Cyanidin-3-O-glucoside ameliorates lipid and glucose accumulation in C57BL/6J mice via activation of PPAR-α and AMPK

Similar documents
* * * * * liver kidney ileum. Supplementary Fig.S1

DOI /mnfr

The effect of dietary α-linolenic acid levels on regulation of omega-3 lipid synthesis in rat

SUPPLEMENTARY INFORMATION

Supplementary Figure 1.

Northern blot analysis

2018 American Diabetes Association. Published online at

*** *** *** *** T-cells T-ALL. T-cells T-ALL. T-cells T-ALL. T-cells T-ALL. T-cells T-ALL. Relative ATP content. Relative ATP content RLU RLU

Supplementary Figure S1

Ulk λ PPase. 32 P-Ulk1 32 P-GST-TSC2. Ulk1 GST (TSC2) : Ha-Ulk1 : AMPK. WB: Ha (Ulk1) : Glu. h CON - Glu - A.A WB: LC3 AMPK-WT AMPK-DKO

Compound K attenuates glucose intolerance and hepatic steatosis through AMPK-dependent pathways in type 2 diabetic OLETF rats

A. Kinoshita 1, L. Locher 2, R. Tienken 3, U. Meyer 3, S. Dänicke 3, J. Rehage 4, K. Huber 5

Expression of Three Cell Cycle Inhibitors during Development of Adipose Tissue

Causes and prevention of tamoxifen-induced accumulation. of triacylglycerol in rat liver

Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK 4

Synergistic effects of metformin, resveratrol, and hydroxymethylbutyrate on insulin sensitivity

SUPPLEMENTARY INFORMATION

British Journal of Nutrition

AMPK maintains energy homeostasis and survival in cancer cells via. regulating p38/pgc-1α-mediated mitochondrial biogenesis

Hormonal networks involved in phosphate deficiencyinduced cluster root formation of Lupinus albus L.

SESSIONE I: RELATORI. Ghrelin: from oroxigenic signal to metabolic master regulator?

Effect of kazunoko lipid on the concentrations of plasma glucose and lipids and liver lipids in mice

R-α-Lipoic acid and acetyl-l-carnitine complementarily promote mitochondrial biogenesis in murine 3T3-L1 adipocytes

Alterations in the expression of genes involved in lipid metabolism during bovine oocyte maturation and at the blastocyst stage in vivo vs.

Effects of Rosiglitazone on Inflammation in Otsuka Long-Evans Tokushima Fatty Rats

British Journal of Nutrition

Acute and gradual increases in BDNF concentration elicit distinct signaling and functions in neurons

Curcumin attenuates Nrf2 signaling defect, oxidative stress in muscle and glucose intolerance in high fat diet-fed mice

Supplementary Figure 1

Research Article Carvacrol Protects against Hepatic Steatosis in Mice Fed a High-Fat Diet by Enhancing SIRT1-AMPK Signaling

Role of hydroxytyrosol in ameliorating effects of high fat

TNF-α (pg/ml) IL-6 (ng/ml)

Effect of processing on in vitro bioaccessibility of phenolics, flavonoids and antioxidant activity of vegetables with/without yoghurt

% Inhibition of MERS pseudovirus infection. 0 h 0.5 h 1 h 2 h 4 h 6 h Time after virus addition

Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome

control kda ATGL ATGLi HSL 82 GAPDH * ** *** WT/cTg WT/cTg ATGLi AKO/cTg AKO/cTg ATGLi WT/cTg WT/cTg ATGLi AKO/cTg AKO/cTg ATGLi iwat gwat ibat

British Journal of Nutrition


Research Article Total 4EBP1 Is Elevated in Liver of Rats in Response to Low Sulfur Amino Acid Intake

Primers used for real time qpcr

Supplementary Table 2. Plasma lipid profiles in wild type and mutant female mice submitted to a HFD for 12 weeks wt ERα -/- AF-1 0 AF-2 0

Molecular Pharmacology Fast Forward. Published on June 1, 2010 as DOI: /mol

British Journal of Nutrition

GPR120 *** * * Liver BAT iwat ewat mwat Ileum Colon. UCP1 mrna ***

ABSTRACT. Marek s disease virus (MDV) infection causes atherosclerosis, and prior

Supplementary Figure S1

Research Article Antidiabetic Effect of Morindacitrifolia (Noni) Fermented by Cheonggukjang in KK-A y Diabetic Mice

Abstract. Introduction. V.I. Lushchak 1,*, T.V. Bagnyukova 1,*, J.M. Storey 2 and K.B. Storey 2

Supporting Information Table of content

Effect of Sitagliptin and Glimepiride on Glucose Homeostasis and camp Levels in Peripheral Tissues of HFD/STZ Diabetic Rats

SUPPLEMENTARY INFORMATION. Cytochrome P450-2E1 promotes fast food-mediated hepatic fibrosis

Over-expression of MKP-3 and knockdown of MKP-3 and FOXO1 in primary rat. day, cells were transduced with adenoviruses expressing GFP, MKP-3 or shgfp,

Interleukin-4 Restores Insulin Sensitivity in Lipid-Induced Insulin-Resistant Adipocytes

Inhibition of Serotonin Synthesis Induces Negative Hepatic Lipid Balance

Glucagon-Like Peptide-1 Increases Mitochondrial Biogenesis and Function in INS-1 Rat Insulinoma Cells

The role of apolipoprotein D in lipid metabolism and metabolic syndrome

AMPK. Tomáš Kučera.

Induction of peroxisomal lipid metabolism in mice fed a high-fat diet

Adipocyte in vascular wall can induce the rupture of abdominal aortic aneurysm

SUPPLEMENTARY INFORMATION

Flaxseed Lignan Increased Glucose Uptake by Human Red Blood Cells

Bruna Paola Murino Rafacho 1,2, Camilla Peach Stice 1, Chun Liu 1, Andrew S. Greenberg 3, Lynne M. Ausman 1,4, Xiang-Dong Wang 1,4.

Miglitol increases energy expenditure by upregulating uncoupling protein 1 of brown adipose tissue and reduces obesity in dietary-induced obese mice

AMPK. Tomáš Kuc era. Ústav lékar ské chemie a klinické biochemie 2. lékar ská fakulta, Univerzita Karlova v Praze

Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin

HIV VPR alters fat metabolism. Dorothy E Lewis PhD/Ashok Balasubramanyam MD

Accepted 10 January 2006

Overview: The Cellular Internet. General Biology. 7. Cell Communication & Signalling

Responses of skeletal muscle lipid metabolism in rat gastrocnemius to hypothyroidism and iodothyronine administration: a putative role for FAT/CD36

SUPPLEMENTARY INFORMATION

Supplementary figure 1

De novo lipogenesis in human fat and liver is linked to ChREBP-b and metabolic health

1,8 1,6 1,4 1,2 1. EE/g lean mass 0,8 0,6 0,4 0,2. Ambulatory locomotor activity. (beam brakes/48h) V MCH MCHpf 0,86 0,85 0,84 0,83 0,82 0,81 0,8

CHAPTER- 3 ANALYSIS OF PATHOPHYSIOLOGICAL MARKER ENZYMES, LIPID AND PROTEIN PROFILES IN CONTROL AND EXPERIMENTAL ANIMALS

Background Pears (Pyrus L.) are one of the leading cultivated fruit trees in China following apples and oranges in planting area and fruit yield.

Running footline: PPARδ activation attenuates hepatic steatosis and inflammation

IGF-1 vs insulin: Respective roles in modulating sodium transport via the PI-3 kinase/sgk1 pathway in a cortical collecting duct cell line

Fig. S1. Dose-response effects of acute administration of the β3 adrenoceptor agonists CL316243, BRL37344, ICI215,001, ZD7114, ZD2079 and CGP12177 at

The Journal of Physiology

Feeding state and age dependent changes in melaninconcentrating hormone expression in the hypothalamus of broiler chickens

Research Article Protective Effect of Short-Term Genistein Supplementation on the Early Stage in Diabetes-Induced Renal Damage

Supplementary Figure 1

Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state

Inflammatory responses in primary muscle cell cultures in Atlantic salmon (Salmo salar)

Dietary fat source alters hepatic gene expression profile and determines the type of liver pathology in rats overfed via total enteral nutrition

obesità nel bambino: epidemiologia e prevenzione

Targeting of the circadian clock via CK1δ/ε to improve glucose homeostasis in obesity

PPARγ contributes to PKM2 and HK2 expression in fatty liver

Control 7 d cold 7 d CL

TLR7 induces anergy in human CD4 + T cells

Myricetin Ameliorates Defective Post-Receptor Insulin Signaling via

Supplementary Table 1. Primer Sequences Used for Quantitative Real-Time PCR

The different mechanisms of insulin sensitizers to prevent type 2 diabetes in OLETF rats

Food & Function Accepted Manuscript

The role of insulin and glucose in goose primary hepatocyte triglyceride accumulation

In The Name Of God. In The Name Of. EMRI Modeling Group

Effect of supplemental fat from dried distillers grains with solubles or corn oil on cow performance, IGF-1, GH, and NEFA concentrations 1

Inhibition of adipocyte differentiation in 3T3-L1 cell line by quercetin or isorhamnetin

Research Article Experimental Hyperthyroidism Decreases Gene Expression and Serum Levels of Adipokines in Obesity

Chromium Alleviates Glucose Intolerance, Insulin Resistance, and Hepatic ER Stress in Obese Mice

Transcription:

3 rd Interntionl Conference nd Exhiition on Nutrition & Food Sciences Septemer 23-25, 214 Vlenci, Spin Cynidin-3-O-glucoside meliortes lipid nd glucose ccumultion in C57BL/6J mice vi ctivtion of PPAR-α nd AMPK Food Biomedicl Science L. Yoyo Ji Sep 23 th, 214

Bckground Nturl orgnic pigment Grpes Berries Cherries Apples Plums Red cge Red onion Antioxidnt Anti-inflmmtory effects Crdiovsculr Diseses Cncer Oesity Dietes To investigte the effects nd moleculr mechnisms of cynidin- 3-O-glucoside ()

Nucler Contining A Ftty Ftty Ftty Triglyceride Synthetic Endogenous Bckground Nucleus AMP:ATP rtio Exercise (muscle stimultion) Berries contining regulte lipid nd glucose metolisms lignds PPRE Thr172 P γ α β AMPK Lipid metolism Glucose metolism Peroxisome prolifertor-ctivted receptors (PPARs): receptors 3 isoforms: PPARα, PPARγ, PPARδ/β PPARα: mjor regultor of lipid metolism in the liver cid uptke (ftty cid trnsport) cid utiliztion (ftty inding nd ctivtion) cid ctolism (peroxisoml nd mitochondril ftty cid β-oxidtion) Ketogenesis turnover Lignds: lignds include the firte drugs (hyperlipidemi) lignds include ftty cids nd vrious ftty cid-derived compounds AMP-ctivted protein kinse (AMPK): An enzyme plys role in cellulr energy homeostsis Consists of three proteins (suunits): α, β, nd γ Three suunits together mke functionl enzyme AMPK: Stimulte: Ftty cid oxidtion Ketogenesis Inhiit: Lipogenesis Triglyceride synthesis Gluconeogenesis RXR: retinoid X receptor PPRE: peroxisome prolifertor hormone response elements

Experimentl design Moleculr trgets of BIAcore Surfce plsmon resonnce (SPR) Time resolution-fluorescence resonnce energy trnsfer (TR-FRET) coctivtor ssy AMPK ctivity ssy Animl/cell experimentl design HepG2 cells Lipid-loding for 24 h Tretment with for 24 h Scrifice Smple (plsm & orgns) collection Lipid contents Ftty cit oxidtion/synthesis Autophgy nlysis Gluconeogenesis : High ft diet (45%) : 1 mg/kg ody weight of fenofirte () : 1 mg/kg ody weight of cynidin-3-o-glucoside () Physiologicl relevnce & moleculr mechnisms of Body & orgn weight mesurement Plsm lipid, glucose, insulin & hormone mesurement Liver & dipose tissue histology & nlysis Liver lipid concentrtion mesurement Orl glucose tolernce test (OGTT) Insulin tolernce test (ITT) Autophgy pthwy nlysis qpcr & immunoloting

A 15 induces PPARα coctivtor ctivity vi direct inding to PPARα PPARα/ 8 PPARα/GW7647 Time resolution-fluorescence resonnce Surfce energy trnsfer Plsmon (TR-FRET) Resonnce coctivtor (BIAcore ssy SPR) Response Unit (RU) B 1 5-5 3 Concentrtion (µm): 1 8 4 25 12.5 1 2 3 4 5 Time (s) PPARγ/ Response Unit (RU) 6 4 2-2 1 Concentrtion (µm): 8 5 4 25 2 1 2 3 4 5 Time (s) PPARγ/TT Response Unit (RU ) C Response Unit (RU) D 2 1-1 2 15 1 5-5 2. Concentrtion (µm): 1 8 4 25 12.5 1 2 3 4 5 Time (s) PPARδ/β/ Concentrtion (µm): 1 8 5 4 25 1 2 3 4 5 Time (s) PPARα GW7647 Response Unit (RU) Response Unit (RU) 8 6 4 2-2 2.5 8 6 4 2-2 Concentrtion (µm): 1 8 5 4 25 1 2 3 4 5 Time (s) PPARδ/β/GW742 Concentrtion (µm): 8 5 4 25 2 1 2 3 4 5 Time (s) PPARγ Troglitzone (TT) K D vlues nd EC 5 vlues of nd positive controls PPARδ GW742 Positive controls PPARα PPARγ PPARδ PPARα PPARγ PPARδ GW7647 TT GW742 SPR 456 nm 1.36 µm 4.96 µm 13.2 nm 377 nm 12 nm TR-FRET 1126 nm 1.8 µm 3 µm 26.9 nm 82.3 nm 1.25 nm K D, the equilirium dissocition constnt ('inding constnt'); EC 5, Hlf mximl effective concentrtion TR-FRET Rtio 1..5. 1-6 1-2 1 2 1 6 Concentrtion (nm) EC 5 : = 1126 nm GW7647 = 26.9 nm TR-FRET Rtio 2. 1..5. 1-2 1 1 2 1 4 1 6 Concentrtion (nm) EC 5 : = 185 nm TT = 82.3 nm TR-FRET Rtio 1..5 EC 5 : = 3146 nm GW742 = 1.25 nm. 1-2 1 1 2 1 4 1 6 1 8 Concentrtion (nm)

induces AMPKα1 ctivity vi direct interction with AMPKα1 A Luminescence (RLU) 8 75 7 65 AMPK (α1/β1/γ1) ctivity 6 1-4 1-2 1 1 2 1 4 1 6 Concentrtion (nm) A-769662 Luminescence (RLU) 55 5 45 4 AMPK (α1/β1/γ1) ctivity 35 1-2 1 1 2 1 4 (nm) + A-769662 (1 nm) + A-769662 (1 nm) B Luminescence (RLU) 43 38 33 28 AMPK (α2/β1/γ1) ctivity 23 1-4 1-2 1 1 2 1 4 1 6 Concentrtion (nm) A-769662 AMPK α γ β A-769662 EC 5 (nm) A1/B1/G1 A2/B1/G1 A-769662 262 457 599 11 directly ctivtes PPARα nd AMPK

reduces lipid ccumultion in mouse livers & heptocytes A Fold chnge 1..5 Intrcellulr Triglyceride B Triglyceride (mg/dl) 1 8 6 4 2 Plsm triglyceride. Lipid - + + + + (µm) - - - 1 5 GW7647 (µm) - 1-1 - - C 15 Heptic Triglyceride /dl) Triglyceride (mg/ 1 5 D 4 Plsm AST 2 Plsm ALT AST (U/L) 3 2 1 ALT (U/L) 15 1 5 c c AST, Asprtte Aminotrnsferse; ALT, Alnine Aminotrnsferse

induces heptic ftty cid oxidtion nd ketogenesis while decreses ftty cid synthesis vi regultion of PPARα & AMPKα1 A Fold chnge 3 2 1 Ftty cid oxidtion Liver β-oxidtion (µmol/g/min) 6 4 2 Ftty cid oxidtion c Lipid - + + + (µm) - - 1 5 GW7647 (µm)o- 1 - - B Ftty cid synthesis Ftty cid synthesis C 4 Mlonyl CoA Fold chnge 1..5 fold chnge 1..5 ng/ml 3 2 1 µm. (µm) - - - 1 5 (µm) O - 1 - - - GW7647 (µm)o- - 1 - - D. (µm) - - 1 5 GW7647 (µm)o- 1 - - mrna expression in liver β-hydroxyutyrte 18 2 16 15 2. 1 reduces lipid 1. 5.5 ftty cid oxidtion,. inhiits ftty cid synthesis PPARα CPT1 LPL HMGCS2 E Fold chnge lipid ccumultion vi increses ketogenesis, wheres ACC, cetyl-coa croxylse CPT1, crnitine plmitoyltrnsferse 1; LPL, lipoprotein lipse; HMGCS2, 3-hydroxy-3-methylglutryl-CoA synthse 2

induces phosphoryltion of AMPK thus locks the mtor-s6k1 xis p-ampk T172 AMPK p-mtor T2446 mtor p-s6k1 T389 S6K1 β-ctin Fold chnge 4 3 2 1 p-ampk/ampk p-mtor/mtor p-s6k1/s6k1 Fold chnge 5 4 3 2 1 Fold chnge 1..5. mtor, mmmlin trget of rpmycin; S6K1, P7-S6 Kinse 1

induces heptic utophgy pthwy A B C LC3I LC3II β-ctin GW7647 (µm) C 1 1 5 LC3I LC3II α-tuulin Fold chnge 2. 1..5 LC3 II Fold chnge 2. 1..5 LC3 II Fluorescence (R Reltive Units) 8 6 4 2 Autophgy c d. (µm) - - 1 5 GW7647 (µm)o- 1 - -. Tmoxifen (µm) - 1 - - (µm) - - 1 5 D STF, STF-62247 No. of Autolysosomes/Cell 2 15 1 Numer of Autolysosomes 5 reduces STF62247 (µm) lipid - 5 - - (µm) - - 1 5 reduces lipid ccumultion vi ctivtes heptic utophgy pthwy

reduces plsm glucose & insulin concentrtions nd improves insulin sensitivity A Glucose (mg/dl) 25 2 15 1 5 Plsm glucose c c ng/ml 1..8.6.4.2 Plsm insulin B Plsm glucose level (mg/dl) 4 3 2 1 OGTT AUC 1..5 AUC of OGTT. 15 3 6 9 12 Time(min). C Plsm glucose level (mg/dl) 3 25 2 15 ITT 15 3 6 9 12 Time(min) AUC 1..5. AUC of ITT D Insulin-sensitive Index.4.3.2.1. c c HOMA-IR 15 1 5 c c HOMA-IR, Homeosttic Model Assessment - Insulin Resistnce; AUC, Are under the curve

A reduces gluconeogenesis B 25 2 Gluconeogenesis 15 1 5 camp - + - - - - + - - - Metformin - - + - - - - + - - Compound C - - - - - + + + + + - - - 1 5 - - - 1 5 CE-TOF & QqQMS:Selected component nlysis

reduces gluconeogenesis vi increses plsm diponectin concentrtion & inhiits FOXO nd CREB ctivity A p-ampk AMPK HDAC5 p-crtc2 CRTC2 p-hdac5 HDAC5 β-ctin CRTC2 Fold chnge 4 3 2 PEPCK X 1 G6Pse p-ampk/ampk Fold chnge 5 4 3 2 1 p-crtc2/crtc2 Fold chnge 5 4 3 2 1 p-hdac5/hdac5 B Luciferse ctivity (%) 8 6 4 15 1 5 FOXO ctivity CRE-Luc ctivity mrna expression in liver. A769662 (µm) - 1 - - - - 1 - - Foskolin (µm) - - - - - 1 - - - (µm) - - 1 5 - - - 1 reduces 5 PEPCK G6Pse glucose Fold chnge 1..5 c c µg/ml 3 2 1 Adiponectin FOXO1, Forkhed ox protein O1; CREB, camp response element-inding protein; HDAC5, Histone decetylse 5; CRTC2, CREB regulted trnscription coctivtor 2; PEPCK, Phosphoenolpyruvte croxykins; G6Pse, Glucose 6-phosphtse C reduces glucose ccumultion vi inhiits heptic gluconeogenesis

reduces ody weight, viscerl ft weight & dipocyte size A 5 Body weight B Body weight (g) 4 3 C Adipocyte size (µm 2 ) 6 4 2 2 1 2 3 4 5 6 7 8 9 1 11 12 13 Weeks Adipocytes Orgn weight of mice Epididyml Ft (g) 2.45 ±.16 2.43 ±.26 2.41 ±.19 Viscerl Ft (g) 1.67 ±.11.71 ±.9 c.98 ±.19 c Perirentl Ft (g) 2 ±.1 1.2 ±.9 c 1.19 ±.15 c Totl White Adipose Tissue (WAT, g) 5.63 ±.2 4.16 ±.42 c 4.58 ±.52 c Brown Adipose Tissue (BAT, g).29 ±.3.22 ±.3.36 ±.4 WAT/BAT 2.81 ± 2.7 19.9 ± 2 12.9 ±.87 Skeletl Muscle (g).68 ±.4.55 ±.8.76 ±.6 WAT/Skeletl Muscle 8.43 ±.49 7.98 ±.58 5.85 ±.8 Liver (g) 9 ±.13 1.46 ±.5 1.37 ±.17 Liver/Body weight.36 ±.2.4 ±.1.34 ±.3

increses energy expenditure vi induces thermogenesis gene expressions in rown dipose tissue (BAT) A VO2 (ml/min/kg) VO2 (ml/min/kg) 3 2 1 3 2 1 Totl Light Drk CON CON 19 1 6 12 17 RQ(Respirtory Quotient) RQ(Respirtory Quotient) 1..8.6.4.2 1..8.6.4.2. CON Totl Light Drk CON. 19 1 6 12 17 Energy Expenditure (kcl/dy/kg) Energy Expenditure (kcl/dy/kg) 2 15 1 5 2 15 1 5 CON Totl Light Drk CON 19 1 6 12 17 B 4 mrna expression in BAT 3 2 reduces 1 energy rown PPARα PGC-1α dipose UCP1 Fold chnge reduces ody weight vi increses energy expenditure nd thermogenesis in rown dipose tissue PGC-1α, Peroxisome prolifertor-ctivted receptor gmm coctivtor 1-lph; UCP1, uncoupling protein 1

Conclusion Ftty cid oxidtion Ftty cid synthesis Insulin sensitivity Energy expenditure Autophgy Gluconeogenesis Body weight, viscerl ft weight & dipocyte size Lipid ccumultion in liver Glucose & insulin concentrtions in plsm Improves insulin sensitivity Atherosclerosis

Acknowledgement Food Biomedicl Science L. Ewh Women s University Supervisor Prof. Sung-Joon Lee FBS l. Memers Ji He Lee Chunyn Wu Boe kim Ji Ah Kim Soyoung Kim Borm Mok Prof. Young-Suk Kim Minyoung So Rurl Development Administrtion of Kore

Thnk you for your ttention!