Cube Critters Teacher s Guide

Size: px
Start display at page:

Download "Cube Critters Teacher s Guide"

Transcription

1 Cube Critters Teacher s Guide Relevant Life Science Content Standards from the National Science Education Standards 5-8: Diversity and Adaptations of Organisms Hereditary information is contained in genes, located in the chromosomes of each cell An inherited trait of an individual can be determined by one or by many genes and a single gene can influence more than one trait The characteristics of an organism can be described in terms of a combination of traits Although different species might look dissimilar, the unity among organisms becomes apparent from an analysis of internal structures and the similarity of their chemical processes 9-12: The Cell The genetic information stored in DNA is used to direct the synthesis of the thousands of proteins that each cell requires 9-12: Molecular Basis of Heredity In all organisms, the instructions for specifying the characteristics of the organism are carried in DNA, a large polymer formed from subunits of four kinds (A, G, C, and T) The chemical and structural properties of DNA explain how the genetic information that underlies heredity is encoded in genes (as a string of molecular letters ) 9-12: Biological Evolution Organisms are classified into a hierarchy of groups and subgroups based on similarities which reflect their evolutionary relationships

2 This activity is used in my biology class when discussing RNA s role in transcription and translation. The cube acts as our string of mrna carrying the 18 traits for an imaginary creature the students will make. Each row on the cube will code for a single amino acid and to simplify things, our traits are determined by just one amino acid. This activity works best done individually but pairs would work as well. The activity can be simplified by working in groups where each student is responsible for only a fraction of the whole cube (1 side only, 2 sides, etc) and then work together on the drawing. Suggestion: The activity can also be used when discussing classification by having the students place a collection of created organisms into classes, orders, families, etc based on characteristics of their choosing. They would then need to be able to explain and justify their classification. Time 1 day in-class (approximately 45 minutes to fill out data tables) 3-5 days to complete drawing (can be shorter, I tell my students to take their time because I will hang them up both in the room and the hallway) Materials (per group): 1 Rubik s cube 1 Cube Critter handout 1 Table of Traits (can be shared between 2 or 3 groups) Unlined paper (for final drawing, I prefer to use legal size printer paper) Colored pencils, crayons, or markers Important notes: 1) Its stated on the student handout but make sure to point out to the students that the center square on each side of the cube will never change spots and that s how the faces are named. So when it says yellow face it is dealing with the side of the cube with a yellow center. 2) If you haven t covered it before this activity, it may help to explain how to use a codon table. Left side is the first base, top is the second base, right side shows the last base. 3) The diagram at the bottom of the handout shows a way to look at the cube so everyone is using the same row for the same trait. It s not absolutely necessary that everyone does this, it just helps drive the point home that even when reading everything the same way, odds are you re going to have different traits.

3 Cube Critters All of life as we know it is based off of DNA. Everything from the smallest and simplest organisms to the biggest and most complex creatures ever to live all begin with guanine, cytosine, adenine and thymine. To better understand the universal nature of DNA and to show how four things can create an almost infinite combination of traits, we are going to work with something most (if not all) of you are familiar with: the Rubik s Cube. Despite being composed of only six colors and 20 moveable pieces, there are 43,252,003,274,489,856,000 unique combinations that can be made. To put that into perspective, if all 7 billion people alive on Earth today made the same number of combinations, with no one repeating those of anyone else, each person would need over 600 million cubes. For this reason alone, the Rubik s Cube is perfect for our study of transcription and translation. On our cube, just like with DNA, we will have codons. In DNA, a codon is 3 bases read together and on our cube, a codon will be three squares, or one row of the cube. Each codon will code for an amino acid and in our simplified version, each amino acid will determine a trait. By the time you finish, you will have determined 18 individual traits for your organism and will then illustrate your newly designed critter. Important: The center square on each side will never change its place. When a side is mentioned by color (for example: the green side), it is referring to the side with a green square in the center spot. Each side of the cube will code for 3 specific traits, all fitting a common theme. To insure that everyone reads their code the same way, the traits will be named in the following manner. With the cube arranged: The traits will be read in the order: 1 signifies the first trait, 2 the second, and 3 the third. The a, b, and c refer to the first, second, and third base respectively for that given trait.

4 Procedure: 1) Scramble your Rubik s Cube thoroughly 2) Place the cube with the yellow face on the top and the orange face facing you. 3) Beginning with the top left corner of the yellow face, record the arrangement of your cube in Data Table 1 (It may be helpful to write down both the color on the cube and the base in the area provided) 4) For each set of three bases, find the corresponding amino acid on the codon table 5) Repeat steps 3 and 4 for the orange and blue faces. 6) After getting your information for the yellow, orange and blue faces, flip your cube over so the white face is on top and green face is towards you. 7) Repeat steps 3 and 4 for the three remaining faces. 8) After filling in the amino acids for all traits, complete Data Table 2 by writing the amino acid for each trait from Data Table 1 into the appropriate box and matching the amino acid to the trait description 9) Once all trait descriptions are written, draw a quick sketch of what each trait will look like in you finished critter 10) Draw and color a detailed image of your newly created critter on a separate sheet of paper, making sure to include all 18 of the traits in your drawing. Codon Table* * In a real codon table, the codons UAA, UAG, and UGA are considered stop codons where translation would end. For our activity, that would be a big problem so they are replaced with the two imaginary amino acids fakeinine and pretendisine

5 Green (G) = Guanine (G) Yellow (Y) = Adenine (A) White (W) = Uracil (U) Blue (B) = Cytosine (C ) Red (R) (on face with Yellow, Orange or Blue center) = Guanine (G) Red (R) (on face with White, Green, or Red center) = Adenine (A) Orange (O) (on face with Yellow, Orange or Blue center) = Uracil (U) Orange (O) (on face with White, Green, or Red center) = Cytosine (C ) Data Table 1 Face Row EXAMPLE Base 1 Base 2 Base 3 Amino Acid Color = Base Color = Base Color = Base G = G Y = A W = U Aspartic Acid Yellow Orange Trait 1 = = = Trait 2 = = = Trait 3 = = = Trait 1 = = = Trait 2 = = = Trait 3 = = = Trait 1 = = = Blue Trait 2 = = = Trait 3 = = = White Green Trait 1 = = = Trait 2 = = = Trait 3 = = = Trait 1 = = = Trait 2 = = = Trait 3 = = = Trait 1 = = = Red Trait 2 = = = Trait 3 = = =

6 Orange - Colorations Yellow - General Appearance Data Table 2 Face Row Amino Acid Trait Description Sketch Trait 1 - Coverings Trait 2 - Body Size Trait 3 - Body Type Trait 1 - Base Color Trait 2 - Pattern Color Trait 3 - Pattern

7 White - Head Structures Blue - Extremities Face Row Amino Acid Trait Description Sketch Trait 1 - Leg Length Trait 2 - Tail Type Trait 3 - Foot Type Trait 1 - Muzzle Trait 2 - Ears Trait 3 - Eyes

8 Red - Environment Green - Fantanstic Add-Ons Face Row Amino Acid Trait Description Sketch Trait 1 - Wings Trait 2 - Fire Color Trait 3 - Horns Trait 1 - Biome Trait 2 - Time of Activity Trait 3 - Egg Type

9 Yellow Face = Appearance Trait 1 - Coverings Fur Feathers Scales Smooth Asparagine Proline Aspartic Acid Alanine Glutamine Serine Cysteine Arginine Histidine Fakeinine Glycine Leucine Valine Glutamic Acid Pretendisine Lysine Isoleucine Phenylalanine Threonine Trait 2 - Body Size Dog-Sized Horse-Sized Bear-Sized Elephant-Sized Arginine Alanine Asparagine Glutamine Aspartic Acid Pretendisine Leucine Glycine Cysteine Serine Proline Histidine Fakeinine Threonine Isoleucine Glutamic Acid Valine Phenylalanine Lysine Methionine Trait 3 - Body Type Skinny Medium Big "Chunky" Asparagine Arginine Glutamic Acid Alanine Aspartic Acid Proline Glycine Cysteine Glutamine Methionine Fakeinine Histidine Valine Serine Isoleucine Leucine Threonine Phenylalanine Lysine Pretendisine

10 Orange Face = Colorations Trait 1 - Base Color White Black Brown Orange Yellow Isoleucine Cysteine Alanine Glutamine Phenylalanine Valine Fakeinine Glutamic Acid Pretendisine Methionine Lysine Serine Blue Green Purple Red Arginine Glycine Aspartic Acid Histidine Asparagine Proline Threonine Leucine Trait 2 - Pattern Color White Black Brown Orange Yellow Isoleucine Cysteine Alanine Glutamine Phenylalanine Valine Fakeinine Glutamic Acid Pretendisine Methionine Lysine Serine Blue Green Purple Red Arginine Glycine Aspartic Acid Histidine Asparagine Proline Threonine Leucine Trait 3 - Pattern Stripes Dots Rings Blotches Hearts Arginine Aspartic Acid Asparagine Glycine Alanine Fakeinine Cysteine Glutamine Isoleucine Proline Glutamic Acid Histidine Leucine Pretendisine Threonine Phenylalanine Serine Lysine Valine Methionine

11 Blue Face = Extremities Trait 1 - Leg Length Very Short Short Medium Long Very Long Alanine Glutamine Cysteine Arginine Isoleucine Glycine Histidine Fakeinine Asparagine Methionine Threonine Leucine Phenylalanine Aspartic Acid Proline Pretendisine Serine Glutamic Acid Valine Lysine Trait 2 - Tail Type None Nub Medium Long 2 Tails Fakeinine Leucine Alanine Arginine Asparagine Glutamic Acid Phenylalanine Cysteine Glutamine Aspartic Acid Histidine Threonine Serine Glycine Isoleucine Lysine Pretendisine Proline Methionine Valine Trait 3 - Foot Type Hoof 3-Toed No Claws Short Claws Long Claws Arginine Histidine Glycine Alanine Aspartic Acid Asparagine Lysine Proline Isoleucine Cysteine Glutamic Acid Serine Valine Methionine Fakeinine Phenylalanine Threonine Glutamine Pretendisine Leucine

12 White Face = Head Structures Trait 1 - Muzzle Short Long Short Beak Long Beak Curved Beak Arginine Aspartic Acid Asparagine Glycine Alanine Fakeinine Cysteine Glutamine Isoleucine Proline Glutamic Acid Histidine Leucine Pretendisine Threonine Phenylalanine Serine Lysine Valine Methionine Trait 2 - Ears Short Pointed Long Pointed Short Floppy Long Floppy "Dumbo" Isoleucine Glutamic Acid Alanine Asparagine Arginine Pretendisine Histidine Fakeinine Aspartic Acid Glutamine Proline Leucine Glycine Cysteine Methionine Threonine Lysine Valine Serine Pheynlalanine Trait 3 - Eyes Blue Green Black Red Arginine Glycine Alanine Asparagine Aspartic Acid Pretendisine Glutamic Acid Histidine Cysteine Proline Leucine Isoleucine Fakeinine Serine Methionine Lysine Glutamine Threonine Phenylalanine Valine

13 Green Face = Fantastic Add-Ons Trait 1 - Wings None Bird Insect Dragon Fairy Isoleucine Glutamic Acid Alanine Asparagine Arginine Pretendisine Histidine Fakeinine Aspartic Acid Glutamine Proline Leucine Glycine Cysteine Methionine Threonine Lysine Valine Serine Pheynlalanine Trait 2 - Fire Color Red Orange Yellow White Blue Green Glycine Fakeinine Cysteine Leucine Arginine Alanine Lysine Histidine Glutamic Acid Isoleucine Asparagine Serine Phenylalanine Proline Valine Methionine Aspartic Acid Threonine Pretendisine Glutamine Trait 3 - Horns Antlers Small Pointy Big Pointy Curly None Arginine Aspartic Acid Asparagine Glycine Alanine Fakeinine Cysteine Glutamine Isoleucine Proline Glutamic Acid Histidine Leucine Pretendisine Threonine Phenylalanine Serine Lysine Valine Methionine

14 Red Face = Environment Trait 1 - Biome Desert Forest Plains Artic Arginine Fakeinine Alanine Asparagine Glutamic Acid Glycine Methionine Aspartic Acid Histidine Leucine Pretendisine Cysteine Lysine Proline Glutamine Phenylalanine Valine Serine Isoleucine Threonine Trait 2 - Time of Activity Night Day Dusk/Dawn Serine Leucine Arginine Glycine Threonine Alanine Proline Valine Isoleucine Cysteine Fakeinine Aspartic Acid Glutamic Acid Lysine Asparagine Glutamine Phenylalanine Histidine Pretendisine Methionine Trait 3 - Egg Type Blue Speckled Red Speckled Striped Solid White Solid Brown Alanine Glutamine Cysteine Arginine Isoleucine Glycine Histidine Fakeinine Asparagine Methionine Threonine Leucine Phenylalanine Aspartic Acid Proline Pretendisine Serine Glutamic Acid Valine Lysine

So where were we? But what does the order mean? OK, so what's a protein? 4/1/11

So where were we? But what does the order mean? OK, so what's a protein? 4/1/11 So where were we? We know that DNA is responsible for heredity Chromosomes are long pieces of DNA DNA turned out to be the transforming principle We know that DNA is shaped like a long double helix, with

More information

Section 1 Proteins and Proteomics

Section 1 Proteins and Proteomics Section 1 Proteins and Proteomics Learning Objectives At the end of this assignment, you should be able to: 1. Draw the chemical structure of an amino acid and small peptide. 2. Describe the difference

More information

Mutations and Disease Mutations in the Myosin Gene

Mutations and Disease Mutations in the Myosin Gene Biological Sciences Initiative HHMI Mutations and Disease Mutations in the Myosin Gene Goals Explore how mutations can lead to disease using the myosin gene as a model system. Explore how changes in the

More information

Sections 12.3, 13.1, 13.2

Sections 12.3, 13.1, 13.2 Sections 12.3, 13.1, 13.2 Now that the DNA has been copied, it needs to send its genetic message to the ribosomes so proteins can be made Transcription: synthesis (making of) an RNA molecule from a DNA

More information

Thin-Layer Chromatography of Amino Acids HASPI Medical Biology Lab 15b Background Macromolecules

Thin-Layer Chromatography of Amino Acids HASPI Medical Biology Lab 15b Background Macromolecules Thin-Layer Chromatography of s HASPI Medical Biology Lab 15b Background Macromolecules Name: Period: Date: There are four major types of biological macromolecules that make up the human body: nucleic acids

More information

Activities for the α-helix / β-sheet Construction Kit

Activities for the α-helix / β-sheet Construction Kit Activities for the α-helix / β-sheet Construction Kit The primary sequence of a protein, composed of amino acids, determines the organization of the sequence into the secondary structure. There are two

More information

LAB#23: Biochemical Evidence of Evolution Name: Period Date :

LAB#23: Biochemical Evidence of Evolution Name: Period Date : LAB#23: Biochemical Evidence of Name: Period Date : Laboratory Experience #23 Bridge Worth 80 Lab Minutes If two organisms have similar portions of DNA (genes), these organisms will probably make similar

More information

Protein Folding LARP

Protein Folding LARP Protein Folding LARP Version: 1.0 Release: April 2018 Amplyus 2018 minipcr TM Protein Folding LARP (Live Action Role Play) Summary Materials In this activity, students will role play to make a folded protein

More information

Objective: You will be able to explain how the subcomponents of

Objective: You will be able to explain how the subcomponents of Objective: You will be able to explain how the subcomponents of nucleic acids determine the properties of that polymer. Do Now: Read the first two paragraphs from enduring understanding 4.A Essential knowledge:

More information

1. Describe the relationship of dietary protein and the health of major body systems.

1. Describe the relationship of dietary protein and the health of major body systems. Food Explorations Lab I: The Building Blocks STUDENT LAB INVESTIGATIONS Name: Lab Overview In this investigation, you will be constructing animal and plant proteins using beads to represent the amino acids.

More information

Biological systems interact, and these systems and their interactions possess complex properties. STOP at enduring understanding 4A

Biological systems interact, and these systems and their interactions possess complex properties. STOP at enduring understanding 4A Biological systems interact, and these systems and their interactions possess complex properties. STOP at enduring understanding 4A Homework Watch the Bozeman video called, Biological Molecules Objective:

More information

www.lessonplansinc.com Topic: Protein Synthesis - Sentence Activity Summary: Students will simulate transcription and translation by building a sentence/polypeptide from words/amino acids. Goals & Objectives:

More information

Complete Student Notes for BIOL2202

Complete Student Notes for BIOL2202 Complete Student Notes for BIOL2202 Revisiting Translation & the Genetic Code Overview How trna molecules interpret a degenerate genetic code and select the correct amino acid trna structure: modified

More information

11B Crazy Traits. What role does chance play in an organism s heredity? 1. Determining the genotype. 2. Stop and Think. Investigation 11B.

11B Crazy Traits. What role does chance play in an organism s heredity? 1. Determining the genotype. 2. Stop and Think. Investigation 11B. 11B Crazy Traits Investigation 11B What role does chance play in an organism s heredity? Your traits are determined by the genes you inherit from your parents. For each gene, you get at least one allele

More information

Proteins consist in whole or large part of amino acids. Simple proteins consist only of amino acids.

Proteins consist in whole or large part of amino acids. Simple proteins consist only of amino acids. Today we begin our discussion of the structure and properties of proteins. Proteins consist in whole or large part of amino acids. Simple proteins consist only of amino acids. Conjugated proteins contain

More information

Short polymer. Dehydration removes a water molecule, forming a new bond. Longer polymer (a) Dehydration reaction in the synthesis of a polymer

Short polymer. Dehydration removes a water molecule, forming a new bond. Longer polymer (a) Dehydration reaction in the synthesis of a polymer HO 1 2 3 H HO H Short polymer Dehydration removes a water molecule, forming a new bond Unlinked monomer H 2 O HO 1 2 3 4 H Longer polymer (a) Dehydration reaction in the synthesis of a polymer HO 1 2 3

More information

Introduction to Protein Structure Collection

Introduction to Protein Structure Collection Introduction to Protein Structure Collection Teaching Points This collection is designed to introduce students to the concepts of protein structure and biochemistry. Different activities guide students

More information

Biochemistry - I. Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology, Kharagpur Lecture 1 Amino Acids I

Biochemistry - I. Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology, Kharagpur Lecture 1 Amino Acids I Biochemistry - I Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology, Kharagpur Lecture 1 Amino Acids I Hello, welcome to the course Biochemistry 1 conducted by me Dr. S Dasgupta,

More information

2 Which of these statements best explains the process of energy conversion that takes place in the mitochondria?

2 Which of these statements best explains the process of energy conversion that takes place in the mitochondria? irst Semester Biology inal: 1. The technique known as chromosome painting is the result of scientific research. Scientists use chromosome painting to mark the locations of genes on human chromosomes with

More information

Lecture 3: 8/24. CHAPTER 3 Amino Acids

Lecture 3: 8/24. CHAPTER 3 Amino Acids Lecture 3: 8/24 CHAPTER 3 Amino Acids 1 Chapter 3 Outline 2 Amino Acid Are Biomolecules and their Atoms Can Be Visualized by Two Different Ways 1) Fischer projections: Two dimensional representation of

More information

Carbohydrates. Building a carbohydrate:

Carbohydrates. Building a carbohydrate: Carbohydrates Monomer: Monosaccharide (simple s) Example: glucose, fructose Disaccharide: 2 monosaccharides joined together Example: sucrose (glucose + fructose) olymer: olysaccharide (starch) Example:

More information

9/16/15. Properties of Water. Benefits of Water. More properties of water

9/16/15. Properties of Water. Benefits of Water. More properties of water Properties of Water Solid/Liquid Density Water is densest at 4⁰C Ice floats Allows life under the ice Hydrogen bond Ice Hydrogen bonds are stable Liquid water Hydrogen bonds break and re-form Benefits

More information

Protein Investigator. Protein Investigator - 3

Protein Investigator. Protein Investigator - 3 Protein Investigator Objectives To learn more about the interactions that govern protein structure. To test hypotheses regarding protein structure and function. To design proteins with specific shapes.

More information

Beebops Genetics and Evolution Teacher Information

Beebops Genetics and Evolution Teacher Information STO-105 Beebops Genetics and Evolution Teacher Information Summary In Part 1 students model meiosis and fertilization using chromosomes/genes from fictitious Beebop parents. They decode the genes in the

More information

Midterm 1 Last, First

Midterm 1 Last, First Midterm 1 BIS 105 Prof. T. Murphy April 23, 2014 There should be 6 pages in this exam. Exam instructions (1) Please write your name on the top of every page of the exam (2) Show all work for full credit

More information

READ THIS FIRST. Your Name

READ THIS FIRST. Your Name Introduction to Biochemistry Final Examination - Individual (Part I) Monday, 24 May 2010 7:00 8:45 PM H. B. White Instructor 120 Points Your Name "Ability is what you're capable of doing. Motivation determines

More information

Fatty acids and phospholipids

Fatty acids and phospholipids PYS 4xx Intro 2 1 PYS 4xx Intro 2 - Molecular building blocks We now describe in more detail the nomenclature and composition of several classes of compounds of relevance to the cell, including: membrane

More information

Four Classes of Biological Macromolecules. Biological Macromolecules. Lipids

Four Classes of Biological Macromolecules. Biological Macromolecules. Lipids Biological Macromolecules Much larger than other par4cles found in cells Made up of smaller subunits Found in all cells Great diversity of func4ons Four Classes of Biological Macromolecules Lipids Polysaccharides

More information

Amino Acids. Amino Acids. Fundamentals. While their name implies that amino acids are compounds that contain an NH. 3 and CO NH 3

Amino Acids. Amino Acids. Fundamentals. While their name implies that amino acids are compounds that contain an NH. 3 and CO NH 3 Fundamentals While their name implies that amino acids are compounds that contain an 2 group and a 2 group, these groups are actually present as 3 and 2 respectively. They are classified as α, β, γ, etc..

More information

HEREDITY SAMPLE TOURNAMENT

HEREDITY SAMPLE TOURNAMENT HEREDITY SAMPLE TOURNAMENT PART 1 - BACKGROUND: 1. Heterozygous means. A. Information about heritable traits B. Unique/ different molecular forms of a gene that are possible at a given locus C. Having

More information

CHEM-342 Introduction to Biochemistry Your Name Final Examination - Individual (Part I) Friday, 26 May :30 12:15 PM H. B. White - Instructor

CHEM-342 Introduction to Biochemistry Your Name Final Examination - Individual (Part I) Friday, 26 May :30 12:15 PM H. B. White - Instructor HEM-342 Introduction to Biochemistry Final Examination - Individual (Part I) Friday, 26 May 2006 10:30 12:15 PM H. B. White - Instructor Range 28-72(2) out of 85, Average 53.5 Important - Please read this

More information

Insulin mrna to Protein Kit

Insulin mrna to Protein Kit Insulin mrna to Protein Kit A 3DMD Paper BioInformatics and Mini-Toober Folding Activity Student Handout www.3dmoleculardesigns.com Insulin mrna to Protein Kit Contents Becoming Familiar with the Data...

More information

Fundamentals of Organic Chemistry CHEM 109 For Students of Health Colleges

Fundamentals of Organic Chemistry CHEM 109 For Students of Health Colleges Fundamentals of Organic Chemistry CHEM 109 For Students of Health Colleges Credit hrs.: (2+1) King Saud University College of Science, Chemistry Department CHEM 109 CHAPTER 9. AMINO ACIDS, PEPTIDES AND

More information

Protein sequence alignment using binary string

Protein sequence alignment using binary string Available online at www.scholarsresearchlibrary.com Scholars Research Library Der Pharmacia Lettre, 2015, 7 (5):220-225 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-5071 USA CODEN: DPLEB4

More information

Cells N5 Homework book

Cells N5 Homework book 1 Cells N5 Homework book 2 Homework 1 3 4 5 Homework2 Cell Ultrastructure and Membrane 1. Name and give the function of the numbered organelles in the cell below: A E B D C 2. Name 3 structures you might

More information

Protein Synthesis and Mutation Review

Protein Synthesis and Mutation Review Protein Synthesis and Mutation Review 1. Using the diagram of RNA below, identify at least three things different from a DNA molecule. Additionally, circle a nucleotide. 1) RNA is single stranded; DNA

More information

Chapter 4: Information and Knowledge in the Protein Insulin

Chapter 4: Information and Knowledge in the Protein Insulin Chapter 4: Information and Knowledge in the Protein Insulin This chapter will calculate the information and molecular knowledge in a real protein. The techniques discussed in this chapter to calculate

More information

Biochemistry Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology Kharagpur. Lecture -02 Amino Acids II

Biochemistry Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology Kharagpur. Lecture -02 Amino Acids II Biochemistry Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology Kharagpur Lecture -02 Amino Acids II Ok, we start off with the discussion on amino acids. (Refer Slide Time: 00:48)

More information

Alien Life Form (ALF)

Alien Life Form (ALF) Alien Life Form (ALF) Closely related siblings are most often different in both genotype (the actual genes) and phenotype (the appearance of the genes). This is because of the great variety of traits in

More information

PROTEIN. By: Shamsul Azahari Zainal Badari Department of Resource Management and Consumer Studies Faculty of Human Ecology UPM

PROTEIN. By: Shamsul Azahari Zainal Badari Department of Resource Management and Consumer Studies Faculty of Human Ecology UPM PROTEIN By: Shamsul Azahari Zainal Badari Department of Resource Management and Consumer Studies Faculty of Human Ecology UPM OBJECTIVES OF THE LECTURE By the end of this lecture, student can: Define

More information

(a) (i) Describe how the production and action of interferon differs from the production and action of lysozyme. (3)

(a) (i) Describe how the production and action of interferon differs from the production and action of lysozyme. (3) 1 Histamine and the proteins interferon and lysozyme are involved in the non-specific responses to infection. (a) (i) escribe how the production and action of interferon differs from the production and

More information

M1 - Renal, Fall 2007

M1 - Renal, Fall 2007 University of Michigan Deep Blue deepblue.lib.umich.edu 2007-09 M1 - Renal, Fall 2007 Lyons, R.; Burney, R. Lyons, R., Burney, R. (2008, August 07). Renal. Retrieved from Open.Michigan - Educational Resources

More information

Amino acids. (Foundation Block) Dr. Essa Sabi

Amino acids. (Foundation Block) Dr. Essa Sabi Amino acids (Foundation Block) Dr. Essa Sabi Learning outcomes What are the amino acids? General structure. Classification of amino acids. Optical properties. Amino acid configuration. Non-standard amino

More information

Chapter 5: Structure and Function of Macromolecules AP Biology 2011

Chapter 5: Structure and Function of Macromolecules AP Biology 2011 Chapter 5: Structure and Function of Macromolecules AP Biology 2011 1 Macromolecules Fig. 5.1 Carbohydrates Lipids Proteins Nucleic Acids Polymer - large molecule consisting of many similar building blocks

More information

Biology. Lectures winter term st year of Pharmacy study

Biology. Lectures winter term st year of Pharmacy study Biology Lectures winter term 2008 1 st year of Pharmacy study 3 rd Lecture Chemical composition of living matter chemical basis of life. Atoms, molecules, organic compounds carbohydrates, lipids, proteins,

More information

9/6/2011. Amino Acids. C α. Nonpolar, aliphatic R groups

9/6/2011. Amino Acids. C α. Nonpolar, aliphatic R groups Amino Acids Side chains (R groups) vary in: size shape charge hydrogen-bonding capacity hydrophobic character chemical reactivity C α Nonpolar, aliphatic R groups Glycine (Gly, G) Alanine (Ala, A) Valine

More information

Macromolecules of Life -3 Amino Acids & Proteins

Macromolecules of Life -3 Amino Acids & Proteins Macromolecules of Life -3 Amino Acids & Proteins Shu-Ping Lin, Ph.D. Institute of Biomedical Engineering E-mail: splin@dragon.nchu.edu.tw Website: http://web.nchu.edu.tw/pweb/users/splin/ Amino Acids Proteins

More information

Amino acids. Dr. Mamoun Ahram Summer semester,

Amino acids. Dr. Mamoun Ahram Summer semester, Amino acids Dr. Mamoun Ahram Summer semester, 2017-2018 Resources This lecture Campbell and Farrell s Biochemistry, Chapters 3 (pp.66-76) General structure (Chiral carbon) The amino acids that occur in

More information

Unit 5: Genetics Notes

Unit 5: Genetics Notes Unit 5: Genetics Notes https://goo.gl/fgtzef Name: Period: Test Date: Table of Contents Title of Page Page Number Date Warm-ups 3-4 Mendelian Genetics Notes 5-6 Mendelian Genetics Lets Practice 7 Monohybrid

More information

Methionine (Met or M)

Methionine (Met or M) Fig. 5-17 Nonpolar Fig. 5-17a Nonpolar Glycine (Gly or G) Alanine (Ala or A) Valine (Val or V) Leucine (Leu or L) Isoleucine (Ile or I) Methionine (Met or M) Phenylalanine (Phe or F) Polar Trypotphan (Trp

More information

Towards a New Paradigm in Scientific Notation Patterns of Periodicity among Proteinogenic Amino Acids [Abridged Version]

Towards a New Paradigm in Scientific Notation Patterns of Periodicity among Proteinogenic Amino Acids [Abridged Version] Earth/matriX: SCIENCE TODAY Towards a New Paradigm in Scientific Notation Patterns of Periodicity among Proteinogenic Amino Acids [Abridged Version] By Charles William Johnson Earth/matriX Editions P.O.

More information

Age-related reference ranges

Age-related reference ranges Authoriser: Peter Beresford Page 1 of 6 Age-related reference ranges Alkaline Phosphatase (ALP) IU/L Both less than 14 days 90 273 Both 14 days

More information

PHAR3316 Pharmacy biochemistry Exam #2 Fall 2010 KEY

PHAR3316 Pharmacy biochemistry Exam #2 Fall 2010 KEY 1. How many protons is(are) lost when the amino acid Asparagine is titrated from its fully protonated state to a fully deprotonated state? A. 0 B. 1 * C. 2 D. 3 E. none Correct Answer: C (this question

More information

Draw how two amino acids form the peptide bond. Draw in the space below:

Draw how two amino acids form the peptide bond. Draw in the space below: Name Date Period Modeling Protein Folding Draw how two amino acids form the peptide bond. Draw in the space below: What we are doing today: The core idea in life sciences is that there is a fundamental

More information

بسم هللا الرحمن الرحيم

بسم هللا الرحمن الرحيم بسم هللا الرحمن الرحيم Biochemistry Lec #1 Dr. Nafith AbuTarboush- (30.6.2014) Amino Acids 1 Campbell and Farrell s Biochemistry, Chapter 3 (pp.66-76) Introduction: Biochemistry is two courses; one is

More information

Properties of amino acids in proteins

Properties of amino acids in proteins Properties of amino acids in proteins one of the primary roles of DNA (but far from the only one!!!) is to code for proteins A typical bacterium builds thousands types of proteins, all from ~20 amino acids

More information

The Chromosomes of a Frimpanzee: An Imaginary Animal

The Chromosomes of a Frimpanzee: An Imaginary Animal The Chromosomes of a Frimpanzee: An Imaginary Animal Introduction By now, you have heard the terms chromosome, mitosis, and meiosis. You probably also know that chromosomes contain genetic information

More information

CS612 - Algorithms in Bioinformatics

CS612 - Algorithms in Bioinformatics Spring 2016 Protein Structure February 7, 2016 Introduction to Protein Structure A protein is a linear chain of organic molecular building blocks called amino acids. Introduction to Protein Structure Amine

More information

Translation Activity Guide

Translation Activity Guide Translation Activity Guide Student Handout β-globin Translation Translation occurs in the cytoplasm of the cell and is defined as the synthesis of a protein (polypeptide) using information encoded in an

More information

The Structure and Function of Large Biological Molecules Part 4: Proteins Chapter 5

The Structure and Function of Large Biological Molecules Part 4: Proteins Chapter 5 Key Concepts: The Structure and Function of Large Biological Molecules Part 4: Proteins Chapter 5 Proteins include a diversity of structures, resulting in a wide range of functions Proteins Enzymatic s

More information

0010 Amino Acids 40 Profile - Plasma

0010 Amino Acids 40 Profile - Plasma Accession #: Order #: G1234567 Date Collected: Date Received: 01/22/2013 Reference #: Patient: Date of Birth: 02/05/1962 Date of Report: Telephone: 7704464583 Ordering Physician: 1234 Main St. Anywhere,

More information

Introduction to proteins and protein structure

Introduction to proteins and protein structure Introduction to proteins and protein structure The questions and answers below constitute an introduction to the fundamental principles of protein structure. They are all available at [link]. What are

More information

Page 8/6: The cell. Where to start: Proteins (control a cell) (start/end products)

Page 8/6: The cell. Where to start: Proteins (control a cell) (start/end products) Page 8/6: The cell Where to start: Proteins (control a cell) (start/end products) Page 11/10: Structural hierarchy Proteins Phenotype of organism 3 Dimensional structure Function by interaction THE PROTEIN

More information

ENDURANCE SPORTS NUTRITION

ENDURANCE SPORTS NUTRITION ENDURANCE SPORTS NUTRITION Complex carbohydrates with low glycemic index Simple carbohydrates with high glycemic index + complex carbs + proteins + electrolytes Simple carbs + complex carbs + proteins

More information

Amino Acid Metabolism

Amino Acid Metabolism Amino Acid Metabolism Last Week Most of the Animal Kingdom = Lazy - Most higher organisms in the animal kindom don t bother to make all of the amino acids. - Instead, we eat things that make the essential

More information

Lipids: diverse group of hydrophobic molecules

Lipids: diverse group of hydrophobic molecules Lipids: diverse group of hydrophobic molecules Lipids only macromolecules that do not form polymers li3le or no affinity for water hydrophobic consist mostly of hydrocarbons nonpolar covalent bonds fats

More information

Head. Tail. Carboxyl group. group. group. air water. Hydrocarbon chain. lecture 5-sa Seth Copen Goldstein 2.

Head. Tail. Carboxyl group. group. group. air water. Hydrocarbon chain. lecture 5-sa Seth Copen Goldstein 2. Lipids Some lipid structures Organic compounds Amphipathic Polar head group (hydrophilic) Non-polar tails (hydrophobic) Lots of uses Energy storage Membranes Hormones Vitamins HO O C H 2 C CH 2 H 2 C CH

More information

Breeding Critters More Traits

Breeding Critters More Traits Breeding Critters More Traits 65 40- to 1 2 50-minute sessions ACTIVITY OVERVIEW I N V E S T I O N I G AT SUMMARY Students model the diversity of offspring possible from two parents and discover patterns

More information

AMINO ACIDS NON-ESSENTIAL ESSENTIAL

AMINO ACIDS NON-ESSENTIAL ESSENTIAL Edith Frederika Introduction A major component of food is PROTEIN The protein ingested as part of our diet are not the same protein required by the body Only 40 to 50 gr of protein is required by a normal

More information

Annual Report ERNDIM-EQAS Quantitative Amino Acids 2004

Annual Report ERNDIM-EQAS Quantitative Amino Acids 2004 Annual Report ERNDIM-EQAS Quantitative Amino Acids 2004 1. Purpose The purpose of the ERNDIM External Quality Assurance Scheme for Quantitative Organic Acids is the monitoring of the analytical quality

More information

Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Concept 5.4: Proteins have many structures, resulting in a wide range of functions Proteins account for more than 50% of the dry mass of most cells Protein functions include structural support, storage,

More information

Biomolecules: amino acids

Biomolecules: amino acids Biomolecules: amino acids Amino acids Amino acids are the building blocks of proteins They are also part of hormones, neurotransmitters and metabolic intermediates There are 20 different amino acids in

More information

2. By breeding the pea plants he was growing in the monastery s garden, he discovered the

2. By breeding the pea plants he was growing in the monastery s garden, he discovered the Name: _ Date: Directions: Navigate to https://goo.gl/tcd8l4 to view the corresponding PowerPoint. Be sure to click PRESENT in the upper right hand corner! Answer the following questions from the PowerPoint.

More information

AP Bio. Protiens Chapter 5 1

AP Bio. Protiens Chapter 5 1 Concept.4: Proteins have many structures, resulting in a wide range of functions Proteins account for more than 0% of the dry mass of most cells Protein functions include structural support, storage, transport,

More information

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 5 The Structure and Function of

More information

CHAPTER 29 HW: AMINO ACIDS + PROTEINS

CHAPTER 29 HW: AMINO ACIDS + PROTEINS CAPTER 29 W: AMI ACIDS + PRTEIS For all problems, consult the table of 20 Amino Acids provided in lecture if an amino acid structure is needed; these will be given on exams. Use natural amino acids (L)

More information

Biology 12 January 2004 Provincial Examination

Biology 12 January 2004 Provincial Examination Biology 12 January 2004 Provincial Examination ANSWER KEY / SCORING GUIDE CURRICULUM: Organizers 1. Cell Biology 2. Cell Processes and Applications 3. Human Biology Sub-Organizers A, B, C, D E, F, G, H

More information

Green Segment Contents

Green Segment Contents Green Segment Contents Parts Reference Guide Green Segment 1 8 2 6 3 4 5 7 1. Amino Acid Side Chain Chart shows the properties and atomic structure of side chains. 2. Amino Acid Side Chains affect protein

More information

Amino acids-incorporated nanoflowers with an

Amino acids-incorporated nanoflowers with an Amino acids-incorporated nanoflowers with an intrinsic peroxidase-like activity Zhuo-Fu Wu 1,2,+, Zhi Wang 1,+, Ye Zhang 3, Ya-Li Ma 3, Cheng-Yan He 4, Heng Li 1, Lei Chen 1, Qi-Sheng Huo 3, Lei Wang 1,*

More information

Molecular Biology. general transfer: occurs normally in cells. special transfer: occurs only in the laboratory in specific conditions.

Molecular Biology. general transfer: occurs normally in cells. special transfer: occurs only in the laboratory in specific conditions. Chapter 9: Proteins Molecular Biology replication general transfer: occurs normally in cells transcription special transfer: occurs only in the laboratory in specific conditions translation unknown transfer:

More information

Annual Report ERNDIM-EQAS Quantitative Amino Acids 2002

Annual Report ERNDIM-EQAS Quantitative Amino Acids 2002 Annual Report ERNDIM-EQAS Quantitative Amino Acids 2002 1. Purpose The purpose of the ERNDIM External Quality Assurance Scheme for Quantitative Organic Acids is the monitoring of the analytical quality

More information

Amino Acids. Review I: Protein Structure. Amino Acids: Structures. Amino Acids (contd.) Rajan Munshi

Amino Acids. Review I: Protein Structure. Amino Acids: Structures. Amino Acids (contd.) Rajan Munshi Review I: Protein Structure Rajan Munshi BBSI @ Pitt 2005 Department of Computational Biology University of Pittsburgh School of Medicine May 24, 2005 Amino Acids Building blocks of proteins 20 amino acids

More information

0010 Amino Acid Analysis - 40 Plasma

0010 Amino Acid Analysis - 40 Plasma 770.446.5483 770.441.2237 This report contains reference range adjustments from routine revalidation procedures. It also contains the following three upgrades: 1) The amino acids have been reorganized

More information

Amino Acid Analyzer AAA400

Amino Acid Analyzer AAA400 Amino Acid Analyzer AAA400 Determination of amino acid of hydrolyzates (food and feed) Column: LG ANB OSTION 3.6x340 12μm Eluents: sodium-citrate buffers, 0.2 M NaOH Aspartic Acid, Threonine, Serine, Glutamic

More information

Cells. Variation and Function of Cells

Cells. Variation and Function of Cells Cells Variation and Function of Cells Plasma Membrane= the skin of a cell, it protects and nourishes the cell while communicating with other cells at the same time. Lipid means fat and they are hydrophobic

More information

3. What law of heredity explains that traits, like texture and color, are inherited independently of each other?

3. What law of heredity explains that traits, like texture and color, are inherited independently of each other? Section 2: Genetics Chapter 11 pg. 308-329 Part 1: Refer to the table of pea plant traits on the right. Then complete the table on the left by filling in the missing information for each cross. 6. What

More information

Amino acids. You are required to know and identify the 20 amino acids : their names, 3 letter abbreviations and their structures.

Amino acids. You are required to know and identify the 20 amino acids : their names, 3 letter abbreviations and their structures. Amino acids You are required to know and identify the 20 amino acids : their names, 3 letter abbreviations and their structures. If you wanna make any classification in the world, you have to find what

More information

Experiment 9 Amino Acids and Proteins

Experiment 9 Amino Acids and Proteins Experiment 9 Amino Acids and Proteins Proteins are very important biological molecules, with many possible functions. Enzymes are proteins that catalyze biological reactions. There are transport proteins

More information

Please copy into your agenda:

Please copy into your agenda: Monday, September 19 Please copy into your agenda: Monday: Finish Snapchat (due Tuesday) Advanced only-project part 2 (due Fri) Tuesday: Vocab bonds (due Wednesday) Wednesday: Human inheritance (due Thur)

More information

The Structure and Function of Macromolecules

The Structure and Function of Macromolecules The Structure and Function of Macromolecules Macromolecules are polymers Polymer long molecule consisting of many similar building blocks. Monomer the small building block molecules. Carbohydrates, proteins

More information

Chromobugs. Problem: To demonstrate how genes are passed from parent to offspring.

Chromobugs. Problem: To demonstrate how genes are passed from parent to offspring. Chromobug Genetics 1 Name Chromobugs Problem: To demonstrate how genes are passed from parent to offspring. Background Information: Chromobugs are make-believe organisms. You will use these to model how

More information

Number of Differences from Species 1

Number of Differences from Species 1 Molecular Evidence for Evolution Name: Pre Lab Activity: Genes code for amino acids, amino acids code for proteins and proteins build body structures. Therefore, one way to observe the relatedness of species

More information

Different levels of protein structure

Different levels of protein structure Dr. Sanjeeva Srivastava Proteins and its function Amino acids: building blocks Different levels of protein structure Primary, Secondary, Tertiary, Quaternary 2 Proteomics ourse PTEL 1 Derived from Greek

More information

Unit II Written Response Set-Up

Unit II Written Response Set-Up Unit II Written Response Set-Up On the next blank page in your notebook, put the title Unit II Written Responses If your title page is the front of a page, skip the back of the page and the front of the

More information

Amino Acids: essential nonessential

Amino Acids: essential nonessential Protein: a component of every living cell provides structure and framework in the body plays a role in fluid balance and acid--base balance used to transport substances through the blood provides 4 cal/g

More information

DYMATIZE ELITE 100% WHEY The perfect anytime protein

DYMATIZE ELITE 100% WHEY The perfect anytime protein DYMATIZE ELITE 100% WHEY The perfect anytime protein Product description The perfect anytime protein! Are you looking for an anytime protein with great value? Whether you re supporting muscle growth after

More information

Gene Combo SUMMARY KEY CONCEPTS AND PROCESS SKILLS KEY VOCABULARY ACTIVITY OVERVIEW. Teacher s Guide I O N I G AT I N V E S T D-65

Gene Combo SUMMARY KEY CONCEPTS AND PROCESS SKILLS KEY VOCABULARY ACTIVITY OVERVIEW. Teacher s Guide I O N I G AT I N V E S T D-65 Gene Combo 59 40- to 1 2 50-minute sessions ACTIVITY OVERVIEW I N V E S T I O N I G AT SUMMARY Students use a coin-tossing simulation to model the pattern of inheritance exhibited by many single-gene traits,

More information

Student name ID # 2. (4 pts) What is the terminal electron acceptor in respiration? In photosynthesis?

Student name ID # 2. (4 pts) What is the terminal electron acceptor in respiration? In photosynthesis? 1. Membrane transport. A. (4 pts) What ion couples primary and secondary active transport in animal cells? What ion serves the same function in plant cells? 2. (4 pts) What is the terminal electron acceptor

More information