Case Study. The origins and evolution of HIV STUDENT S GUIDE. Anne Fischer. Dean Madden [Ed.] Version 1.2

Size: px
Start display at page:

Download "Case Study. The origins and evolution of HIV STUDENT S GUIDE. Anne Fischer. Dean Madden [Ed.] Version 1.2"

Transcription

1 STUDENT S GUIDE Case Study The origins and evolution of HIV Version 1.2 Anne Fischer Formerly of the Max Planck Institute for Evolutionary Anthropology, Leipzig Dean Madden [Ed.] NCBE, University of Reading

2 Introduction Prevalence of HIV HIV (Human Immunodeficiency Virus) is the virus that can lead to AIDS (Acquired Immune Deficiency Syndrome) in humans. AIDS is a disease in which the immune system begins to fail, enabling other infections to threaten the lives of patients. Since 1981, when it first began to spread widely, HIV has caused the deaths of 25 million people worldwide. PHOTO BY: Chris Jackson, Getty Images According to current United Nations estimates, HIV will infect 90 million people in Africa, leaving at least 18 million orphaned children there. There are several different forms of HIV: evidence suggests that they originated in Africa, but how are the different forms related to one another and how did they enter the human population? This Case Study uses genetic sequence data from different types of HIV and compares them with SIVs (simian immunodeficiency viruses), which are found in wild chimpanzees and gorillas in Africa. A boy sorts maize at the Reitutsire orphanage in Maseru, Lesotho. The orphanage is supported by Prince Harry s charity, Sentebale. Many adults in Lesotho have been killed by AIDS leaving a generation of over 380,000 orphans to fend for themselves. IMAGE FROM: UN AIDS Global report, July 2008 Question Estimated prevalence of HIV among young adults (aged 15 49) by country in a. Study the map above. Describe the distribution of HIV. Which countries have the greatest adult prevalence of HIV/AIDS? (Note: the map shows the incidence of HIV/AIDS, not AIDS-related deaths.) 2

3 Transmission of HIV HIV, the virus that causes AIDS, can be transmitted through: unprotected sex (in semen or vaginal fluid); blood (contact with contaminated material such as needles and contaminated blood transfusions); transmission from mother to child during pregnancy or at birth; breast milk. PHOTO BY: Pascal Le Segretain, Getty Images The virus was characterised in 1983 by a team from the Institut Pasteur in France led by Luc Montagnier. In 2008, Montagnier and a colleague, Françoise Barré-Sinoussi, were awarded the Nobel Prize in Physiology or Medicine for their discovery of HIV. An HIV particle (called a virion) is about 100 nm in diameter. This is about 1/20th of the length of a E. coli cell, and about 1/70th of the diameter of the white blood cells that the virus infects. Luc Montagnier, the co-discoverer of HIV, photographed in IMAGE FROM: Medical Art Service, Munich / Wellcome Images The basic structure of the Human Immunodeficiency Virus (HIV). The virus s spherical bilipid membrane (yellow) is studded with 72 glycoproteins (green), made from the proteins gp 120 and gp 41. Beneath the membrane, a shell made from the protein p 17 (pink) surrounds the conical core or capsid (yellow) made from p 24 protein. The core contains two identical single strands of RNA (ribonucleic acid). A retrovirus HIV has nine genes, compared to about genes in its human host. These include sequences encoding three enzymes required for HIV replication: reverse transcriptase, protease and integrase (encoded by the pol gene). Like all viruses, HIV cannot reproduce by itself. To make new copies of themselves, viruses must infect the cells of living organisms. HIV can only replicate within human cells. HIV is a retrovirus. Retroviruses have RNA (not DNA) as their genetic material. They use an enzyme called reverse transcriptase to reverse-transcribe their RNA into DNA, which can then be integrated into the host s genome and replicated. 3

4 New virus leaves cell New virus assembled DRAWING BY: Dean Madden, NCBE HIV attaches to CD4 receptors on a T-cell then fuses with the host cell membrane Viral RNA transcribed from DNA Viral RNA (two copies) and enzymes enter the cell Viral protease is needed to process the three viral proteins DNA is transcribed from viral RNA Double-stranded DNA is produced Viral integrase DNA integrates with the host chromosome HIV s replication cycle HIV is replicated in the human host s cells as follows: the virus binds to a protein called CD4 on the surface of the host s immune cells (e.g., lymphocytes). This allows the viral membrane to fuse with the cell membrane, after which it releases the contents of the HIV particle (virion) into the cell; the viral RNA and three enzymes it encodes pass into the hosts cells. The enzymes are a protease, a reverse transcriptase and an integrase, all of which are needed for replication of the virus; the viral RNA is reverse transcribed into DNA; the viral DNA is then integrated into the genome of the host cell by the integrase; the DNA is transcribed back into RNA and translated into proteins that form new viruses. Using this mechanism, up to ten billion new viruses can be produced every day. This rapid replication, coupled with a high mutation rate, contributes to HIV s variability and evolutionary success. 4

5 HIV is placed within a subgroup of the retroviruses, called lentiviruses (lenti is Latin for slow, and lentiviruses have a long incubation period). This diagram shows the relationship between various lentiviruses. Notice that there are two main forms of HIV: HIV-1 and HIV-2. Other lentiviruses include SIV (simian immunodeficiency virus), BIV (bovine immunodeficiency) virus and FIV (feline immunodeficiency virus) which infect apes and monkeys, cows and cats, respectively. Two types of HIV Two types of HIV infect humans: HIV-1 and HIV-2. HIV-1 is easilytransmitted. It is virulent and is the cause of the majority of HIV infections globally. HIV-1 can be divided into three subgroups: HIV-1-M, HIV-1-N and HIV-1-O, of which HIV-1-M is the most prevalent and has spread around the world. HIV-2 is less virulent than HIV-1 and is not transmitted as easily. It is largely confined to West Africa. The effects of both viruses on humans are similar: HIV-1 and HIV-2 are therefore distinguished by their genomes. HIV denialism Some people, including scientists who are not experts on HIV, have suggested that HIV is not the cause of AIDS. They therefore question the validity of HIV testing and treatment for AIDS. The mainstream scientific community has rejected these claims. Unfortunately, some governments, particularly those in South Africa, have until very recently supported AIDS denialism and encouraged the use of ineffective treatments such as vitamin supplements. This has contributed to the failure of South Africa s response to its AIDS epidemic, although the situation is improving now. Question b. Now you know something about HIV, look once more at the map on page 2. Suggest several different explanations for the distribution of HIV/AIDS shown on the map. 5

6 Where did HIV originate? Since HIV was discovered in early 1980s, there has been considerable speculation about its origin. One hypothesis suggests that HIV was transmitted to humans from other primates. The close genetic relationship between humans and primates makes it likely that viruses could be transmitted between these species. Non-human primates (e.g., monkeys and apes) carry HIV-like viruses, called SIVs (simian immunodeficiency viruses). Unlike HIV, the viruses that non-human primates carry rarely cause any disease in their hosts. These animals are called asymptomatic carriers (which means that they display no disease symptoms). Studying the evolutionary relationships between strains of HIV and related SIVs from African primates has made it possible to discover more about the likely origin of HIV. By comparing the genetic sequences of HIV and HIVlike viruses from non-human primates, one can identify which species is most likely to have transmitted the virus to humans. Clues from genes and geography Scientists were able to show in 1989 that the RNA sequence of SIV from both captive and wild Sooty mangabeys was very similar to that of HIV-2. This supports the idea that HIV-2 originated in non-human primates. Other evidence supporting the idea of cross-species transmission is the overlapping geographical distribution in west Africa of SIV-infected Sooty mangabeys and humans infected with HIV-2. PHOTO BY: Irwin Bernstein, University of Georgia. Sooty mangabeys are West African primates that carry an SIV which is thought to be the origin of HIV-2. Historical range of the sooty mangabey in West Africa (shown in green). The geographical range of these monkeys corresponds closely with the occurance of HIV-2 in humans. From: Santiago, M. L. et al. (2005) Journal of Virology 79 (19)

7 The origin of HIV-1 The origin of HIV-1 was unclear for many years. Chimpanzees and gorillas are a potential source, but they are endangered species and it is not easy to get blood samples from living animals in the wild. A breakthrough came when Beatrice Hahn and her colleagues in Brimingham, Alabama, developed a method of isolating DNA and RNA from faecal samples collected from the forest floor. Analysis of faeces from wild chimpanzees and gorillas has revealed the presence of SIV in these species. Comparisons of chimpanzee and gorilla SIV and human HIV-1 sequences were made by a team led by Paul Sharp at the University of Nottingham, in co-operation with Hahn and many other researchers. The work showed that these viruses are very similar. The natural habitat of chimpanzees and gorillas coincides with the epicentres of HIV-1 epidemics. Furthermore, the central African region encompassing Gabon, Cameroon, Equatorial Guinea and the Republic of Congo, is the only place where all three subgroups of HIV-1 (M, N and O) are found. Sequences of SIVcpz (the SIV that infects chimpanzees) and SIVgor (the SIV that infects gorillas) that resemble HIV-1 sequences most closely have been found in chimpanzees and gorillas inhabiting the same geographical region. How could transmission between species occur? Chimpanzees and gorillas are the closest living relatives of humans. These species, as other primate species, are commonly hunted for food (bushmeat) and orphan chimps are sometimes kept as pets. Such pets are a natural reservoir for the disease and they could transmit SIVcpz to humans. With extensive logging of tropical rainforest, access to previously remote areas is now possible, which further sustains the bushmeat trade. PHOTO BY: Thomas Lersch, Wikimedia Commons PHOTO BY: Mila Zinkova, Wikimedia Commons Chimpanzee. Male silverback gorilla. 7

8 Sequence analysis The aim of this exercise is to study the similarities between SIV and HIV-1 sequences. This will allow you to investigate the potential transmission of these viruses between great apes and humans. The data provided are 16 nucleotide sequences from the pol gene of the HIV and SIV viruses from chimpanzee, gorilla and human. There are six human sequences, two from each of the three HIV subgroups (M, N and O), two gorilla sequences and eight chimpanzee sequences. The data file is called: DNA-HIV1andSIV.geneious The analysis will be performed using a programme called Geneious. This software can align sequences and build phylogenetic trees. The nucleotide sequences will first be translated into protein sequences, which will then be aligned. From the alignment of the protein sequences, you will build a phylogenetic tree. This will show which sequences are more closely related to one another. 1. Double click on the document named DNA-HIV1andSIV. geneious. This will start the Geneious software and load the file of genetic sequence data into the programme. Hint: if a box appears over the Geneious start-up screen, saying that your trial of the Pro version has ended, click on Use Geneious Basic. 2. The 16 DNA sequences will now open in Geneious: The names of the sequences are shown here. The DNA sequences are in this central window. 8

9 3. You can use the magnifying glass buttons to zoom in on the nucleotide data: Zoom buttons Questions c. Use the magnifying glass buttons to zoom in on the sequence data. How can you tell that it is DNA sequence data and not RNA sequence data? d. What sort of genetic information does HIV (a retrovirus) have? e. How has the data therefore been processed before it was given to you? 4. Select all 16 sequences at the same time, by clicking on the file name in the top window so that it is highlighted: 9

10 5. Click on the Translate button to convert the DNA sequence data into protein sequence data: Translate button 6. A box will appear, asking you to choose a version of the genetic code to use. Look at the options available, then choose Standard and click OK. Note Although the genetic code is often said to be universal the same in all living things this is not quite true. There are some minor variations in different groups of organisms. Hence this dialogue box, which allows you to choose which version of the code you wish to use. A new file will appear in the top window, containing 16 protein sequences derived from the original DNA sequences: 10

11 7. Use the magnifying glass button again to zoom in on the sequence data and check that the sequences are in fact proteins made of amino acids (the single-letter amino acid codes are used here): Asp D Aspartic acid Ala A Alanine Glu E Glutamic acid Gly G Glycine Arg R Arginine Val V Valine Lys K Lysine Leu L Leucine His H Histidine Ile I Isoleucine Asn N Asparagine Pro P Proline Gln Q Glutamine Phe F Phenylalanine Ser S Serine Met M Methionine Thr T Threonine Trp W Tryptophan Tyr Y Tyrosine Cys C Cysteine Amino acid codes The three-letter and single letter codes for the 20 amino acids that are found in proteins. Geneious uses the single-letter codes to show the different amino acids. 8. The protein sequences should already be aligned, but before creating a phylogeny, you will need to ensure that they are. Select the protein sequences in the top window, then click the Alignment button: Alignment button 11

12 9. A box will appear, asking you to choose a method of alignment. Only one method is possible with the basic Geneious software, so select Geneious Alignment then click OK. The alignment will take a few minutes to complete (slightly longer on a slow computer): Tree button 10. Select the aligned protein sequences ( Alignment of 16 sequences ) in the top window, then click on the Tree button to create a phylogeny. 12

13 A box will appear, offering some options for the tree building. Select the values shown below and click OK. Select Jukes- Cantor and Neighbour- Joining here. Technical note The Jukes-Cantor distance model assumes that all amino acid substitutions (mutations) happen at the same rate (1 in 20 or 5%). Other mathematical models assume that different amino acids mutate at different rates. The Neighbor-Joining method is a quick and popular mathematical model for calculating genetic distances and drawing trees. Other methods will produce slightly different results (and take longer to do it). 11. A tree will be produced in the lower central window. Re-size the other windows so that you can study the tree. The software will cluster similar sequences closer together. You now have a phylogenetic tree of sequences from the three subgroups (M, N and O) of the HIV-1 family and their relationship to SIV sequences from chimpanzees and gorilla. 13

14 the origins and evolution of hiv Questions f. Mark, on a paper print out of the tree, using three different colours or symbols, the branches of the tree that derive from gorilla, chimpanzee and human viruses. g. Describe the locations of the HIV sequences in the tree (for example, do they form any clusters or groups, or are they scattered throughout the branches of the tree?) h. Do the HIVs appear to be more closely related to each other, or to some of the SIV sequences? i. Do you think that HIV-1 could have originated more than once, and if so, what was the source on each occasion? j. Does the geographical distribution of SIV-infected apes overlap with areas of HIV-1 epidemics? Compare the map on page 2 with the one below and, if you have access to the internet: map.php and Further reading Avert, a UK-based AIDS charity, has a website with comprehensive and authoritative information about HIV/AIDS: 14

15 A phylogenetic tree of sequences from the three subgroups (M, N and O) of the HIV-1 family and their relationship to SIV sequences from chimpanzees and gorilla. The codes after the virus names refer to sampling areas. TAN = Tanzania; CAM = Cameroon; GAB = Gabon. 15

LAB#23: Biochemical Evidence of Evolution Name: Period Date :

LAB#23: Biochemical Evidence of Evolution Name: Period Date : LAB#23: Biochemical Evidence of Name: Period Date : Laboratory Experience #23 Bridge Worth 80 Lab Minutes If two organisms have similar portions of DNA (genes), these organisms will probably make similar

More information

1. Describe the relationship of dietary protein and the health of major body systems.

1. Describe the relationship of dietary protein and the health of major body systems. Food Explorations Lab I: The Building Blocks STUDENT LAB INVESTIGATIONS Name: Lab Overview In this investigation, you will be constructing animal and plant proteins using beads to represent the amino acids.

More information

Amino Acids. Amino Acids. Fundamentals. While their name implies that amino acids are compounds that contain an NH. 3 and CO NH 3

Amino Acids. Amino Acids. Fundamentals. While their name implies that amino acids are compounds that contain an NH. 3 and CO NH 3 Fundamentals While their name implies that amino acids are compounds that contain an 2 group and a 2 group, these groups are actually present as 3 and 2 respectively. They are classified as α, β, γ, etc..

More information

Objective: You will be able to explain how the subcomponents of

Objective: You will be able to explain how the subcomponents of Objective: You will be able to explain how the subcomponents of nucleic acids determine the properties of that polymer. Do Now: Read the first two paragraphs from enduring understanding 4.A Essential knowledge:

More information

Protein Investigator. Protein Investigator - 3

Protein Investigator. Protein Investigator - 3 Protein Investigator Objectives To learn more about the interactions that govern protein structure. To test hypotheses regarding protein structure and function. To design proteins with specific shapes.

More information

CS612 - Algorithms in Bioinformatics

CS612 - Algorithms in Bioinformatics Spring 2016 Protein Structure February 7, 2016 Introduction to Protein Structure A protein is a linear chain of organic molecular building blocks called amino acids. Introduction to Protein Structure Amine

More information

Biological systems interact, and these systems and their interactions possess complex properties. STOP at enduring understanding 4A

Biological systems interact, and these systems and their interactions possess complex properties. STOP at enduring understanding 4A Biological systems interact, and these systems and their interactions possess complex properties. STOP at enduring understanding 4A Homework Watch the Bozeman video called, Biological Molecules Objective:

More information

Cells N5 Homework book

Cells N5 Homework book 1 Cells N5 Homework book 2 Homework 1 3 4 5 Homework2 Cell Ultrastructure and Membrane 1. Name and give the function of the numbered organelles in the cell below: A E B D C 2. Name 3 structures you might

More information

An Evolutionary Story about HIV

An Evolutionary Story about HIV An Evolutionary Story about HIV Charles Goodnight University of Vermont Based on Freeman and Herron Evolutionary Analysis The Aids Epidemic HIV has infected 60 million people. 1/3 have died so far Worst

More information

Case Study. Malaria and the human genome STUDENT S GUIDE. Steve Cross, Bronwyn Terrill and colleagues. Version 1.1

Case Study. Malaria and the human genome STUDENT S GUIDE. Steve Cross, Bronwyn Terrill and colleagues. Version 1.1 STUDENT S GUIDE Case Study Malaria and the human genome Version 1.1 Steve Cross, Bronwyn Terrill and colleagues Wellcome Trust Sanger Institute Hinxton Malaria and the human genome Each year, the malaria

More information

Properties of amino acids in proteins

Properties of amino acids in proteins Properties of amino acids in proteins one of the primary roles of DNA (but far from the only one!!!) is to code for proteins A typical bacterium builds thousands types of proteins, all from ~20 amino acids

More information

Finding protein sites where resistance has evolved

Finding protein sites where resistance has evolved Finding protein sites where resistance has evolved The amino acid (Ka) and synonymous (Ks) substitution rates Please sit in row K or forward The Berlin patient: first person cured of HIV Contracted HIV

More information

Fayth K. Yoshimura, Ph.D. September 7, of 7 HIV - BASIC PROPERTIES

Fayth K. Yoshimura, Ph.D. September 7, of 7 HIV - BASIC PROPERTIES 1 of 7 I. Viral Origin. A. Retrovirus - animal lentiviruses. HIV - BASIC PROPERTIES 1. HIV is a member of the Retrovirus family and more specifically it is a member of the Lentivirus genus of this family.

More information

Amino acids-incorporated nanoflowers with an

Amino acids-incorporated nanoflowers with an Amino acids-incorporated nanoflowers with an intrinsic peroxidase-like activity Zhuo-Fu Wu 1,2,+, Zhi Wang 1,+, Ye Zhang 3, Ya-Li Ma 3, Cheng-Yan He 4, Heng Li 1, Lei Chen 1, Qi-Sheng Huo 3, Lei Wang 1,*

More information

Acquired Immune Deficiency Syndrome (AIDS)

Acquired Immune Deficiency Syndrome (AIDS) Acquired Immune Deficiency Syndrome (AIDS) By Jennifer Osita Disease The disease I am studying is AIDS (Acquired Immune Deficiency Syndrome) which is when the immune system is too weak to fight off many

More information

Biology. Lectures winter term st year of Pharmacy study

Biology. Lectures winter term st year of Pharmacy study Biology Lectures winter term 2008 1 st year of Pharmacy study 3 rd Lecture Chemical composition of living matter chemical basis of life. Atoms, molecules, organic compounds carbohydrates, lipids, proteins,

More information

Page 8/6: The cell. Where to start: Proteins (control a cell) (start/end products)

Page 8/6: The cell. Where to start: Proteins (control a cell) (start/end products) Page 8/6: The cell Where to start: Proteins (control a cell) (start/end products) Page 11/10: Structural hierarchy Proteins Phenotype of organism 3 Dimensional structure Function by interaction THE PROTEIN

More information

8/13/2009. Diseases. Disease. Pathogens. Domain Bacteria Characteristics. Bacteria Shapes. Domain Bacteria Characteristics

8/13/2009. Diseases. Disease. Pathogens. Domain Bacteria Characteristics. Bacteria Shapes. Domain Bacteria Characteristics Disease Diseases I. Bacteria II. Viruses including Biol 105 Lecture 17 Chapter 13a are disease-causing organisms Domain Bacteria Characteristics 1. Domain Bacteria are prokaryotic 2. Lack a membrane-bound

More information

Chapter 4: Information and Knowledge in the Protein Insulin

Chapter 4: Information and Knowledge in the Protein Insulin Chapter 4: Information and Knowledge in the Protein Insulin This chapter will calculate the information and molecular knowledge in a real protein. The techniques discussed in this chapter to calculate

More information

The Struggle with Infectious Disease. Lecture 6

The Struggle with Infectious Disease. Lecture 6 The Struggle with Infectious Disease Lecture 6 HIV/AIDS It is generally believed that: Human Immunodeficiency Virus --------- causes ------------- Acquired Immunodeficiency Syndrome History of HIV HIV

More information

LESSON 4.6 WORKBOOK. Designing an antiviral drug The challenge of HIV

LESSON 4.6 WORKBOOK. Designing an antiviral drug The challenge of HIV LESSON 4.6 WORKBOOK Designing an antiviral drug The challenge of HIV In the last two lessons we discussed the how the viral life cycle causes host cell damage. But is there anything we can do to prevent

More information

Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Concept 5.4: Proteins have many structures, resulting in a wide range of functions Proteins account for more than 50% of the dry mass of most cells Protein functions include structural support, storage,

More information

I. Bacteria II. Viruses including HIV. Domain Bacteria Characteristics. 5. Cell wall present in many species. 6. Reproduction by binary fission

I. Bacteria II. Viruses including HIV. Domain Bacteria Characteristics. 5. Cell wall present in many species. 6. Reproduction by binary fission Disease Diseases I. Bacteria II. Viruses including are disease-causing organisms Biol 105 Lecture 17 Chapter 13a Domain Bacteria Characteristics 1. Domain Bacteria are prokaryotic 2. Lack a membrane-bound

More information

Lentiviruses: HIV-1 Pathogenesis

Lentiviruses: HIV-1 Pathogenesis Lentiviruses: HIV-1 Pathogenesis Human Immunodeficiency Virus, HIV, computer graphic by Russell Kightley Tsafi Pe ery, Ph.D. Departments of Medicine and Biochemistry & Molecular Biology NJMS, UMDNJ. e-mail:

More information

Chemical Nature of the Amino Acids. Table of a-amino Acids Found in Proteins

Chemical Nature of the Amino Acids. Table of a-amino Acids Found in Proteins Chemical Nature of the Amino Acids All peptides and polypeptides are polymers of alpha-amino acids. There are 20 a- amino acids that are relevant to the make-up of mammalian proteins (see below). Several

More information

Towards a New Paradigm in Scientific Notation Patterns of Periodicity among Proteinogenic Amino Acids [Abridged Version]

Towards a New Paradigm in Scientific Notation Patterns of Periodicity among Proteinogenic Amino Acids [Abridged Version] Earth/matriX: SCIENCE TODAY Towards a New Paradigm in Scientific Notation Patterns of Periodicity among Proteinogenic Amino Acids [Abridged Version] By Charles William Johnson Earth/matriX Editions P.O.

More information

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out. Sign In Forgot Password Register username username password password Sign In If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out. ChemWiki

More information

Proteins are sometimes only produced in one cell type or cell compartment (brain has 15,000 expressed proteins, gut has 2,000).

Proteins are sometimes only produced in one cell type or cell compartment (brain has 15,000 expressed proteins, gut has 2,000). Lecture 2: Principles of Protein Structure: Amino Acids Why study proteins? Proteins underpin every aspect of biological activity and therefore are targets for drug design and medicinal therapy, and in

More information

Introduction to proteins and protein structure

Introduction to proteins and protein structure Introduction to proteins and protein structure The questions and answers below constitute an introduction to the fundamental principles of protein structure. They are all available at [link]. What are

More information

Biomolecules: amino acids

Biomolecules: amino acids Biomolecules: amino acids Amino acids Amino acids are the building blocks of proteins They are also part of hormones, neurotransmitters and metabolic intermediates There are 20 different amino acids in

More information

Lipids: diverse group of hydrophobic molecules

Lipids: diverse group of hydrophobic molecules Lipids: diverse group of hydrophobic molecules Lipids only macromolecules that do not form polymers li3le or no affinity for water hydrophobic consist mostly of hydrocarbons nonpolar covalent bonds fats

More information

AP Bio. Protiens Chapter 5 1

AP Bio. Protiens Chapter 5 1 Concept.4: Proteins have many structures, resulting in a wide range of functions Proteins account for more than 0% of the dry mass of most cells Protein functions include structural support, storage, transport,

More information

Molecular Biology. general transfer: occurs normally in cells. special transfer: occurs only in the laboratory in specific conditions.

Molecular Biology. general transfer: occurs normally in cells. special transfer: occurs only in the laboratory in specific conditions. Chapter 9: Proteins Molecular Biology replication general transfer: occurs normally in cells transcription special transfer: occurs only in the laboratory in specific conditions translation unknown transfer:

More information

Human Immunodeficiency Virus. Acquired Immune Deficiency Syndrome AIDS

Human Immunodeficiency Virus. Acquired Immune Deficiency Syndrome AIDS Human Immunodeficiency Virus Acquired Immune Deficiency Syndrome AIDS Sudden outbreak in USA of opportunistic infections and cancers in young men in 1981 Pneumocystis carinii pneumonia (PCP), Kaposi s

More information

The Structure and Function of Large Biological Molecules Part 4: Proteins Chapter 5

The Structure and Function of Large Biological Molecules Part 4: Proteins Chapter 5 Key Concepts: The Structure and Function of Large Biological Molecules Part 4: Proteins Chapter 5 Proteins include a diversity of structures, resulting in a wide range of functions Proteins Enzymatic s

More information

9/6/2011. Amino Acids. C α. Nonpolar, aliphatic R groups

9/6/2011. Amino Acids. C α. Nonpolar, aliphatic R groups Amino Acids Side chains (R groups) vary in: size shape charge hydrogen-bonding capacity hydrophobic character chemical reactivity C α Nonpolar, aliphatic R groups Glycine (Gly, G) Alanine (Ala, A) Valine

More information

Chemistry 121 Winter 17

Chemistry 121 Winter 17 Chemistry 121 Winter 17 Introduction to Organic Chemistry and Biochemistry Instructor Dr. Upali Siriwardane (Ph.D. Ohio State) E-mail: upali@latech.edu Office: 311 Carson Taylor Hall ; Phone: 318-257-4941;

More information

Methionine (Met or M)

Methionine (Met or M) Fig. 5-17 Nonpolar Fig. 5-17a Nonpolar Glycine (Gly or G) Alanine (Ala or A) Valine (Val or V) Leucine (Leu or L) Isoleucine (Ile or I) Methionine (Met or M) Phenylalanine (Phe or F) Polar Trypotphan (Trp

More information

LESSON 4.4 WORKBOOK. How viruses make us sick: Viral Replication

LESSON 4.4 WORKBOOK. How viruses make us sick: Viral Replication DEFINITIONS OF TERMS Eukaryotic: Non-bacterial cell type (bacteria are prokaryotes).. LESSON 4.4 WORKBOOK How viruses make us sick: Viral Replication This lesson extends the principles we learned in Unit

More information

Introduction to Protein Structure Collection

Introduction to Protein Structure Collection Introduction to Protein Structure Collection Teaching Points This collection is designed to introduce students to the concepts of protein structure and biochemistry. Different activities guide students

More information

11/15/2011. Outline. Structural Features and Characteristics. The Good the Bad and the Ugly. Viral Genomes. Structural Features and Characteristics

11/15/2011. Outline. Structural Features and Characteristics. The Good the Bad and the Ugly. Viral Genomes. Structural Features and Characteristics Chapter 19 - Viruses Outline I. Viruses A. Structure of viruses B. Common Characteristics of Viruses C. Viral replication D. HIV II. Prions The Good the Bad and the Ugly Viruses fit into the bad category

More information

Short polymer. Dehydration removes a water molecule, forming a new bond. Longer polymer (a) Dehydration reaction in the synthesis of a polymer

Short polymer. Dehydration removes a water molecule, forming a new bond. Longer polymer (a) Dehydration reaction in the synthesis of a polymer HO 1 2 3 H HO H Short polymer Dehydration removes a water molecule, forming a new bond Unlinked monomer H 2 O HO 1 2 3 4 H Longer polymer (a) Dehydration reaction in the synthesis of a polymer HO 1 2 3

More information

Some living things are made of ONE cell, and are called. Other organisms are composed of many cells, and are called. (SEE PAGE 6)

Some living things are made of ONE cell, and are called. Other organisms are composed of many cells, and are called. (SEE PAGE 6) Section: 1.1 Question of the Day: Name: Review of Old Information: N/A New Information: We tend to only think of animals as living. However, there is a great diversity of organisms that we consider living

More information

Amino Acids. Review I: Protein Structure. Amino Acids: Structures. Amino Acids (contd.) Rajan Munshi

Amino Acids. Review I: Protein Structure. Amino Acids: Structures. Amino Acids (contd.) Rajan Munshi Review I: Protein Structure Rajan Munshi BBSI @ Pitt 2005 Department of Computational Biology University of Pittsburgh School of Medicine May 24, 2005 Amino Acids Building blocks of proteins 20 amino acids

More information

Four Classes of Biological Macromolecules. Biological Macromolecules. Lipids

Four Classes of Biological Macromolecules. Biological Macromolecules. Lipids Biological Macromolecules Much larger than other par4cles found in cells Made up of smaller subunits Found in all cells Great diversity of func4ons Four Classes of Biological Macromolecules Lipids Polysaccharides

More information

Cells. Variation and Function of Cells

Cells. Variation and Function of Cells Cells Variation and Function of Cells Plasma Membrane= the skin of a cell, it protects and nourishes the cell while communicating with other cells at the same time. Lipid means fat and they are hydrophobic

More information

Julianne Edwards. Retroviruses. Spring 2010

Julianne Edwards. Retroviruses. Spring 2010 Retroviruses Spring 2010 A retrovirus can simply be referred to as an infectious particle which replicates backwards even though there are many different types of retroviruses. More specifically, a retrovirus

More information

For questions 1-4, match the carbohydrate with its size/functional group name:

For questions 1-4, match the carbohydrate with its size/functional group name: Chemistry 11 Fall 2013 Examination #5 PRACTICE 1 For the first portion of this exam, select the best answer choice for the questions below and mark the answers on your scantron. Then answer the free response

More information

CHM333 LECTURE 6: 1/25/12 SPRING 2012 Professor Christine Hrycyna AMINO ACIDS II: CLASSIFICATION AND CHEMICAL CHARACTERISTICS OF EACH AMINO ACID:

CHM333 LECTURE 6: 1/25/12 SPRING 2012 Professor Christine Hrycyna AMINO ACIDS II: CLASSIFICATION AND CHEMICAL CHARACTERISTICS OF EACH AMINO ACID: AMINO ACIDS II: CLASSIFICATION AND CHEMICAL CHARACTERISTICS OF EACH AMINO ACID: - The R group side chains on amino acids are VERY important. o Determine the properties of the amino acid itself o Determine

More information

Moorpark College Chemistry 11 Fall Instructor: Professor Gopal. Examination # 5: Section Five May 7, Name: (print)

Moorpark College Chemistry 11 Fall Instructor: Professor Gopal. Examination # 5: Section Five May 7, Name: (print) Moorpark College Chemistry 11 Fall 2013 Instructor: Professor Gopal Examination # 5: Section Five May 7, 2013 Name: (print) Directions: Make sure your examination contains TEN total pages (including this

More information

The Structure and Function of Macromolecules

The Structure and Function of Macromolecules The Structure and Function of Macromolecules Macromolecules are polymers Polymer long molecule consisting of many similar building blocks. Monomer the small building block molecules. Carbohydrates, proteins

More information

Biochemistry - I. Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology, Kharagpur Lecture 1 Amino Acids I

Biochemistry - I. Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology, Kharagpur Lecture 1 Amino Acids I Biochemistry - I Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology, Kharagpur Lecture 1 Amino Acids I Hello, welcome to the course Biochemistry 1 conducted by me Dr. S Dasgupta,

More information

Micro 301 HIV/AIDS. Since its discovery 31 years ago 12/3/ Acquired Immunodeficiency Syndrome (AIDS) has killed >32 million people

Micro 301 HIV/AIDS. Since its discovery 31 years ago 12/3/ Acquired Immunodeficiency Syndrome (AIDS) has killed >32 million people Micro 301 HIV/AIDS Shiu-Lok Hu hus@uw.edu December 3, 2012 Since its discovery 31 years ago Acquired Immunodeficiency Syndrome (AIDS) has killed >32 million people In 2011 34.0 million [31.4 35.9 million]

More information

So where were we? But what does the order mean? OK, so what's a protein? 4/1/11

So where were we? But what does the order mean? OK, so what's a protein? 4/1/11 So where were we? We know that DNA is responsible for heredity Chromosomes are long pieces of DNA DNA turned out to be the transforming principle We know that DNA is shaped like a long double helix, with

More information

Proteins are a major component of dissolved organic nitrogen (DON) leached from terrestrially aged Eucalyptus camaldulensis leaves

Proteins are a major component of dissolved organic nitrogen (DON) leached from terrestrially aged Eucalyptus camaldulensis leaves Environ. Chem. 216, 13, 877 887 doi:1.171/en165_ac CSIRO 216 Supplementary material Proteins are a major component of dissolved organic nitrogen (DON) leached from terrestrially aged Eucalyptus camaldulensis

More information

1-To know what is protein 2-To identify Types of protein 3- To Know amino acids 4- To be differentiate between essential and nonessential amino acids

1-To know what is protein 2-To identify Types of protein 3- To Know amino acids 4- To be differentiate between essential and nonessential amino acids Amino acids 1-To know what is protein 2-To identify Types of protein 3- To Know amino acids 4- To be differentiate between essential and nonessential amino acids 5-To understand amino acids synthesis Amino

More information

19 Viruses BIOLOGY. Outline. Structural Features and Characteristics. The Good the Bad and the Ugly. Structural Features and Characteristics

19 Viruses BIOLOGY. Outline. Structural Features and Characteristics. The Good the Bad and the Ugly. Structural Features and Characteristics 9 Viruses CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Outline I. Viruses A. Structure of viruses B. Common Characteristics of Viruses C. Viral replication D. HIV Lecture Presentation

More information

Chapter 3: Amino Acids and Peptides

Chapter 3: Amino Acids and Peptides Chapter 3: Amino Acids and Peptides BINF 6101/8101, Spring 2018 Outline 1. Overall amino acid structure 2. Amino acid stereochemistry 3. Amino acid sidechain structure & classification 4. Non-standard

More information

Section 1 Proteins and Proteomics

Section 1 Proteins and Proteomics Section 1 Proteins and Proteomics Learning Objectives At the end of this assignment, you should be able to: 1. Draw the chemical structure of an amino acid and small peptide. 2. Describe the difference

More information

Biomolecules Amino Acids & Protein Chemistry

Biomolecules Amino Acids & Protein Chemistry Biochemistry Department Date: 17/9/ 2017 Biomolecules Amino Acids & Protein Chemistry Prof.Dr./ FAYDA Elazazy Professor of Biochemistry and Molecular Biology Intended Learning Outcomes ILOs By the end

More information

HIV transmission. Pathogenesis.

HIV transmission. Pathogenesis. HIV transmission. Pathogenesis. September 27-28, 2012 TUBIDU International training (WP 7), Riga Dr.Inga Upmace, NGO,,Baltic HIV Association Discovery of HIV virus First reported in 1981 Discovered in

More information

ACQUIRED IMMUNODEFICIENCY SYNDROME AND ITS OCULAR COMPLICATIONS

ACQUIRED IMMUNODEFICIENCY SYNDROME AND ITS OCULAR COMPLICATIONS ACQUIRED IMMUNODEFICIENCY SYNDROME AND ITS OCULAR COMPLICATIONS Acquired immunodeficiency syndrome (AIDS ) is an infectious disease caused by a retrovirus, the human immunodeficiency virus(hiv). AIDS is

More information

Midterm 1 Last, First

Midterm 1 Last, First Midterm 1 BIS 105 Prof. T. Murphy April 23, 2014 There should be 6 pages in this exam. Exam instructions (1) Please write your name on the top of every page of the exam (2) Show all work for full credit

More information

For questions 1-4, match the carbohydrate with its size/functional group name:

For questions 1-4, match the carbohydrate with its size/functional group name: Chemistry 11 Fall 2013 Examination #5 PRACTICE 1 ANSWERS For the first portion of this exam, select the best answer choice for the questions below and mark the answers on your scantron. Then answer the

More information

9/16/15. Properties of Water. Benefits of Water. More properties of water

9/16/15. Properties of Water. Benefits of Water. More properties of water Properties of Water Solid/Liquid Density Water is densest at 4⁰C Ice floats Allows life under the ice Hydrogen bond Ice Hydrogen bonds are stable Liquid water Hydrogen bonds break and re-form Benefits

More information

Protein Synthesis and Mutation Review

Protein Synthesis and Mutation Review Protein Synthesis and Mutation Review 1. Using the diagram of RNA below, identify at least three things different from a DNA molecule. Additionally, circle a nucleotide. 1) RNA is single stranded; DNA

More information

Introduction to Peptide Sequencing

Introduction to Peptide Sequencing Introduction to Peptide equencing Quadrupole Ion Traps tructural Biophysics Course December 3, 2014 12/8/14 Introduction to Peptide equencing - athan Yates 1 Why are ion traps used to sequence peptides?

More information

(30 pts.) 16. (24 pts.) 17. (20 pts.) 18. (16 pts.) 19. (5 pts.) 20. (5 pts.) TOTAL (100 points)

(30 pts.) 16. (24 pts.) 17. (20 pts.) 18. (16 pts.) 19. (5 pts.) 20. (5 pts.) TOTAL (100 points) Moorpark College Chemistry 11 Spring 2009 Instructor: Professor Torres Examination # 5: Section Five April 30, 2009 ame: (print) ame: (sign) Directions: Make sure your examination contains TWELVE total

More information

HIV INFECTION: An Overview

HIV INFECTION: An Overview HIV INFECTION: An Overview UNIVERSITY OF PAPUA NEW GUINEA SCHOOL OF MEDICINE AND HEALTH SCIENCES DIVISION OF BASIC MEDICAL SCIENCES DISCIPLINE OF BIOCHEMISTRY & MOLECULAR BIOLOGY PBL MBBS II SEMINAR VJ

More information

2. Ionization Sources 3. Mass Analyzers 4. Tandem Mass Spectrometry

2. Ionization Sources 3. Mass Analyzers 4. Tandem Mass Spectrometry Dr. Sanjeeva Srivastava 1. Fundamental of Mass Spectrometry Role of MS and basic concepts 2. Ionization Sources 3. Mass Analyzers 4. Tandem Mass Spectrometry 2 1 MS basic concepts Mass spectrometry - technique

More information

Mutations and Disease Mutations in the Myosin Gene

Mutations and Disease Mutations in the Myosin Gene Biological Sciences Initiative HHMI Mutations and Disease Mutations in the Myosin Gene Goals Explore how mutations can lead to disease using the myosin gene as a model system. Explore how changes in the

More information

Grade Level: Grades 9-12 Estimated Time Allotment Part 1: One 50- minute class period Part 2: One 50- minute class period

Grade Level: Grades 9-12 Estimated Time Allotment Part 1: One 50- minute class period Part 2: One 50- minute class period The History of Vaccines Lesson Plan: Viruses and Evolution Overview and Purpose: The purpose of this lesson is to prepare students for exploring the biological basis of vaccines. Students will explore

More information

1. (38 pts.) 2. (25 pts.) 3. (15 pts.) 4. (12 pts.) 5. (10 pts.) Bonus (12 pts.) TOTAL (100 points)

1. (38 pts.) 2. (25 pts.) 3. (15 pts.) 4. (12 pts.) 5. (10 pts.) Bonus (12 pts.) TOTAL (100 points) Moorpark College Chemistry 11 Spring 2010 Instructor: Professor Torres Examination #5: Section Five May 4, 2010 ame: (print) ame: (sign) Directions: Make sure your examination contains TWELVE total pages

More information

Reactions and amino acids structure & properties

Reactions and amino acids structure & properties Lecture 2: Reactions and amino acids structure & properties Dr. Sameh Sarray Hlaoui Common Functional Groups Common Biochemical Reactions AH + B A + BH Oxidation-Reduction A-H + B-OH + energy ª A-B + H

More information

(65 pts.) 27. (10 pts.) 28. (15 pts.) 29. (10 pts.) TOTAL (100 points) Moorpark College Chemistry 11 Spring Instructor: Professor Gopal

(65 pts.) 27. (10 pts.) 28. (15 pts.) 29. (10 pts.) TOTAL (100 points) Moorpark College Chemistry 11 Spring Instructor: Professor Gopal Moorpark College Chemistry 11 Spring 2012 Instructor: Professor Gopal Examination # 5: Section Five May 1, 2012 Name: (print) GOOD LUCK! Directions: Make sure your examination contains TWELVE total pages

More information

Bio Factsheet. Proteins and Proteomics. Number 340

Bio Factsheet. Proteins and Proteomics.   Number 340 Number 340 Proteins and Proteomics Every living thing on the planet is composed of cells, and cells in turn are made of many types of molecules, including the biological molecules carbohydrates, lipids,

More information

A Chemical Look at Proteins: Workhorses of the Cell

A Chemical Look at Proteins: Workhorses of the Cell A Chemical Look at Proteins: Workhorses of the Cell A A Life ciences 1a Lecture otes et 4 pring 2006 Prof. Daniel Kahne Life requires chemistry 2 amino acid monomer and it is proteins that make the chemistry

More information

Aipotu II: Biochemistry

Aipotu II: Biochemistry Aipotu II: Biochemistry Introduction: The Biological Phenomenon Under Study In this lab, you will continue to explore the biological mechanisms behind the expression of flower color in a hypothetical plant.

More information

For all of the following, you will have to use this website to determine the answers:

For all of the following, you will have to use this website to determine the answers: For all of the following, you will have to use this website to determine the answers: http://blast.ncbi.nlm.nih.gov/blast.cgi We are going to be using the programs under this heading: Answer the following

More information

Immunodeficiencies HIV/AIDS

Immunodeficiencies HIV/AIDS Immunodeficiencies HIV/AIDS Immunodeficiencies Due to impaired function of one or more components of the immune or inflammatory responses. Problem may be with: B cells T cells phagocytes or complement

More information

Lecture 2: Virology. I. Background

Lecture 2: Virology. I. Background Lecture 2: Virology I. Background A. Properties 1. Simple biological systems a. Aggregates of nucleic acids and protein 2. Non-living a. Cannot reproduce or carry out metabolic activities outside of a

More information

Overview: Chapter 19 Viruses: A Borrowed Life

Overview: Chapter 19 Viruses: A Borrowed Life Overview: Chapter 19 Viruses: A Borrowed Life Viruses called bacteriophages can infect and set in motion a genetic takeover of bacteria, such as Escherichia coli Viruses lead a kind of borrowed life between

More information

Protein and Amino Acid Analysis. Chemistry M3LC

Protein and Amino Acid Analysis. Chemistry M3LC Protein and Amino Acid Analysis Chemistry M3LC Proteins Proteins are made up of amino acids: H2N-CHR-COOH + H3N-CHR-COO - neutral form zwitterionic form There are twenty standard amino acids: A ala alanine

More information

Head. Tail. Carboxyl group. group. group. air water. Hydrocarbon chain. lecture 5-sa Seth Copen Goldstein 2.

Head. Tail. Carboxyl group. group. group. air water. Hydrocarbon chain. lecture 5-sa Seth Copen Goldstein 2. Lipids Some lipid structures Organic compounds Amphipathic Polar head group (hydrophilic) Non-polar tails (hydrophobic) Lots of uses Energy storage Membranes Hormones Vitamins HO O C H 2 C CH 2 H 2 C CH

More information

Cube Critters Teacher s Guide

Cube Critters Teacher s Guide Cube Critters Teacher s Guide Relevant Life Science Content Standards from the National Science Education Standards 5-8: Diversity and Adaptations of Organisms Hereditary information is contained in genes,

More information

Coronaviruses. Virion. Genome. Genes and proteins. Viruses and hosts. Diseases. Distinctive characteristics

Coronaviruses. Virion. Genome. Genes and proteins. Viruses and hosts. Diseases. Distinctive characteristics Coronaviruses Virion Genome Genes and proteins Viruses and hosts Diseases Distinctive characteristics Virion Spherical enveloped particles studded with clubbed spikes Diameter 120-160 nm Coiled helical

More information

5/6/17. Diseases. Disease. Pathogens. Domain Bacteria Characteristics. Bacteria Viruses (including HIV) Pathogens are disease-causing organisms

5/6/17. Diseases. Disease. Pathogens. Domain Bacteria Characteristics. Bacteria Viruses (including HIV) Pathogens are disease-causing organisms 5/6/17 Disease Diseases I. II. Bacteria Viruses (including HIV) Biol 105 Chapter 13a Pathogens Pathogens are disease-causing organisms Domain Bacteria Characteristics 1. Domain Bacteria are prokaryotic.

More information

Human Genome Complexity, Viruses & Genetic Variability

Human Genome Complexity, Viruses & Genetic Variability Human Genome Complexity, Viruses & Genetic Variability (Learning Objectives) Learn the types of DNA sequences present in the Human Genome other than genes coding for functional proteins. Review what you

More information

HS-LS4-4 Construct an explanation based on evidence for how natural selection leads to adaptation of populations.

HS-LS4-4 Construct an explanation based on evidence for how natural selection leads to adaptation of populations. Unit 2, Lesson 2: Teacher s Edition 1 Unit 2: Lesson 2 Influenza and HIV Lesson Questions: o What steps are involved in viral infection and replication? o Why are some kinds of influenza virus more deadly

More information

2.1 VIRUSES. 2.1 Learning Goals

2.1 VIRUSES. 2.1 Learning Goals 2.1 VIRUSES 2.1 Learning Goals To understand the structure, function, and how Viruses replicate To understand the difference between Viruses to Prokaryotes and Eukaryotes; namely that viruses are not classified

More information

Protein Folding LARP

Protein Folding LARP Protein Folding LARP Version: 1.0 Release: April 2018 Amplyus 2018 minipcr TM Protein Folding LARP (Live Action Role Play) Summary Materials In this activity, students will role play to make a folded protein

More information

Hands-on Activity Viral DNA Integration. Educator Materials

Hands-on Activity Viral DNA Integration. Educator Materials OVERVIEW This activity is part of a series of activities and demonstrations focusing on various aspects of the human immunodeficiency virus (HIV) life cycle. HIV is a retrovirus. Retroviruses are distinguished

More information

Rama Nada. - Malik

Rama Nada. - Malik - 2 - Rama Nada - - Malik 1 P a g e We talked about HAV in the previous lecture, now we ll continue the remaining types.. Hepatitis E It s similar to virus that infect swine, so its most likely infect

More information

The Basics: A general review of molecular biology:

The Basics: A general review of molecular biology: The Basics: A general review of molecular biology: DNA Transcription RNA Translation Proteins DNA (deoxy-ribonucleic acid) is the genetic material It is an informational super polymer -think of it as the

More information

GL Science Inertsearch for LC Inertsil Applications - Acids. Data No. Column Data Title Solutes Eluent Detection Data No.

GL Science Inertsearch for LC Inertsil Applications - Acids. Data No. Column Data Title Solutes Eluent Detection Data No. GL Science Inertsearch for LC Inertsil Applications: Acids For complete Product Description, Chromatograms Price & Delivery in Australia & New Zealand contact info@winlab.com.au or call 61 (0)7 3205 1209

More information

number Done by Corrected by Doctor Dr.Diala

number Done by Corrected by Doctor Dr.Diala number 32 Done by Mousa Salah Corrected by Bahaa Najjar Doctor Dr.Diala 1 P a g e In the last lecture we talked about the common processes between all amino acids which are: transamination, deamination,

More information