OPHTHALMIC MOLECULAR GENETICS. SECTION EDITOR: JANEY L. WIGGS, MD, PhD

Size: px
Start display at page:

Download "OPHTHALMIC MOLECULAR GENETICS. SECTION EDITOR: JANEY L. WIGGS, MD, PhD"

Transcription

1 OPHTHALMIC MOLECULAR GENETICS SECTION EDITOR: JANEY L. WIGGS, MD, PhD Association of a Novel Mutation in the Retinol Dehydrogenase 12 (RDH12) Gene With Autosomal Dominant Retinitis Pigmentosa John H. Fingert, MD, PhD; Kean Oh, MD; Mina Chung, MD; Todd E. Scheetz, PhD; Jeaneen L. Andorf, BS; Rebecca M. Johnson, BS; Val C. Sheffield, MD, PhD; Edwin M. Stone, MD, PhD Objective: To identify the gene causing retinitis pigmentosa (RP) in an autosomal dominant pedigree. Methods: Family members with RP were studied with linkage analysis using single-nucleotide polymorphism and short tandem repeat polymorphic markers. Candidate genes in the linked region were evaluated with DNA sequencing. Results: Nineteen family members had a mild form of RP. Multipoint linkage analysis of single-nucleotide polymorphism genotypes yielded a maximum nonparametric linkage score of with markers located on chromosome 14q. LOD scores higher than 3.0 were obtained with 20 short tandem repeat polymorphic markers, and recombinants defined a 21.7-centimorgan locus on chromosome 14q. The retinol dehydrogenase 12 (RDH12) gene lies within this locus and was evaluated as a candidate gene. A frameshift mutation (776delG) was detected in all affected family members and was not detected in 158 control subjects. Conclusions: Heterozygous mutations in RDH12 can cause autosomal dominant RP with a late onset and relatively mild severity. This phenotype is dramatically different from the other disease associated with mutation in this gene, autosomal recessive Leber congenital amaurosis. Clinical Relevance: The demonstration that mutations in a gene previously associated with recessive Leber congenital amaurosis can also cause dominant RP illustrates the wide phenotypic variability of retinal degeneration genes. Arch Ophthalmol. 2008;126(9): Author Affiliations: Departments of Ophthalmology and Visual Sciences (Drs Fingert, Scheetz, and Stone, and Mss Andorf and Johnson) and Pediatrics (Dr Sheffield), Carver College of Medicine, University of Iowa, and the Howard Hughes Medical Institute (Drs Sheffield and Stone), Iowa City; Associated Retinal Consultants, Traverse City, Michigan (Dr Oh); and Department of Ophthalmology, University of Rochester, Rochester, NY (Dr Chung). RETINITIS PIGMENTOSA (RP) IS a collection of inherited, progressive retinal degenerations of the photoreceptors with typical clinical features including attenuated retinal arterioles, intraretinal bone spiculelike pigmentation, and posterior subcapsular cataract. Retinitis pigmentosa is characterized by marked reduction of both rod and cone responses in the electroretinogram, peripheral visual field defects, and reduction of central vision later in the course of the disease. The prevalence of RP is approximately 1 in 4000 and more than 1 million individuals may be affected with RP worldwide. 1 Details of the genetic features of RP have been recently reviewed. 1-3 Retinitis pigmentosa may have an autosomal dominant (30%-40%), autosomal recessive (50%- 60%), or X-linked (5%-15%) inheritance pattern. 1 At present, 16 genetic loci for autosomal dominant RP (ADRP) have been identified and the genes at 14 of the loci have been discovered (RetNet: The 14 known ADRP genes are CA4, 4,5 CRX, 6,7 FSCN2, 8 GUCA1B, 9 IMPDH1, NR2E3, 13 NRL, 14 PRPF3, 15,16 PRPF8, 17,18 PRPF31, 19,20 RDS, 21,22 RHO, ROM1, 27 RP1, RP9, 32,33 and SEMA4A. 34 These genes have a range of functions, including phototransduction (RHO); RNA splicing (PRPF3, PRPF8, PRPF9, and PRPF31); signaling (SEMA4A); and retinal structure (RDS/peripherin, FSCN2, and RP1). Mutations associated with ADRP are most commonly detected in rhodopsin (RHO), RDS/peripherin, and PPRF31, which account for approximately 25%, 10%, and 8% of ADRP, respectively. The other genes are associated with smaller fractions of disease. 35 Overall, mutations in these known diseasecausing genes can be detected in nearly half of all ADRP cases, which suggests that many more ADRP genes remain to be identified. There is considerable overlap between the inheritance patterns and the specific types of retinal dystrophies that are associated with mutations in a particular gene. For example, mutations in RHO, 1301

2 NRL, and RP1 were initially associated with dominantly inherited RP, 14,23-26,28-31 while different sets of mutations in these same genes were later shown to cause autosomal recessive RP Similarly, some of the same genes that cause ADRP (CRX, IMPDH1, RDS, RHO, and SEMA4A) have also been associated with a number of other retinal phenotypes, including pattern dystrophy, Leber congenital amaurosis, cone dystrophy, and congenital stationary night blindness Consequently, genes known to cause one retinal dystrophy are excellent candidates for causing others. In this study, we report the genetic analysis of a 6-generation family from North Carolina with ADRP. The gene that causes ADRP in this family was mapped to chromosome 14q with linkage studies and recombination analysis. Family members were tested for disease-causing mutations in candidate genes contained within this new ADRP locus. A novel mutation in the retinol dehydrogenase 12 (RDH12) gene was detected that cosegregates with ADRP in this large pedigree. Mutations in RDH12 have been previously associated with recessively inherited retinal dystrophies described clinically as earlyonset retinal degeneration or Leber congenital amaurosis However, this study presents the first case, to our knowledge, of ADRP associated with mutations in RDH12. METHODS The research study was approved by the internal review board of the University of Iowa and informed consent was obtained from study participants. PATIENT RESOURCES ADRP Family Thirty-five family members had complete eye examinations and 19 were judged to have ADRP. Visual fields were assessed with Goldmann perimetry and ISCEV standard electroretinograms were obtained from a subset of family members. Patients were judged to be affected if they had classic signs of RP, including bone spiculelike pigmentation of the retina, attenuation of retinal arterioles, waxy pallor of the optic nerve, characteristic ring scotomas, and attenuated electroretinograms. Cohort of Patients With Photoreceptor Degeneration and Controls All patients (n=273) and healthy control subjects (n=158) were ascertained from the same outpatient ophthalmology clinic population at the University of Iowa. Subjects underwent complete eye examinations and were judged to be affected if they exhibited signs of a primary photoreceptor degeneration, including bone spiculelike pigmentation of the retina, reduced ISCEV standard electroretinogram amplitudes, and characteristic visual field defects. Control subjects had no clinical signs or family history of a retinal degeneration. Blood samples were obtained from study participants and DNA was prepared using a nonorganic method. 46 LINKAGE STUDIES Pedigree members were first genotyped with short tandem repeat polymorphism (STRP) genetic markers flanking previously identified ADRP genes including rhodopsin (OMIM ), RDS/peripherin (OMIM ), and RP1 (OMIM ). Genotyping with STRP genetic markers was conducted using standard methods as previously described. 47 A genome-wide scan was next performed with Affymetrix microarrays (Sty1 array of the GeneChip Human Mapping 500K Array Set, Affymetrix, Santa Clara, California), which interrogated single-nucleotide polymorphisms (SNPs). Sample processing and labeling were performed using the manufacturer s instructions. The arrays were hybridized, washed, and scanned in the University of Iowa DNA core facility. Array images were processed with GeneChip DNA Analysis software. Microarray data were analyzed and multipoint nonparametric linkage scores were calculated using the Genespring GT software package (Agilent Technologies, Palo Alto, California). Pairwise linkage analysis using STRP markers was performed with the MLINK and LODSCORE programs as implemented in the FASTLINK (v2.3) version 48,49 of the LINKAGE software package. 50 Penetrance and disease gene frequency were set to 99% and 0.1%, respectively. For each STRP marker, the allele frequencies were assumed to be equal. True allele frequencies could not be reliably estimated from the small number of spouses in the pedigree. To show that the assumption of the equal allele frequencies would not significantly affect our linkage results, we recalculated the LOD scores using allele frequencies for the affected allele of the most tightly linked marker (D14S587) ranging from 0.01 to 0.5. The Zmax for D14S587 was 4.5 when the affected allele frequency was arbitrarily set to 50%. In the 10 spouses who were studied, the actual frequencies of the affected alleles of D14S587 were much lower than 50%. In this small sample, the frequency of the affected allele of D14S587 was 10%, which provides additional evidence that our use of equal allele frequencies for D14S587 (11%) was reasonable. CANDIDATE GENE SCREENING Candidate genes were selected from among the genes in the chromosome 14q linked interval based on their function, expression pattern, and prior association with retinal disease. DNA samples from 2 affected family members and from 2 healthy control subjects were tested for mutations in candidate genes using bidirectional sequencing of polymerase chain reaction products that encompassed the entire coding sequence. The first, and only, candidate to be evaluated was retinol dehydrogenase 12 (RDH12, OMIM ). Sequencing was performed using dye-terminator chemistry on an ABI 3730 DNA sequencer (Applied Biosystems, Foster City, California). Polymerase chain reaction amplification was performed with a standard protocol 51 using primer sequences that are available on request. Potential mutations were identified by comparing the DNA sequence of the affected family members and healthy control subjects. Similarly, the DNA sequences of the affected family members were compared with National Center for Biotechnology Information reference sequences (RDH12, NM_152443). Identified sequence variations were evaluated as potential disease-causing mutations using standard criteria. 52 A singlestrand conformation polymorphism (SSCP) assay was developed to detect the 776delG mutation in the control population (n=158) with a standard protocol 51 using primer sequences that are available on request. The cohort of 273 patients with primary photoreceptor degenerations and 90 of the 158 healthy control subjects were tested for mutations in the entire RDH12 gene using a combination of SSCP analysis and bidirectional sequencing using standard protocols

3 I 1 2 II III IV V VI 1 2 Figure 1. Pedigree affected with autosomal dominant retinitis pigmentosa. Individuals found to be clinically affected with autosomal dominant retinitis pigmentosa are represented by black symbols while unaffected individuals or individuals with unknown affection status are depicted with open symbols. Individuals who are deceased are marked with a slash. Affected family members who were enrolled in the genetic study are indicated with an X. Circles represent females and squares represent males. STATISTICS The frequency of RDH12 variations detected in our cohort of patients with photoreceptor degeneration and our cohort of healthy control subjects was compared using the Fisher exact test for rare variants and 2 analysis for common variations. A 2-tailed P value.05 was considered statistically significant. RESULTS CLINICAL STUDIES Members of a 6-generation family (pedigree 041D) received complete eye examinations and 19 family members were found to be clinically affected with RP. The disease in this family demonstrated an autosomal dominant mode of transmission through several generations (Figure 1). Family members had retinal findings typical of RP, including intraretinal bone spiculelike pigmentation and attenuation of retinal arterioles (Figure 2). Clinical information about the onset of disease was available from 4 of the affected family members. The average age at diagnosis in these family members was 28.5 years (range, years). Some affected family members have maintained excellent central visual acuity (ie, 20/25 OU) and driving privileges into their eighth decade of life. GENETIC STUDIES DNA samples from the family, including 19 affected members, were subsequently studied with linkage analysis using a stepwise approach. After linkage to Figure 2. Fundus photograph of patient IV-6 at 62 years of age, demonstrating bone spiculelike pigmentation and attenuation of retinal arterioles characteristic of retinitis pigmentosa. The retinal pigment epithelium in the periphery and surrounding the optic disk is also atrophic. several loci containing genes already associated with ADRP was excluded (data not shown), a genome-wide scan for linkage was conducted by genotyping DNA samples from 8 of the affected family members with microarrays of SNPs. Analysis of the SNP data identified a region of chromosome 14q with a maximum nonparametric multipoint linkage score of All 8 affected pedigree members were found to share an allele of each of the 1350 consecutive SNPs that span 1303

4 Marker Physical Position, bp Marshfield Map, cm Zmax Patient IV-1 Recombinants Patient II-3 or Patient III-10 Patient IV-8 D14S (θ = 0.088) D14S (θ = 0.093) D14S (θ = 0) D14S (θ = 0) D14S (θ = 0) D14S (θ = 0) D14S (θ = 0) D14S (θ = 0) D14S (θ = 0.043) D14S (θ = 0) D14S (θ = 0) D14S (θ = 0) D14S (θ = 0) D14S (θ = 0) D14S (θ = 0) D14S (θ = 0) D14S (θ = 0) D14S (θ = 0) D14S (θ = 0) D14S (θ = 0) D14S (θ = 0.04) RDH D14S (θ = 0) D14S (θ = 0) D14S (θ = 0) D14S (θ = 0.06) D14S (θ = 0.037) Figure 3. Two-point linkage data and analysis of recombinant individuals. Twenty-six genetic markers from the long arm of chromosome 14 are listed on the left of the Figure, with the most centromeric marker at the top. The physical position of the short tandem repeat polymorphic markers is based on NCBI Build 36.1 of the human genome (National Center for Biotechnology Information, Bethesda, Maryland) and the genetic position of the markers is based on the Marshfield map ( The maximum LOD score (Zmax) is given for each marker as well as the recombination frequency at which the Zmax occurred. The patient designations correspond to those in Figure 1. A black box indicates that during the meiosis that gave rise to the individual (*or that individual s ancestor), an informative recombination event occurred between the marker and the disease gene. Uninformative meioses are indicated with gray boxes. The recombination events summarized in this Figure suggest that the disease-causing mutations lie within the 21.7-centimorgan (cm) (18.6 mega base pair [Mbp]) interval bounded by D14S1018 and D14S251. Because no fully informative meioses were detected between markers D14S1018 and D14S251, it was not possible to determine which side of this interval was narrowed by the recombination event observed in patient IV-1 at marker D14S mega base pairs (Mbp) between rs and rs The chromosome 14q linkage was confirmed by genotyping all 19 affected pedigree members with 26 STRP markers in this region (Figure 3). Two-point parametric LOD scores higher than 3.0 were obtained from 20 STRP markers and a maximum LOD score of 6.81 ( =0) was obtained with marker D14S587. The analysis of patients with recombination events near the linked interval is also shown in Figure 3. These recombination events indicate that the disease-causing gene lies within the centimorgan (18.6-Mbp) interval between markers D14S1018 (telomeric) and D14S251(telomeric). This chromosome 14q locus contains 173 known genes. One of the top candidate genes in the chromosome 14q locus is retinol dehydrogenase 12 (RDH12). RDH12 is predominantly expressed in the photoreceptor cells of the retina 53 and has an important role in the visual cycle. 44,45 Mutations in this gene have been previously associated with autosomal recessive retinal dystrophies including Leber congenital amaurosis 43 and early-onset retinal dystrophy, 44,45 which share some clinical features of RP. Consequently, RDH12 was the first candidate gene to be evaluated. Two family members with RP were tested for diseasecausing mutations in the coding sequence of RDH12 using a DNA sequencing-based assay. A total of 3 DNA sequence variations were detected. Two variations are located within intervening sequences and are benign polymorphisms, while one variation causes a change in the predicted protein sequence encoded by RDH12. A heterozygous deletion was detected at position 2 of codon 259 (776delG), which causes a frameshift mutation and a premature termination at codon 277. The 776delG mu- 1304

5 776delC (Arg259fsX277) Homo sapiens Macaca mulatta Mus musculus Rattus norvegic Gallus gallus Danio rerio Drosophila melanogaster 256 KTAREGAQTSLHCALAEGLEPLSGKYFSDCKRTWVSPRARNNKTAERLWNVSCELLGIRWE KTAREGAQTSLHCALAEGLEPLSGKYFSDCKRTWVSPRARNNKTAERLWNVSCELLGIRWE KSTSQGAQTSLHCALAEDLEPLSGKYFSDCKRMWVSSRARNKKTAERLWNVSCELLGIQWE KSPWQGAQTSLHCALEEGLEPLSGKYFSDCKRTWVSPRARNKKTAERLWNVSCELLGIQWE KTPWEGAQTSVYCAVAEELESVTGQYFSDCQPAYVSPWGRDDETAKKLWNVSCELLGIQWD KSPKEGAQTSIYCAVAEELQSISGKHFSDCAPAFVAPQGRSEETARKLWDVSCELLGIEWD KTARNGAQTTLYAALDPSLEKVSGRYFSDCKQKHVGSAAQYDDDAQFLWAESEKWTGINI 325 Figure 4. Alignment of the terminal amino acid sequences encoded by human RDH12 and orthologous genes. The terminal 61 amino acids of human RDH12 protein are aligned with proteins encoded by orthologous genes. Amino acid sequences that are identical to the corresponding human sequences are highlighted gray. The mutation detected in our pedigree (776delG) causes a frameshift mutation in the arginine amino acid at position 259 that alters 17 amino acids and causes premature termination at codon 277. Table. RDH12 Variations RDH12 Variation Patients With Primary Photoreceptor Degeneration (n=273) No. (%) Healthy Controls (n=90) IVS2 31 bp A- G 1 (0.37) Heterozygous 0 NA.99 IVS2 20 bp inst 6 (2.2) Heterozygous 1 (1.1) Heterozygous NA.99 Leu144Val 1 (0.37) Heterozygous Ala126Glu 1 (0.37) Heterozygous Arg161Gln (rs ) 218 (80) Homozygous 70 (78) Homozygous 52 (19) Heterozygous 19 (21) Heterozygous (1.1) Homozygous 1 (1.1) Homozygous Arg193Arg 0 1 (1.1) Heterozygous 5.25 Glu260Asp a 1 (0.37) Heterozygous Abbreviations: bp, base pair; NA, not applicable. a The Glu260Asp variation was not coinherited with disease within a small pedigree. Blosum Score P Value tation was subsequently detected in all affected family members and was absent from 158 control subjects. The conservation of the RDH12 protein sequence was examined to provide support for the pathogenicity of the 776delG mutation. Comparison with other homologous genes suggests that amino acids 37 to 240 are responsible for the dehydrogenase activity of RDH The 776delG mutation does not directly alter the dehydrogenase functional domain; however, it alters or eliminates the terminal 57 amino acids of RDH12, which are highly conserved (Figure 4). To assess the role of RDH12 in the pathogenesis of RP, we screened a panel of 273 patients with primary photoreceptor degenerations and 90 ethnically matched controls for disease-causing mutations using a combination of SSCP analysis and DNA sequencing. Patients were unselected for family history or for inheritance pattern of disease; however, patients with a diagnosis of Leber congenital amaurosis were excluded from this cohort. A total of 7 different RDH12 variations were detected. Two variations were detected within intervening sequences, 1 variation was a synonymous codon change, and 4 variations were nonsynonymous codon changes (Table). Multiple analyses were used to assess whether the 4 nonsynonymous coding sequence variations detected in RDH12 were likely to be pathogenic. Analysis of coinheritance with disease was possible for the Glu260Asp variation. The patient harboring the Glu260Asp variation had affected family members available for study. However, the Glu260Asp variation was not coinherited with disease in this family (data not shown), suggesting that this variation is a benign polymorphism. Analysis of conservation of protein sequence was conducted using the blosum62 matrix. 52,55 Some amino acid substitutions are tolerated without harm to protein function better than others. The blosum62 matrix was used to estimate the effects of the 4 nonsynonymous variations on the function of RDH12. Three of the 4 variations (Leu144Val, Arg161Gln, and Glu260Asp) cause changes in the amino acid sequence predicted by RDH12 that are well tolerated by evolution, which is not indicative of disease-causing mutations. One variation (Ala126Glu) causes an amino acid substitution that is mildly supported by the blosum62 matrix as a disease-causing mutation. Finally, statistical analysis of these variations either individually or as a group failed to detect an association between the variations and disease (Table). One commonly detected variation (Arg161Gln) was observed at the same frequency in patients and controls (P value=.91). This variation was similarly reported as a benign polymorphism in prior studies of RDH The other 3 nonsynonymous variations (Leu144Val, Ala126Glu, and Glu260Asp) were each detected only once in the cohort of patients and were not statistically associated with disease (P value=.99). 1305

6 COMMENT Fourteen genes associated with ADRP have been discovered, and in this article, we report the identification of another disease-causing gene using positional cloning and candidate gene screening techniques. Linkage studies of a large multiplex pedigree revealed a novel ADRP locus on chromosome 14q, which contains 173 known genes, including RDH12. RDH12 was considered the top candidate gene for causing ADRP in the chromosome 14q locus because of its function, expression pattern, and prior association with other retinal dystrophies. RDH12 is predominantly expressed in the neurosensory retina 57 and has an essential role in the conversion of all-trans retinal to all-trans retinol, 44 which is an essential step in the visual cycle. Autosomal recessive mutations in RDH12 have been associated with profound photoreceptor dysfunction and reduced visual function that is diagnosed at birth or in the first decade of life. 43,44 Consequently, RDH12 was the first gene we evaluated as the cause of RP in our pedigree. Testing the family members for RDH12 variations revealed a frameshift mutation (776delG) that causes premature termination of the translation of the RDH12 transcript. Several lines of evidence suggest that this mutation causes ADRP in our family. First, the 776delG mutation cosegregates with disease in the family. Second, this mutation was not detected among 158 control subjects. Third, the 776delG mutation causes a truncation of the encoded RDH12 protein eliminating 57 amino acids from the conserved carboxy terminus. This mutation significantly alters the structure of the RDH12 protein and is likely to impair its function. Finally, mutations in RDH12 have been previously associated with retinal degenerations. Taken together, these data strongly suggest that the 776delG mutation in RDH12 causes ADRP in our pedigree. Functional studies of the 776delG mutation would be helpful to further establish its mechanism of action. We additionally tested a large cohort of patients with primary retinal degenerations for disease-causing mutations in RDH12. No additional instances of the del776c mutation were detected; however, 3 other RDH12 variations (Leu144Val, Ala126Glu, and Glu260Asp) were each detected once in our cohort of patients. These variations were analyzed for coinheritance with disease, alteration of conserved RDH12 protein sequence, and statistical evidence to support an association with disease. While it is possible that any of these 3 RDH12 variations are rare causes of retinal degeneration, our study was unable to provide evidence for their pathogenicity. The biologic events that lead to visual perception begin when light is absorbed by photoreceptors in the retina and triggers the isomerization of 11-cis retinal to all-trans retinal. This reaction initiates transmission of visual information as a chemical signal. For continued signal transduction, all-trans retinal must be recycled to 11-cis retinal (the visual cycle). RDH12 plays an important role in this cycle by catalyzing the conversion of all-trans retinal to alltrans retinol. Both missense and truncating mutations in RDH12 have been associated with early-onset autosomal recessive retinal dystrophies. Functional assays have shown that some of these RDH12 mutations significantly reduce the enzymatic activity of the encoded protein, 44,56 which implies that autosomal recessive retinal dystrophies and severe visual impairment are caused by loss of function mutations in RDH12. The 776delG mutation identified in our ADRP family is likely to cause disease via a mechanism that is different than that previously reported for RDH12 mutations. This heterozygous mutation likely causes milder disease via a gain of function or dominant negative mechanism rather than loss of function. Some RDH12 mutations cause severe and early-onset retinal dystrophy when 2 alleles are inherited, while a single 776delG allele is capable of causing a mild, late-onset form of disease. Truncating mutations, similar to 776delG, have been detected in each of RDH12 s 7 exons. However, only the 776delG mutation has been associated with RP in the heterozygous state. Thus, the different behavior of these mutations does not appear to be due to their gross position within the RDH12 gene. Further study of the mechanism by which the 776delG mutation causes disease may clarify the basis of RDH12 genotype-phenotype correlations as well as provide valuable insight into the biology of the visual cycle and vision. Submitted for Publication: August 13, 2007; final revision received January 24, 2008; accepted January 29, Correspondence: Edwin M. Stone, MD, PhD, Department of Ophthalmology, The University of Iowa Carver College of Medicine, Iowa City, IA Financial Disclosure: None reported. Funding/Support: This work was supported by the Foundation Fighting Blindness, Research to Prevent Blindness, and the Grousbeck Family Foundation. Dr Fingert is supported by a Research to Prevent Blindness Career Development Award. REFERENCES 1. Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet. 2006;368(9549): Bok D. Contributions of genetics to our understanding of inherited monogenic retinal diseases and age-related macular degeneration. Arch Ophthalmol. 2007; 125(2): Daiger SP, Bowne SJ, Sullivan LS. Perspective on genes and mutations causing retinitis pigmentosa. Arch Ophthalmol. 2007;125(2): Bardien S, Ebenezer N, Greenberg J, et al. An eighth locus for autosomal dominant retinitis pigmentosa is linked to chromosome 17q. Hum Mol Genet. 1995; 4(8): Rebello G, Ramesar R, Vorster A, et al. Apoptosis-inducing signal sequence mutation in carbonic anhydrase IV identified in patients with the RP17 form of retinitis pigmentosa. Proc Natl Acad Sci U S A. 2004;101(17): Evans K, Fryer A, Inglehearn C, et al. Genetic linkage of cone-rod retinal dystrophy to chromosome 19q and evidence for segregation distortion. Nat Genet. 1994; 6(2): Freund CL, Gregory-Evans CY, Furukawa T, et al. Cone-rod dystrophy due to mutations in a novel photoreceptor-specific homeobox gene (CRX) essential for maintenance of the photoreceptor. Cell. 1997;91(4): Wada Y, Abe T, Takeshita T, Sato H, Yanashima K, Tamai M. Mutation of human retinal fascin gene (FSCN2) causes autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2001;42(10): Payne AM, Downes SM, Bessant DA, et al. Genetic analysis of the guanylate cyclase activator 1B (GUCA1B) gene in patients with autosomal dominant retinal dystrophies. J Med Genet. 1999;36(9): Jordan SA, Farrar GJ, Kenna P, et al. Localization of an autosomal dominant retinitis pigmentosa gene to chromosome 7q. Nat Genet. 1993;4(1): Bowne SJ, Sullivan LS, Blanton SH, et al. Mutations in the inosine monophos- 1306

7 phate dehydrogenase 1 gene (IMPDH1) cause the RP10 form of autosomal dominant retinitis pigmentosa. Hum Mol Genet. 2002;11(5): Kennan A, Aherne A, Palfi A, et al. Identification of an IMPDH1 mutation in autosomal dominant retinitis pigmentosa (RP10) revealed following comparative microarray analysis of transcripts derived from retinas of wild-type and Rho ( / ) mice. Hum Mol Genet. 2002;11(5): Coppieters F, Leroy BP, Beysen D, et al. Recurrent mutation in the first zinc finger of the orphan nuclear receptor NR2E3 causes autosomal dominant retinitis pigmentosa. Am J Hum Genet. 2007;81(1): Bessant DA, Payne AM, Mitton KP, et al. A mutation in NRL is associated with autosomal dominant retinitis pigmentosa. Nat Genet. 1999;21(4): Xu SY, Schwartz M, Rosenberg T, Gal A. A ninth locus (RP18) for autosomal dominant retinitis pigmentosa maps in the pericentromeric region of chromosome 1. Hum Mol Genet. 1996;5(8): Chakarova CF, Hims MM, Bolz H, et al. Mutations in HPRP3, a third member of pre-mrna splicing factor genes, implicated in autosomal dominant retinitis pigmentosa. Hum Mol Genet. 2002;11(1): Greenberg J, Goliath R, Beighton P, Ramesar R. A new locus for autosomal dominant retinitis pigmentosa on the short arm of chromosome 17. Hum Mol Genet. 1994;3(6): McKie AB, McHale JC, Keen TJ, et al. Mutations in the pre-mrna splicing factor gene PRPC8 in autosomal dominant retinitis pigmentosa (RP13). Hum Mol Genet. 2001;10(15): al-maghtheh M, Inglehearn CF, Keen TJ, et al. Identification of a sixth locus for autosomal dominant retinitis pigmentosa on chromosome 19. Hum Mol Genet. 1994;3(2): Vithana EN, Abu-Safieh L, Allen MJ, et al. A human homolog of yeast pre-mrna splicing gene, PRP31, underlies autosomal dominant retinitis pigmentosa on chromosome 19q13.4 (RP11). Mol Cell. 2001;8(2): Farrar GJ, Kenna P, Jordan SA, et al. A three-base-pair deletion in the peripherin- RDS gene in one form of retinitis pigmentosa. Nature. 1991;354(6353): Kajiwara K, Hahn LB, Mukai S, Travis GH, Berson EL, Dryja TP. Mutations in the human retinal degeneration slow gene in autosomal dominant retinitis pigmentosa. Nature. 1991;354(6353): McWilliam P, Farrar GJ, Kenna P, et al. Autosomal dominant retinitis pigmentosa (ADRP): localization of an ADRP gene to the long arm of chromosome 3. Genomics. 1989;5(3): Dryja TP, McGee TL, Hahn LB, et al. Mutations within the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa. N Engl J Med. 1990;323 (19): Dryja TP, McGee TL, Hahn LB, Cowley GS, Yandell DW, Sandberg MA. A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature. 1990; 343(6256): Farrar GJ, McWilliam P, Bradley DG, et al. Autosomal dominant retinitis pigmentosa: linkage to rhodopsin and evidence for genetic heterogeneity. Genomics. 1990;8(1): Dryja TP, Hahn LB, Kajiwara K, Berson EL. Dominant and digenic mutations in the peripherin/rds and rom1 genes in the retinitis pigmentosa. Invest Ophthalmol Vis Sci. 1997;38(10): Blanton SH, Heckenlively JR, Cottingham AW, et al. Linkage mapping of autosomal dominant retinitis pigmentosa (RP1) to the pericentric region of human chromosome 8. Genomics. 1991;11(4): Pierce EA, Quinn T, Meehan T, McGee TL, Berson EL, Dryja TP. Mutations in a gene encoding a new oxygen-regulated photoreceptor protein cause dominant retinitis pigmentosa. Nat Genet. 1999;22(3): Bowne SJ, Daiger SP, Hims MM, et al. Mutations in the RP1 gene causing autosomal dominant retinitis pigmentosa. Hum Mol Genet. 1999;8(11): Sullivan LS, Heckenlively JR, Bowne SJ, et al. Mutations in a novel retinaspecific gene cause autosomal dominant retinitis pigmentosa. Nat Genet. 1999; 22(3): Inglehearn CF, Carter SA, Keen TJ, et al. A new locus for autosomal dominant retinitis pigmentosa on chromosome 7p. Nat Genet. 1993;4(1): Keen TJ, Hims MM, McKie AB, et al. Mutations in a protein target of the Pim-1 kinase associated with the RP9 form of autosomal dominant retinitis pigmentosa. Eur J Hum Genet. 2002;10(4): Abid A, Ismail M, Mehdi SQ, Khaliq S. Identification of novel mutations in the SEMA4A gene associated with retinal degenerative diseases. J Med Genet. 2006; 43(4): Sullivan LS, Bowne SJ, Birch DG, et al. Prevalence of disease-causing mutations in families with autosomal dominant retinitis pigmentosa: a screen of known genes in 200 families. Invest Ophthalmol Vis Sci. 2006;47(7): Rosenfeld PJ, Cowley GS, McGee TL, Sandberg MA, Berson EL, Dryja TP. A null mutation in the rhodopsin gene causes rod photoreceptor dysfunction and autosomal recessive retinitis pigmentosa. Nat Genet. 1992;1(3): Nishiguchi KM, Friedman JS, Sandberg MA, Swaroop A, Berson EL, Dryja TP. Recessive NRL mutations in patients with clumped pigmentary retinal degeneration and relative preservation of blue cone function. Proc Natl Acad Sci U S A. 2004;101(51): Khaliq S, Abid A, Ismail M, et al. Novel association of RP1 gene mutations with autosomal recessive retinitis pigmentosa. J Med Genet. 2005;42(5): Freund CL, Wang Q, Chen S, et al. De novo mutations in the CRX homeobox gene associated with Leber congenital amaurosis. Nat Genet. 1998;18(4): Bowne SJ, Sullivan LS, Mortimer SE, et al. Spectrum and frequency of mutations in IMPDH1 associated with autosomal dominant retinitis pigmentosa and Leber congenital amaurosis. Invest Ophthalmol Vis Sci. 2006;47(1): Nichols BE, Sheffield V, Vandenburgh K, Drack A, Kimura A, Stone E. Butterflyshaped pigment dystrophy of the fovea is caused by a point mutation in codon 167 of the RDS gene. Nat Genet. 1993;3(3): Itabashi T, Wada Y, Sato H, Kawamura M, Shiono T, Tamai M. Novel 615delC mutation in the CRX gene in a Japanese family with cone-rod dystrophy. Am J Ophthalmol. 2004;138(5): Perrault I, Hanein S, Gerber S, et al. Retinal dehydrogenase 12 (RDH12) mutations in Leber congenital amaurosis. Am J Hum Genet. 2004;75(4): Janecke AR, Thompson DA, Utermann G, et al. Mutations in RDH12 encoding a photoreceptor cell retinol dehydrogenase cause childhood-onset severe retinal dystrophy. Nat Genet. 2004;36(8): Thompson DA, Janecke AR, Lange J, et al. Retinal degeneration associated with RDH12 mutations results from decreased 11-cis retinal synthesis due to disruption of the visual cycle. Hum Mol Genet. 2005;14(24): Buffone GJ, Darlinton GJ. Isolation of DNA from biological specimens without extraction with phenol. Clin Chem. 1985;31(1): Héon E, Piguet B, Munier F, et al. Linkage of autosomal dominant radial drusen (Malattia Leventinese) to chromosome 2p Arch Ophthalmol. 1996;114 (2): Cottingham RW Jr, Idury RM, Schaffer AA. Faster sequential genetic linkage computations. Am J Hum Genet. 1993;53(1): Schäffer AA, Gupta SK, Shriram K, Cottingham RW Jr. Avoiding recomputation in linkage analysis. Hum Hered. 1994;44(4): Lathrop GM, Lalouel JM. Easy calculations of lod scores and genetic risks on small computers. Am J Hum Genet. 1984;36(2): Fingert JH, Heon E, Liebmann JM, et al. Analysis of myocilin mutations in 1703 glaucoma patients from five different populations. Hum Mol Genet. 1999;8 (5): Stone EM. Finding and interpreting genetic variations that are important to ophthalmologists. Trans Am Ophthalmol Soc. 2003;101: Belyaeva OV, Korkina OV, Stetsenko AV, Kim T, Nelson PS, Kedishvili NY. Biochemical properties of purified human retinol dehydrogenase 12 (RDH12): catalytic efficiency toward retinoids and C9 aldehydes and effects of cellular retinolbinding protein type I (CRBPI) and cellular retinaldehyde-binding protein (CRALBP) on the oxidation and reduction of retinoids. Biochemistry. 2005;44(18): Marchler-Bauer A, Anderson JB, Derbyshire MK, et al. CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res. 2007; 35(database issue):d237-d Eddy SR. Where did the BLOSUM62 alignment score matrix come from? Nat Biotechnol. 2004;22(8): Sun W, Gerth C, Maeda A, et al. Novel RDH12 mutations associated with Leber congenital amaurosis and cone-rod dystrophy: biochemical and clinical evaluations. Vision Res. 2007;47(15): Haeseleer F, Jang GF, Imanishi Y, et al. Dual-substrate specificity short chain retinol dehydrogenases from the vertebrate retina. J Biol Chem. 2002;277(47):

INDEX. Genetics. French poodle progressive rod-cone degeneration,

INDEX. Genetics. French poodle progressive rod-cone degeneration, INDEX Acuity in Stargardt's macular dystrophy, 25-34 ADRP (Autosomal dominant retinitis pigmentosa), see Retinitis pigmentosa and Genetics afgf, 294, 296 Age-related maculopathy, see Macular degeneration

More information

Rhodopsin Gene Codon 106 Mutation (Gly-to-Arg) in a Japanese Family with Autosomal Dominant Retinitis Pigmentosa

Rhodopsin Gene Codon 106 Mutation (Gly-to-Arg) in a Japanese Family with Autosomal Dominant Retinitis Pigmentosa Rhodopsin Gene Codon 106 Mutation (Gly-to-Arg) in a Japanese Family with Autosomal Dominant Retinitis Pigmentosa Budu,* Masayuki Matsumoto, Seiji Hayasaka, Tetsuya Yamada and Yoriko Hayasaka Department

More information

Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier

Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier Test Disease Population Triad Disease name Leber congenital amaurosis OMIM number for disease 204000 Disease alternative

More information

RPE65-associated Leber Congenital Amaurosis

RPE65-associated Leber Congenital Amaurosis RPE65-associated Leber Congenital Amaurosis Brian Privett, MD, Edwin M. Stone, MD, PhD February 16, 2010 Chief Complaint: Poor fixation at 4 months of age History of Present Illness: This 7 year old female

More information

Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier

Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier Test Disease Population Triad Disease name Choroideremia OMIM number for disease 303100 Disease alternative names please

More information

Analysis of Peripherin/RDS Gene for Japanese Retinal Dystrophies

Analysis of Peripherin/RDS Gene for Japanese Retinal Dystrophies Analysis of Peripherin/RDS Gene for Japanese Retinal Dystrophies Keiko Fujiki,* Yoshihiro Hotta,* Mutsuko Hayakawa,* Takuro Fujimaki,* Misako Takeda,* Yasushi Isashiki, Norio Ohba and Atsushi Kanai* *Department

More information

QLT Inc Rationale and Background for the development of QLT (Note: QLT is not approved for commercial use in any countries, worldwide)

QLT Inc Rationale and Background for the development of QLT (Note: QLT is not approved for commercial use in any countries, worldwide) QLT Inc Rationale and Background for the development of QLT091001 (Note: QLT091001 is not approved for commercial use in any countries, worldwide) Introduction QLT Inc. (QLT) is a Canadian company focused

More information

Phenotype Report. Num. Positions Not Called (Missing data) Num. Variants Assessed

Phenotype Report. Num. Positions Not Called (Missing data) Num. Variants Assessed Report Date: August 19, 2015 Software Annotation Version: 8 Report Name: NA12144 NW European Genome : NA12144_S1 Sequencing Provider: Illumina Sequencing Type: Exome : Retinitis Pigmentosa Description:

More information

Low Incidence of Retinitis Pigmentosa Among Heterozygous Carriers of a Specific Rhodopsin Splice Site Mutation

Low Incidence of Retinitis Pigmentosa Among Heterozygous Carriers of a Specific Rhodopsin Splice Site Mutation Low Incidence of Retinitis Pigmentosa Among Heterozygous Carriers of a Specific Rhodopsin Splice Site Mutation Philip J. Rosenfeld, Lauri B. Hahn, Michael A. Sandberg, Thaddeus P. Dryja, and Eliot L. Berson

More information

Mutations in the gene encoding the α-subunit of rod phosphodiesterase in consanguineous Pakistani families

Mutations in the gene encoding the α-subunit of rod phosphodiesterase in consanguineous Pakistani families Received 10 March 2006 Accepted 28 August 2006 Published 26 October 2006 Mutations in the gene encoding the α-subunit of rod phosphodiesterase in consanguineous Pakistani families S. Amer Riazuddin, 1,2

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Voretigene Neparvovec-rzyl (Luxturna) File Name: Origination: Last CAP Review: Next CAP Review: Last Review: voretigene_neparvovec_rzyl_luxturna 1/2018 N/A 6/2018 2/2018 Description

More information

UKGTN Testing Criteria

UKGTN Testing Criteria UKGTN Testing Criteria Approved name and symbol of disease/condition(s): Retinal Degeneration panel test Approved name and symbol of gene(s): a panel of 105 genes, variants of which have been shown to

More information

Retinitis pigmentosa (RP) is a group of hereditary retinal

Retinitis pigmentosa (RP) is a group of hereditary retinal Mutations in the Pre-mRNA Splicing-Factor Genes PRPF3, PRPF8, and PRPF31 in Spanish Families with Autosomal Dominant Retinitis Pigmentosa María Martínez-Gimeno, 1,2 María José Gamundi, 1,2 Imma Hernan,

More information

Evaluation of the Human Gene Encoding Recoverin in Patients With Retinitis Pigmentosa or an Allied Disease

Evaluation of the Human Gene Encoding Recoverin in Patients With Retinitis Pigmentosa or an Allied Disease Evaluation of the Human Gene Encoding Recoverin in Patients With Retinitis Pigmentosa or an Allied Disease Amy H. Parminder* Akira Murakami,^ George Inana,\ Eliot L. Berson,% and Thaddeus P. Dryja* Purpose.

More information

Supplementary appendix

Supplementary appendix Supplementary appendix This appendix formed part of the original submission and has been peer reviewed. We post it as supplied by the authors. Supplement to: Ellingford JM, Sergouniotis PI, Lennon R, et

More information

The effect of intravitreal bevacizumab in a rare case of retinal dystrophy with secondary cystoid macular edema

The effect of intravitreal bevacizumab in a rare case of retinal dystrophy with secondary cystoid macular edema Romanian Journal of Ophthalmology, Volume 61, Issue 2, April-June 2017. pp:123-127 CASE REPORT The effect of intravitreal bevacizumab in a rare case of retinal dystrophy with secondary cystoid macular

More information

Dan Koller, Ph.D. Medical and Molecular Genetics

Dan Koller, Ph.D. Medical and Molecular Genetics Design of Genetic Studies Dan Koller, Ph.D. Research Assistant Professor Medical and Molecular Genetics Genetics and Medicine Over the past decade, advances from genetics have permeated medicine Identification

More information

Linkage analysis: Prostate Cancer

Linkage analysis: Prostate Cancer Linkage analysis: Prostate Cancer Prostate Cancer It is the most frequent cancer (after nonmelanoma skin cancer) In 2005, more than 232.000 new cases were diagnosed in USA and more than 30.000 will die

More information

Figure 1: Transmission of Wing Shape & Body Color Alleles: F0 Mating. Figure 1.1: Transmission of Wing Shape & Body Color Alleles: Expected F1 Outcome

Figure 1: Transmission of Wing Shape & Body Color Alleles: F0 Mating. Figure 1.1: Transmission of Wing Shape & Body Color Alleles: Expected F1 Outcome I. Chromosomal Theory of Inheritance As early cytologists worked out the mechanism of cell division in the late 1800 s, they began to notice similarities in the behavior of BOTH chromosomes & Mendel s

More information

variant led to a premature stop codon p.k316* which resulted in nonsense-mediated mrna decay. Although the exact function of the C19L1 is still

variant led to a premature stop codon p.k316* which resulted in nonsense-mediated mrna decay. Although the exact function of the C19L1 is still 157 Neurological disorders primarily affect and impair the functioning of the brain and/or neurological system. Structural, electrical or metabolic abnormalities in the brain or neurological system can

More information

Variant prioritization

Variant prioritization Variant prioritization University of Cambridge Marta Bleda Latorre Cambridge, UK mb2033@cam.ac.uk 30th September 2014 Research Assistant at the Department of Medicine University of Cambridge Cambridge,

More information

Genetic Testing for Biallelic RPE65 Variant-Associated Retinal Dystrophy

Genetic Testing for Biallelic RPE65 Variant-Associated Retinal Dystrophy Medical Policy Manual Genetic Testing, Policy No. 21 Genetic Testing for Biallelic RPE65 Variant-Associated Retinal Dystrophy Next Review: February 2019 Last Review: February 2018 Effective: March 1, 2018

More information

CONTROVERSIES IN OPHTHALMOLOGY. Predictive DNA testing in ophthalmology. D A Mackey, E Héon, A R Webster

CONTROVERSIES IN OPHTHALMOLOGY. Predictive DNA testing in ophthalmology. D A Mackey, E Héon, A R Webster Br J Ophthalmol 2003;87:633 633... Series editors: Susan Lightman and Peter McCluskey Correspondence to: Dr David A Mackey, Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, 32 Gisborne

More information

LUXTURNA (voretigene neparovec-rzyl)

LUXTURNA (voretigene neparovec-rzyl) LUXTURNA (voretigene neparovec-rzyl) Non-Discrimination Statement and Multi-Language Interpreter Services information are located at the end of this document. Coverage for services, procedures, medical

More information

Kamron N Khan PhD, FRCOphth [1-3], Keren Carss [5], F. Lucy Raymond [5], Farrah Islam

Kamron N Khan PhD, FRCOphth [1-3], Keren Carss [5], F. Lucy Raymond [5], Farrah Islam Title: Vitamin A deficiency - there's more to it than meets the eye. Kamron N Khan PhD, FRCOphth [1-3], Keren Carss [5], F. Lucy Raymond [5], Farrah Islam FCPS, FRCS [2], Anthony T Moore FRCS, FRCOphth

More information

Exceptional progress has been made during the past two decades in identifying genes

Exceptional progress has been made during the past two decades in identifying genes SPECIAL ARTICLE Perspective on Genes and Mutations Causing Retinitis Pigmentosa Stephen P. Daiger, PhD; Sara J. Bowne, PhD; Lori S. Sullivan, PhD Exceptional progress has been made during the past two

More information

Supplementary Online Content

Supplementary Online Content Supplementary Online Content Ku CA, Hull S, Arno G, et al. Detailed clinical phenotype and molecular genetic findings in CLN3-associated isolated retinal degeneration. JAMA Ophthalmol. Published online

More information

Genetics and Genomics in Medicine Chapter 8 Questions

Genetics and Genomics in Medicine Chapter 8 Questions Genetics and Genomics in Medicine Chapter 8 Questions Linkage Analysis Question Question 8.1 Affected members of the pedigree above have an autosomal dominant disorder, and cytogenetic analyses using conventional

More information

Unravelling the genetic basis of simplex Retinitis Pigmentosa cases

Unravelling the genetic basis of simplex Retinitis Pigmentosa cases SUPPLEMENTARY INFORMATION Unravelling the genetic basis simplex Retinitis Pigmentosa cases Nereida Bravo-Gil 1,2#, María González-del Pozo 1,2#, Marta Martín-Sánchez 1, Cristina Méndez-Vidal 1,2, Enrique

More information

Variant association and prioritization

Variant association and prioritization Variant association and prioritization Edinburgh Genomics Marta Bleda Latorre Edinburgh, UK mb2033@cam.ac.uk 23rd October 2015 Research Assistant at the Department of Medicine University of Cambridge Cambridge,

More information

Psych 3102 Lecture 3. Mendelian Genetics

Psych 3102 Lecture 3. Mendelian Genetics Psych 3102 Lecture 3 Mendelian Genetics Gregor Mendel 1822 1884, paper read 1865-66 Augustinian monk genotype alleles present at a locus can we identify this? phenotype expressed trait/characteristic can

More information

Stat 531 Statistical Genetics I Homework 4

Stat 531 Statistical Genetics I Homework 4 Stat 531 Statistical Genetics I Homework 4 Erik Erhardt November 17, 2004 1 Duerr et al. report an association between a particular locus on chromosome 12, D12S1724, and in ammatory bowel disease (Am.

More information

Vision Research 75 (2012) Contents lists available at SciVerse ScienceDirect. Vision Research. journal homepage:

Vision Research 75 (2012) Contents lists available at SciVerse ScienceDirect. Vision Research. journal homepage: Vision Research 75 (2012) 71 76 Contents lists available at SciVerse ScienceDirect Vision Research journal homepage: www.elsevier.com/locate/visres Combination of retinitis pigmentosa and hearing loss

More information

OPHTHALMIC MOLECULAR GENETICS. SECTION EDITOR: JANEY L. WIGGS, MD, PhD

OPHTHALMIC MOLECULAR GENETICS. SECTION EDITOR: JANEY L. WIGGS, MD, PhD OPHTHALMIC MOLECULAR GENETICS SECTION EDITOR: JANEY L. WIGGS, MD, PhD Phenotypic Characterization of 3 Families With Autosomal Dominant Retinitis Pigmentosa Due to Mutations in KLHL7 Yuquan Wen, PhD; Kirsten

More information

Introduction to linkage and family based designs to study the genetic epidemiology of complex traits. Harold Snieder

Introduction to linkage and family based designs to study the genetic epidemiology of complex traits. Harold Snieder Introduction to linkage and family based designs to study the genetic epidemiology of complex traits Harold Snieder Overview of presentation Designs: population vs. family based Mendelian vs. complex diseases/traits

More information

Screening for mutations in RPGR and RP2 genes in Jordanian families with X-linked retinitis pigmentosa

Screening for mutations in RPGR and RP2 genes in Jordanian families with X-linked retinitis pigmentosa Screening for mutations in RPGR and RP2 genes in Jordanian families with X-linked retinitis pigmentosa M.F. Haddad 1, O.F. Khabour 1, K.A.Y. Abuzaideh 1 and W. Shihadeh 2 1 Faculty of Applied Medical Sciences,

More information

Fundus Autofluorescence. Jonathan A. Micieli, MD Valérie Biousse, MD

Fundus Autofluorescence. Jonathan A. Micieli, MD Valérie Biousse, MD Fundus Autofluorescence Jonathan A. Micieli, MD Valérie Biousse, MD The retinal pigment epithelium (RPE) has many important functions including phagocytosis of the photoreceptor outer segments Cone Rod

More information

Basic Definitions. Dr. Mohammed Hussein Assi MBChB MSc DCH (UK) MRCPCH

Basic Definitions. Dr. Mohammed Hussein Assi MBChB MSc DCH (UK) MRCPCH Basic Definitions Chromosomes There are two types of chromosomes: autosomes (1-22) and sex chromosomes (X & Y). Humans are composed of two groups of cells: Gametes. Ova and sperm cells, which are haploid,

More information

Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier

Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier Test Disease Population Triad Disease name Amyotrophic Lateral Sclerosis 10 (ALS10) and Amyotrophic Lateral Sclerosis 6 (ALS6)

More information

Advances in assessing and managing vision impairment

Advances in assessing and managing vision impairment Advances in assessing and managing vision impairment John Grigg Associate Professor and Head Discipline of Ophthalmology Consultant Ophthalmologist Sydney Eye Hospital and The Children s Hospital at Westmead

More information

RETINITIS PIGMENTOSA A RARE GENETICAL DISORDER

RETINITIS PIGMENTOSA A RARE GENETICAL DISORDER RETINITIS PIGMENTOSA A RARE GENETICAL DISORDER Retinitis pigmentosa (RP) is a group of inherited disorders affecting 1 in 3000-7000 people and characterized by abnormalities of the photoreceptors (rods

More information

MATERIALS AND METHODS. Patients

MATERIALS AND METHODS. Patients New ABCR Mutations and Clinical Phenotype in Italian Patients with Stargardt Disease Francesca Simonelli, 1 Francesco Testa, 1,2 Giuseppe de Crecchio, 3 Ernesto Rinaldi, 1 Amy Hutchinson, 4 Andrew Atkinson,

More information

Molecular scanning of the ABCA4 gene in Spanish patients with retinitis pigmentosa and Stargardt disease: Identification of novel mutations

Molecular scanning of the ABCA4 gene in Spanish patients with retinitis pigmentosa and Stargardt disease: Identification of novel mutations European Journal of Ophthalmology / Vol. 17 no. 5, 2007 / pp. 749-754 Molecular scanning of the ABCA4 gene in Spanish patients with retinitis pigmentosa and Stargardt disease: Identification of novel mutations

More information

Global variation in copy number in the human genome

Global variation in copy number in the human genome Global variation in copy number in the human genome Redon et. al. Nature 444:444-454 (2006) 12.03.2007 Tarmo Puurand Study 270 individuals (HapMap collection) Affymetrix 500K Whole Genome TilePath (WGTP)

More information

Prevalence and mode of inheritance of major genetic eye diseases in China

Prevalence and mode of inheritance of major genetic eye diseases in China Journal of Medical Genetics 1987, 24, 584-588 Prevalence and mode of inheritance of major genetic eye diseases in China DAN-NING HU From the Zhabei Eye Institute, Shanghai, and Section of Ophthalmic Genetics,

More information

Research Article Exome Sequencing Identified a Recessive RDH12 Mutation in a Family with Severe Early-Onset Retinitis Pigmentosa

Research Article Exome Sequencing Identified a Recessive RDH12 Mutation in a Family with Severe Early-Onset Retinitis Pigmentosa Ophthalmology Volume 2015, Article ID 942740, 7 pages http://dx.doi.org/10.1155/2015/942740 Research Article Exome Sequencing Identified a Recessive RDH12 Mutation in a Family with Severe Early-Onset Retinitis

More information

A. Incorrect! Cells contain the units of genetic they are not the unit of heredity.

A. Incorrect! Cells contain the units of genetic they are not the unit of heredity. MCAT Biology Problem Drill PS07: Mendelian Genetics Question No. 1 of 10 Question 1. The smallest unit of heredity is. Question #01 (A) Cell (B) Gene (C) Chromosome (D) Allele Cells contain the units of

More information

Human Genetic Disorders

Human Genetic Disorders Human Genetic Disorders HOMOLOGOUS CHROMOSOMES Human somatic cells have 23 pairs of homologous chromosomes 23 are inherited from the mother and 23 from the father HOMOLOGOUS CHROMOSOMES Autosomes o Are

More information

Introduction to genetic variation. He Zhang Bioinformatics Core Facility 6/22/2016

Introduction to genetic variation. He Zhang Bioinformatics Core Facility 6/22/2016 Introduction to genetic variation He Zhang Bioinformatics Core Facility 6/22/2016 Outline Basic concepts of genetic variation Genetic variation in human populations Variation and genetic disorders Databases

More information

A Comprehensive Study of TP53 Mutations in Chronic Lymphocytic Leukemia: Analysis of 1,287 Diagnostic CLL Samples

A Comprehensive Study of TP53 Mutations in Chronic Lymphocytic Leukemia: Analysis of 1,287 Diagnostic CLL Samples A Comprehensive Study of TP53 Mutations in Chronic Lymphocytic Leukemia: Analysis of 1,287 Diagnostic CLL Samples Sona Pekova, MD., PhD. Chambon Ltd., Laboratory for molecular diagnostics, Prague, Czech

More information

Name: PS#: Biol 3301 Midterm 1 Spring 2012

Name: PS#: Biol 3301 Midterm 1 Spring 2012 Name: PS#: Biol 3301 Midterm 1 Spring 2012 Multiple Choice. Circle the single best answer. (4 pts each) 1. Which of the following changes in the DNA sequence of a gene will produce a new allele? a) base

More information

MEDICAL GENOMICS LABORATORY. Next-Gen Sequencing and Deletion/Duplication Analysis of NF1 Only (NF1-NG)

MEDICAL GENOMICS LABORATORY. Next-Gen Sequencing and Deletion/Duplication Analysis of NF1 Only (NF1-NG) Next-Gen Sequencing and Deletion/Duplication Analysis of NF1 Only (NF1-NG) Ordering Information Acceptable specimen types: Fresh blood sample (3-6 ml EDTA; no time limitations associated with receipt)

More information

A PROPOSAL FOR THE HEAR SEE HOPE FOUNDATION VISUALIZING A CURE

A PROPOSAL FOR THE HEAR SEE HOPE FOUNDATION VISUALIZING A CURE A PROPOSAL FOR THE HEAR SEE HOPE FOUNDATION VISUALIZING A CURE SEPTEMBER 2017 VISUALIZING A CURE: UNDERSTANDING CONE DEGENERATION IN USHER SYNDROME AND RETINITIS PIGMENTOSA Within the retina, photoreceptors

More information

Genetics and the Macular Dystrophies. George Anadiotis D.O. Medical Director Clinical and Biochemical Genetics Randall Children s Hospital

Genetics and the Macular Dystrophies. George Anadiotis D.O. Medical Director Clinical and Biochemical Genetics Randall Children s Hospital Genetics and the Macular Dystrophies George Anadiotis D.O. Medical Director Clinical and Biochemical Genetics Randall Children s Hospital Stargardt disease Best Vitelliform Macular Dystrophy North Carolina

More information

Computational Systems Biology: Biology X

Computational Systems Biology: Biology X Bud Mishra Room 1002, 715 Broadway, Courant Institute, NYU, New York, USA L#4:(October-0-4-2010) Cancer and Signals 1 2 1 2 Evidence in Favor Somatic mutations, Aneuploidy, Copy-number changes and LOH

More information

Genetic Defect Underlying Progressive Blindness Uncovered by Strand s Clinical Exome Test

Genetic Defect Underlying Progressive Blindness Uncovered by Strand s Clinical Exome Test CASE STUDY Genetic Defect Underlying Progressive Blindness Uncovered by Strand s Clinical Exome Test Patient Profile Swati Koparkar*, a 33-year-old owner of a handicrafts boutique had been experiencing

More information

Association mapping (qualitative) Association scan, quantitative. Office hours Wednesday 3-4pm 304A Stanley Hall. Association scan, qualitative

Association mapping (qualitative) Association scan, quantitative. Office hours Wednesday 3-4pm 304A Stanley Hall. Association scan, qualitative Association mapping (qualitative) Office hours Wednesday 3-4pm 304A Stanley Hall Fig. 11.26 Association scan, qualitative Association scan, quantitative osteoarthritis controls χ 2 test C s G s 141 47

More information

Genome - Wide Linkage Mapping

Genome - Wide Linkage Mapping Biological Sciences Initiative HHMI Genome - Wide Linkage Mapping Introduction This activity is based on the work of Dr. Christine Seidman et al that was published in Circulation, 1998, vol 97, pgs 2043-2048.

More information

Activity 15.2 Solving Problems When the Genetics Are Unknown

Activity 15.2 Solving Problems When the Genetics Are Unknown f. Blue-eyed, color-blind females 1 2 0 0 g. What is the probability that any of the males will be color-blind? 1 2 (Note: This question asks only about the males, not about all of the offspring. If we

More information

Hands-On Ten The BRCA1 Gene and Protein

Hands-On Ten The BRCA1 Gene and Protein Hands-On Ten The BRCA1 Gene and Protein Objective: To review transcription, translation, reading frames, mutations, and reading files from GenBank, and to review some of the bioinformatics tools, such

More information

Doyne honeycomb retinal dystrophy functional improvement following subthreshold nanopulse laser treatment: a case report

Doyne honeycomb retinal dystrophy functional improvement following subthreshold nanopulse laser treatment: a case report Cusumano et al. Journal of Medical Case Reports (2019) 13:5 https://doi.org/10.1186/s13256-018-1935-1 CASE REPORT Open Access Doyne honeycomb retinal dystrophy functional improvement following subthreshold

More information

RNA-Seq guided gene therapy for vision loss. Michael H. Farkas

RNA-Seq guided gene therapy for vision loss. Michael H. Farkas RNA-Seq guided gene therapy for vision loss Michael H. Farkas The retina is a complex tissue Many cell types Neural retina vs. RPE Each highly dependent on the other Graw, Nature Reviews Genetics, 2003

More information

Identification of a novel duplication mutation in the VHL gene in a large Chinese family with Von Hippel-Lindau (VHL) syndrome

Identification of a novel duplication mutation in the VHL gene in a large Chinese family with Von Hippel-Lindau (VHL) syndrome Identification of a novel duplication mutation in the VHL gene in a large Chinese family with Von Hippel-Lindau (VHL) syndrome L.H. Cao 1, B.H. Kuang 2, C. Chen 1, C. Hu 2, Z. Sun 1, H. Chen 2, S.S. Wang

More information

The phenotype of Arg555Trp mutation in a large Turkish family with corneal granular dystrophy

The phenotype of Arg555Trp mutation in a large Turkish family with corneal granular dystrophy European Journal of Ophthalmology / Vol. 11 no. 4, 2001 / pp. 333-337 The phenotype of Arg555Trp mutation in a large Turkish family with corneal granular dystrophy H. KIRATLI 1, M. İRKEÇ 1, K. ÖZGÜL 2,

More information

MOLECULAR GENETICS OF HUMAN RETINAL DISEASE

MOLECULAR GENETICS OF HUMAN RETINAL DISEASE ?Annu. Rev. Genet. 1999. 33:89 131 Copyright c 1999 by Annual Reviews. All rights reserved Amir Rattner, 1,4 Hui Sun, 1,4 and Jeremy Nathans 1 4 1 Department of Molecular Biology and Genetics, 2 Department

More information

THE 1 SUBUNIT of the voltagegated

THE 1 SUBUNIT of the voltagegated OPHTHALMIC MOLECULAR GENETICS SECTION EDITOR: EDWIN M. STONE, MD, PhD Retinal and Optic Disc Atrophy Associated With a CACNA1F Mutation in a Japanese Family Makoto Nakamura, MD; Sei Ito, MD; Chang-Hua

More information

To test the possible source of the HBV infection outside the study family, we searched the Genbank

To test the possible source of the HBV infection outside the study family, we searched the Genbank Supplementary Discussion The source of hepatitis B virus infection To test the possible source of the HBV infection outside the study family, we searched the Genbank and HBV Database (http://hbvdb.ibcp.fr),

More information

Single Gene (Monogenic) Disorders. Mendelian Inheritance: Definitions. Mendelian Inheritance: Definitions

Single Gene (Monogenic) Disorders. Mendelian Inheritance: Definitions. Mendelian Inheritance: Definitions Single Gene (Monogenic) Disorders Mendelian Inheritance: Definitions A genetic locus is a specific position or location on a chromosome. Frequently, locus is used to refer to a specific gene. Alleles are

More information

Retinitis Pigmentosa: A Brief Review of the Genetic and Clinical Aspects of the Disease. Itia Dowdell

Retinitis Pigmentosa: A Brief Review of the Genetic and Clinical Aspects of the Disease. Itia Dowdell Retinitis Pigmentosa: A Brief Review of the Genetic and Clinical Aspects of the Disease Itia Dowdell Science and Technology Honors Program, University of Alabama at Birmingham, Birmingham, AL, USA School

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10643 Supplementary Table 1. Identification of hecw-1 coding polymorphisms at amino acid positions 322 and 325 in 162 strains of C. elegans. WWW.NATURE.COM/NATURE 1 Supplementary Figure

More information

Construction of the Visual Image

Construction of the Visual Image Construction of the Visual Image Anne L. van de Ven 8 Sept 2003 BioE 492/592 Sensory Neuroengineering Lecture 3 Visual Perception Light Photoreceptors Interneurons Visual Processing Ganglion Neurons Optic

More information

National Disease Research Interchange Annual Progress Report: 2010 Formula Grant

National Disease Research Interchange Annual Progress Report: 2010 Formula Grant National Disease Research Interchange Annual Progress Report: 2010 Formula Grant Reporting Period July 1, 2011 June 30, 2012 Formula Grant Overview The National Disease Research Interchange received $62,393

More information

Retinitis pigmentosa (RP) is an inherited dystrophic

Retinitis pigmentosa (RP) is an inherited dystrophic Genes and Mutations Causing Autosomal Dominant Retinitis Pigmentosa Stephen P. Daiger, Sara J. Bowne, and Lori S. Sullivan Human Genetics Center, School of Public Health, The University of Texas Health

More information

Tumor suppressor genes D R. S H O S S E I N I - A S L

Tumor suppressor genes D R. S H O S S E I N I - A S L Tumor suppressor genes 1 D R. S H O S S E I N I - A S L What is a Tumor Suppressor Gene? 2 A tumor suppressor gene is a type of cancer gene that is created by loss-of function mutations. In contrast to

More information

Genetic diagrams show the genotype and phenotype of the offspring of two organisms. The different generation are abbreviated like so:

Genetic diagrams show the genotype and phenotype of the offspring of two organisms. The different generation are abbreviated like so: Genetics 2 Genetic Diagrams and Mendelian Genetics: Genetic diagrams show the genotype and phenotype of the offspring of two organisms. The different generation are abbreviated like so: P parent generation

More information

Concurrent Practical Session ACMG Classification

Concurrent Practical Session ACMG Classification Variant Effect Prediction Training Course 6-8 November 2017 Prague, Czech Republic Concurrent Practical Session ACMG Classification Andreas Laner / Anna Benet-Pagès 1 Content 1. Background... 3 2. Aim

More information

National Disease Research Interchange Annual Progress Report: 2010 Formula Grant

National Disease Research Interchange Annual Progress Report: 2010 Formula Grant National Disease Research Interchange Annual Progress Report: 2010 Formula Grant Reporting Period July 1, 2012 June 30, 2013 Formula Grant Overview The National Disease Research Interchange received $62,393

More information

Identifying Mutations Responsible for Rare Disorders Using New Technologies

Identifying Mutations Responsible for Rare Disorders Using New Technologies Identifying Mutations Responsible for Rare Disorders Using New Technologies Jacek Majewski, Department of Human Genetics, McGill University, Montreal, QC Canada Mendelian Diseases Clear mode of inheritance

More information

Genetics All somatic cells contain 23 pairs of chromosomes 22 pairs of autosomes 1 pair of sex chromosomes Genes contained in each pair of chromosomes

Genetics All somatic cells contain 23 pairs of chromosomes 22 pairs of autosomes 1 pair of sex chromosomes Genes contained in each pair of chromosomes Chapter 6 Genetics and Inheritance Lecture 1: Genetics and Patterns of Inheritance Asexual reproduction = daughter cells genetically identical to parent (clones) Sexual reproduction = offspring are genetic

More information

Example: Colour in snapdragons

Example: Colour in snapdragons Incomplete Dominance this occurs when the expression of one allele does not completely mask the expression of another. the result is that a heterozygous organism has a phenotype that is a blend of the

More information

CURRENT GENETIC TESTING TOOLS IN NEONATAL MEDICINE. Dr. Bahar Naghavi

CURRENT GENETIC TESTING TOOLS IN NEONATAL MEDICINE. Dr. Bahar Naghavi 2 CURRENT GENETIC TESTING TOOLS IN NEONATAL MEDICINE Dr. Bahar Naghavi Assistant professor of Basic Science Department, Shahid Beheshti University of Medical Sciences, Tehran,Iran 3 Introduction Over 4000

More information

Lack of Association between Endoplasmic Reticulum Stress Response Genes and Suicidal Victims

Lack of Association between Endoplasmic Reticulum Stress Response Genes and Suicidal Victims Kobe J. Med. Sci., Vol. 53, No. 4, pp. 151-155, 2007 Lack of Association between Endoplasmic Reticulum Stress Response Genes and Suicidal Victims KAORU SAKURAI 1, NAOKI NISHIGUCHI 2, OSAMU SHIRAKAWA 2,

More information

Variant Detection & Interpretation in a diagnostic context. Christian Gilissen

Variant Detection & Interpretation in a diagnostic context. Christian Gilissen Variant Detection & Interpretation in a diagnostic context Christian Gilissen c.gilissen@gen.umcn.nl 28-05-2013 So far Sequencing Johan den Dunnen Marja Jakobs Ewart de Bruijn Mapping Victor Guryev Variant

More information

Challenges of CGH array testing in children with developmental delay. Dr Sally Davies 17 th September 2014

Challenges of CGH array testing in children with developmental delay. Dr Sally Davies 17 th September 2014 Challenges of CGH array testing in children with developmental delay Dr Sally Davies 17 th September 2014 CGH array What is CGH array? Understanding the test Benefits Results to expect Consent issues Ethical

More information

Bio 111 Study Guide Chapter 17 From Gene to Protein

Bio 111 Study Guide Chapter 17 From Gene to Protein Bio 111 Study Guide Chapter 17 From Gene to Protein BEFORE CLASS: Reading: Read the introduction on p. 333, skip the beginning of Concept 17.1 from p. 334 to the bottom of the first column on p. 336, and

More information

Human inherited diseases

Human inherited diseases Human inherited diseases A genetic disorder that is caused by abnormality in an individual's DNA. Abnormalities can range from small mutation in a single gene to the addition or subtraction of a whole

More information

A new locus for autosomal dominant high myopia maps to 4q22-q27 between D4S1578 and D4S1612

A new locus for autosomal dominant high myopia maps to 4q22-q27 between D4S1578 and D4S1612 Received 24 May 2005 Accepted 22 July 2005 Published 22 July 2005 A new locus for autosomal dominant high myopia maps to 4q22-q27 between D4S1578 and D4S1612 Qingjiong Zhang, 1,2 Xiangming Guo, 1 Xueshan

More information

Class XII Chapter 5 Principles of Inheritance and Variation Biology

Class XII Chapter 5 Principles of Inheritance and Variation Biology Question 1: Mention the advantages of selecting pea plant for experiment by Mendel. Mendel selected pea plants to carry out his study on the inheritance of characters from parents to offspring. He selected

More information

HST.161 Molecular Biology and Genetics in Modern Medicine Fall 2007

HST.161 Molecular Biology and Genetics in Modern Medicine Fall 2007 MIT OpenCourseWare http://ocw.mit.edu HST.161 Molecular Biology and Genetics in Modern Medicine Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Unilateral pigmentary retinopathy a review of literature and case presentation

Unilateral pigmentary retinopathy a review of literature and case presentation Romanian Journal of Ophthalmology, Volume 60, Issue 1, January-March 2016. pp:47-52 CASE REPORT Unilateral pigmentary retinopathy a review of literature and case presentation Stamate Alina-Cristina, Burcea

More information

FEP Medical Policy Manual

FEP Medical Policy Manual FEP Medical Policy Manual Last Review: September 2016 Next Review: September 2017 Related Policies 9.03.08 Photodynamic Therapy for Choroidal Neovascularization 9.03.20 Intraocular Radiation Therapy for

More information

Muscular Dystrophy. Biol 405 Molecular Medicine

Muscular Dystrophy. Biol 405 Molecular Medicine Muscular Dystrophy Biol 405 Molecular Medicine Duchenne muscular dystrophy Duchenne muscular dystrophy is a neuromuscular disease that occurs in ~ 1/3,500 male births. The disease causes developmental

More information

Molecular Characterization of the NF2 Gene in Korean Patients with Neurofibromatosis Type 2: A Report of Four Novel Mutations

Molecular Characterization of the NF2 Gene in Korean Patients with Neurofibromatosis Type 2: A Report of Four Novel Mutations Korean J Lab Med 2010;30:190-4 DOI 10.3343/kjlm.2010.30.2.190 Original Article Diagnostic Genetics Molecular Characterization of the NF2 Gene in Korean Patients with Neurofibromatosis Type 2: A Report

More information

Insulin Resistance. Biol 405 Molecular Medicine

Insulin Resistance. Biol 405 Molecular Medicine Insulin Resistance Biol 405 Molecular Medicine Insulin resistance: a subnormal biological response to insulin. Defects of either insulin secretion or insulin action can cause diabetes mellitus. Insulin-dependent

More information

Agro/Ansc/Bio/Gene/Hort 305 Fall, 2017 MEDICAL GENETICS AND CANCER Chpt 24, Genetics by Brooker (lecture outline) #17

Agro/Ansc/Bio/Gene/Hort 305 Fall, 2017 MEDICAL GENETICS AND CANCER Chpt 24, Genetics by Brooker (lecture outline) #17 Agro/Ansc/Bio/Gene/Hort 305 Fall, 2017 MEDICAL GENETICS AND CANCER Chpt 24, Genetics by Brooker (lecture outline) #17 INTRODUCTION - Our genes underlie every aspect of human health, both in function and

More information

Biology 105: Introduction to Genetics Midterm EXAM. Part1. Definitions. 1 Recessive allele. Name. Student ID. 2 Homologous chromosomes

Biology 105: Introduction to Genetics Midterm EXAM. Part1. Definitions. 1 Recessive allele. Name. Student ID. 2 Homologous chromosomes Biology 105: Introduction to Genetics Midterm EXAM Part1 Definitions 1 Recessive allele Name Student ID 2 Homologous chromosomes Before starting, write your name on the top of each page Make sure you have

More information

IVF Michigan, Rochester Hills, Michigan, and Reproductive Genetics Institute, Chicago, Illinois

IVF Michigan, Rochester Hills, Michigan, and Reproductive Genetics Institute, Chicago, Illinois FERTILITY AND STERILITY VOL. 80, NO. 4, OCTOBER 2003 Copyright 2003 American Society for Reproductive Medicine Published by Elsevier Inc. Printed on acid-free paper in U.S.A. CASE REPORTS Preimplantation

More information

Chapter 2. Linkage Analysis. JenniferH.BarrettandM.DawnTeare. Abstract. 1. Introduction

Chapter 2. Linkage Analysis. JenniferH.BarrettandM.DawnTeare. Abstract. 1. Introduction Chapter 2 Linkage Analysis JenniferH.BarrettandM.DawnTeare Abstract Linkage analysis is used to map genetic loci using observations on relatives. It can be applied to both major gene disorders (parametric

More information

1042SCG Genetics & Evolutionary Biology Semester Summary

1042SCG Genetics & Evolutionary Biology Semester Summary 1042SCG Genetics & Evolutionary Biology Semester Summary Griffith University, Nathan Campus Semester 1, 2014 Topics include: - Mendelian Genetics - Eukaryotic & Prokaryotic Genes - Sex Chromosomes - Variations

More information

A Case Report of Vogt s Limbal Girdle and Retinitis Pigmentosa in a Thirteen-Year-Old Boy: A Rare and Unusual Association

A Case Report of Vogt s Limbal Girdle and Retinitis Pigmentosa in a Thirteen-Year-Old Boy: A Rare and Unusual Association Published online: September 5, 2015 1663 2699/15/0063 0311$39.50/0 This is an Open Access article licensed under the terms of the Creative Commons Attribution- NonCommercial 3.0 Unported license (CC BY-NC)

More information