Tissue Hypoxia and Oxygen Therapy

Size: px
Start display at page:

Download "Tissue Hypoxia and Oxygen Therapy"

Transcription

1 Tissue Hypoxia and Oxygen Therapy ก ก ก ก ก ก 1. ก ก 2. ก ก 3. tissue hypoxia 4. ก ก ก 5. ก ก ก 6. ก กก ก 7. ก ก tissue hypoxia ก ก ก ก 1. Pathway of oxygen transport 2. Causes of tissue hypoxia 3. Effect of oxygen administration 4. Oxygen devices with spontaneous breathing 5. Selection of patient for oxygen devices with spontaneous breathing 6. Effects of inadequate humidification of inspired gases 7. Humidifier and nebulizer 8. Evaluation of oxygen therapy 9. Oxygen hazard ก ก ก ก ก ก ก ก ก ก ก ก ก 21% ก ก ก ก ก ก ก ก

2 ก ก ก ก (diffusion) ( pulmonary capillaries) ก ก ก oxidative phosphorylation ก ATP (adenosine triphosphate) ก ก ก ก ก ก ก ก ก ก ก ก ก ก ก ก ก ก กก ก ก ก ก ก (tissue hypoxia) ก ก กก ก ก ก ก ก ก ก (pathway of oxygen transport) ( 1 ) 2 FiO 2 ventilation diffusion cell directory=abgs notes6.htm 1 Oxygen transport

3 กก FiO 2 ก ก FiO ก ก ก ก (pulmonary gas exchange) ก ก ก ก ก ก ก ก ก ก 1. Alveolar ventilation ก ก ก ก ก ก ก ก (atelectasis) (pneumonia) (pulmonary edema) 2. Diffusion ก ก (alveoli) ( pulmonary capillaries) ก ก (pulmonary embolism) (pulmonary hypertension) 3. Perfusion ก ก ก ก ก (ventilation/perfusion matching) ก ก ก ก ก กก (capillary gas exchange) ก ก ก 1. Capillary perfusion systemic circulation pulmonary circulation ก (congestive heart failure) 2. Oxygen delivery ก ก ก ก ก ก plasma ก (cardiac output) ก Arterial O 2 content = Dissolved O 2 + Hb-bound O 2 = (0.003 x PaO 2 ) + (1.34 x Hb x SaO 2 ) Oxygen delivery = Cardiac output x arterial O 2 content = Heart rate x stroke volume x O 2 content ก ก ก, oxygen saturation, PaO 2 cardiac output ก ก ก ก ก ก oxyhemoglobin dissociation curve ก ก ก ก (O 2 affinity) ph, PaCO 2, ก 2-3-DPG (2-3-diphosphoglycerate) ก PaO 2 SaO 2 ก ก ก ก ก ph 7.4, ก 37 PaCO ก ก ก ก ก ก (oxygen - hemoglobin affinity changes) oxyhemoglobin dissociation curve ( 2 ) 3

4 Oxygen - hemoglobin affinity changes ก ก ก ก ก ก ก ก ก ก (tissue hypoxia) (ph, alkalosis), (hypothermia), ก (hypocarbia), ก 2-3-DPG ก ก ก ก ก ก ก ก ก ก ก (ph,acidosis), (hyperthermia), ก (hypercarbia), ก 2-3- DPG ก ก ก ก ก ก ก ก (cellular gas exchange) ก ก ก cell membrane mitochondria ก metabolism ก ก Tissue hypoxia tissue hypoxia ก ก ก ก 1. Hypoxic hypoxia ก ก ก ก ก ก (pulmonary gas exchange) ก ก (PaO 2 ) ก hypoxemia ก ก ก กก ก ก ก 1.1 FiO 2 (high altitudes) 1.2 Alveolar hypoventilation ก ก ก ก (PAO 2 )

5 1.3 Ventilation/perfusion mismatch ก hypoxemia asthma, hemo/pneumothorax, atelectasis, pneumonia 1.4 Diffusion defect ก ก ก 1.5 Shunt effect ก ก ก ก hypoxemia ก ก ventilation/perfusion mismatch, hypoventilation diffusion defect 2. Anemic hypoxia ก ก ก 3. Circulatory hypoxia ก shock, arterial occlusion 4. Histotoxic hypoxia ก cyanide toxic ก ก ก 5. Hypermetabolic hypoxia ก metabolism กก ก supply ก ก ก ก Oxygen therapy tissue hypoxia ก ก ก ก กก 1. ก ก (correct document/suspected acute hypoxemia) ก ( alveolar oxygen tension; PAO 2 ) (PaO 2 ) 2. ก ก ก (decrease symptoms of chronic hypoxemia) ก ก ก chronic hypoxemia 3. ก (decrease cardiopulmonary workload) ก ก ก ก ก ก ก ก ก ก 1 5

6 6 ก ก ก 1 ก ก hypoxemia 1. PAO 2 PaO 2 2. work of breathing ก 3. myocardial workload ก ก (myocardial ischemia) (right heart failure) ก ก ก ก AARC Clinical Practice Guideline 2002 oxygen therapy ก ก กก ก (ambient air) ก ก ก ก ก hypoxia ก ก (indication of oxygen therapy) 1) ก ก ก (documented hypoxemia) PaO 2 < 60. SaO 2 < 90% ก ก PaO 2 SaO 2 ก ก ก 2) ก hypoxemia ก ก ก 3) (severe trauma) 4) ก ( acute myocardial infarction) 5) ก ก ก ก ก ก ก (contraindication) ก ก

7 ก ก 1) ก ก ก PaO 2 กก ก 60. PaCO 2 ก ก 2) ก (absorption atelectasis), ก (oxygen toxicity) ก ก ก ก (ciliary) ก (leukocytic) ก (FiO 2 ) > 0.5 3) ก ก ก paraquat bleomycin 4) ก ก ก ก 5) ก ก ก ก 6) ก ก ก ก (nebulizer) 7 ก ก ก ก ก ก ( 1) ก ก ก 2 1 ก ก ก ก ก ก

8 8 ก ก ก ก ก ก Tunnel vision Loss of coordination ก ก ก Manic-depressive activity 2 ก ก ก ก ก ก (oxygen devices with spontaneous breathing)

9 1. Low-flow systems devices ก 100 % ก flow ก 10 LPM ก variable performance ก flow ก inspiratory flow rate demand ก ก ก ก FiO 2 ก ก reservoir, flow ก ก minute ventilation ก low-flow 1.1 Nasal cannula nasal prongs ( 3) ก 24-40% flow 1 LPM FiO ก flow ก 4 LPM flow กก 6 LPM ก ก ก ก ก 1.2 Cannulocollar mask ( 8) ก ก ก ก tracheostomy mask ก humidifier flow 3 LPM ก ก ก nasal cannula ก ก ก nebulizer กก humidifier 1.3 Simple face mask ( 4) ก 35-50%, flow 5-10 LPM flow 5 LPM ก rebreathing (exhaled CO 2 ) mask ก ก ก ก ก ก FiO 2 กก nasal cannula 1.4 Partial rebreathing mask ( 5) simple mask with reservoir bag. flow. ก bag ก 1 3 bag FiO 2 ก flow 6-10 LPM ก 40-70% ก 1 3 ก reservoir bag ก ก exhalation port flow ก ก FiO 2 ก ก FiO 2 humidifier 1.5 Non-rebreathing mask ( 6 ) ก partial rebreathing mask ก one-way valves 2 ก bag mask ก ก (exhaled CO 2 ) ก bag 2 exhalation port ก ก ก ก flow 10 LPM ก ก ก ก 60-80% ก 100% ก variable performance 9

10 ก FiO 2 ก flow ก ก 10 Exhalation port 3 Nasal cannula 4 Simple face mask 5 Partial rebreathing mask 6 Non-rebreathing mask flow FiO 2 ก low-flow systems devices ( 2 ) 2 Guidelines for estimating FiO 2 with low-flow oxygen devices

11 11 2. High-flow systems devices flow ก กก respiratory flow demand ก ก ก ก flow ก ก ก ก FiO 2 ก ก FiO 2 fixed performance ก 2.1 Air-entrainment system air-entrainment port ก ก jet orifice flow ก กก venturi effect ( 7) negative pressure ก ก ก ก ก ก ก nebulizer ก artificial airway tracheostomy mask ( 8) T- piece ( 9) ก 35% ก ก ก aerosol mask ( 10) ก ก ก air-entrainment system ก corrugate tube ก ก Entrainment port Jet 7 Venturi effect

12 12 8 Tracheostomy mask 9 T-piece 10 Aerosol mask ก flow ก magic box high flow system, fixed performance flow FiO 2 ก ก magic box O Air O : Air 40 : 40 1 : 1 ก FiO flow กก ก respiratory flow demand 3-4 minute ventilation ก 50 kg 20 flow minute ventilation = 5-7(ml/kg) x RR = (7 x50) x 20 = 7 LPM peak inspiratory flow rate = 3-4 minute ventilation = LPM ก FiO flow O 2 air 1:1 flow = 21/2 28/2 = LPM ก ก ก magic box ก FiO 2 ก 3 3 Approximate oxygen to air ratios for common oxygen concentration

13 13 ก ก (Effects of inadequate humidification of inspired gases) ก ก ก ก ก ก ก 1. cilia ก ก necrosis 4. ก ก 5. ก ก 6. ก ก 7. (atelectasis) 8. (pneumonia) ก ก ก ก (Humidifier and nebulizer) ก ก ก ก ก ก ก ก 2 humidifier nebulizer 1. Humidifier ( 11) ก nebulizer ก ก ก ก ก ก bubble humidifier ก ก low flow system ก ก ก 2. Nebulizer ( 12) ก pneumatic jet nebulizer, ultrasonic nebulizer ก ก ก venture effect ก ก กก ก ก ( 13) ก ก ก ก artificial airway ก ก T piece, artificial nose ( heat and moisture exchanger)

14 ก nebulizer ก corrugate tube ก ก flow ก ก FiO 2 ก ก ก ก ( 14 ) Humidifier 12 Nebulizer 13 Nebulizer with venturi effect

15 15 14 Nebulizer corrugate tube ก humidifier nebulizer 4 4 ก humidifier nebulizer Humidifier Nebulizer Humidification gaseous aerosol Airway target upper airway lower airway Flow system low-flow high-flow FiO2 variable fixed Tubing small-bored corrugated Cost cheaper expensive Nosocomial infectious less more ก ก (evaluation of oxygen therapy) ก ก ก ก ก ก ก ก ก 1. Patient ก 1.1 Clinical assessment ก cardiovascular, pulmonary neurologic status ก 1.2 Assessment of physiologic parameters ก ก PaO 2 oxygen saturation ก ก - ก ก 12 ก ก ก FiO 2 < 0.4

16 - 8 ก ก ก FiO 2 > 0.4 ( postanesthetic care unit) - 72 myocardial infarction - 2 (COPD) 2. Equipment ก ก 2.1 ก ก ก ก ก กก 1 ก ก - ก ก high-flow blending systems - artificial airways - heated gas mixture - ก FiO 2 > ก ก ก ก ก 16 ก ก ( oxygen hazard) ก ก ก ก ก ก ก oxygen toxicity ก 1. Physiological hazard from hyperoxygenation 1.1 CNS ก tremors, twitching, paralysis convulsion ก ก hyperbaric pressure ( ก กก 1 ก ) 1.2 ก retinopathy of prematurity ก ก ก ก ก PaO 2 ก ก ก retinal vasoconstriction necrosis ก cilia - ก ก ก hypoxic drive - hypoxic pulmonary vasoconstriction - ก absorption atelectasis ก ก

17 - ก bronchopulmonary dysplasia pulmonary hypertension & fibrosis pulmonary hypertension & fibrosis ก ก high FiO metabolic ก 1.5 ก pulmonary vasodilatation systemic & cerebral vasoconstriction 2. Psychological dependent 3. Mechanical hazard ก ก 4. Bacterial contamination ก ก ก nebulizer ก ก ก oxygen toxicity ก 100% ก 24 70% ก 48 50% ก 5 ก ก ก ก ก ก ก ก ก ก ก ก ก ก ก ก ก ก ก ก

18 1. Scanlan CL, Heuer A. Medical Gas Therapy. In: Scanlan CL, Wilkin RL, Stoller JK, editors. Egan s Fundamentals of Respiratory Care. 7 th ed. St. Louis : Mosby; 1999: Chang DW. AARC Guideline : Oxygen Therapy for Adults in Acute Care Facility. Respiratory Care 2002; 47(6): Stoelting RK. Lungs. In: Stoelting RK, editor. Pharmacology and Physiology in Anesthetic Practice. 3 rd ed. Philadelphia : Lippincott-Roven; 1999: Stoelting RK. Pulmonary gas exchange and blood transport of gases. In: Stoelting RK, editor. Pharmacology and Physiology in Anesthetic Practice. 3 rd ed. Philadelphia : Lippincott-Roven; 1999: Wojciechowski WV. Mathematics. In: Wojciechowski WV, editor. Respiratory Care Sciences : An Integrated Approach. 3 rd ed. Albany : Delmar ; 2000: Branson RD. Gas delivery systems: regulators, flowmeters, and therapy devices. In: Branson RD, Hess DR, Chatburn RL, editors. Respiratory Care Equipment. 2 nd ed. Philadelphia : Lippincott Williams & Wilkins; 1999: Shapiro BA, Peruzzi WT. Hypoxemia and oxygen therapy. In: Shapiro BA, Peruzzi WT, editors. Clinical Application of Blood Gases. 5 th ed. St. Louis : Mosby ; 1994 : Saposnick AB, Hess DR. Oxygen therapy: administration and management. In: Hess DR, MacIntyre NR, Mishoe SC, Galvin WF, Adams AB, Saposnick AB, editors. Respiratory Care: Principles and Practices. Philadelphia : W.B. Saunders Co.; 2002: Fink JB, Hess DR. Humidity and aerosal therapy. In: Hess DR, MacIntyre NR, Mishoe SC, Galvin WF, Adams AB, Saposnick AB, editors. Respiratory Care: Principles and Practices. Philadelphia : W.B. Saunders Co.; 2002: Centers for Disease Control and Prevention. Guideline for prevention of nosocomial pneumonia. Respir Care 1994; 39(12): Centers for Disease Control and Prevention. Guidelines for prevention of nosocomial pneumonia. MMWR Recomm Rep 1997; 46(RR-1): Ball C. Medical devices and their role in the incidence of ventilator-associated pneumonia challenging some sacred cows! Intensive Crit Care Nurs 2005; 21(3):

10/17/2016 OXYGEN DELIVERY: INDICATIONS AND USE OF EQUIPMENT COURSE OBJECTIVES COMMON CAUSES OF RESPIRATORY FAILURE

10/17/2016 OXYGEN DELIVERY: INDICATIONS AND USE OF EQUIPMENT COURSE OBJECTIVES COMMON CAUSES OF RESPIRATORY FAILURE OXYGEN DELIVERY: INDICATIONS AND USE OF EQUIPMENT J U L I E Z I M M E R M A N, R N, M S N C L I N I C A L N U R S E S P E C I A L I S T E L O I S A C U T L E R, R R T, B S R C C L I N I C A L / E D U C

More information

3. Which of the following would be inconsistent with respiratory alkalosis? A. ph = 7.57 B. PaCO = 30 mm Hg C. ph = 7.63 D.

3. Which of the following would be inconsistent with respiratory alkalosis? A. ph = 7.57 B. PaCO = 30 mm Hg C. ph = 7.63 D. Pilbeam: Mechanical Ventilation, 4 th Edition Test Bank Chapter 1: Oxygenation and Acid-Base Evaluation MULTIPLE CHOICE 1. The diffusion of carbon dioxide across the alveolar capillary membrane is. A.

More information

Module G: Oxygen Transport. Oxygen Transport. Dissolved Oxygen. Combined Oxygen. Topics to Cover

Module G: Oxygen Transport. Oxygen Transport. Dissolved Oxygen. Combined Oxygen. Topics to Cover Topics to Cover Module G: Oxygen Transport Oxygen Transport Oxygen Dissociation Curve Oxygen Transport Studies Tissue Hypoxia Cyanosis Polycythemia Oxygen Transport Oxygen is carried from the lungs to

More information

Critical Care Monitoring. Assessing the Adequacy of Tissue Oxygenation. Tissue Oxygenation - Step 1. Tissue Oxygenation

Critical Care Monitoring. Assessing the Adequacy of Tissue Oxygenation. Tissue Oxygenation - Step 1. Tissue Oxygenation Critical Care Monitoring 1 Assessing the Adequacy of Tissue oxygenation is the end-product of many complex steps 2 - Step 1 Oxygen must be made available to alveoli 3 1 - Step 2 Oxygen must cross the alveolarcapillary

More information

Information Often Given to the Nurse at the Time of Admission to the Postanesthesia Care Unit

Information Often Given to the Nurse at the Time of Admission to the Postanesthesia Care Unit Information Often Given to the Nurse at the Time of Admission to the Postanesthesia Care Unit * Patient s name and age * Surgical procedure and type of anesthetic including drugs used * Other intraoperative

More information

Mechanical Ventilation. Assessing the Adequacy of Tissue Oxygenation. Tissue Oxygenation - Step 1. Tissue Oxygenation

Mechanical Ventilation. Assessing the Adequacy of Tissue Oxygenation. Tissue Oxygenation - Step 1. Tissue Oxygenation 1 Mechanical Ventilation Assessing the Adequacy of 2 Tissue oxygenation is the end-product of many complex steps - Step 1 3 Oxygen must be made available to alveoli 1 - Step 2 4 Oxygen must cross the alveolarcapillary

More information

OXYGENATION AND ACID- BASE EVALUATION. Chapter 1

OXYGENATION AND ACID- BASE EVALUATION. Chapter 1 OXYGENATION AND ACID- BASE EVALUATION Chapter 1 MECHANICAL VENTILATION Used when patients are unable to sustain the level of ventilation necessary to maintain the gas exchange functions Artificial support

More information

I. Subject: Continuous Positive Airway Pressure CPAP by Continuous Flow Device

I. Subject: Continuous Positive Airway Pressure CPAP by Continuous Flow Device I. Subject: Continuous Positive Airway Pressure CPAP by Continuous Flow Device II. Policy: Continuous Positive Airway Pressure CPAP by the Down's system will be instituted by Respiratory Therapy personnel

More information

Lecture Notes. Chapter 2: Introduction to Respiratory Failure

Lecture Notes. Chapter 2: Introduction to Respiratory Failure Lecture Notes Chapter 2: Introduction to Respiratory Failure Objectives Define respiratory failure, ventilatory failure, and oxygenation failure List the causes of respiratory failure Describe the effects

More information

a. Describe the physiological consequences of intermittent positive pressure ventilation and positive end-expiratory pressure.

a. Describe the physiological consequences of intermittent positive pressure ventilation and positive end-expiratory pressure. B. 10 Applied Respiratory Physiology a. Describe the physiological consequences of intermittent positive pressure ventilation and positive end-expiratory pressure. Intermittent positive pressure ventilation

More information

5. What is the cause of this patient s metabolic acidosis? LACTIC ACIDOSIS SECONDARY TO ANEMIC HYPOXIA (HIGH CO LEVEL)

5. What is the cause of this patient s metabolic acidosis? LACTIC ACIDOSIS SECONDARY TO ANEMIC HYPOXIA (HIGH CO LEVEL) Self-Assessment RSPT 2350: Module F - ABG Analysis 1. You are called to the ER to do an ABG on a 40 year old female who is C/O dyspnea but seems confused and disoriented. The ABG on an FiO 2 of.21 show:

More information

Emergency Medicine High Velocity Nasal Insufflation (Hi-VNI) VAPOTHERM POCKET GUIDE

Emergency Medicine High Velocity Nasal Insufflation (Hi-VNI) VAPOTHERM POCKET GUIDE Emergency Medicine High Velocity Nasal Insufflation (Hi-VNI) VAPOTHERM POCKET GUIDE Indications for Vapotherm High Velocity Nasal Insufflation (Hi-VNI ) administration, the patient should be: Spontaneously

More information

Respiratory Failure in the Pediatric Patient

Respiratory Failure in the Pediatric Patient Respiratory Failure in the Pediatric Patient Ndidi Musa M.D. Associate Professor of Pediatrics Medical College of Wisconsin Pediatric Cardiac Intensivist Children s Hospital of Wisconsin Objectives Recognize

More information

Oxygenation. Chapter 45. Re'eda Almashagba 1

Oxygenation. Chapter 45. Re'eda Almashagba 1 Oxygenation Chapter 45 Re'eda Almashagba 1 Respiratory Physiology Structure and function Breathing: inspiration, expiration Lung volumes and capacities Pulmonary circulation Respiratory gas exchange: oxygen,

More information

Appendix D An unresponsive patient with shallow, gasping breaths at a rate of six per minute requires:

Appendix D An unresponsive patient with shallow, gasping breaths at a rate of six per minute requires: Answer Key Appendix D-2 1. An unresponsive patient with shallow, gasping breaths at a rate of six per minute requires: a. oxygen given via nasal cannula b. immediate transport to a medical facility c.

More information

Continuous Aerosol Therapy

Continuous Aerosol Therapy PROCEDURE - : Page 1 of 5 Purpose Policy Physician's Order To standardize the administration of continuous aerosol therapy. Respiratory Care Services provides equipment and therapy according to physician

More information

Unit 5 Humidity/Aerosol Generators

Unit 5 Humidity/Aerosol Generators 5-1 Unit 5 Humidity/Aerosol Generators GOAL On completion of this unit, the student should have an understanding of the principles of operation and proper use of different humidity/aerosol generators.

More information

Capnography. Capnography. Oxygenation. Pulmonary Physiology 4/15/2018. non invasive monitor for ventilation. Edward C. Adlesic, DMD.

Capnography. Capnography. Oxygenation. Pulmonary Physiology 4/15/2018. non invasive monitor for ventilation. Edward C. Adlesic, DMD. Capnography Edward C. Adlesic, DMD University of Pittsburgh School of Dental Medicine 2018 North Carolina Program Capnography non invasive monitor for ventilation measures end tidal CO2 early detection

More information

Appendix E Choose the sign or symptom that best indicates severe respiratory distress.

Appendix E Choose the sign or symptom that best indicates severe respiratory distress. Appendix E-2 1. In Kansas EMT-B may monitor pulse oximetry: a. after they complete the EMT-B course b. when the service purchases the state approved pulse oximeters c. when the service director receives

More information

1. When a patient fails to ventilate or oxygenate adequately, the problem is caused by pathophysiological factors such as hyperventilation.

1. When a patient fails to ventilate or oxygenate adequately, the problem is caused by pathophysiological factors such as hyperventilation. Chapter 1: Principles of Mechanical Ventilation TRUE/FALSE 1. When a patient fails to ventilate or oxygenate adequately, the problem is caused by pathophysiological factors such as hyperventilation. F

More information

NON INVASIVE LIFE SAVERS. Non Invasive Ventilation (NIV)

NON INVASIVE LIFE SAVERS. Non Invasive Ventilation (NIV) Table 1. NIV: Mechanisms Of Action Decreases work of breathing Increases functional residual capacity Recruits collapsed alveoli Improves respiratory gas exchange Reverses hypoventilation Maintains upper

More information

INDICATIONS FOR RESPIRATORY ASSISTANCE A C U T E M E D I C I N E U N I T P - Y E A R M B B S 4

INDICATIONS FOR RESPIRATORY ASSISTANCE A C U T E M E D I C I N E U N I T P - Y E A R M B B S 4 INDICATIONS FOR RESPIRATORY ASSISTANCE A C U T E M E D I C I N E U N I T P - Y E A R M B B S 4 RESPIRATORY FAILURE Acute respiratory failure is defined by hypoxemia with or without hypercapnia. It is one

More information

Prepared by : Bayan Kaddourah RN,MHM. GICU Clinical Instructor

Prepared by : Bayan Kaddourah RN,MHM. GICU Clinical Instructor Mechanical Ventilation Prepared by : Bayan Kaddourah RN,MHM. GICU Clinical Instructor 1 Definition Is a supportive therapy to facilitate gas exchange. Most ventilatory support requires an artificial airway.

More information

8/13/11. RSPT 1410 Humidity & Aerosol Therapy Part 3. Humidification Equipment. Aerosol Therapy

8/13/11. RSPT 1410 Humidity & Aerosol Therapy Part 3. Humidification Equipment. Aerosol Therapy 1 RSPT 1410 Humidity & Aerosol Therapy Part 3 Wilkins: Chapter 35, p. 775-799 Cairo: Chapter 4, p. 88-143 2 Humidification Equipment A humidifier is a device that adds molecular liquid (e.g. water vapor)

More information

Arterial Blood Gas Analysis

Arterial Blood Gas Analysis Arterial Blood Gas Analysis L Lester www.3bv.org Bones, Brains & Blood Vessels Drawn from radial or femoral arteries. Invasive procedure Caution must be taken with patient on anticoagulants ph: 7.35-7.45

More information

1.40 Prevention of Nosocomial Pneumonia

1.40 Prevention of Nosocomial Pneumonia 1.40 Prevention of Nosocomial Pneumonia Purpose Audience Policy Statement: The guideline is designed to reduce the incidence of pneumonia and other acute lower respiratory tract infections. All UTMB healthcare

More information

Critical Care Nursing Program August to November, 2015 Full-time. Lesson A5 Ventilation & Oxygenation Failure Recognition & Response

Critical Care Nursing Program August to November, 2015 Full-time. Lesson A5 Ventilation & Oxygenation Failure Recognition & Response Critical Care Nursing Program August to November, 2015 Full-time Lesson A5 Ventilation & Oxygenation Failure Recognition & Response Lesson Five Ventilation and Oxygenation I Failure- Recognition and Response

More information

No Excellence Without Evidence: The Therapeutic Use of Oxygen

No Excellence Without Evidence: The Therapeutic Use of Oxygen No Excellence Without Evidence: The Therapeutic Use of Oxygen Penelope S. Benedik PhD, CRNA, RRT Associate Professor of Clinical Nursing UTHealth Houston, Texas Oxygen is a DRUG Oxygen overuse is toxic

More information

Humidification of inspired gases in the mechanically ventilated patient

Humidification of inspired gases in the mechanically ventilated patient Humidification of inspired gases in the mechanically ventilated patient Dr Liesel Bösenberg Specialist Physician and Fellow in Critical Care Kalafong Hospital University of Pretoria Points to ponder: Basic

More information

3/30/12. Luke J. Gasowski BS, BSRT, NREMT-P, FP-C, CCP-C, RRT-NPS

3/30/12. Luke J. Gasowski BS, BSRT, NREMT-P, FP-C, CCP-C, RRT-NPS Luke J. Gasowski BS, BSRT, NREMT-P, FP-C, CCP-C, RRT-NPS 1) Define and describe ETCO 2 2) Explain methods of measuring ETCO 2 3) Describe various clinical applications of ETCO 2 4) Describe the relationship

More information

Wanchai Wongkornrat Cardiovascular Thoracic Surgery Siriraj Hospital Mahidol University

Wanchai Wongkornrat Cardiovascular Thoracic Surgery Siriraj Hospital Mahidol University Wanchai Wongkornrat Cardiovascular Thoracic Surgery Siriraj Hospital Mahidol University Assess adequacy of ventilation and oxygenation Aids in establishing a diagnosis and severity of respiratory failure

More information

Small Volume Nebulizer Treatment (Hand-Held)

Small Volume Nebulizer Treatment (Hand-Held) Small Volume Aerosol Treatment Page 1 of 6 Purpose Policy Physician's Order Small Volume Nebulizer Treatment To standardize the delivery of inhalation aerosol drug therapy via small volume (hand-held)

More information

Respiratory Failure. Causes of Acute Respiratory Failure (ARF): a- Intrapulmonary:

Respiratory Failure. Causes of Acute Respiratory Failure (ARF): a- Intrapulmonary: Respiratory failure exists whenever the exchange of O 2 for CO 2 in the lungs cannot keep up with the rate of O 2 consumption & CO 2 production in the cells of the body. This results in a fall in arterial

More information

Respiratory Physiology Part II. Bio 219 Napa Valley College Dr. Adam Ross

Respiratory Physiology Part II. Bio 219 Napa Valley College Dr. Adam Ross Respiratory Physiology Part II Bio 219 Napa Valley College Dr. Adam Ross Gas exchange Gas exchange in the lungs (to capillaries) occurs by diffusion across respiratory membrane due to differences in partial

More information

Lab 4: Respiratory Physiology and Pathophysiology

Lab 4: Respiratory Physiology and Pathophysiology Lab 4: Respiratory Physiology and Pathophysiology This exercise is completed as an in class activity and including the time for the PhysioEx 9.0 demonstration this activity requires ~ 1 hour to complete

More information

What is the next best step?

What is the next best step? Noninvasive Ventilation William Janssen, M.D. Assistant Professor of Medicine National Jewish Health University of Colorado Denver Health Sciences Center What is the next best step? 65 year old female

More information

Introduction and Overview of Acute Respiratory Failure

Introduction and Overview of Acute Respiratory Failure Introduction and Overview of Acute Respiratory Failure Definition: Acute Respiratory Failure Failure to oxygenate Inadequate PaO 2 to saturate hemoglobin PaO 2 of 60 mm Hg ~ SaO 2 of 90% PaO 2 of 50 mm

More information

Paramedic Rounds. Pre-Hospital Continuous Positive Airway Pressure (CPAP)

Paramedic Rounds. Pre-Hospital Continuous Positive Airway Pressure (CPAP) Paramedic Rounds Pre-Hospital Continuous Positive Airway Pressure (CPAP) Morgan Hillier MD Class of 2011 Dr. Mike Peddle Assistant Medical Director SWORBHP Objectives Outline evidence for pre-hospital

More information

Oxygen and Oxygen Equipment

Oxygen and Oxygen Equipment Oxygen and Oxygen Equipment I. Policy University Health Alliance (UHA) will reimburse for home oxygen and oxygen equipment when it is determined to be medically necessary and when it meets the medical

More information

Capnography Connections Guide

Capnography Connections Guide Capnography Connections Guide Patient Monitoring Contents I Section 1: Capnography Introduction...1 I Section 2: Capnography & PCA...3 I Section 3: Capnography & Critical Care...7 I Section 4: Capnography

More information

Disclosure. Learning Objectives. Bernadette Zelaya, RRT. Area Clinical Manager

Disclosure. Learning Objectives. Bernadette Zelaya, RRT. Area Clinical Manager High Velocity Nasal Insufflation An Important Therapeutic Approach for Use in the Emergency Department Presented by Vapotherm Accredited for 1 CEU by the American Association for Respiratory Care Provider

More information

Oxygen and ABG. Dr Will Dooley

Oxygen and ABG. Dr Will Dooley Oxygen and ABG G Dr Will Dooley Oxygen and ABGs Simply in 10 cases Recap of: ABG interpretation Oxygen management Some common concerns A-a gradient Base Excess Anion Gap COPD patients CPAP/BiPAP First

More information

Oxygen and Oxygen Equipment

Oxygen and Oxygen Equipment Oxygen and Oxygen Equipment Policy Number: Original Effective Date: MM.01.008 12/01/2010 Line(s) of Business: Current Effective Date: HMO; PPO; QUEST 09/01/2013 Section: DME Place(s) of Service: Home I.

More information

ADVANCED ASSESSMENT Respiratory System

ADVANCED ASSESSMENT Respiratory System ONTARIO BASE HOSPITAL GROUP QUIT ADVANCED ASSESSMENT Respiratory System 2007 Ontario Base Hospital Group ADVANCED ASSESSMENT Respiratory System AUTHOR(S) Mike Muir AEMCA, ACP, BHSc Paramedic Program Manager

More information

Day-to-day management of Tracheostomies & Laryngectomies

Day-to-day management of Tracheostomies & Laryngectomies Humidification It is mandatory that a method of artificial humidification is utilised when a tracheostomy tube is in situ, for people requiring oxygen therapy dry oxygen should never be given to someone

More information

Arterial Blood Gases. Dr Mark Young Mater Health Services

Arterial Blood Gases. Dr Mark Young Mater Health Services Arterial Blood Gases Dr Mark Young Mater Health Services Why do them? Quick results Bedside test Range of important information Oxygenation Effectiveness of gas exchange Control of ventilation Acid base

More information

INTRODUCTION The effect of CPAP works on lung mechanics to improve oxygenation (PaO 2

INTRODUCTION The effect of CPAP works on lung mechanics to improve oxygenation (PaO 2 2 Effects of CPAP INTRODUCTION The effect of CPAP works on lung mechanics to improve oxygenation (PaO 2 ). The effect on CO 2 is only secondary to the primary process of improvement in lung volume and

More information

Oxygen and aerosolized drug delivery: Matching the device to the patient

Oxygen and aerosolized drug delivery: Matching the device to the patient REVIEW JOHN E. BURKHART, JR, BS. RRT Supervisor, Section of Respiratory Therapy, Department of Pulmonary and Critical Care Medicine, Cleveland Clinic. JAMES K. STOILER, MD Head, Section of Respiratory

More information

It costs you nothing, but gains everything for your patient!

It costs you nothing, but gains everything for your patient! It costs you nothing, but gains everything for your patient! Attend the entire presentation Complete and submit the evaluation This session is approved for: ANCC hours CECBEMS hours No partial credit will

More information

Oxygen and Oxygen Equipment

Oxygen and Oxygen Equipment Oxygen and Oxygen Equipment Policy Number: Original Effective Date: MM.01.008 12/01/2010 Line(s) of Business: Current Effective Date: HMO; PPO; QUEST Integration 08/25/2017 Section: DME Place(s) of Service:

More information

Oxygenation Without Intubation

Oxygenation Without Intubation CHAPTER 2 Irene Permut and Wissam Chatila Oxygenation Without Intubation CHAPTER OUTLINE Learning Objectives Supplying Supplemental Oxygen Devices that Provide Supplemental Oxygen Nasal Cannula Simple

More information

Anatomy & Physiology 2 Canale. Respiratory System: Exchange of Gases

Anatomy & Physiology 2 Canale. Respiratory System: Exchange of Gases Anatomy & Physiology 2 Canale Respiratory System: Exchange of Gases Why is it so hard to hold your breath for Discuss! : ) a long time? Every year carbon monoxide poisoning kills 500 people and sends another

More information

Chronic Obstructive Pulmonary Disease

Chronic Obstructive Pulmonary Disease 136 PHYSIOLOGY CASES AND PROBLEMS Case 24 Chronic Obstructive Pulmonary Disease Bernice Betweiler is a 73-year-old retired seamstress who has never been married. She worked in the alterations department

More information

Respiratory Care Module. Clinical Skills School of Medicine 2015/16

Respiratory Care Module. Clinical Skills School of Medicine 2015/16 Respiratory Care Module Clinical Skills School of Medicine 2015/16 Learning Objectives Students should be able to Identify the various Airway management Adjuncts and O2 delivery systems. Identify indications

More information

Respiratory Physiology. Manuel Otero Lopez Department of Anaesthetics and Intensive Care Hôpital Européen Georges Pompidou, Paris, France

Respiratory Physiology. Manuel Otero Lopez Department of Anaesthetics and Intensive Care Hôpital Européen Georges Pompidou, Paris, France Respiratory Physiology Manuel Otero Lopez Department of Anaesthetics and Intensive Care Hôpital Européen Georges Pompidou, Paris, France Programme Functional respiratory anatomy Ventilation Mechanics of

More information

Indications for Respiratory Assistance. Sheba Medical Center, ICU Department Nick D Ardenne St George s University of London Tel Hashomer

Indications for Respiratory Assistance. Sheba Medical Center, ICU Department Nick D Ardenne St George s University of London Tel Hashomer Indications for Respiratory Assistance Sheba Medical Center, ICU Department Nick D Ardenne St George s University of London Tel Hashomer Respiratory Assistance Non-invasive - Nasal specs - Facemask/ Resevoir

More information

Noninvasive Mechanical Ventilation in Children ศ.พญ.อร ณวรรณ พฤทธ พ นธ หน วยโรคระบบหายใจเด ก ภาคว ชาก มารเวชศาสตร คณะแพทยศาสตร โรงพยาบาลรามาธ บด

Noninvasive Mechanical Ventilation in Children ศ.พญ.อร ณวรรณ พฤทธ พ นธ หน วยโรคระบบหายใจเด ก ภาคว ชาก มารเวชศาสตร คณะแพทยศาสตร โรงพยาบาลรามาธ บด Noninvasive Mechanical Ventilation in Children ศ.พญ.อร ณวรรณ พฤทธ พ นธ หน วยโรคระบบหายใจเด ก ภาคว ชาก มารเวชศาสตร คณะแพทยศาสตร โรงพยาบาลรามาธ บด Noninvasive Mechanical Ventilation Provide support without

More information

sounds are distant with inspiratory crackles. He sits on the edge of his chair, leaning forward, with both hands on his

sounds are distant with inspiratory crackles. He sits on the edge of his chair, leaning forward, with both hands on his I NTE R P R ETI N G A R T E R I A L B L O O D G A S E S : EASY AS A B C Take this step-by-step approach to demystify the parameters of oxygenation, ventilation, acid-base balance. BY WILLIAM C. PRUITT,

More information

Capnography for Pediatric Procedural Sedation Learning Module Last revised: February 18, 2014

Capnography for Pediatric Procedural Sedation Learning Module Last revised: February 18, 2014 Capnography for Pediatric Procedural Sedation Learning Module Last revised: February 18, 2014 Capnography 40 Non-invasive device that continually monitors EtCO 2 While pulse oximetry measures oxygen saturation,

More information

Systems differ in their ability to deliver optimal humidification

Systems differ in their ability to deliver optimal humidification Average Absolute Humidity (mg H 2 O/L) Systems differ in their ability to deliver optimal humidification 45 Flows Tested 40 35 30 Optiflow Airvo 2 Vapotherm Vapotherm 5 L/min 10L/min 20L/min 30L/min 40L/min

More information

Chapter 3. Pulmonary Function Study Assessments. Mosby items and derived items 2011, 2006 by Mosby, Inc., an affiliate of Elsevier Inc.

Chapter 3. Pulmonary Function Study Assessments. Mosby items and derived items 2011, 2006 by Mosby, Inc., an affiliate of Elsevier Inc. Chapter 3 Pulmonary Function Study Assessments 1 Introduction Pulmonary function studies are used to: Evaluate pulmonary causes of dyspnea Differentiate between obstructive and restrictive pulmonary disorders

More information

Capnography 101. James A Temple BA, NRP, CCP

Capnography 101. James A Temple BA, NRP, CCP Capnography 101 James A Temple BA, NRP, CCP Expected Outcomes 1. Gain a working knowledge of the physiology and science behind End-Tidal CO2. 2.Relate End-Tidal CO2 to ventilation, perfusion, and metabolism.

More information

UNIVERSITY OF JORDAN DEPT. OF PHYSIOLOGY & BIOCHEMISTRY RESPIRATORY PHYSIOLOGY MEDICAL STUDENTS FALL 2014/2015 (lecture 1)

UNIVERSITY OF JORDAN DEPT. OF PHYSIOLOGY & BIOCHEMISTRY RESPIRATORY PHYSIOLOGY MEDICAL STUDENTS FALL 2014/2015 (lecture 1) UNIVERSITY OF JORDAN DEPT. OF PHYSIOLOGY & BIOCHEMISTRY RESPIRATORY PHYSIOLOGY MEDICAL STUDENTS FALL 2014/2015 (lecture 1) Textbook of medical physiology, by A.C. Guyton and John E, Hall, Twelfth Edition,

More information

Interpretation of Arterial Blood Gases. Prof. Dr. W. Vincken Head Respiratory Division Academisch Ziekenhuis Vrije Universiteit Brussel (AZ VUB)

Interpretation of Arterial Blood Gases. Prof. Dr. W. Vincken Head Respiratory Division Academisch Ziekenhuis Vrije Universiteit Brussel (AZ VUB) Interpretation of Arterial Blood Gases Prof. Dr. W. Vincken Head Respiratory Division Academisch Ziekenhuis Vrije Universiteit Brussel (AZ VUB) Before interpretation of ABG Make/Take note of Correct puncture

More information

Vancouver Coastal Health Guidelines for the use of Respiratory Equipment for Patients on Airborne Precautions in Acute Care Facilities

Vancouver Coastal Health Guidelines for the use of Respiratory Equipment for Patients on Airborne Precautions in Acute Care Facilities Vancouver Coastal Health Guidelines for the use of Respiratory Equipment for Patients on Airborne Precautions in Acute Care Facilities Goals 1. To meet respiratory care needs in patients who are on airborne

More information

Non-Invasive Assessment of Respiratory Function. Chapter 11

Non-Invasive Assessment of Respiratory Function. Chapter 11 Non-Invasive Assessment of Respiratory Function Chapter 11 Pulse Oximetry Laboratory measurements of ABG s are the gold standard for measuring levels of hypoxemia, however since these are performed intermittently

More information

EMS System for Metropolitan Oklahoma City and Tulsa 2017 Medical Control Board Treatment Protocols

EMS System for Metropolitan Oklahoma City and Tulsa 2017 Medical Control Board Treatment Protocols S O EMT EMT-INTERMEDIATE 85 ADVANCED EMT PARAMEDIC 3H WAVEFORM CAPNOGRAPHY ADULT & PEDIATRIC Indications: 1. Medical General Assessment/General Supportive Care. 2. Trauma General Assessment/Trauma & Hypovolemic

More information

Pulmonary Pathophysiology

Pulmonary Pathophysiology Pulmonary Pathophysiology 1 Reduction of Pulmonary Function 1. Inadequate blood flow to the lungs hypoperfusion 2. Inadequate air flow to the alveoli - hypoventilation 2 Signs and Symptoms of Pulmonary

More information

ARF, Mechaical Ventilation and PFTs: ACOI Board Review 2018

ARF, Mechaical Ventilation and PFTs: ACOI Board Review 2018 ARF, Mechaical Ventilation and PFTs: ACOI Board Review 2018 Thomas F. Morley, DO, FACOI, FCCP, FAASM Professor of Medicine Chairman Department of Internal Medicine Director of the Division of Pulmonary,

More information

7/4/2015. diffuse lung injury resulting in noncardiogenic pulmonary edema due to increase in capillary permeability

7/4/2015. diffuse lung injury resulting in noncardiogenic pulmonary edema due to increase in capillary permeability Leanna R. Miller, RN, MN, CCRN-CMC, PCCN-CSC, CEN, CNRN, CMSRN, NP Education Specialist LRM Consulting Nashville, TN Objectives Identify the 5 criteria for the diagnosis of ARDS. Discuss the common etiologies

More information

CPAP. Pre-Hospital Treatment Using The Respironics Whisperflow CPAP Device. Charlottesville Albemarle Rescue Squad - CPAP

CPAP. Pre-Hospital Treatment Using The Respironics Whisperflow CPAP Device. Charlottesville Albemarle Rescue Squad - CPAP CPAP Pre-Hospital Treatment Using The Respironics Whisperflow CPAP Device CPAP What Is It? C ontinuous P ositive A irway P ressure Anatomy Review Anatomy Review Anatomy Review Alveoli Anatomy Review Chest

More information

2

2 1 2 3 5 Major function of the Upper Respiratory tract is to warm, filter and humidify air. Discuss the consequences of intubation to the air passages and lungs e.g. dry O 2 delivered, mechanisms for moistening

More information

Oxygen Workbook Answer book

Oxygen Workbook Answer book Oxygen Workbook Answer book 1 Produced by the Oxygen Steering Group, 2018 2 1. Pre-workbook Quiz 1. Oxygen is a drug? Y N maybe 2. Oxygen is a treatment for? breathlessness hypoxia high carbon dioxide

More information

INDEPENDENT LUNG VENTILATION

INDEPENDENT LUNG VENTILATION INDEPENDENT LUNG VENTILATION Giuseppe A. Marraro, MD Director Anaesthesia and Intensive Care Department Paediatric Intensive Care Unit Fatebenefratelli and Ophthalmiatric Hospital Milan, Italy gmarraro@picu.it

More information

ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS) Rv

ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS) Rv ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS) Rv.8.18.18 ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS) SUDDEN PROGRESSIVE FORM OF ACUTE RESPIRATORY FAILURE ALVEOLAR CAPILLARY MEMBRANE BECOMES DAMAGED AND MORE

More information

Aerosol Therapy. Aerosol Therapy. RSPT 1410 Humidity & Aerosol Therapy Part 4

Aerosol Therapy. Aerosol Therapy. RSPT 1410 Humidity & Aerosol Therapy Part 4 1 RSPT 1410 Humidity & Part 4 Wilkins Chapter 36; p. 801-806 2 Stability: the tendency for aerosol particles to remain in Size: the the particle, the greater the tendency toward stability the the particle,

More information

How to maintain optimal perfusion during Cardiopulmonary By-pass. Herdono Poernomo, MD

How to maintain optimal perfusion during Cardiopulmonary By-pass. Herdono Poernomo, MD How to maintain optimal perfusion during Cardiopulmonary By-pass Herdono Poernomo, MD Cardiopulmonary By-pass Target Physiologic condition as a healthy person Everything is in Normal Limit How to maintain

More information

Basic mechanisms disturbing lung function and gas exchange

Basic mechanisms disturbing lung function and gas exchange Basic mechanisms disturbing lung function and gas exchange Blagoi Marinov, MD, PhD Pathophysiology Department, Medical University of Plovdiv Respiratory system 1 Control of breathing Structure of the lungs

More information

Hemodynamic Monitoring

Hemodynamic Monitoring Perform Procedure And Interpret Results Hemodynamic Monitoring Tracheal Tube Cuff Pressure Dean R. Hess PhD RRT FAARC Hemodynamic Monitoring Cardiac Rate and Rhythm Arterial Blood Pressure Central Venous

More information

/ABG. It covers acid-base disturbance, respiratory failure, and a small summary for some other derangements. Causes of disturbance

/ABG. It covers acid-base disturbance, respiratory failure, and a small summary for some other derangements. Causes of disturbance /ABG This page focuses on providing some possible causes for the various disturbances that may be seen on an ABG. Although not an exhaustive list, it attempts to outline the main headings for possible

More information

RESPIRATORY FAILURE. Michael Kelly, MD Division of Pediatric Critical Care Dept. of Pediatrics

RESPIRATORY FAILURE. Michael Kelly, MD Division of Pediatric Critical Care Dept. of Pediatrics RESPIRATORY FAILURE Michael Kelly, MD Division of Pediatric Critical Care Dept. of Pediatrics What talk is he giving? DO2= CO * CaO2 CO = HR * SV CaO2 = (Hgb* SaO2 * 1.34) + (PaO2 * 0.003) Sound familiar??

More information

Diagnosis and Management of Acute Respiratory Failure

Diagnosis and Management of Acute Respiratory Failure Diagnosis and Management of Acute Respiratory Failure Steven B. Leven, M.D., F.C.C.P. Clinical Professor, Pulmonary/Critical Care Medicine UCI Director MICU and Respiratory Therapy, UCI Medical Center

More information

Pulmonary Problems of the Neonate. Jon Palmer, VMD, DACVIM Chief, Neonatal Intensive Care Service New Bolton Center, University of Pennsylvania, USA

Pulmonary Problems of the Neonate. Jon Palmer, VMD, DACVIM Chief, Neonatal Intensive Care Service New Bolton Center, University of Pennsylvania, USA Pulmonary Problems of the Neonate Jon Palmer, VMD, DACVIM Chief, Neonatal Intensive Care Service New Bolton Center, University of Pennsylvania, USA Lower Respiratory Diseases Ventilation/Perfusion Abnormalities

More information

Practical Application of CPAP

Practical Application of CPAP CHAPTER 3 Practical Application of CPAP Dr. Srinivas Murki Neonatologist Fernadez Hospital, Hyderabad. A.P. Practical Application of CPAP Continuous positive airway pressure (CPAP) applied to premature

More information

Acid-base management during hypothermic CPB alpha-stat and ph-stat models of blood gas interpretation

Acid-base management during hypothermic CPB alpha-stat and ph-stat models of blood gas interpretation Acid-base management during hypothermic CPB alpha-stat and ph-stat models of blood gas interpretation Michael Kremke Department of Anaesthesiology and Intensive Care Aarhus University Hospital, Denmark

More information

Supplementary Online Content 2

Supplementary Online Content 2 Supplementary Online Content 2 van Meenen DMP, van der Hoeven SM, Binnekade JM, et al. Effect of on demand vs routine nebulization of acetylcysteine with salbutamol on ventilator-free days in intensive

More information

Oxygen: Is there a problem? Tom Heaps Acute Physician

Oxygen: Is there a problem? Tom Heaps Acute Physician Oxygen: Is there a problem? Tom Heaps Acute Physician Case 1 79-year-old female, diabetic, morbidly obese Admitted with LVF Overnight Reduced GCS?cause 15l NRB in situ ABG showed ph 6.9, pco 2 15.9kPa

More information

Capnography (ILS/ALS)

Capnography (ILS/ALS) Capnography (ILS/ALS) Clinical Indications: 1. Capnography shall be used as soon as possible in conjunction with any airway management adjunct, including endotracheal, Blind Insertion Airway Devices (BIAD)

More information

OWN THE AIRWAY. Airway Management Bruce Barry, RN, CEN, CPEN, TCRN, NRP. Paramedic Program

OWN THE AIRWAY. Airway Management Bruce Barry, RN, CEN, CPEN, TCRN, NRP. Paramedic Program OWN THE AIRWAY Airway Management Bruce Barry, RN, CEN, CPEN, TCRN, NRP The largest detriment to airway management has nothing to do with the patient, but everything to do with you as a provider. PRACTICE..PRACTICE.PRACTICE.

More information

Section 2.1 Daily checks Humidification

Section 2.1 Daily checks Humidification Bite- sized training from the GTC Section 2.1 Daily checks Humidification This is one of a series of bite- sized chunks of educational material developed by the Global Tracheostomy Collaborative. The GTC

More information

C h a p t e r 1 4 Ventilator Support

C h a p t e r 1 4 Ventilator Support C h a p t e r 1 4 Ventilator Support Shirish Prayag Ex. Hon. Asst. Prof of Medicine, BJ Medical College and Sassoon Hospital, Pune; Chief Consultant in Internal Medicine and Critical Care, Shree Medical

More information

Clinical Policy: Oxygen Therapy in the Home Reference Number: CP.MP.485

Clinical Policy: Oxygen Therapy in the Home Reference Number: CP.MP.485 Clinical Policy: Reference Number: CP.MP.485 Effective Date: 09/04 Last Review Date: 09/17 Coding Implications Revision Log See Important Reminder at the end of this policy for important regulatory and

More information

NBRC Exam RPFT Registry Examination for Advanced Pulmonary Function Technologists Version: 6.0 [ Total Questions: 111 ]

NBRC Exam RPFT Registry Examination for Advanced Pulmonary Function Technologists Version: 6.0 [ Total Questions: 111 ] s@lm@n NBRC Exam RPFT Registry Examination for Advanced Pulmonary Function Technologists Version: 6.0 [ Total Questions: 111 ] https://certkill.com NBRC RPFT : Practice Test Question No : 1 Using a peak

More information

Pediatrics in mechanical ventilation

Pediatrics in mechanical ventilation Pediatrics Optimization Intitulé du cours of aerosol therapy in mechanical ventilation Thèmes donnés Ermindo Di Paolo, PhD Departments of Pharmacy and Pediatrics Lausanne University Hospital Switzerland

More information

Learning Objectives. 1. Indications versus contra-indications 2. CPAP versus NiVS 3. Clinical evidence

Learning Objectives. 1. Indications versus contra-indications 2. CPAP versus NiVS 3. Clinical evidence Learning Objectives 1. Indications versus contra-indications 2. CPAP versus NiVS 3. Clinical evidence Pre-hospital Non-invasive vventilatory support Marc Gillis, MD Imelda Bonheiden Our goal out there

More information

H: Respiratory Care. Saskatchewan Association of Licensed Practical Nurses, Competency Profile for LPNs, 3rd Ed. 79

H: Respiratory Care. Saskatchewan Association of Licensed Practical Nurses, Competency Profile for LPNs, 3rd Ed. 79 H: Respiratory Care Saskatchewan Association of Licensed Practical Nurses, Competency Profile for LPNs, 3rd Ed. 79 Competency: H-1 Airway Management H-1-1 H-1-2 H-1-3 H-1-4 H-1-5 Demonstrate knowledge

More information

Recent Advances in Respiratory Medicine

Recent Advances in Respiratory Medicine Recent Advances in Respiratory Medicine Dr. R KUMAR Pulmonologist Non Invasive Ventilation (NIV) NIV Noninvasive ventilation (NIV) refers to the administration of ventilatory support without using an invasive

More information

CYANOSIS. İ.U. Cerrahpaşa Medical School Department of Pediatric Cardiology. İ. Levent SALTIK, MD

CYANOSIS. İ.U. Cerrahpaşa Medical School Department of Pediatric Cardiology. İ. Levent SALTIK, MD CYANOSIS İ.U. Cerrahpaşa Medical School Department of Pediatric Cardiology İ. Levent SALTIK, MD CYANOSIS Cyanosis is a blue-purple discoloration of the skin and mucous membranes Cyanosis is not a disease

More information

i. Zone 1 = dead space ii. Zone 2 = ventilation = perfusion (ideal situation) iii. Zone 3 = shunt

i. Zone 1 = dead space ii. Zone 2 = ventilation = perfusion (ideal situation) iii. Zone 3 = shunt Respiratory Review I. Oxygen transport a. Oxygen content of blood i. Dissolved oxygen =.003 x PaO 2, per 100 ml plasma 1. Henry s Law ii. Oxygen on hemoglobin = 1.34 ml x sat x Hgb iii. CaO 2 = Dissolved

More information

BTS Guideline for Home Oxygen use in adults Appendix 9 (online only) Key Questions - PICO 10 December 2012

BTS Guideline for Home Oxygen use in adults Appendix 9 (online only) Key Questions - PICO 10 December 2012 BTS Guideline for Home Oxygen use in adults Appendix 9 (online only) Key Questions - PICO 10 December 2012 Evidence base for Home Oxygen therapy in COPD, non-copd respiratory disease and nonrespiratory

More information