Identification of Polymorphic Outer Membrane Proteins of Chlamydia psittaci 6BC

Size: px
Start display at page:

Download "Identification of Polymorphic Outer Membrane Proteins of Chlamydia psittaci 6BC"

Transcription

1 INFECTION AND IMMUNITY, Apr. 2001, p Vol. 69, No /01/$ DOI: /IAI Copyright 2001, American Society for Microbiology. All Rights Reserved. Identification of Polymorphic Outer Membrane Proteins of Chlamydia psittaci 6BC REGINA J. TANZER, 1 DAVID LONGBOTTOM, 2 AND THOMAS P. HATCH 1 * Department of Molecular Sciences, University of Tennessee Center for Health Sciences, Memphis, Tennessee 38163, 1 and Moredun Research Institute, Pentlands Science Park, Penicuik, Midlothian EH26 OPZ, United Kingdom 2 Received 6 October 2000/Returned for modification 1 December 2000/Accepted 4 January 2001 The genomes of Chlamydia spp. encode a family of putative outer membrane proteins, referred to as polymorphic outer membrane proteins (POMPs), which may play a role in the avoidance of host immune defenses. We analyzed avian strain 6BC of Chlamydia psittaci by polyacrylamide gel electrophoresis for the expression of POMPs. At least six putative POMPs were identified on the basis of their size (90 to 110 kda) and labeling with an outer membrane-specific probe, 3-(trifluoromethyl)-3-(m-[ 125 I]iodophenyl)diazirine. Three of the putative POMPs reacted with antiserum raised against a recombinant ovine C. psittaci strain POMP, and two possessed surface-exposed, trypsin-sensitive sites. The POMPs were dependent on disulfide bonds for their maintenance in sodium lauryl sarcosine- and sodium dodecyl sulfate-insoluble complexes but did not appear to be interpeptide disulfide bond cross-linked. The putative POMPs were found to be synthesized during the late phase of the chlamydial developmental cycle, cotemporally with the cysteine-rich doublet periplasmic proteins. The cell envelope structure of Chlamydia is similar to that of other gram-negative bacteria, with an outer membrane (OM) containing lipopolysaccharide, a periplasm, and an inner membrane. However, two envelope features are unique to chlamydiae: an apparent lack of or deficiency in peptidoglycan and the presence of disulfide-bond-cross-linked proteins in the OM and the periplasm (reviewed in reference 15). Nevertheless, the infectious elementary body (EB) form of chlamydiae, but not the dividing reticulate body (RB) form, is osmotically stable, and chlamydiae are sensitive to -lactams and D-cycloserine. The sensitivity of chlamydiae to peptidoglycan synthesis-inhibiting drugs in the possible absence of peptidoglycan has been termed the chlamydial anomaly by Moulder (29). The scope of the anomaly has been expanded by the recent sequencing of the genomes of several chlamydial strains (18, 35, 38), revealing the presence of what has been thought to be all of the genes required for peptidoglycan synthesis (7). Ghuysen and Goffin (11) proposed a solution to the anomaly, suggesting that chlamydiae use their peptidoglycan genes to synthesize a glycanless wall polymer whose synthesis is penicillin sensitive. Three key points of their proposal are as follows: (i) the predicted amino acid sequence of the three chlamydial penicillinbinding proteins suggests that they are capable of carrying out cross-linking transpeptidase reactions but are incapable of transglycosylating N-acetylglucosamine-N-acetylmuramic acid disaccharides into a glycan polymer; (ii) potential chlamydial N-acetylmuramoyl-L-alanine amidases cleave cross-linked peptidyl polymers from the disaccharide subunits; and (iii) the disaccharide subunits, as part of lipid II, serve strictly as carriers and therefore do not accumulate in stoichiometric amounts. Ghuysen and Goffin (11) further speculated that the * Corresponding author. Mailing address: Department of Molecular Sciences, University of Tennessee Center for Health Sciences, 858 Madison Ave., Memphis, TN Phone: (901) Fax: (901) thatch@utmem.edu. glycanless polymer may be covalently linked to lipoproteins in the inner membrane or OM or to a highly disulfide-bondcross-linked protein structure in the periplasm. A disulfidecross-linked periplasmic structure was proposed by Everett and Hatch (10) to consist of cysteine-rich proteins (CRPs) that are encoded by a bicistronic operon and that are made only late in the chlamydial developmental cycle (1, 17, 22, 31). The CRPs consist of a 60-kDa doublet, which is the product of posttranslational processing of the omcb gene product (2), and a 12- to 15-kDa lipoprotein (9), which is a product of omca and is speculated to be anchored to the OM by its lipid moiety (10). The CRPs are located in the sodium lauryl sarcosine (Sarkosyl)-insoluble fraction, called the Sarkosyl chlamydial OM complex (COMC), which consists of integral OM proteins and the highly disulfide-cross-linked periplasmic CRPs (10, 15). The predominant protein in COMCs is the major OM protein (MOMP). The MOMP lacks a homolog in other bacteria but functions, like many other gram-negative OM proteins, as a porin (4, 40, 41). It is present throughout the chlamydial developmental cycle and is disulfide cross-linked in EBs but not in logarithmically dividing RBs (16, 17, 33). A third class of proteins, variously referred to as polymorphic OM proteins (POMPs) and polymorphic membrane proteins, was identified in the Sarkosyl COMC of ovine abortion strains of Chlamydia psittaci by Cevenini et al. (6) and others (12, 13, 27, 37). Genes encoding 9 and 21 potential POMPs are present in the genomes of Chlamydia trachomatis and Chlamydia pneumoniae, respectively (18, 35, 38). The similarity of predicted POMP amino acid sequences across chlamydial species is low, ranging from about 10 to 60%. Similarities among POMPs within a chlamydial strain are almost equally low, with the notable exception of the ovine enzootic abortion (OEA) strain C. psittaci S26/3 POMPs 90A and 90B, which are identical, and POMPs 91A and 91B, which are 89% similar to each other and 86 and 87% similar, respectively, to POMPs 90A and 90B (26). The POMPs share no homology with other bacterial pro- 2428

2 VOL. 69, 2001 POMPs OF C. PSITTACI 6BC 2429 teins but do share common features among themselves, including multiple GGA (I, L, and V) and FXXN repeats, large size (90 to 187 kda), and carboxy-terminal phenylalanine residues (14, 26, 27, 38). The last property and predicted secondary structures suggest that POMPs are located in the OM, and immunoelectron and immunofluorescence microscopy studies indicate that one or more of the ovine POMPs and at least one C. pneumoniae POMP are surface exposed (19, 24, 25). However, it is not clear that all POMP genes are expressed as proteins and that all POMPs are located in the OM. For example, 5 of the 21 C. pneumoniae POMP genes contain frameshift mutations and 1 is truncated to encode a 56-kDa protein, and 1 of the predicted POMPs of OEA C. psittaci (POMP 98A; GenBank accession number U722499), C. trachomatis D, and C. pneumoniae lacks a signal sequence (14, 18, 38). The function of the POMPs is unknown. The paralogous nature of the proteins suggests that the more distantly related POMPs may have distinct functions (14), and animals that were immunized with insoluble detergent extracts of C. psittaci stains, which likely contained POMPs, were protected against challenge with infectious organisms (3, 39). The purpose of the present study was to determine the cellular location, disulfide-cross-linked nature, and developmental stage of synthesis of POMPs in C. psittaci avian strain 6BC. MATERIALS AND METHODS Purification of EBs and RBs. L cells were infected with C. psittaci 6BC. RBs or EBs were harvested at 15, 24, 28, and 48 h postinfection and purified by density centrifugation in a Beckman SW28 rotor for 30 min at 80,000 g with a three-step gradient of 29, 34, and 40% Hypaque-76 (Nycomed Inc., Princeton, N.J.) in Dulbecco phosphate-buffered saline (GIBCO, Grand Island, N.Y.) containing 0.5 mm MgCl 2 and 1.0 mm CaCl 2 (PBS). The 48-h harvest was treated with the nonionic detergent Nonidet P-40 (0.25%; Sigma Chemical Co., St. Louis, Mo.) in PBS for 5 min at room temperature before purification to eliminate osmotically fragile RBs (17). RBs were collected at the 29% 34% interface; EBs were collected at the 34% 40% interface. Trypsin digestion. To determine the surface exposure of proteins, purified EBs were incubated with trypsin (60 g/ml; type III from bovine pancreas; Sigma) in PBS for 30 min at 37 C. Trypsin was inactivated by incubation with trypsin inhibitor (120 g/ml; type II-O from chicken egg white; Sigma) for 5 min at room temperature. The samples were pelleted by centrifugation in a microcentrifuge at 9,000 g for 10 min and washed once with PBS containing trypsin inhibitor. Labeling of EBs. To label OM proteins, 25 Ci of 3-(trifluoromethyl)-3-(m- [ 125 I]iodophenyl)diazarine ([ 125 I]TID; Amersham, Arlington Heights, Ill.) was added to gradient-purified EBs harvested from infected cells in 200 l of PBS. The mixture was incubated for 1 h on ice in a dimly lit room before the [ 125 I]TID was activated by exposure to a long-wave UV lamp for 1 h (10). Proteins in EBs and detergent-insoluble complexes were fractionated by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE), and labeled proteins were detected by phosphorimaging of the dried gel or an immunoblot of the gel. Attempts were made to surface label EBs by reaction with 50 g of N- hydroxysulfosuccinimide-biotin (sulfo-nhs-biotin; Pierce, Rockford, Ill.) per ml in PBS (ph 8.0) for 30 min at room temperature. The reaction was quenched by the addition of an equal volume of 10 mm glycine in PBS (ph 7.4). EBs were pelleted by centrifugation at 9,000 g for 10 min and washed once with glycine- PBS. Proteins were fractionated by SDS-PAGE and electrophoretically transferred to an Immobilon polyvinylidene difluoride membrane (0.45- m pore size; Millipore Corp., Bedford, Mass.). Sulfo-NHS-biotin-reactive proteins were detected on the membrane with streptavidin-horseradish peroxidase and color development with 4-chloro-1-naphthol and hydrogen peroxide. Preparation of detergent-insoluble complexes. Purified RBs and EBs were extracted at 37 C for 30 min with either 2.0% SDS or 2.0% Sarkosyl (Sigma) in PBS. The samples were subjected to sonication for 30 s, pelleted by centrifugation at 14,500 g for 20 min at 4 C, and washed once with the detergents to produce SDS-insoluble complexes and Sarkosyl COMCs. In one experiment, EBs were incubated for 30 min at 37 C in PBS containing 20 mm dithiothreitol (DTT) and 5% -mercaptoethanol ( ME) and pelleted by centrifugation at 9,000 g for 10 min before extraction with detergents. SDS-PAGE and immunoblotting. All samples were suspended in Laemmli solubilization buffer, with or without 5% ME and 10 mm DTT, heated to 90 C, and fractionated by SDS-PAGE on 7.5 to 15% gradient gels (21). Prestained protein standards were purchased from Bio-Rad, Hercules, Calif. (low range, catalog no ; high range, catalog no ; and broad range, catalog no ). Proteins were electrophoretically transferred to polyvinylidene difluoride membranes, and the membranes were reacted with an affinity-purified polyclonal antibody raised in sheep against the carboxyl-terminal portion of POMP 90A of OEA C. psittaci strain S26/3 (24 26). Mass spectrometry. Sarkosyl COMCs were fractionated by SDS-PAGE, and proteins were detected by zinc sulfate staining (5). Proteins in gel slices were treated with trypsin, and peptides were extracted and analyzed by matrix-assisted laser desorption ionization (MALDI) time of flight mass spectrometry as described by Shevchenko et al. (36). RESULTS Identification of OM proteins in C. psittaci 6BC. The protein profiles of whole EBs and the Sarkosyl COMC fraction of EBs of C. psittaci 6BC were examined by SDS-PAGE and immunoblotting (Fig. 1). Following harvesting and purification, EBs were treated with [ 125 I]TID, a photoactivatable lipophilic reagent that specifically labels the portions of OM proteins that are embedded within the membrane. TID does not label periplasmic proteins or proteins in the inner membrane because it cannot enter or pass through the hydrophilic periplasm (10). Following treatment with [ 125 I]TID and before the preparation of Sarkosyl COMCs, half of the EB preparations were treated with trypsin to test whether proteins were surface exposed. Prominent proteins that were noted by Coomassie brilliant blue staining of the COMC preparations (Fig. 1A, lane 3) included the MOMP, an unidentified 48-kDa protein just above the MOMP (protein 7), the CRP 60-kDa doublet, and a cluster of proteins migrating with apparent molecular weights of about 90,000 (protein 6), 96,000 (protein 5), 98,000 (protein 4), and 105,000, a band which was resolved to proteins 2 and 3 (band 2/3) by the analysis of EBs treated with trypsin (see below). An additional protein with a relative molecular weight of about 110,000 (protein 1) was barely visible with the Coomassie stain. The relative molecular weights were estimated from the protein standards on the right side of Fig. 1A. The large sizes of proteins 1 to 6 suggest that they may be members of the POMP family previously identified in C. trachomatis serovar L2, C. pneumoniae, and ovine strains of C. psittaci (6, 12, 13, 19, 26, 27, 30, 37). All of the putative POMPs were also found in whole EBs and were labeled with [ 125 I]TID (Fig. 1B, lanes 1 and 3). The latter observation confirms that they are integral OM proteins. The MOMP and protein 7 were also labeled with [ 125 I]TID, whereas the periplasmically located CRPs were not. Preliminary MALDI mass spectrometric analysis of a gel slice containing protein 7 was consistent with the presence of the MOMP in the band (data not shown); however, the current lack of a C. psittaci 6BC genomic database did not allow the identification of any other proteins that might be present in the gel slice or confirmation that the high-molecular-weight proteins are POMPs. Treatment of whole EBs with trypsin resulted in a reduction in the intensity of protein band 2/3, the disappearance of pro-

3 2430 TANZER ET AL. INFECT. IMMUN. FIG. 1. SDS-PAGE and immunoblot analysis of Sarkosyl COMCs of EBs labeled with [ 125 I]TID. EBs were harvested and purified at 48 h postinfection and treated with [ 125 I]TID. Where indicated, EBs were treated with trypsin before the preparation of Sarkosyl COMCs. All samples were heated in the presence of 10 mm DTT and 5% ME before electrophoresis. (A) Coomassie brilliant blue-stained gel, with molecular weights (MW, in thousands) of prestained protein standards at each side. (B) Phosphorimage of the dried gel. (C) Immunoblot of a duplicate gel reacted with monospecific sheep antiserum raised against C. psittaci ovine strain POMP 90A. (D) Phosphorimage of the immunoblot. Lanes: 1, EBs; 2, EBs treated with trypsin; 3, Sarkosyl (Sark) COMCs prepared from EBs; 4, Sarkosyl COMCs prepared from trypsin-treated EBs. The positions of putative POMPs (positions 1 to 6), an unknown protein (position 7), the CRPs, and the MOMP are indicated at the right side of each panel. T1, T2, and T3 indicate tryptic fragments. The assignment of TID-labeled tryptic fragments to specific immunoreactive proteins was determined by superimposition of the phosphorimage in panel D on the immunoblot in panel C. tein 5, and the appearance of two trypsin fragments, T2 and T3, as noted in the Coomassie-stained gel (Fig. 1A, compare lane 1 with lane 2 and lane 3 with lane 4) and the phosphorimage of the gel (Fig. 1B). These observations suggest that at least two putative POMPs are surface exposed, protein 5 and one of two comigrating proteins in band 2/3 (we arbitrarily designated protein 3 as the trypsin-sensitive protein). The insensitivity of the MOMP and proteins 1, 2, 4, 6, and 7 to trypsin does not necessarily reflect a lack of surface exposure but rather may simply reflect the lack of an exposed trypsin-sensitive site. Attempts were made to identify surface-exposed proteins on EBs by reaction with the membrane-impermeable cross-linking reagent sulfo-nhs-biotin. A large proportion of the Coomassie-stained EB proteins, including the CRPs, were labeled with this reagent (data not shown), suggesting that this hydrophilic compound was capable of penetrating the periplasm of C. psittaci EBs. EBs and Sarkosyl COMCs, fractionated on the same gel (Fig. 1A and B), were analyzed by immunoblotting with a monospecific sheep polyclonal antibody raised against the C- terminal half of ovine C. psittaci POMP 90A. This antibody reacts with a cluster of ovine strain proteins in COMCs consisting of the identical proteins POMP 90A and POMP 90B and highly homologous proteins, POMP 91A and POMP 91B (24 26). The antibody reacted strongly with proteins 4 and 5 and weakly with protein 6 as well as with trypsin fragments T1 and T2 (Fig. 1C). Fragment T2 also reacted with [ 125 I]TID (Fig. 1B and D, lanes 2 and 4) and may represent an OMembedded peptide derived from protein 5 (Fig. 1C, lanes 2 and 4). In contrast, the antibody-reactive fragment T1 (Fig. 1C, lanes 2 and 4) was not labeled with [ 125 I]TID (Fig. 1B and D), nor was it apparent on the Coomassie-stained gel (Fig. 1A). The failure to detect T1 by Coomassie staining and [ 125 I]TID labeling suggests that it is a minor peptide, possibly a rare product of partial trypsin digestion. The third trypsin fragment, T3, failed to react with the antiserum; thus, it may be a cleavage product of protein 3. The properties of the putative POMPs of C. psittaci 6BC are summarized in Table 1. Disulfide bonds in POMPs. All POMP genes in C. trachomatis and C. pneumoniae and the six ovine C. psittaci POMP genes identified in DNA sequence databases are predicted to

4 VOL. 69, 2001 POMPs OF C. PSITTACI 6BC 2431 TABLE 1. Properties of proteins in the Sarokosyl COMCs of C. psittaci 6BC a Protein(s) [ 125 I]TID labeling Trypsin sensitivity Reaction with antibody b MOMP CRPs a, positive results;, negative result;, weak reaction. b Anti-POMP 90A (C-terminal half). encode proteins that contain cysteine residues. To investigate whether the putative POMPs of 6BC are interpeptide crosslinked by disulfide bonds, the effects of reducing agents on the ability of POMPs in detergent-insoluble complexes to enter polyacrylamide gels were examined. The protein profiles of the Sarkosyl COMCs and the SDS-insoluble complexes electrophoresed in the presence of reducing agents were identical, consisting of the MOMP and likely degradation products of the MOMP, protein 7, the CRPs, and the putative high-molecular-weight POMPs (Fig. 2A, lanes 2 and 4). Because the strong anionic detergent SDS dissolves both the inner membrane and the OM of bacteria, the presence of these proteins in the SDS-insoluble fraction suggests that they are part of one or more insoluble supramolecular complexes. When the insoluble complexes were electrophoresed in the absence of DTT and ME, CRPs, the MOMP, and protein 7 failed to enter the gel (Fig. 2B, lanes 2 and 4), confirming that these proteins are highly interpeptide disulfide cross-linked. In contrast, diffusely Coomassie-stained bands were noted in the 98-kDa putative POMP region of the gel, in the absence of reducing agents (Fig. 2B, lanes 2 and 4). Immunoblot analysis confirmed that at least some of the diffusely stained bands cross-reacted with antibody raised against ovine POMP 90A (Fig. 2D, lanes 2 and 4). These results suggest that at least some of the C. psittaci 6BC POMPs, although part of a supramolecular complex, are not extensively interpeptide disulfide cross-linked. When Sarkosyl COMCs were prepared from EBs treated Downloaded from on October 11, 2018 by guest FIG. 2. SDS-PAGE and immunoblot analysis of detergent-insoluble fractions of EBs. EBs were harvested and purified at 48 h postinfection. Where indicated, EBs were treated with 20 mm DTT and 5% ME before the preparation of Sarkosyl COMCs and SDS-insoluble complexes. All preparations were suspended in Laemmli buffer (21) with (A and C) and without (B and D) the addition of reducing agents (10 mm DTT and 5% ME), heated to 90 C, fractionated by SDS-PAGE, and analyzed by Coomassie staining (A and B) or immunoblotting with anti-pomp 90A (C and D). Lanes: 1, EBs; 2, Sarkosyl (Sark) COMC; 3, Sarkosyl COMC prepared from reduced EBs; 4, SDS-insoluble complex; 5, SDS-insoluble complex prepared from reduced EBs. The intensively stained band below the MOMP at approximately 40 kda (lanes 1 to 3) is a degradation product of the MOMP. MW, molecular weight standards, in thousands.

5 2432 TANZER ET AL. INFECT. IMMUN. Downloaded from FIG. 3. SDS-PAGE (A) and immunoblot analysis (B) of EB and RB proteins during the developmental cycle. Electrophoresis was carried out under reducing conditions, and the blot was reacted with anti-pomp 90A. Lanes: 1, 15-h RBs; 2, 24-h RBs; 3, 28-h RBs; 4, 48-h EBs; 5 to 8, Sarkosyl COMCs of the samples shown in lanes 1 4. Prestained protein standards (MW, in thousands) were run at the sides of the panels. The positions of putative POMPs (positions 1 to 6), the CRPs, and the MOMP are indicated. with reducing agents, the CRPs, but not the MOMP and protein 7, were rendered completely soluble (Fig. 2A, lane 3). This observation, which confirms the previous observations of Everett and Hatch (10), suggests that the CRPs are located in the periplasm and are found in the Sarkosyl COMC fraction only because of their extensive disulfide cross-linked nature, not because they are integral OM proteins. The intensity of the putative POMP bands was decreased in Sarkosyl COMCs prepared from reduced EBs (Fig. 2A, lane 3). The observations that the putative POMPs were labeled with [ 125 I]TID and that some had exposed trypsin-sensitive sites (Fig. 1) support an OM rather than a periplasmic location for the POMPs. Therefore, the effect of reducing agents on the POMPs in COMCs suggests that disulfide bonds play a role in the maintenance of the POMPs in OMs. When EBs were reduced with DTT and M and then treated with SDS, no proteins were found in the insoluble fraction (Fig. 2A, lane 5), suggesting that the maintenance of all proteins in the SDS-insoluble complex is dependent upon disulfide bonds. Stage-specific expression of POMPs. To determine the developmental stage specificity of the putative POMPs, whole chlamydiae and Sarkosyl COMCs were analyzed by SDS- PAGE and immunoblotting at 15, 24, 28, and 48 h postinfection (Fig. 3). The 15- to 28-h harvests consisted of densitygradient-purified RBs, and the 48-h preparations were purified, Nonidet P-40-treated EBs (to eliminate osmotically fragile RBs in the EB fraction). The material loaded on the gels was adjusted so that the amount of the MOMP, which is present throughout the cycle, was approximately the same in all preparations. Under these conditions of analysis, the putative POMPs and the late-stage-specific CRPs were not detected in either whole RBs or COMC preparations at 15 h but were detected in increasing amounts as the infection progressed to completion between 28 and 48 h postinfection. These observations indicate that the six putative POMPs of C. psittaci 6BC are late-stage specific. DISCUSSION We identified three POMPs in C. psittaci 6BC that crossreact with antiserum prepared against the POMP 90 family of OEA C. psittaci S26/3. It is likely that three additional proteins (proteins 1 to 3) in C. psittaci 6BC are POMPs on the basis of on October 11, 2018 by guest

6 VOL. 69, 2001 POMPs OF C. PSITTACI 6BC 2433 their large sizes, location in the OM, and the lack of predicted non-pomp OM proteins of similar sizes in the C. trachomatis and C. pneumoniae genome databases (18, 35, 38). Two of the six putative POMPs have a surface-exposed, trypsin-sensitive site. The precise role of disulfide bonds in maintaining C. psittaci POMPs in the OM is not clear. In contrast to the MOMP, protein 7, and the CRPs, some proportion if not all of the POMPs were capable of migrating in gels at approximately the same rates in the presence and absence of reducing agents, suggesting that they are not interpeptide cross-linked. On the other hand, the POMPs were released from the SDS-insoluble complexes and partially solubilized from the Sarkosyl COMCs when the complexes were prepared from EBs treated with reducing agents. It is possible that intrapeptide disulfide bonds play some role in maintaining POMPs in detergent-insoluble complexes, perhaps by allowing a noncovalent association of POMPs with themselves or with a cross-linked MOMP in the OM. Alternatively, they may associate with supramolecular structures in the periplasm, such as the glycanless wall polymer proposed by Ghuysen and Goffin (11) or the disulfide-crosslinked CRP complex proposed by Everett and Hatch (10). The ability of the MOMP to form oligomeric complexes in SDS has been shown by Wyllie et al. (40) and McCafferty et al. (28) Immunoelectron microscopic studies by Longbottom et al. (24, 25) indicated that one or more members of the POMP 90 family are exposed on the surfaces of 24-h RBs and 48-h EBs of ovine C. psittaci S26/3 24 and 48 h postinfection. This observation is consistent with our finding that C. psittaci 6BC POMPs were found in gradient-purified RBs at 24 and 28 h postinfection and in EBs. However, we failed to detect POMPs and the CRP doublet proteins when we examined middlestage, logarithmically dividing RBs, suggesting that C. psittaci 6BC POMPs, like the CRPs, are late-stage specific and therefore are not required for RB growth and cell division. In a preliminary study, Lindquist and Stephens (23) reported that transcripts orthologous to the nine C. trachomatis D POMP genes could be detected in C. trachomatis L2 by reverse transcription-pcr between 10 and 48 h postinfection, suggesting that C. trachomatis POMPs are made early in the growth cycle. However, the POMP transcripts were not quantified, nor were their levels compared with the levels of other chlamydial gene transcripts; thus, the possibility that C. trachomatis POMP genes are relatively more highly expressed during the late phase of the developmental cycle cannot be excluded. The numbers of POMP genes in the genomes of C. psittaci 6BC and other C. psittaci strains are not known. Six POMP genes have been identified in the genome of C. psittaci S26/3; however, by analogy to C. trachomatis and C. pneumoniae, additional POMP genes are likely to be present in the genomes of C. psittaci strains. Our finding of six POMPs in the OM of C. psittaci 6BC is higher than the numbers found thus far in C. trachomatis (two) and C. pneumoniae (four) (19, 30). It is possible that many more POMP genes are expressed as proteins in chlamydiae growing in tissue cultures but are present in amounts not readily detected by conventional staining and labeling techniques. Alternatively, some POMP genes may be expressed only under specific in vivo conditions, as speculated by Birkelund et al. (8). The C. pneumoniae POMP genes are particularly interesting in that six genes do not appear to encode full-length proteins and thus may represent a reservoir for recombination or mutation (14, 18). At least one example of mutation has already been identified: the open reading frame (Cpn 449/450) that encodes Pmp10, also referred to as OMP5, in strain CDC/ CWL-029/VR1310 contains a frameshift, as sequenced by Kalman et al. (18), but is expressed as a full-length POMP, as reported by Knudsen et al. (19) and Pedersen et al. (34). Pedersen et al. (34) speculated that the expression of the open reading frame was dependent on the addition or deletion of nucleotides from a poly(g) tract within the coding region, most likely at the genomic level. An interesting result of our study was the finding that sulfo- NHS-biotin, which is useful for labeling proteins exposed on the surfaces of eukaryotic cells, appeared to penetrate the OM of chlamydial EBs, labeling a wide range of proteins that were not labeled with [ 125 I]TID. The EB form of chlamydiae is impermeable to ATP, GTP, and amino acids that are taken up by specific transport mechanisms in RBs (17). Bavoil et al. (4) suggested that the impermeability of EBs may be a function of the MOMP porin, which they found in a liposome swelling assay to require the reduction of disulfide bonds and the blockage of sulfhydryl groups with iodoacetamide for activity. However, Wyllie et al. (40) found that an MOMP reconstituted into planar lipid bilayers maintained porin activity without the blockage of sulfhydryl residues and that treatment of the bilayers with oxidative reagents did not inhibit activity. It is possible, therefore, that the hydrophilic cross-linking reagent gained entry to the periplasm through the MOMP porin and that the impermeability of EBs is related to the inactivity of specific transport systems in the inner membrane rather than to exclusion by the OM. Another interesting result of our study was the discovery of 48-kDa protein 7, which is one of the interpeptide-disulfidecross-linked OM proteins found in EBs but which does not appear to be late-stage specific (Fig. 3). Mass spectroscopic analysis of a gel slice containing protein 7 revealed the presence of an MOMP in the band. It is possible that protein 7 is a posttranslationally modified form of MOMP, as has been proposed by Kuo et al. (20) for the MOMP of C. trachomatis L2. However, Kuo et al. (20) presented evidence that a standard MOMP, rather than a protein of higher molecular weight, is glycosylated, as is the case for protein 7. Alternatively, protein 7 may be an unknown OM protein which is contaminated by the highly abundant MOMP, the result of smearing during electrophoresis. In either case, it is interesting that Newhall et al. (32) found in multiple serovars of C. trachomatis a similar band that reacted on immunoblots with the sera of some patients infected with C. trachomatis. We are currently attempting to identify the homolog of protein 7 in a DNA-sequenced strain of C. trachomatis. ACKNOWLEDGMENTS This work was supported by Public Health Service grant AI from the National Institute of Allergy and Infectious Diseases and the Scottish Executive Rural Affairs Department. Mass spectrometric studies were carried out in the Stout Neuroscience Laboratory at the University of Tennessee, which is supported by Public Health Service grant RR and National Science Foundation grant DBI REFERENCES 1. Allen, J. E., M. C. Cerrone, P. R. Beatty, and R. S. Stephens Cysteinerich outer membrane proteins of Chlamydia trachomatis display compensa-

7 2434 TANZER ET AL. INFECT. IMMUN. tory sequence changes between biovariants. Mol. Microbiol. 4: Allen, J. E., and R. S. Stephens Identification by sequence analysis of two-site posttranslational processing of the cysteine-rich outer membrane protein 2 of Chlamydia trachomatis serovar L2. J. Bacteriol. 171: Batteiger, B. E., R. G. Rank, P. M. Bavoil, and L. S. F. Soderberg Partial protection against genital reinfection by immunization of guinea-pigs with isolated outer-membrane proteins of the chlamydial agent of guinea-pig inclusion conjunctivitis. J. Gen. Microbiol. 139: Bavoil, P., A. Ohlin, and J. Schachter Role of disulfide bonding in outer membrane structure and permeability in Chlamydia trachomatis. Infect. Immun. 44: Castellanos-Serra, L., W. Proenza, V. Huerta, R. L. Moritz, and R. J. Simpson Proteome analysis of polyacrylamide gel-separated proteins visualized by reversible negative staining using imidazole-zinc salts. Electrophoresis 20: Cevenini, R., M. Donati, E. Brocchi, F. DeSimone, and M. LaPlaca Partial characterization of an 89-kDa highly immunoreactive protein from Chlamydia psittaci A/22 causing ovine abortion. FEMS Microbiol. Lett. 81: Chopra, I., C. Storey, T. J. Falla, and J. H. Pearce Antibiotics, peptidoglycan synthesis and genomics: the chlamydial anomaly revisited. Microbiology 144: Birkelund, S., K. Knudsen, A. S. Madsen, E. Falk, P. Mygind, and G. Christiansen Differential expression of Chlamydia pneumoniae OMP4 and OMP5 after infection of C57-black mice, p In R. S. Stephens, G. I. Byrne, G. Christiansen, I. N. Clarke, J. T. Grayston, R. G. Rank, G. L. Ridgway, P. Saikku, J. Schachter, and W. E. Stamm (ed.), Chlamydial infections: Proceedings of the Ninth International Symposium on Human Chlamydial Infections. International Chlamydia Symposium, San Francisco, Calif. 9. Everett, K. D. E., D. M. Desiderio, and T. P. Hatch Characterization of lipoprotein A in Chlamydia psittaci. J. Bacteriol. 176: Everett, K. D. E., and T. P. Hatch Architecture of the cell envelope of Chlamydia psittaci 6BC. J. Bacteriol. 177: Ghuysen, J. M., and C. Goffin Lack of cell wall peptidoglycan versus penicillin sensitivity: new insights into the chlamydial anomaly. Antimicrob. Agents Chemother. 43: Giannikopoulou, P., K. Bini, O. D. Simitsek, V. Pallini, and E. Vretou Two-dimensional electrophoretic analysis of the protein family at 90 kda of abortifacient Chlamydia psittaci. Electrophoresis 18: Griffiths, P. C., H. L. Philips, M. Dawson, and M. J. Clarkson Antigenic and morphological differentiation of placental and intestinal isolates of Chlamydia psittaci of ovine origin. Vet. Microbiol. 30: Grimwood, J., and R. S. Stephens Computational analysis of the polymorphic membrane protein superfamily of Chlamydia trachomatis and Chlamydia pneumoniae. Microb. Comp. Genomics 4: Hatch, T. P Disulfide cross-linked envelope proteins: the functional equivalent of peptidoglycan in chlamydiae? J. Bacteriol. 178: Hatch, T. P., I. Allan, and J. H. Pearce Structural and polypeptide differences between envelopes of infective and reproductive life cycle forms of Chlamydia spp. J. Bacteriol. 157: Hatch, T. P., M. Miceli, and J. E. Sublett Synthesis of disulfidebonded outer membrane proteins during the developmental cycle of Chlamydia psittaci and Chlamydia trachomatis. J. Bacteriol. 165: Kalman, S., W. Mitchell, R. Marathe, C. Lammel, J. Fan, R. W. Hyman, L. Olinger, J. Grimwood, R. W. Davis, and R. S. Stephens Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Nat. Genet. 21: Knudsen, K., A. S. Madsen, P. Mygind, G. Christiansen, and S. Birkelund Identification of two novel genes encoding 97- to 99-kilodalton outer membrane proteins of Chlamydia pneumoniae. Infect. Immun. 67: Kuo, C.-C., N. Takahashi, A. F. Swanson, Y. Ozeki, and S.-I. Hakomori An N-linked high-mannose type oligosaccharide, expressed at the major outer membrane protein of Chlamydia trachomatis, mediates attachment and infectivity of the microorganism to HeLa cells. J. Clin. Investig. 98: Laemmli, U. K Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: Lambden, P. R., J. S. Everson, M. E. Ward, and I. N. Clarke Sulfurrich proteins of Chlamydia trachomatis: developmentally regulated transcription of polycistronic mrna from tandem promoters. Gene 87: Lindquist, E. A., and R. S. Stephens Transcriptional activity of a sequence variable protein family in Chlamydia trachomatis, p In R. S. Stephens, G. I. Byrne, G. Christiansen, I. N. Clarke, J. T. Grayston, R. G. Rank, G. L. Ridgway, P. Saikku, J. Schachter, and W. E. Stamm (ed.), Chlamydial infections: Proceedings of the Ninth International Symposium on Human Chlamydial Infections. International Chlamydia Symposium, San Francisco, Calif. 24. Longbottom, D., S. M. Dunbar, M. Russell, E. Vretou, G. E. Jones, and A. J. Herring Characterization, expression, and surface localisation of the OEA Chlamydia psittaci 90 kda-protein family, p In R. S. Stephens, G. I. Byrne, G. Christiansen, I. N. Clarke, J. T. Grayston, R. G. Rank, G. L. Ridgway, P. Saikku, J. Schachter, and W. E. Stamm (ed.), Chlamydial infections: Proceedings of the Ninth International Symposium on Human Chlamydial Infections. International Chlamydia Symposium, San Francisco, Calif. 25. Longbottom, D., J. Findlay, E. Vretou, and S. M. Dunbar Immunoelectron microscopic localisation of the OMP90 family on the outer membrane surface of Chlamydia psittaci. FEMS Microbiol. Lett. 164: Longbottom, D., M. Russell, S. M. Dunbar, G. E. Jones, and A. J. Herring Molecular cloning and characterization of the genes coding for the highly immunogenic cluster of 90-kilodalton envelope proteins from the Chlamydia psittaci subtype that causes abortion in sheep. Infect. Immun. 66: Longbottom, D., M. Russell, G. E. Jones, F. A. Lainson, and A. J. Herring Identification of a multigene family coding for the 90 kda proteins of the ovine abortion subtype of Chlamydia psittaci. FEMS Microbiol. Lett. 142: McCafferty, M. C., A. J. Herring, A. A. Andersden, and G. E. Jones Electrophoretic analysis of the major outer membrane protein of Chlamydia psittaci reveals multimers which are recognized by protective monoclonal antibodies. Infect. Immun. 63: Moulder, J. W Why is Chlamydia sensitive to penicillin in the absence of peptidoglycan? Infect. Agents Dis. 2: Mygind, P. H., G. Christiansen, P. Roepstorff, and S. Birkelund Membrane proteins PmpG and PmpH are major constituents of Chlamydia trachomatis L2 outer membrane complex. FEMS Microbiol. Lett. 186: Newhall, W. J., V. l987. Biosynthesis and disulfide cross-linking of outer membrane components during the growth cycle of Chlamydia trachomatis. Infect. Immun. 55: Newhall, W. J., V, B. Batteiger, and R. P. Jones Analysis of the human serological response to proteins of Chlamydia trachomatis. Infect. Immun. 38: Newhall, W. J., V, and R. B. Jones Disulfide-linked oligomers of the major outer membrane protein of chlamydiae. J. Bacteriol. 154: Pedersen, A. S., S. Birkelund, and G. Christiansen Differential expression of Pmp proteins in cell culture infected with Chlamydia pneumoniae VR1310, p. 44. In P. Saikku (ed.), Proceedings of the Fourth Meeting of the European Society for Chlamydia Research. Universitas Helsingiensis, Helsinki, Finland. 35. Read, T. D., R. C. Brunham, C. Shen, S. R. Gill, J. F. Heidelberg, O. White, E. K. Hickey, J. Peterson, T. Utterback, K. Berry, S. Bass, K. Linher, J. Weidman, H. Khouri, B. Craven, C. Bowman, R. Dodso, M. Gwinn, W. Nelson, R. DeBoy, J. Kolonay, G. McClarty, S. L. Salzberg, J. Eisen, and C. M. Fraser Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res. 28: Shevchenko, A., M. Wilm, O. Vorm, and M. Mann Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal. Chem. 68: Souriau, A., J. Salinas, C. De Sa, K. Layachi, and A. Rodolakis Identification of subspecies- and serotype 1-specific epitopes on the 80- to 90-kilodalton protein region of Chlamydia psittaci that may be useful for diagnosis of chlamydial induced abortion. Am. J. Vet. Res. 55: Stephens, R. S., S. Kalman, C. Lammel, J. Fan, R. Marathe, L. Aravind, W. Mitchell, L. Olinger, R. L. Tatusov, Q. Zhao, E. V. Koonin, and R. W. Davis Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282: Tan, T.-W., A. J. Herring, I. E. Anderson, and G. E. Jones Protection of sheep against Chlamydia psittaci infection with a subcellular vaccine containing the major outer membrane protein. Infect. Immun. 58: Wyllie, S., R. H. Ashley, D. Longbottom, and A. J. Herring The major outer membrane protein of Chlamydia psittaci functions as a porin-like ion channel. Infect. Immun. 66: Wyllie, S., D. Longbottom, A. J. Herring, and R. H. Ashley Single channel analysis of recombinant major outer membrane protein porins from Chlamydia psittaci and Chlamydia pneumoniae. FEBS Lett. 445: Editor: R. N. Moore

psittaci by Silver-Methenamine Staining and

psittaci by Silver-Methenamine Staining and JOURNAL OF BACTERIOLOGY, July 1972, p. 267-271 Copyright 1972 American Society for Microbiology Vol. 111, No. 1 Printed in U.S.A. Location of Polysaccharide on Chlamydia psittaci by Silver-Methenamine

More information

5 Identification of Binding Partners of the Annexin A2 / P11 Complex by Chemical Cross-Linking

5 Identification of Binding Partners of the Annexin A2 / P11 Complex by Chemical Cross-Linking 5 Identification of Binding Partners of the Annexin A2 / P11 Complex by Chemical Cross-Linking In the quest of the omics sciences for holistic schemes, the identification of binding partners of proteins

More information

Jyotika Sharma, Feng Dong, Mustak Pirbhai, and Guangming Zhong*

Jyotika Sharma, Feng Dong, Mustak Pirbhai, and Guangming Zhong* INFECTION AND IMMUNITY, July 2005, p. 4414 4419 Vol. 73, No. 7 0019-9567/05/$08.00 0 doi:10.1128/iai.73.7.4414 4419.2005 Copyright 2005, American Society for Microbiology. All Rights Reserved. Inhibition

More information

SUPPLEMENTARY MATERIAL

SUPPLEMENTARY MATERIAL SUPPLEMENTARY MATERIAL Purification and biochemical properties of SDS-stable low molecular weight alkaline serine protease from Citrullus Colocynthis Muhammad Bashir Khan, 1,3 Hidayatullah khan, 2 Muhammad

More information

1 Genome and proteome analysis of Chlamydia*

1 Genome and proteome analysis of Chlamydia* 1 1 Genome and proteome analysis of Chlamydia* Brian B. S. Vandahl, Svend Birkelund and Gunna Christiansen It has been difficult to study the molecular biology of the obligate intracellular bacterium Chlamydia

More information

Structural vs. nonstructural proteins

Structural vs. nonstructural proteins Why would you want to study proteins associated with viruses or virus infection? Receptors Mechanism of uncoating How is gene expression carried out, exclusively by viral enzymes? Gene expression phases?

More information

Trypsin Mass Spectrometry Grade

Trypsin Mass Spectrometry Grade 058PR-03 G-Biosciences 1-800-628-7730 1-314-991-6034 technical@gbiosciences.com A Geno Technology, Inc. (USA) brand name Trypsin Mass Spectrometry Grade A Chemically Modified, TPCK treated, Affinity Purified

More information

TECHNICAL BULLETIN. R 2 GlcNAcβ1 4GlcNAcβ1 Asn

TECHNICAL BULLETIN. R 2 GlcNAcβ1 4GlcNAcβ1 Asn GlycoProfile II Enzymatic In-Solution N-Deglycosylation Kit Product Code PP0201 Storage Temperature 2 8 C TECHNICAL BULLETIN Product Description Glycosylation is one of the most common posttranslational

More information

Complexes of Chlamydia trachomatis and Chlamydia psittaci

Complexes of Chlamydia trachomatis and Chlamydia psittaci INFECTION AND IMMUNITY, Sept. 1989, p. 2914-2918 0019-9567/89/092914-05$02.00/0 Copyright 1989, American Society for Microbiology Vol. 57, No. 9 Identification of Genus-Specific Epitopes on the Outer Membrane

More information

Introduction. Biochemistry: It is the chemistry of living things (matters).

Introduction. Biochemistry: It is the chemistry of living things (matters). Introduction Biochemistry: It is the chemistry of living things (matters). Biochemistry provides fundamental understanding of the molecular basis for the function and malfunction of living things. Biochemistry

More information

In-Gel Tryptic Digestion Kit

In-Gel Tryptic Digestion Kit INSTRUCTIONS In-Gel Tryptic Digestion Kit 3747 N. Meridian Road P.O. Box 117 Rockford, IL 61105 89871 1468.2 Number Description 89871 In-Gel Tryptic Digestion Kit, sufficient reagents for approximately

More information

Bacterial Structures. Capsule or Glycocalyx TYPES OF FLAGELLA FLAGELLA. Average size: µm 2-8 µm Basic shapes:

Bacterial Structures. Capsule or Glycocalyx TYPES OF FLAGELLA FLAGELLA. Average size: µm 2-8 µm Basic shapes: PROKARYOTIC One circular chromosome, not in a membrane No histones No organelles Peptidoglycan cell walls Binary fission EUKARYOTIC Paired chromosomes, in nuclear membrane Histones Organelles Polysaccharide

More information

Work-flow: protein sample preparation Precipitation methods Removal of interfering substances Specific examples:

Work-flow: protein sample preparation Precipitation methods Removal of interfering substances Specific examples: Dr. Sanjeeva Srivastava IIT Bombay Work-flow: protein sample preparation Precipitation methods Removal of interfering substances Specific examples: Sample preparation for serum proteome analysis Sample

More information

Chlamydia spp. the major surface protein may play an important

Chlamydia spp. the major surface protein may play an important INFECTION AND IMMUNITY, Mar. 1982, p. 1024-1031 Vol. 35, No. 3 0019-9567/82/031024-08$02.00/0 Antigenic Analysis of the Major Outer Membrane Protein of Chlamydia spp. HARLAN D. CALDWELL'* AND JULIUS SCHACHTER2

More information

Mammalian Membrane Protein Extraction Kit

Mammalian Membrane Protein Extraction Kit Mammalian Membrane Protein Extraction Kit Catalog number: AR0155 Boster s Mammalian Membrane Protein Extraction Kit is a simple, rapid and reproducible method to prepare cellular protein fractions highly

More information

Agilent Protein In-Gel Tryptic Digestion Kit

Agilent Protein In-Gel Tryptic Digestion Kit Agilent 5188-2749 Protein In-Gel Tryptic Digestion Kit Agilent Protein In-Gel Tryptic Digestion Kit Instructions Kit Contents The Protein In-Gel Tryptic Digestion Kit includes sufficient reagents for approximately

More information

Improve Protein Analysis with the New, Mass Spectrometry- Compatible ProteasMAX Surfactant

Improve Protein Analysis with the New, Mass Spectrometry- Compatible ProteasMAX Surfactant Improve Protein Analysis with the New, Mass Spectrometry- Compatible Surfactant ABSTRACT Incomplete solubilization and digestion and poor peptide recovery are frequent limitations in protein sample preparation

More information

Supplementary material: Materials and suppliers

Supplementary material: Materials and suppliers Supplementary material: Materials and suppliers Electrophoresis consumables including tris-glycine, acrylamide, SDS buffer and Coomassie Brilliant Blue G-2 dye (CBB) were purchased from Ameresco (Solon,

More information

Rapid identification and resistance assessment: The future is mass spectrometry

Rapid identification and resistance assessment: The future is mass spectrometry Rapid identification and resistance assessment: The future is mass spectrometry Dr Sanmarié Schlebusch Director of Microbiology Mater Pathology Brisbane Outline Introduction Plug and play Pre-prep and

More information

Proteins. Amino acids, structure and function. The Nobel Prize in Chemistry 2012 Robert J. Lefkowitz Brian K. Kobilka

Proteins. Amino acids, structure and function. The Nobel Prize in Chemistry 2012 Robert J. Lefkowitz Brian K. Kobilka Proteins Amino acids, structure and function The Nobel Prize in Chemistry 2012 Robert J. Lefkowitz Brian K. Kobilka O O HO N N HN OH Ser65-Tyr66-Gly67 The Nobel prize in chemistry 2008 Osamu Shimomura,

More information

FEBS 1138 January Paul R. Buckland and Bernard Rees Smith

FEBS 1138 January Paul R. Buckland and Bernard Rees Smith Volume 166, number 1 FEBS 1138 January 1984 A structural comparison receptors by of guinea pig thyroid and fat TSH photoaffinity labelling Paul R. Buckland and Bernard Rees Smith Endocrine Immunology Unit,

More information

Chapter 3. Protein Structure and Function

Chapter 3. Protein Structure and Function Chapter 3 Protein Structure and Function Broad functional classes So Proteins have structure and function... Fine! -Why do we care to know more???? Understanding functional architechture gives us POWER

More information

From Atoms to Cells: Fundamental Building Blocks. Models of atoms. A chemical connection

From Atoms to Cells: Fundamental Building Blocks. Models of atoms. A chemical connection From Atoms to Cells: A chemical connection Fundamental Building Blocks Matter - all materials that occupy space & have mass Matter is composed of atoms Atom simplest form of matter not divisible into simpler

More information

Materials and Methods , The two-hybrid principle.

Materials and Methods , The two-hybrid principle. The enzymatic activity of an unknown protein which cleaves the phosphodiester bond between the tyrosine residue of a viral protein and the 5 terminus of the picornavirus RNA Introduction Every day there

More information

Isolation and Structural Characterization of Cap-Binding Proteins from Poliovirus-Infected HeLa Cells

Isolation and Structural Characterization of Cap-Binding Proteins from Poliovirus-Infected HeLa Cells JOURNAL OF VIROLOGY, May 1985. p. 515-524 0022-538X/85/050515-10$02.00/0 Copyright C 1985, American Society for Microbiology Vol. 54, No. 2 Isolation and Structural Characterization of Cap-Binding Proteins

More information

6. C-type cytochrome, soluble and membrane protein

6. C-type cytochrome, soluble and membrane protein 185 6. C-type cytochrome, soluble and membrane protein analysis of Rhodobacter sp SW2 and Rhodopseudomonas palustris TIE-1 ABSTRACT The ability to grown on Fe(II) is thought to be a primitive metabolism

More information

Mass Spectrometry and Proteomics - Lecture 4 - Matthias Trost Newcastle University

Mass Spectrometry and Proteomics - Lecture 4 - Matthias Trost Newcastle University Mass Spectrometry and Proteomics - Lecture 4 - Matthias Trost Newcastle University matthias.trost@ncl.ac.uk previously Peptide fragmentation Hybrid instruments 117 The Building Blocks of Life DNA RNA Proteins

More information

Cell Walls, the Extracellular Matrix, and Cell Interactions (part 1)

Cell Walls, the Extracellular Matrix, and Cell Interactions (part 1) 14 Cell Walls, the Extracellular Matrix, and Cell Interactions (part 1) Introduction Many cells are embedded in an extracellular matrix which is consist of insoluble secreted macromolecules. Cells of bacteria,

More information

Analysis of the Immune Response in Mice following Intrauterine Infection with the Chlamydia trachomatis Mouse

Analysis of the Immune Response in Mice following Intrauterine Infection with the Chlamydia trachomatis Mouse INFECTION AND IMMUNITY, Feb. 1993, p. 772-776 Vol. 61, No. 2 0019-9567/93/020772-05$02.00/0 Copyright C 1993, American Society for Microbiology Analysis of the Immune Response in Mice following Intrauterine

More information

Chemical Biology, Option II Mechanism Based Proteomic Tagging Case History CH1

Chemical Biology, Option II Mechanism Based Proteomic Tagging Case History CH1 Proteome Wide Screening of Serine Protease Activity Proc Natl Acad Sci 1999, 97, 14694; Proteomics 2001, 1, 1067; Proc Natl Acad Sci 2002, 99, 10335; Biochemistry 2001, 40, 4005; J. Am. Chem. Soc., 2005,

More information

PTM Discovery Method for Automated Identification and Sequencing of Phosphopeptides Using the Q TRAP LC/MS/MS System

PTM Discovery Method for Automated Identification and Sequencing of Phosphopeptides Using the Q TRAP LC/MS/MS System Application Note LC/MS PTM Discovery Method for Automated Identification and Sequencing of Phosphopeptides Using the Q TRAP LC/MS/MS System Purpose This application note describes an automated workflow

More information

N-Glycosidase F Deglycosylation Kit

N-Glycosidase F Deglycosylation Kit For life science research only. Not for use in diagnostic procedures. FOR IN VITRO USE ONLY. N-Glycosidase F Deglycosylation Kit Kit for the deglycosylation of asparagine-linked glycan chains on glycoproteins.

More information

Cell Structure. Morphology of Prokaryotic Cell. Cytoplasmic Membrane 4/6/2011. Chapter 3. Cytoplasmic membrane

Cell Structure. Morphology of Prokaryotic Cell. Cytoplasmic Membrane 4/6/2011. Chapter 3. Cytoplasmic membrane Cell Structure Chapter 3 Morphology of Prokaryotic Cell Cytoplasmic membrane Delicate thin fluid structure Surrounds cytoplasm of cell Defines boundary Defines boundary Serves as a selectively permeable

More information

Chapter 2 Transport Systems

Chapter 2 Transport Systems Chapter 2 Transport Systems The plasma membrane is a selectively permeable barrier between the cell and the extracellular environment. It permeability properties ensure that essential molecules such as

More information

Combination of 2-D Gel and Liquid-Phase Electrophoretic Separations as Proteomic Tools in Neuroscience. Analytical 2-D. Electrophoresis.

Combination of 2-D Gel and Liquid-Phase Electrophoretic Separations as Proteomic Tools in Neuroscience. Analytical 2-D. Electrophoresis. electrophoresis tech note 2859 Combination of 2-D Gel and Liquid-Phase Electrophoretic Separations as Proteomic Tools in Neuroscience Pia Davidsson, Department of Clinical Neuroscience, Experimental Neuroscience

More information

SUPPLEMENTAL INFORMATION

SUPPLEMENTAL INFORMATION SUPPLEMENTAL INFORMATION EXPERIMENTAL PROCEDURES Tryptic digestion protection experiments - PCSK9 with Ab-3D5 (1:1 molar ratio) in 50 mm Tris, ph 8.0, 150 mm NaCl was incubated overnight at 4 o C. The

More information

Trypsin Digestion Mix

Trypsin Digestion Mix G-Biosciences 1-800-628-7730 1-314-991-6034 technical@gbiosciences.com A Geno Technology, Inc. (USA) brand name 239PR Trypsin Digestion Mix Provides optimal buffered conditions for in gel trypsin digestion

More information

Protein MultiColor Stable, Low Range

Protein MultiColor Stable, Low Range Product Name: DynaMarker Protein MultiColor Stable, Low Range Code No: DM670L Lot No: ******* Size: 200 μl x 3 (DM670 x 3) (120 mini-gel lanes) Storage: 4 C Stability: 12 months at 4 C Storage Buffer:

More information

Mass Spectrometry. Mass spectrometer MALDI-TOF ESI/MS/MS. Basic components. Ionization source Mass analyzer Detector

Mass Spectrometry. Mass spectrometer MALDI-TOF ESI/MS/MS. Basic components. Ionization source Mass analyzer Detector Mass Spectrometry MALDI-TOF ESI/MS/MS Mass spectrometer Basic components Ionization source Mass analyzer Detector 1 Principles of Mass Spectrometry Proteins are separated by mass to charge ratio (limit

More information

Naturally occurring amino acids differentially influence the development of Chlamydia trachomatis and Chlamydia (Chlamydophila) pneumoniae

Naturally occurring amino acids differentially influence the development of Chlamydia trachomatis and Chlamydia (Chlamydophila) pneumoniae Journal of Medical Microbiology (2006), 55, 879 886 DOI 10.1099/jmm.0.46445-0 Naturally occurring amino acids differentially influence the development of Chlamydia trachomatis and Chlamydia (Chlamydophila)

More information

MBB 694:407, 115:511. Please use BLOCK CAPITAL letters like this --- A, B, C, D, E. Not lowercase!

MBB 694:407, 115:511. Please use BLOCK CAPITAL letters like this --- A, B, C, D, E. Not lowercase! MBB 694:407, 115:511 First Test Severinov/Deis Tue. Sep. 30, 2003 Name Index number (not SSN) Row Letter Seat Number This exam consists of two parts. Part I is multiple choice. Each of these 25 questions

More information

Double charge of 33kD peak A1 A2 B1 B2 M2+ M/z. ABRF Proteomics Research Group - Qualitative Proteomics Study Identifier Number 14146

Double charge of 33kD peak A1 A2 B1 B2 M2+ M/z. ABRF Proteomics Research Group - Qualitative Proteomics Study Identifier Number 14146 Abstract The 2008 ABRF Proteomics Research Group Study offers participants the chance to participate in an anonymous study to identify qualitative differences between two protein preparations. We used

More information

Glycosaminoglycans: Anionic polysaccharide chains made of repeating disaccharide units

Glycosaminoglycans: Anionic polysaccharide chains made of repeating disaccharide units Glycosaminoglycans: Anionic polysaccharide chains made of repeating disaccharide units Glycosaminoglycans present on the animal cell surface and in the extracellular matrix. Glycoseaminoglycans (mucopolysaccharides)

More information

Translation. Host Cell Shutoff 1) Initiation of eukaryotic translation involves many initiation factors

Translation. Host Cell Shutoff 1) Initiation of eukaryotic translation involves many initiation factors Translation Questions? 1) How does poliovirus shutoff eukaryotic translation? 2) If eukaryotic messages are not translated how can poliovirus get its message translated? Host Cell Shutoff 1) Initiation

More information

Enzymatic Removal of N- and O-glycans using PNGase F or the Protein Deglycosylation Mix

Enzymatic Removal of N- and O-glycans using PNGase F or the Protein Deglycosylation Mix be INSPIRED drive DISCOVERY stay GENUINE APPLICATION NOTE Enzymatic Removal of N- and O-glycans using PNGase F or the Protein Deglycosylation Mix Alicia Bielik and Paula Magnelli, New England Biolabs,

More information

Proteomic analysis of water insoluble proteins from normal and cataractous human lenses

Proteomic analysis of water insoluble proteins from normal and cataractous human lenses Received 22 January 2007 Accepted 30 August 2007 Published 14 September 2007 Proteomic analysis of water insoluble proteins from normal and cataractous human lenses V. Harrington, 1 O.P. Srivastava, 2

More information

Third line of Defense

Third line of Defense Chapter 15 Specific Immunity and Immunization Topics -3 rd of Defense - B cells - T cells - Specific Immunities Third line of Defense Specific immunity is a complex interaction of immune cells (leukocytes)

More information

Manja Henze, Dorothee Merker and Lothar Elling. 1. Characteristics of the Recombinant β-glycosidase from Pyrococcus

Manja Henze, Dorothee Merker and Lothar Elling. 1. Characteristics of the Recombinant β-glycosidase from Pyrococcus S1 of S17 Supplementary Materials: Microwave-Assisted Synthesis of Glycoconjugates by Transgalactosylation with Recombinant Thermostable β-glycosidase from Pyrococcus Manja Henze, Dorothee Merker and Lothar

More information

BIOCHEMISTRY LECTURES BY RASAQ, N.O

BIOCHEMISTRY LECTURES BY RASAQ, N.O BIOCHEMISTRY LECTURES BY RASAQ, N.O LECTURE CONTENT INTRODUCTION POLYSACCHARIDES STRUCTURAL POLYSACCHARIDES: CELLULOSE AND CHITIN BACTERIA CELL WALLS PEPTIDOGLYCAN PENICILLIN AND β-lactam ANTIBIOTICS AND

More information

Western Blot Analysis of Rat Pituitar Recognized by Human Antipituitary. y Antigens A. antibodies

Western Blot Analysis of Rat Pituitar Recognized by Human Antipituitary. y Antigens A. antibodies Endocrine Journal 1995, 42(1), 115-119 NOTE Western Blot Analysis of Rat Pituitar Recognized by Human Antipituitary y Antigens A ntibodies SHIGEKI YABE, MASAMI MURAKAMI*, KAYOKO MARUYAMA, HIDEKO MIWA,

More information

Methods of studying membrane structure

Methods of studying membrane structure King Saud University College of Science Department of Biochemistry Biomembranes and Cell Signaling (BCH 452) Chapter 2 Methods of studying membrane structure Prepared by Dr. Farid Ataya http://fac.ksu.edu.sa/fataya

More information

CELLS. Cells. Basic unit of life (except virus)

CELLS. Cells. Basic unit of life (except virus) Basic unit of life (except virus) CELLS Prokaryotic, w/o nucleus, bacteria Eukaryotic, w/ nucleus Various cell types specialized for particular function. Differentiation. Over 200 human cell types 56%

More information

BCH Graduate Survey of Biochemistry

BCH Graduate Survey of Biochemistry BCH 5045 Graduate Survey of Biochemistry Instructor: Charles Guy Producer: Ron Thomas Director: Glen Graham Lecture 7 Slide sets available at: http://hort.ifas.ufl.edu/teach/guyweb/bch5045/index.html David

More information

ENZYME IMMUNOASSAYS FOR THE DIAGNOSIS OF CHLAMYDIA INFECTIONS. Chlamydia sp. Chlamydia pneumoniae Chlamydia trachomatis INFECTIOUS SEROLOGY

ENZYME IMMUNOASSAYS FOR THE DIAGNOSIS OF CHLAMYDIA INFECTIONS. Chlamydia sp. Chlamydia pneumoniae Chlamydia trachomatis INFECTIOUS SEROLOGY INFECTIOUS SEROLOGY Bacteriology ENZYME IMMUNOASSAYS FOR THE DIAGNOSIS OF CHLAMYDIA INFECTIONS Chlamydia sp. Chlamydia pneumoniae Chlamydia trachomatis ELISA and IMMUNOBLOT kits are optimized and validated

More information

WHY IS THIS IMPORTANT?

WHY IS THIS IMPORTANT? CHAPTER 2 FUNDAMENTAL CHEMISTRY FOR MICROBIOLOGY WHY IS THIS IMPORTANT? An understanding of chemistry is essential to understand cellular structure and function, which are paramount for your understanding

More information

N α -Acetylation of yeast ribosomal proteins and its effect on protein synthesis

N α -Acetylation of yeast ribosomal proteins and its effect on protein synthesis JOURNAL OF PROTEOMICS 74 (2011) 431 441 available at www.sciencedirect.com www.elsevier.com/locate/jprot N α -Acetylation of yeast ribosomal proteins and its effect on protein synthesis Masahiro Kamita

More information

Characterization of Disulfide Linkages in Proteins by 193 nm Ultraviolet Photodissociation (UVPD) Mass Spectrometry. Supporting Information

Characterization of Disulfide Linkages in Proteins by 193 nm Ultraviolet Photodissociation (UVPD) Mass Spectrometry. Supporting Information Characterization of Disulfide Linkages in Proteins by 193 nm Ultraviolet Photodissociation (UVPD) Mass Spectrometry M. Montana Quick, Christopher M. Crittenden, Jake A. Rosenberg, and Jennifer S. Brodbelt

More information

Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Canada *For correspondence:

Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Canada *For correspondence: Zymogram Assay for the Detection of Peptidoglycan Hydrolases in Streptococcus mutans Delphine Dufour and Céline M. Lévesque * Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto,

More information

Anti-Lamin B1/LMNB1 Picoband Antibody

Anti-Lamin B1/LMNB1 Picoband Antibody Anti-Lamin B1/LMNB1 Picoband Antibody Catalog Number:PB9611 About LMNB1 Lamin-B1 is a protein that in humans is encoded by the LMNB1 gene. The nuclear lamina consists of a two-dimensional matrix of proteins

More information

Proteomics Grade. Protocol. Catalog # Agilent Technologies. Research Use Only. Not for use in Diagnostic Procedures. Version A, January 2010

Proteomics Grade. Protocol. Catalog # Agilent Technologies. Research Use Only. Not for use in Diagnostic Procedures. Version A, January 2010 Proteomics Grade Trypsin Catalog #204310 Protocol Version A, January 2010 Research Use Only. Not for use in Diagnostic Procedures. Agilent Technologies Notices Agilent Technologies, Inc. 2010 No part of

More information

Step 4. Step 4. Choose MW markers. Choose MW markers. Gel Electrophoresis of Proteins

Step 4. Step 4. Choose MW markers. Choose MW markers. Gel Electrophoresis of Proteins Gel Electrophoresis of Proteins Choose MW markers 16 Step 4 Gel Electrophoresis of Proteins A Practical Approach, Third Edition An overview of basic techniques to benefit any life scientist using electrophoretic

More information

Analysis of the Humoral Immune Response to Chlamydia Outer Membrane Protein 2

Analysis of the Humoral Immune Response to Chlamydia Outer Membrane Protein 2 CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY, May 1998, p. 313 318 Vol. 5, No. 3 1071-412X/98/$04.00 0 Copyright 1998, American Society for Microbiology Analysis of the Humoral Immune Response to Chlamydia

More information

Pneumocystis caninii Organisms Obtained from Rats, Ferrets,

Pneumocystis caninii Organisms Obtained from Rats, Ferrets, INFECrION AND IMMUNITY, Apr. 1993, p. 1315-1319 0019-9567/93/041315-05$02.00/0 Copyright C) 1993, American Society for Microbiology Vol. 61, No. 4 Pneumocystis caninii Organisms Obtained from Rats, Ferrets,

More information

Analysis of the Humoral Immune Response to Chlamydia pneumoniae by Immunoblotting and Immunoprecipitation

Analysis of the Humoral Immune Response to Chlamydia pneumoniae by Immunoblotting and Immunoprecipitation CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY, Nov. 1999, p. 819 825 Vol. 6, No. 6 1071-412X/99/$04.00 0 Copyright 1999, American Society for Microbiology. All Rights Reserved. Analysis of the Humoral

More information

Page 1 of 5 Biochemistry I Fall 2017 Practice for Exam2 Dr. Stone Name

Page 1 of 5 Biochemistry I Fall 2017 Practice for Exam2 Dr. Stone Name Page 1 of 5 Biochemistry I Fall 2017 Practice for Exam2 Dr. Stone ame o answers will be provided. ere are some constants and equations that may be useful: K a = [+][A-]/[A] p = pka + log [A-]/[A] K a for

More information

Section 1 Proteins and Proteomics

Section 1 Proteins and Proteomics Section 1 Proteins and Proteomics Learning Objectives At the end of this assignment, you should be able to: 1. Draw the chemical structure of an amino acid and small peptide. 2. Describe the difference

More information

Nature Methods: doi: /nmeth Supplementary Figure 1

Nature Methods: doi: /nmeth Supplementary Figure 1 Supplementary Figure 1 Subtiligase-catalyzed ligations with ubiquitin thioesters and 10-mer biotinylated peptides. (a) General scheme for ligations between ubiquitin thioesters and 10-mer, biotinylated

More information

Oxidation of Escherichia coli Sulfhydryl Components by the Peroxidase-Hydrogen Peroxide-Iodide Antimicrobial System

Oxidation of Escherichia coli Sulfhydryl Components by the Peroxidase-Hydrogen Peroxide-Iodide Antimicrobial System ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, June 1978, p. 06-0066-4804/78/0013-06$02.00/0 Copyright 1978 American Society for Microbiology Vol. 13, No. 6 Printed in U.S.A. Oxidation of Escherichia coli Sulfhydryl

More information

Molecular Cell Biology Problem Drill 16: Intracellular Compartment and Protein Sorting

Molecular Cell Biology Problem Drill 16: Intracellular Compartment and Protein Sorting Molecular Cell Biology Problem Drill 16: Intracellular Compartment and Protein Sorting Question No. 1 of 10 Question 1. Which of the following statements about the nucleus is correct? Question #01 A. The

More information

SUPPLEMENTARY INFORMATION. Bacterial strains and growth conditions. Streptococcus pneumoniae strain R36A was

SUPPLEMENTARY INFORMATION. Bacterial strains and growth conditions. Streptococcus pneumoniae strain R36A was SUPPLEMENTARY INFORMATION Bacterial strains and growth conditions. Streptococcus pneumoniae strain R36A was grown in a casein-based semisynthetic medium (C+Y) supplemented with yeast extract (1 mg/ml of

More information

Biomolecular Mass Spectrometry

Biomolecular Mass Spectrometry Lipids ot different than other organic small molecules Carbohydrates Polymers of monosaccharides linked via glycosidic bonds (acetals/ ketals) many different combinationsvery interesting no time ucleic

More information

Chlamydia. By Madhuri Reddy

Chlamydia. By Madhuri Reddy Chlamydia By Madhuri Reddy Disease- Chlamydia Etiologic agent Chlamydial infection is caused by the genera Chlamydia, of which the type of species is Chlamydia trachomatis. This infection can causes diseases

More information

Supporting Information

Supporting Information Translation of DNA into Synthetic N-Acyloxazolidines Xiaoyu Li, Zev. J. Gartner, Brian N. Tse and David R. Liu* Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts

More information

Molecular Detection and Seroepidemiology of the Chlamydia pneumoniae Bacteriophage ( Cpn1)

Molecular Detection and Seroepidemiology of the Chlamydia pneumoniae Bacteriophage ( Cpn1) JOURNAL OF CLINICAL MICROBIOLOGY, Nov. 2002, p. 4010 4014 Vol. 40, No. 11 0095-1137/02/$04.00 0 DOI: 10.1128/JCM.40.11.4010 4014.2002 Copyright 2002, American Society for Microbiology. All Rights Reserved.

More information

Probing protein interactions in living cells of Pseudomonas aeruginosa by chemical cross-linking

Probing protein interactions in living cells of Pseudomonas aeruginosa by chemical cross-linking Probing protein interactions in living cells of Pseudomonas aeruginosa by chemical cross-linking Arti Navare, Richard Siehnel, Kirsten Beck, Alejandro Wolf-Yadlin, Pradeep Singh, James E. Bruce University

More information

SCS MOLECULAR WEIGHT MARKERS 2,500-17,000 Caltons

SCS MOLECULAR WEIGHT MARKERS 2,500-17,000 Caltons LECTROPHORES/S Revised November 1992 SCS MOLECULAR WEIGHT MARKERS 2,500-17,000 Caltons I NTRODUCTION Electrophoresis in polyacrylamide gels in the presence of sodium dodecyl sulfate (SDS), an anionic detergent,

More information

Ch 4. Functional Anatomy of Prokaryotic and Eukaryotic Cells

Ch 4. Functional Anatomy of Prokaryotic and Eukaryotic Cells Ch 4 Functional Anatomy of Prokaryotic and Eukaryotic Cells Objectives Compare and contrast the overall cell structure of prokaryotes and eukaryotes. Identify the three basic shapes of bacteria. Describe

More information

Chapter 3 Review Assignment

Chapter 3 Review Assignment Class: Date: Chapter 3 Review Assignment Multiple Choice 40 MC = 40 Marks Identify the choice that best completes the statement or answers the question. 1. Which of the following organelles produces transport

More information

Lecture 3. Tandem MS & Protein Sequencing

Lecture 3. Tandem MS & Protein Sequencing Lecture 3 Tandem MS & Protein Sequencing Nancy Allbritton, M.D., Ph.D. Department of Physiology & Biophysics 824-9137 (office) nlallbri@uci.edu Office- Rm D349 Medical Science D Bldg. Tandem MS Steps:

More information

The Cell Organelles. Eukaryotic cell. The plasma membrane separates the cell from the environment. Plasma membrane: a cell s boundary

The Cell Organelles. Eukaryotic cell. The plasma membrane separates the cell from the environment. Plasma membrane: a cell s boundary Eukaryotic cell The Cell Organelles Enclosed by plasma membrane Subdivided into membrane bound compartments - organelles One of the organelles is membrane bound nucleus Cytoplasm contains supporting matrix

More information

Problem Set 5, 7.06, Spring of 13

Problem Set 5, 7.06, Spring of 13 Problem Set 5, 7.06, Spring 2003 1 of 13 1. In order to please your demanding thesis advisor, you've completed an extensive fractionation and biochemical purification of proteins localized to the mitochondria,

More information

BIOL 455 GENERAL MICROBIOLOGY Second Lecture Exam SPRING 2002 EXAM VERSION #1 EXAM VERSION #1 EXAM VERSION #1

BIOL 455 GENERAL MICROBIOLOGY Second Lecture Exam SPRING 2002 EXAM VERSION #1 EXAM VERSION #1 EXAM VERSION #1 BIOL 455 GENERAL MICROBIOLOGY Second Lecture Exam SPRING 2002 EXAM VERSION #1 EXAM VERSION #1 EXAM VERSION #1 CORRECTLY MARK YOUR STUDENT NUMBER and EXAM VERSION ON THE ANSWER CARD! MARK THE APPROPRIATE

More information

Significance and Functions of Carbohydrates. Bacterial Cell Walls

Significance and Functions of Carbohydrates. Bacterial Cell Walls Biochemistry 462a - Carbohydrate Function Reading - Chapter 9 Practice problems - Chapter 9: 2, 4a, 4b, 6, 9, 10, 13, 14, 15, 16a, 17; Carbohydrate extra problems Significance and Functions of Carbohydrates

More information

PNGase F Instruction Manual

PNGase F Instruction Manual PNGase F Instruction Manual Catalog Number 170-6883 Bio-Rad Laboratories, 2000 Alfred Nobel Dr., Hercules, CA 94547 4006094 Rev A Table of Contents Section 1 Introduction...1 Section 2 Kit Components and

More information

Human Oxidized LDL ELISA Kit (MDA-LDL Quantitation), General

Human Oxidized LDL ELISA Kit (MDA-LDL Quantitation), General Human Oxidized LDL ELISA Kit (MDA-LDL Quantitation), General For the detection and quantitation of human OxLDL in plasma, serum or other biological fluid samples Cat. No. KT-959 For Research Use Only.

More information

Sodium-Lauryl Sarcosinate

Sodium-Lauryl Sarcosinate JOURNAL OF BACTERIOLOGY, Sept. 1973, p 717-722 Copyright 0 1973 American Society for Microbiology Vol. 115, No. 3 Printed in U.SA. Solubilization of the Cytoplasmic Membrane of Escherichia coli by the

More information

Chlamydia trachomatis IncA Is Localized to the Inclusion Membrane and Is Recognized by Antisera from Infected Humans and Primates

Chlamydia trachomatis IncA Is Localized to the Inclusion Membrane and Is Recognized by Antisera from Infected Humans and Primates INFECTION AND IMMUNITY, Dec. 1998, p. 6017 6021 Vol. 66, No. 12 0019-9567/98/$04.00 0 Copyright 1998, American Society for Microbiology. All Rights Reserved. Chlamydia trachomatis IncA Is Localized to

More information

130327SCH4U_biochem April 09, 2013

130327SCH4U_biochem April 09, 2013 Option B: B1.1 ENERGY Human Biochemistry If more energy is taken in from food than is used up, weight gain will follow. Similarly if more energy is used than we supply our body with, weight loss will occur.

More information

Glycoprotein Synthesis by D-Glucosamine Hydrochloride

Glycoprotein Synthesis by D-Glucosamine Hydrochloride JOURNAL OF VIROLOGY, Apr. 1974, p. 775-779 Copyright 0 1974 American Society for Microbiology Vol. 13, No. 4 Printed in U.S.A. Selective Inhibition of Newcastle Disease Virus-Induced Glycoprotein Synthesis

More information

Identification of the Virucidal Agent in Wastewater Sludge

Identification of the Virucidal Agent in Wastewater Sludge APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Apr. 1977, p. 860-864 Copyright X) 1977 American Society for Microbiology Vol. 33, No. 4 Printed in U.S.A. Identification of the Virucidal Agent in Wastewater Sludge

More information

OxiSelect Human Oxidized LDL ELISA Kit (OxPL-LDL Quantitation)

OxiSelect Human Oxidized LDL ELISA Kit (OxPL-LDL Quantitation) Product Manual OxiSelect Human Oxidized LDL ELISA Kit (OxPL-LDL Quantitation) Catalog Number STA-358 96 assays FOR RESEARCH USE ONLY Not for use in diagnostic procedures Introduction Lipoproteins are submicroscopic

More information

Biology Multiple Choice, 2 pt each.

Biology Multiple Choice, 2 pt each. Biology 3340 Spring 2007 Name Exam 1, Version A Write your name on both the exam booklet and the mark sense sheet. On the upper left corner of the mark sense sheet in the Key ID box, mark the version letter

More information

Expression of acid base transporters in the kidney collecting duct in Slc2a7 -/-

Expression of acid base transporters in the kidney collecting duct in Slc2a7 -/- Supplemental Material Results. Expression of acid base transporters in the kidney collecting duct in Slc2a7 -/- and Slc2a7 -/- mice. The expression of AE1 in the kidney was examined in Slc26a7 KO mice.

More information

TRANSPORT OF AMINO ACIDS IN INTACT 3T3 AND SV3T3 CELLS. Binding Activity for Leucine in Membrane Preparations of Ehrlich Ascites Tumor Cells

TRANSPORT OF AMINO ACIDS IN INTACT 3T3 AND SV3T3 CELLS. Binding Activity for Leucine in Membrane Preparations of Ehrlich Ascites Tumor Cells Journal of Supramolecular Structure 4:441 (401)-447 (407) (1976) TRANSPORT OF AMINO ACIDS IN INTACT 3T3 AND SV3T3 CELLS. Binding Activity for Leucine in Membrane Preparations of Ehrlich Ascites Tumor Cells

More information

Microalbuminuric Diabetic patients N=18

Microalbuminuric Diabetic patients N=18 ONLINE APPENDIX Table A1 Clinical and laboratory features of healthy subjects, type 2 diabetic patients and NDCKD patients enrolled in the present study. Healthy Subjects N= 2 Normoalbuminuric Diabetic

More information

3. When he discovered enzymes in 1897, Eduard Buchner was investigating the causes of. disease antisepsis spontaneous generation fermentation

3. When he discovered enzymes in 1897, Eduard Buchner was investigating the causes of. disease antisepsis spontaneous generation fermentation Chapter 2 1. Which of the following elements forms the backbone of organic molecules? carbon fluorine chlorine sodium carbon 2. The smallest chemical unit of matter is the. neutron element atom proton

More information

Zool 3200: Cell Biology Exam 4 Part I 2/3/15

Zool 3200: Cell Biology Exam 4 Part I 2/3/15 Name: Key Trask Zool 3200: Cell Biology Exam 4 Part I 2/3/15 Answer each of the following questions in the space provided, explaining your answers when asked to do so; circle the correct answer or answers

More information

Separation of Main Proteins in Plasma and Serum

Separation of Main Proteins in Plasma and Serum BCH 471 Experiment (2) Separation of Main Proteins in Plasma and Serum PLASMA PROTEINS Mw The main plasma proteins are: þ Albumin (36-50 g/l), Mw 66.241kDa. þ Globulins (18-32 g/l), Mw of globulins Cover

More information

Cell Physiology

Cell Physiology Cell Physiology 21-10-2018 1 The two major parts of a typical cell are the nucleus and the cytoplasm. The nucleus is separated from the cytoplasm by a nuclear membrane, and the cytoplasm is separated from

More information

Biological Mass Spectrometry. April 30, 2014

Biological Mass Spectrometry. April 30, 2014 Biological Mass Spectrometry April 30, 2014 Mass Spectrometry Has become the method of choice for precise protein and nucleic acid mass determination in a very wide mass range peptide and nucleotide sequencing

More information