelles. Prokaryotic cells have genetic material (DNA) that is not contained inside a nucleus. No membrane separates this from the rest of the cell. Prokaryotic cells are generally smaller and simpler than eukaryotic cells. Prokaryotic cells have a cell wall. Prokaryotic cells have cell membranes and ribosomes. Bacteria are prokaryotic cells.

Eukaryotic Cells Eukaryotic cells are generally larger and much more complex than prokaryotic cells. Eukaryotic cells have: A true nucleus and membrane-bound organelles. Plants, animals, protists, and fungi all have eukaryotic cells. Eukaryotic cells contain a nucleus which is kept separate from the rest of the cell.

Structure of the Cell Membrane 1 Cell Membrane 2 Proteins 3 Lipid Bilayer 4 Carbohydrates 5 Transport Proteins

The cell membrane regulates what enters and what leaves the cell. It also provides protection and support to the cell. The membrane consists of a lipid bilayer (double layer) in which proteins are embedded. The lipid bilayer gives the membrane a flexible structure that forms a strong barrier between the inside and the outside of the cell. Many of the proteins form channels and pumps to help move materials across the membrane. The carbohydrates serve as identification markers to help individual cells to identify one another.

. is a balance that organisms maintain through self-regulating adjustments. It requires self-regulation of materials coming into the cell and going out of the cell. The cell is an open system: it requires the constant inflow of matter and energy and the constant out flow of waste.

It can control the speed at which molecules are allowed to enter. The cell membrane is called a selectively permeable membrane or a semipermeable membrane. It has the ability to let one substance pass through more readily than others; some materials are not allowed to enter at all.

The Concentration Gradient In the absence of other forces, materials will tend to move from an area of high concentration to an area of lower concentration. High Low Label the area of higher concentration. Label the area of lower concentration. Draw an arrow on the drawing showing the direction of movement for this solute. High Concentration Low Concentration Cell membrane

Describe what is happening in the drawing below. A) There is a higher concentration of solute molecules on one side of the membrane. A. B. C. B. The solute molecules move from the side of higher concentration to the side of lower concentration. This movement will continue until the concentration is equal on both sides of the membrane. C. Equilibrium has been reached; the concentration is equal on both sides of the membrane. There will still be movement in both directions, but the concentrations will remain equal.

Passive transport means that no energy is being used to move molecules across the membrane. Diffusion is the spreading out of molecules from a region of high concentration to a region of low concentration. In which direction will the salt molecules move? 20 % salt solution 5% salt solution The salt will move from the high side to the low side. The salt will move out of the bag and into the water.

Osmosis Osmosis is the movement of water across a membrane from a region of high concentration to a region of low concentration. In which direction will the water molecules move? The bag is 80% water The solution is 95% water. H 2 O 20 % salt solution 5% salt solution H 2 O H 2 O The water will move from the high side to the low side. The water will move into the bag.

a)isotonic Solution a)hypertonic Solution b)hypotonic Solution

Types of Solutions: Isotonic Isotonic Animal Cell Plant Cell The amount of water is the same on the inside and the outside of the cell. Water will still flow back and forth across the membrane, but at the same rate in both directions. Water in Water out Water in Water out The concentration of water is equal on both sides of the membrane. Water moves in and out of the cell at the same rate.

Types of Solutions: Hypertonic Type of Solution Animal Cell Plant Cell If a cell is placed in a hypertonic solution, there is more water on the inside of the cell than outside on the of the cell. There is a net movement out of water of the cell. Water moves out. Plasmolysis has occurred. Water moves out. Plasmolysis has occurred. Plasmolysis: Too much water moves out and the cell collapses.

Types of Solutions: Hypotonic Type of Solution Animal Cell Plant Cell If a cell is placed in a hypotonic solution, there is more water on the outside of the cell than on the inside of the cell. There is a net movement of water into the cell. Water enters cell. Cytolysis has occurred. Cytolysis: Too much water moves in and the cell membrane bursts because of the water pressure. Water enters cell. In cells with a cell wall, cytolysis is not likely to occur. The central vacuole of a plant cell will become extremely full of water. Turgor pressure will increase. This helps to give structure and support to a plant cell.

Label the drawing as we work through this. 1. The bag contains a 20% salt solution. 2. The water surrounding the bag is pure (100%) water. 3. What is the concentration of water inside the bag? 80%water Salt moves out. 20% salt Water moves in. 80%water hypertonic hypotonic 100% water Water always moves from an area of higher concentration to an area of lower concentration. In other words, water moves from the hypotonic side to the hypertonic side. 4. Is the bag hypotonic or hypertonic to the water on the outside? hypertonic 5. Is the water on the outside hypertonic or hypotonic to the bag? hypotonic 6. In which direction will water move? Water moves in. 7. In which direction will salt move? Salt moves out. 8. What process might occur if too much water moves into the bag? cytolysis 9. The movement of the salt and the water will continue until??? Both sides are equal. 10. After equilibrium has been reached, what will happen to the movement of these molecules? Movement will continue in both directions, but the equilibrium will be maintained.

Label the drawing as we work through this. 1. The bag contains a 40% sugar solution. 2. The water solution surrounding the bag contains a 40% sugar solution. 40% sugar 60% water 40% sugar 60% water Water moves in and out. 3. What is the concentration of water inside the bag? 4. What is the concentration of water on the outside of the bag? 60% water 5. What type of solutions are these? 6. In which direction isotonic will water move? Water moves in and out. 60% water

Label the drawing as we work through this. 1. The bag contains a 5% salt solution. 2. The water surrounding the bag contains a 25% salt solution. Salt moves in. 5% salt 95% water hypotonic 25% salt 75% water Water moves out. hypertonic 3. What is the concentration of water inside the bag? 95% water 4. What is the concentration of water outside the bag? 75% water 5. Is the bag hypotonic or hypertonic to the water on the outside? hypotonic 6. Is the water on the outside hypertonic or hypotonic to the bag? 7. In which direction will hypertonic water move? 8. In which direction will Water salt moves move? out. 9. What process might occur Salt moves if too in. much water leaves the bag? Water always moves from an area of concentration to an area of lower concentration. In other words, water moves from the hypotonic side to the hypertonic side. higher 10. The movement of the plasmolysis salt and the water will continue until??? 11. After equilibrium Both has sides been are reached, equal what will happen to the movement of these molecules? Movement will continue in both directions, but the equilibrium will be maintained.

Facilitated Diffusion Polar molecules (water, glucose) have difficulty crossing through the lipid bilayer of the membrane. Transport protein High concentration Transport proteins help these molecules to pass through the membrane more easily. Polar molecules cross directly through the protein without coming into contact with the lipid bilayer. facilitated diffusion Low concentration This is known as because these proteins facilitate or help the diffusion of these molecules across the membrane. Facilitated diffusion is considered passive transport because the solute is moving down its concentration gradient. Facilitated diffusion speeds the passage of a solute by providing a passage through the membrane. It does not alter the direction of transport.

Active Transport Materials must sometimes move against the concentration gradient. The cell must often move materials from an area of low concentration to an area higher of concentration. protein pump This is called active transport, and the cell must expend energy to accomplish it. If small molecules and ions need to be moved across the membrane against the concentration gradient, it will require the use of protein pumps that are embedded in the membrane. This use of protein pumps requires. much energy

Large molecules may have to be transported by a movement of the cell membrane. Endocytosis is the process of taking material into the cell by means of infoldings, or pockets, of the. cell membrane The pocket that results breaks loose from the cell membrane and forms a vacuole within the cytoplasm. Large molecules and clumps of food are taken up in this way. food cell membrane vacuole This requires much energy.

Two types of endocytosis are: Phagocytosis Pinocytosis Phagocytosis is the engulfing of large food particles.

Pinocytosis is. cellular drinking The cell surrounds and engulfs droplets of extracellular fluid. It is not the fluid that is needed, but the molecules dissolved in the droplets.

Exocytosis Exocytosis is the release of large materials from the cell. A vacuole fuses with the cell membrane, forcing the contents out of the cell.