Brain Network Imaging and Brain Stimulation. Michael D. Fox, MD, PhD

Size: px
Start display at page:

Download "Brain Network Imaging and Brain Stimulation. Michael D. Fox, MD, PhD"

Transcription

1 Brain Network Imaging and Brain Stimulation Michael D. Fox, MD, PhD Director, Laboratory for Brain Network Imaging and Visualization Associate Director, Berenson-Allen Center for Noninvasive Brain Stimulation Associate Director, Deep Brain Stimulation Program Beth Israel Deaconess Medical Center, Harvard Medical School Neuroscientist, Department of Neurology and Martinos Center for Biomedical Imaging Massachusetts General Hospital, Harvard Medical School

2 Disclosures Intellectual property using connectivity imaging to guide brain stimulation (no royalties)

3 Outline Intro to brain network imaging What can network imaging do for brain stimulation? What can brain stimulation do for brain networks?

4 Outline Intro to brain network imaging What can network imaging do for brain stimulation? What can brain stimulation do for brain networks?

5 Types of Brain Network Imaging Co-activation Patterns Resting state functional connectivity MRI (Rs-fcMRI) Diffusion tensor imaging (DTI)

6 % BOLD Change Classical Neuroimaging Open Open Open Open Closed Closed Closed Closed Time (s) Open Closed = Fox and Raichle (2007) Nat. Rev. Neuro.

7 % BOLD Change BOLD Data Is Very Noisy Open Open Open Open Closed Closed Closed Closed Time (s) Open Closed = Fox and Raichle (2007) Nat. Rev. Neuro.

8 % BOLD Change Spontaneous Fluctuations ( Noise ) in the BOLD Signal Left Motor Cortex Time (sec)

9 % BOLD Change Spontaneous Fluctuations are Specifically Correlated Left Motor Cortex Right Motor Cortex Time (sec) After Bharat Biswal and colleagues (1995) Magnetic Resonance in Medicine

10 Generation of Resting State Functional Connectivity Maps % BOLD Change Time (sec) -1.5 Fox and Raichle (2007) Nat. Rev. Neuro.

11 Generation of Resting State Functional Connectivity Maps Z score, fixed effects, N = 10 % BOLD Change Time (sec) -1.5 Fox and Raichle (2007) Nat. Rev. Neuro.

12 % BOLD Change Time (sec)

13 % BOLD Change Time (sec)

14 % BOLD Change Time (sec)

15 % BOLD Change Time (sec) Fox et al. (2005) PNAS

16 % BOLD Change Task-induced changes negative positive Time (sec) Fox et al. (2005) PNAS

17 Diffusion Tractography Fox et al PNAS

18 Results match anatomical connectivity relevant to DBS response Fox et al. PNAS In Press

19 DTI Network Rs-fcMRI Network Honey et al PNAS

20 Research Applications of Rs-fcMRI Trial to trial variability in behavior (Fox et al Neuron) Thalamic and cerebellar connections (Zhang et al J. Neurophys, Buckner et al J. Neurophys.) Individual differences in performance (Hampson et al J. Neurosci, Koyama et al J. Neurosci.) Correlates of learning (Lewis et al PNAS)

21 Clinical Applications of Rs-fcMRI Understanding disease pathophysiology Biomarkers / Diagnosis Guiding treatment

22 Understanding Peduncular Hallucinosis Boes et al Brain

23 Understanding Peduncular Hallucinosis Boes et al Brain

24 Disease/Condition References Findings Alzheimer s (Allen et al. 2007; Greicius et al. 2004; Li et al. 2002; Supekar et al. 2008; Wang et al. 2006a; Wang et al. 2007; Wang et al. Decreased correlations within the default mode network including hippocampi and decreased anticorrelations between the DMN and TPN 2006b) PIB positive (Hedden et al. 2009; Sheline et al. 2009) Decreased correlations within the default mode network Mild Cognitive Impairment (Li et al. 2002; Sorg et al. 2007) Decreased correlations within the default mode network and decreased anticorrelations between the DMN and TPN Fronto-Temporal Dementia (Seeley et al. 2007a; Seeley et al. 2008) Decreased correlations within the salience network Healthy Aging (Andrews-Hanna et al. 2007; Damoiseaux et al. 2007) Decreased correlations within the default mode network Multiple Sclerosis (De Luca et al. 2005; Lowe et al. 2002) Decreased correlations within the somatomotor network ALS (Mohammadi et al. 2009) Decreased connectivity in DMN and premotor cortex Depression (Anand et al. 2009; Anand et al. 2005a; b; Bluhm et al. 2009a; Greicius et al. 2007) Variable: Decreased connectivity between dacc and limbic regions (amygdala, medial thalamus, pallidostriatum) increased connectivity within the DMN (esp. subgenual prefrontal cortex), decreased connectivity between DMN and caudate Bipolar (Anand et al. 2009) Decreased corticolimbic connectivity PTSD (Bluhm et al. 2009c) Decreased connectivity in the DMN Schizophrenia (Bluhm et al. 2007; Bluhm et al. 2009b; Jafri et al. 2008; Liang et al. 2006; Liu et al. 2006; Liu et al. 2008; Salvador et al. 2007; Whitfield-Gabrieli et al. 2009; Zhou et al. 2007) Variable: Decreased or increased DMN connectivity Schizophrenia 1 relatives (Whitfield-Gabrieli et al. 2009) Increased connectivity in the DMN ADHD (Cao et al. 2006; Castellanos et al. 2008; Tian et al. 2006; Wang et al. 2008; Zang et al. 2007; Zhu et al. 2008; Zhu et al. Variable: reduced connectivity within the DMN, reduced anticorrelations, increased connectivity in salience 2005) Autism (Cherkassky et al. 2006; Kennedy and Courchesne 2008; Monk et al. 2009; Weng et al. 2009) Decreased connectivity within the DMN (although hippocampus is variable and connectivity may be increased in younger patients) Tourette Syndrome (Church et al. 2009) Delayed maturation of task-control and cingulo-opercular networks Epilepsy (Bettus et al. 2009; Lui et al. 2008; Waites et al. 2006; Zhang et al. 2009a; Zhang et al. 2009b) Variable: decreased connectivity in mult. networks including medial temporal lobe, decreased connectivity in DMN with generalized seizure Blindness (Liu et al. 2007; Yu et al. 2008) decreased connectivity within the visual cortices and between visual cortices and somatosensory, frontal motor and temporal multisensory cortices Chronic Pain (Cauda et al. 2009a; Cauda et al. 2009c; Cauda et al. 2009d; Variable: Increased/decreased connectivity within the salience network, decreased Greicius et al. 2008) connectivity in attention networks Neglect (He et al. 2007) Decreased connectivity within the dorsal and ventral attention networks Vegetative State (Boly et al. 2009; Cauda et al. 2009b) Progressively decreased DMN connectivity with progressive states of impaired consciousness Fox and Greicius (2010) Frontiers Sys Neurosci

25 Outline Intro to brain network imaging What can network imaging do for brain stimulation? What can brain stimulation do for brain networks?

26 Therapeutic Brain Stimulation Deep Brain Stimulation (DBS) Implanted by Neurosurgeon Constant stimulation Hz FDA approved for Parkinson s, essential tremor, dystonia, OCD Transcranial Magnetic Stimulation (TMS) Noninvasive Repeated sessions of stimulation 10 Hz (excitatory), 1Hz (inhibitory) FDA approved for depression

27 Therapeutic Brain Stimulation Deep Brain Stimulation (DBS) Transcranial Magnetic Stimulation (TMS) Both are showing early signs of utility in many of the same disorders

28 Disease Invasive (DBS) Noninvasive (TMS, tdcs) Addiction NA DLPFC (laterality unclear) Alzheimer s Fornix Bilateral DLPFC (+/- parietal, temporal) Anorexia NA, Subgenual L DLPFC Depression Subgenual, VC/VS, NA, MFB, habenula Left DLPFC, R DLPFC Dystonia GPi SMA/ACC, Premotor Epilepsy Essential Tremor Thalamus (AN, CM), MTL VIM Active EEG focus Cerebellum Midline Cerebellum, Lateral Cerebellum, M1 Gait Dysfunction PPN M1 (leg area) Huntington s GPi SMA Minimally Conscious Thalamus (intralaminar/cl, CM/Pf) R DLPFC, M1 Obsessive Compulsive Disorder VC/VS, NA, ALIC, STN L orbitofrontal, Pre-SMA Pain PAG, Thalamus (VPL/VPM) M1 Parkinson s STN, GPi M1, SMA Tourette s Thalamus (CM/Pf), GPi, NA, ALIC SMA Fox et al PNAS

29 Therapeutic Brain Stimulation Deep Brain Stimulation (DBS) Transcranial Magnetic Stimulation (TMS) Both propagate beyond the site of stimulation to impact a distributed network of brain regions

30 TMS propagates trans-synaptically

31 TMS propagates trans-synaptically Fox et al Neuroimage

32 TMS propagates trans-synaptically Fox et al Neuroimage

33 TMS propagates trans-synaptically Fox et al Neuroimage

34 Guiding Logic 1. Both techniques are useful in many of the same diseases 2. Both techniques propagate through anatomical connections to impact distributed brain networks

35 Guiding Logic 1. Both techniques are useful in many of the same diseases 2. Both techniques propagate through anatomical connections to impact distributed brain networks Are both techniques targeting the same network?

36 Disease Invasive (DBS) Noninvasive (TMS, tdcs) Addiction NA DLPFC (laterality unclear) Alzheimer s Fornix Bilateral DLPFC (+/- parietal, temporal) Anorexia NA, Subgenual L DLPFC Depression Subgenual, VC/VS, NA, MFB, habenula Left DLPFC, R DLPFC Dystonia GPi SMA/ACC, Premotor Epilepsy Essential Tremor Thalamus (AN, CM), MTL VIM Active EEG focus Cerebellum Midline Cerebellum, Lateral Cerebellum, M1 Gait Dysfunction PPN M1 (leg area) Huntington s GPi SMA Minimally Conscious Thalamus (intralaminar/cl, CM/Pf) R DLPFC, M1 Obsessive Compulsive Disorder VC/VS, NA, ALIC, STN L orbitofrontal, Pre-SMA Pain PAG, Thalamus (VPL/VPM) M1 Parkinson s STN, GPi M1, SMA Tourette s Thalamus (CM/Pf), GPi, NA, ALIC SMA Fox et al PNAS

37 Disease Invasive (DBS) Noninvasive (TMS, tdcs) Addiction NA DLPFC (laterality unclear) Alzheimer s Fornix Bilateral DLPFC (+/- parietal, temporal) Anorexia NA, Subgenual L DLPFC Depression Subgenual, VC/VS, NA, MFB, habenula Left DLPFC, R DLPFC Dystonia GPi SMA/ACC, Premotor Epilepsy Essential Tremor Thalamus (AN, CM), MTL VIM Active EEG focus Cerebellum Midline Cerebellum, Lateral Cerebellum, M1 Gait Dysfunction PPN M1 (leg area) Huntington s GPi SMA Minimally Conscious Thalamus (intralaminar/cl, CM/Pf) R DLPFC, M1 Obsessive Compulsive Disorder VC/VS, NA, ALIC, STN L orbitofrontal, Pre-SMA Pain PAG, Thalamus (VPL/VPM) M1 Parkinson s STN, GPi M1, SMA Tourette s Thalamus (CM/Pf), GPi, NA, ALIC SMA Fox et al PNAS

38 BOLD Signal (% change) Subgenual Seed Time (sec) Fox et al Biol Psych.

39 BOLD Signal (% change) Subgenual Seed Time (sec) Fox et al Biol Psych.

40 BOLD Signal (% change) Subgenual Seed Time (sec) Fox et al Biol Psych.

41 Disease Invasive (DBS) Noninvasive (TMS, tdcs) Addiction NA DLPFC (laterality unclear) Alzheimer s Fornix Bilateral DLPFC (+/- parietal, temporal) Anorexia NA, Subgenual L DLPFC Depression Subgenual, VC/VS, NA, MFB, habenula Left DLPFC, R DLPFC Dystonia GPi SMA/ACC, Premotor Epilepsy Essential Tremor Thalamus (AN, CM), MTL VIM Active EEG focus Cerebellum Midline Cerebellum, Lateral Cerebellum, M1 Gait Dysfunction PPN M1 (leg area) Huntington s GPi SMA Minimally Conscious Thalamus (intralaminar/cl, CM/Pf) R DLPFC, M1 Obsessive Compulsive Disorder VC/VS, NA, ALIC, STN L orbitofrontal, Pre-SMA Pain PAG, Thalamus (VPL/VPM) M1 Parkinson s STN, GPi M1, SMA Tourette s Thalamus (CM/Pf), GPi, NA, ALIC SMA Fox et al PNAS

42 Invasive and Noninvasive Brain Stimulation Sites are Linked Across 14 Diseases Fox et al PNAS

43 Invasive and Noninvasive Brain Stimulation Sites are Linked Across 14 Diseases DBS Correlation (r) P < Best Noninvasive Stimulation Site Random Noninvasive Stimulation Sites Fox et al PNAS

44 Ineffective sites are characterized by an absence of functional connectivity Parkinson s Disease Pain Fox et al PNAS Essential Tremor Depression

45 The sign of the correlation (positive vs negative) relates to the reported utility of excitatory vs inhibitory stimulation Fox et al PNAS

46 The sign of the correlation (positive vs negative) relates to the reported utility of excitatory vs inhibitory stimulation Fox et al PNAS

47 Can we take advantage of network imaging to improve brain stimulation?

48 Targeting TMS in Depression: The 5 cm method Herwig et al BIOL PSYCHIATRY 50:58 61

49 Targeting TMS in Depression: The 5 cm method Herwig et al BIOL PSYCHIATRY 50:58 61

50 Targeting TMS in Depression: The 5 cm method Herwig et al BIOL PSYCHIATRY 50:58 61

51 Targeting TMS in Depression: The 5 cm method Only hit the DLPFC ~40% of the time Herwig et al BIOL PSYCHIATRY 50:58 61

52 TMS targets vary in their efficacy Herbsman et al Ineffective Effective 18% responders 42% responders Fitzgerald et al. 2009

53 Hypothesis: More effective TMS targets show stronger connectivity to the subgenual than less effective targets

54 Subgenual Correlation (r) Effective vs. Ineffective TMS Targets vs More Effective 5cm Less Effective 5cm Fitzgerald Target Avg. 5cm Target P < Subgenual Correlation (r) vs P < 5 x 10-8 Fox et al Biol Psych.

55 Effective vs. Ineffective TMS Targets vs More Effective 5cm Less Effective 5cm Fitzgerald Target Avg. 5cm Target vs Fox et al Biol Psych. 0

56 Effective vs. Ineffective TMS Targets

57 Optimizing the TMS target for depression Subgenual Seed Efficacy-based Seed Map Fox et al Biol Psych.

58 DLPFC Left DLPFC connectivity is highly variable between subjects Mueller and Liu et al. Neuron 2013

59 Individualized TMS targets for depression Subgenual Seed Efficacybased Seed Map Fox et al Neuroimage

60 Individualized TMS targets for depression Subgenual Seed Efficacybased Seed Map Fox et al Neuroimage

61 Individual differences in functional connectivity are reproducible across days Subgenual Seed Efficacybased Seed Map Fox et al Neuroimage

62 Can we predict individual patient responses to TMS?

63 Why pick just one site? (+) (-)

64 Why pick just one site? Ruffini, Fox et al Neuroimage

65 Outline Intro to brain network imaging What can network imaging do for brain stimulation? What can brain stimulation do for brain networks?

66 Disease/Condition References Findings Alzheimer s (Allen et al. 2007; Greicius et al. 2004; Li et al. 2002; Supekar et al. 2008; Wang et al. 2006a; Wang et al. 2007; Wang et al. Decreased correlations within the default mode network including hippocampi and decreased anticorrelations between the DMN and TPN 2006b) PIB positive (Hedden et al. 2009; Sheline et al. 2009) Decreased correlations within the default mode network Mild Cognitive Impairment (Li et al. 2002; Sorg et al. 2007) Decreased correlations within the default mode network and decreased anticorrelations between the DMN and TPN Fronto-Temporal Dementia (Seeley et al. 2007a; Seeley et al. 2008) Decreased correlations within the salience network Healthy Aging (Andrews-Hanna et al. 2007; Damoiseaux et al. 2007) Decreased correlations within the default mode network Multiple Sclerosis (De Luca et al. 2005; Lowe et al. 2002) Decreased correlations within the somatomotor network ALS (Mohammadi et al. 2009) Decreased connectivity in DMN and premotor cortex Depression (Anand et al. 2009; Anand et al. 2005a; b; Bluhm et al. 2009a; Greicius et al. 2007) Variable: Decreased connectivity between dacc and limbic regions (amygdala, medial thalamus, pallidostriatum) increased connectivity within the DMN (esp. subgenual prefrontal cortex), decreased connectivity between DMN and caudate Bipolar (Anand et al. 2009) Decreased corticolimbic connectivity PTSD (Bluhm et al. 2009c) Decreased connectivity in the DMN Schizophrenia (Bluhm et al. 2007; Bluhm et al. 2009b; Jafri et al. 2008; Liang et al. 2006; Liu et al. 2006; Liu et al. 2008; Salvador et al. 2007; Whitfield-Gabrieli et al. 2009; Zhou et al. 2007) Variable: Decreased or increased DMN connectivity Schizophrenia 1 relatives (Whitfield-Gabrieli et al. 2009) Increased connectivity in the DMN ADHD (Cao et al. 2006; Castellanos et al. 2008; Tian et al. 2006; Wang et al. 2008; Zang et al. 2007; Zhu et al. 2008; Zhu et al. Variable: reduced connectivity within the DMN, reduced anticorrelations, increased connectivity in salience 2005) Autism (Cherkassky et al. 2006; Kennedy and Courchesne 2008; Monk et al. 2009; Weng et al. 2009) Decreased connectivity within the DMN (although hippocampus is variable and connectivity may be increased in younger patients) Tourette Syndrome (Church et al. 2009) Delayed maturation of task-control and cingulo-opercular networks Epilepsy (Bettus et al. 2009; Lui et al. 2008; Waites et al. 2006; Zhang et al. 2009a; Zhang et al. 2009b) Variable: decreased connectivity in mult. networks including medial temporal lobe, decreased connectivity in DMN with generalized seizure Blindness (Liu et al. 2007; Yu et al. 2008) decreased connectivity within the visual cortices and between visual cortices and somatosensory, frontal motor and temporal multisensory cortices Chronic Pain (Cauda et al. 2009a; Cauda et al. 2009c; Cauda et al. 2009d; Variable: Increased/decreased connectivity within the salience network, decreased Greicius et al. 2008) connectivity in attention networks Neglect (He et al. 2007) Decreased connectivity within the dorsal and ventral attention networks Vegetative State (Boly et al. 2009; Cauda et al. 2009b) Progressively decreased DMN connectivity with progressive states of impaired consciousness Fox and Greicius (2010) Frontiers Sys Neurosci

67 Eldaief et al PNAS

68 Conclusions Brain stimulation propagates through brain networks Network imaging can help us understand and guide brain stimulation Brain stimulation might be used to modify connectivity in brain networks altered by disease

69 Marc Raichle, Avi Snyder Mike Greicius Acknowledgements Alvaro Pascual-Leone, Aaron Boes, Anne Weigand, Simon Laganiere, David Fischer Randy Buckner, Hesheng Liu, Justin Vincent, Tianyi Qian, Sophia Mueller, Verne Caviness Andres Lozano Giulio Ruffini Mallar Chakravarty Sashank Prasad Funding NINDS (R25, K23) NIMH (R21) AAN / ABF Sidney Baer Foundation

70 Questions? Contact:

Disclosures 10/19/2016. Modulating Brain Networks to Promote Recovery from Brain Injury November 12, Modulating Brain Networks

Disclosures 10/19/2016. Modulating Brain Networks to Promote Recovery from Brain Injury November 12, Modulating Brain Networks Modulating Brain Networks to Promote Recovery from Brain Injury November 12, 2016 Alvaro Pascual-Leone, MD, PhD Berenson-Allen Center for Noninvasive Brain Stimulation Harvard Catalyst Beth Israel Deaconess

More information

Therapeutic Uses of Noninvasive Brain Stimulation Current & Developing

Therapeutic Uses of Noninvasive Brain Stimulation Current & Developing Therapeutic Uses of Noninvasive Brain Stimulation Current & Developing Alvaro Pascual-Leone, MD, PhD Berenson-Allen Center for Noninvasive Brain Stimulation Harvard Catalyst Beth Israel Deaconess Medical

More information

REVIEWS. Disease and the brain s dark energy. Dongyang Zhang and Marcus E. Raichle

REVIEWS. Disease and the brain s dark energy. Dongyang Zhang and Marcus E. Raichle Disease and the brain s dark energy Dongyang Zhang and Marcus E. Raichle Abstract Brain function has traditionally been studied in terms of physiological responses to environmental demands. This approach,

More information

Clinical applications of resting state functional connectivity

Clinical applications of resting state functional connectivity SYSTEMS NEUROSCIENCE Review Article published: 17 June 2010 doi: 10.3389/fnsys.2010.00019 Clinical applications of resting state functional connectivity Michael D. Fox 1 * and Michael Greicius 2 1 Partners

More information

Resting-State functional Connectivity MRI (fcmri) NeuroImaging

Resting-State functional Connectivity MRI (fcmri) NeuroImaging Resting-State functional Connectivity MRI (fcmri) NeuroImaging Randy L. Buckner et. at., The Brain s Default Network: Anatomy, Function, and Relevance to Disease, Ann. N. Y. Acad. Sci. 1124: 1-38 (2008)

More information

Neuroimaging in Clinical Practice

Neuroimaging in Clinical Practice Neuroimaging in Clinical Practice John Gabrieli Department of Brain and Cognitive Sciences & Martinos Imaging Center at the McGovern Institute for Brain Research, MIT Disclosures Neither I nor my spouse/partner

More information

The possibility of deep brain stimulation to treat eating disorders.

The possibility of deep brain stimulation to treat eating disorders. The possibility of deep brain stimulation to treat eating disorders. Andres M Lozano MD PhD Professor and Dan Family Chair of Neurosurgery Canada Research Chair in Neuroscience Toronto Western Hospital

More information

Transcranial Magnetic Stimulation for the Treatment of Depression

Transcranial Magnetic Stimulation for the Treatment of Depression Transcranial Magnetic Stimulation for the Treatment of Depression Paul E. Holtzheimer, MD Associate Professor Departments of Psychiatry and Surgery Geisel School of Medicine at Dartmouth Dartmouth-Hitchcock

More information

SUPPLEMENTARY MATERIAL. Table. Neuroimaging studies on the premonitory urge and sensory function in patients with Tourette syndrome.

SUPPLEMENTARY MATERIAL. Table. Neuroimaging studies on the premonitory urge and sensory function in patients with Tourette syndrome. SUPPLEMENTARY MATERIAL Table. Neuroimaging studies on the premonitory urge and sensory function in patients with Tourette syndrome. Authors Year Patients Male gender (%) Mean age (range) Adults/ Children

More information

Neuroimaging of ADHD and Executive Functions

Neuroimaging of ADHD and Executive Functions Neuroimaging of ADHD and Executive Functions John Gabrieli Department of Brain and Cognitive Sciences & Martinos Imaging Center at the McGovern Institute for Brain Research, MIT Disclosures Neither I nor

More information

Resting-state functional connectivity in neuropsychiatric disorders Michael Greicius

Resting-state functional connectivity in neuropsychiatric disorders Michael Greicius Resting-state functional connectivity in neuropsychiatric disorders Michael Greicius Stanford University School of Medicine, Neurology and Neurological Sciences, Stanford, California, USA Correspondence

More information

Aging, cognitive-motor function, and tcs. Brad Manor, PhD. October 31, 2017 LEASE DO NOT COPY

Aging, cognitive-motor function, and tcs. Brad Manor, PhD. October 31, 2017 LEASE DO NOT COPY Aging, cognitive-motor function, and tcs Brad Manor, PhD October 31, 2017 Disclosures - NIH / NIA - Michael J. Fox Foundation - U.S.-Israel Binational Science Foundation - Marcus Applebaum Research Award

More information

Anatomy of the basal ganglia. Dana Cohen Gonda Brain Research Center, room 410

Anatomy of the basal ganglia. Dana Cohen Gonda Brain Research Center, room 410 Anatomy of the basal ganglia Dana Cohen Gonda Brain Research Center, room 410 danacoh@gmail.com The basal ganglia The nuclei form a small minority of the brain s neuronal population. Little is known about

More information

obsessive-compulsive disorder; OCD

obsessive-compulsive disorder; OCD 9(1), 50 56, 2017 OCD OCD DBSECT tdcsrtms DBS ECT 6 tdcs rtms obsessive-compulsive disorder; OCD 2013 OCD 2012 deep brain stimulation; DBS electroconvulsive therapy; ECT transcranial direct current stimulation;

More information

Neuroimaging and Neurostimulation: Going inside the black box

Neuroimaging and Neurostimulation: Going inside the black box Neuroimaging and Neurostimulation: Going inside the black box Benzi M. Kluger M.D., M.S. Director, Movement Disorders Center Associate Professor of Neurology & Psychiatry University of Colorado OUTLINE

More information

Est-ce que l'eeg a toujours sa place en 2019?

Est-ce que l'eeg a toujours sa place en 2019? Est-ce que l'eeg a toujours sa place en 2019? Thomas Bast Epilepsy Center Kork, Germany Does EEG still play a role in 2019? What a question 7T-MRI, fmri, DTI, MEG, SISCOM, Of ieeg course! /HFO, Genetics

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Development of the Brain s Functional Network Architecture

Development of the Brain s Functional Network Architecture Neuropsychol Rev (2010) 20:362 375 DOI 10.1007/s11065-010-9145-7 REVIEW Development of the Brain s Functional Network Architecture Alecia C. Vogel & Jonathan D. Power & Steven E. Petersen & Bradley L.

More information

Non-therapeutic and investigational uses of non-invasive brain stimulation

Non-therapeutic and investigational uses of non-invasive brain stimulation Non-therapeutic and investigational uses of non-invasive brain stimulation Robert Chen, MA, MBBChir, MSc, FRCPC Catherine Manson Chair in Movement Disorders Professor of Medicine (Neurology), University

More information

Investigations in Resting State Connectivity. Overview

Investigations in Resting State Connectivity. Overview Investigations in Resting State Connectivity Scott FMRI Laboratory Overview Introduction Functional connectivity explorations Dynamic change (motor fatigue) Neurological change (Asperger s Disorder, depression)

More information

Making Things Happen 2: Motor Disorders

Making Things Happen 2: Motor Disorders Making Things Happen 2: Motor Disorders How Your Brain Works Prof. Jan Schnupp wschnupp@cityu.edu.hk HowYourBrainWorks.net On the Menu in This Lecture In the previous lecture we saw how motor cortex and

More information

Resting-state Functional Connectivity and Spontaneous Brain Co-activation Xiao Liu, Ph.D.

Resting-state Functional Connectivity and Spontaneous Brain Co-activation Xiao Liu, Ph.D. Resting-state Functional Connectivity and Spontaneous Brain Co-activation Xiao Liu, Ph.D. Assistant Professor Department of Biomedical Engineering Institute for CyberScience Functional Magnetic Resonance

More information

The webinar will begin momentarily. Tractography-based Targeting for Functional Neurosurgery

The webinar will begin momentarily. Tractography-based Targeting for Functional Neurosurgery Welcome The webinar will begin momentarily. Tractography-based Targeting for Functional Neurosurgery Vibhor Krishna, MD, SM Assistant Professor, Center for Neuromoduation, Dept. of Neurosurgery and Dept.

More information

COGNITIVE SCIENCE 107A. Motor Systems: Basal Ganglia. Jaime A. Pineda, Ph.D.

COGNITIVE SCIENCE 107A. Motor Systems: Basal Ganglia. Jaime A. Pineda, Ph.D. COGNITIVE SCIENCE 107A Motor Systems: Basal Ganglia Jaime A. Pineda, Ph.D. Two major descending s Pyramidal vs. extrapyramidal Motor cortex Pyramidal system Pathway for voluntary movement Most fibers originate

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Cerebral Cortex 1. Sarah Heilbronner

Cerebral Cortex 1. Sarah Heilbronner Cerebral Cortex 1 Sarah Heilbronner heilb028@umn.edu Want to meet? Coffee hour 10-11am Tuesday 11/27 Surdyk s Overview and organization of the cerebral cortex What is the cerebral cortex? Where is each

More information

Neuroimaging and Assessment Methods

Neuroimaging and Assessment Methods Psych 2200, Lecture 5 Experimental Design and Brain Imaging Methods Tues Sept 15, 2015 Revised TA office hours (Sam), today 4-5p, and wed 11:30-1:30. I will not have office hours this thurs but you should

More information

Overview. Fundamentals of functional MRI. Task related versus resting state functional imaging for sensorimotor mapping

Overview. Fundamentals of functional MRI. Task related versus resting state functional imaging for sensorimotor mapping Functional MRI and the Sensorimotor System in MS Nancy Sicotte, MD, FAAN Professor and Vice Chair Director, Multiple Sclerosis Program Director, Neurology Residency Program Cedars-Sinai Medical Center

More information

Brian A. Coffman, PhD

Brian A. Coffman, PhD Brian A. Coffman, PhD Research Instructor Department of Psychiatry University of Pittsburgh School of Medicine UPMC Western Psychiatric Hospital Pittsburgh, PA Dr. Brian Coffman is a Research Instructor

More information

Resting-state fmri functional connectivity: a new perspective to evaluate pain modulation in migraine?

Resting-state fmri functional connectivity: a new perspective to evaluate pain modulation in migraine? DOI 10.1007/s10072-015-2145-x NEUROIMAGING OF HEADACHES Resting-state fmri functional connectivity: a new perspective to evaluate pain modulation in migraine? Bruno Colombo Maria Assunta Rocca Roberta

More information

BOLD Based MRI Functional Connectivity December 2, 2011

BOLD Based MRI Functional Connectivity December 2, 2011 BOLD Based MRI Functional Connectivity December 2, 2011 Luigi Maccotta, MD, PhD Adult Epilepsy Center Washington University School of Medicine American Epilepsy Society Annual Meeting Support Disclosure

More information

Introduction to Neurosurgical Subspecialties:

Introduction to Neurosurgical Subspecialties: Introduction to Neurosurgical Subspecialties: Functional Neurosurgery Brian L. Hoh, MD 1 and Gregory J. Zipfel, MD 2 1 University of Florida, 2 Washington University Functional Neurosurgery Functional

More information

Modulation of the Neural Circuitry Underlying Obsessive-Compulsive Disorder

Modulation of the Neural Circuitry Underlying Obsessive-Compulsive Disorder BRAIN STIMULATION LABORATORY Modulation of the Neural Circuitry Underlying Obsessive-Compulsive Disorder OCD Awareness Day NOLAN WILLIAMS, M.D. Instructor Department of Psychiatry Stanford University October

More information

Deep Brain Stimulation and Movement Disorders

Deep Brain Stimulation and Movement Disorders Deep Brain Stimulation and Movement Disorders Farrokh Farrokhi, MD Neurosurgery Maria Marsans, PA-C Neurosurgery Virginia Mason June 27, 2017 OBJECTIVES Understand the role of Deep Brain Stimulation (DBS)

More information

PACEMAKERS ARE NOT JUST FOR THE HEART! Ab Siadati MD

PACEMAKERS ARE NOT JUST FOR THE HEART! Ab Siadati MD PACEMAKERS ARE NOT JUST FOR THE HEART! Ab Siadati MD WHAT IS DEEP BRAIN STIMULATION? WHY SHOULD YOU CONSIDER DBS SURGERY FOR YOUR PATIENTS? HOW DOES DBS WORK? DBS electrical stimulation overrides abnormal

More information

10/3/2016. T1 Anatomical structures are clearly identified, white matter (which has a high fat content) appears bright.

10/3/2016. T1 Anatomical structures are clearly identified, white matter (which has a high fat content) appears bright. H2O -2 atoms of Hydrogen, 1 of Oxygen Hydrogen just has one single proton and orbited by one single electron Proton has a magnetic moment similar to the earths magnetic pole Also similar to earth in that

More information

Exploration and modulation of brain network interactions with noninvasive brain stimulation in combination with neuroimaging

Exploration and modulation of brain network interactions with noninvasive brain stimulation in combination with neuroimaging European Journal of Neuroscience European Journal of Neuroscience, Vol. 35, pp. 805 825, 2012 doi:10.1111/j.1460-9568.2012.08035.x REVIEW Exploration and modulation of brain network interactions with noninvasive

More information

Neuroscience Letters

Neuroscience Letters Neuroscience Letters 475 (2010) 20 24 Contents lists available at ScienceDirect Neuroscience Letters journal homepage: www.elsevier.com/locate/neulet Combining spatial and temporal information to explore

More information

Gangli della Base: un network multifunzionale

Gangli della Base: un network multifunzionale Gangli della Base: un network multifunzionale Prof. Giovanni Abbruzzese Centro per la Malattia di Parkinson e i Disordini del Movimento DiNOGMI, Università di Genova IRCCS AOU San Martino IST Basal Ganglia

More information

Neuromodulation: Harnessing Neuroplasticity with Brain Stimulation and Rehabilitation

Neuromodulation: Harnessing Neuroplasticity with Brain Stimulation and Rehabilitation Neuromodulation: Harnessing Neuroplasticity with Brain Stimulation and Rehabilitation Presenters: Cecília N. Prudente, PT, MS, PhD 1 Bernadette T. Gillick, PT, MS, PhD 1 Colum MacKinnon, PhD 2 Teresa J.Kimberley,

More information

Deep Brain Stimulation: Indications and Ethical Applications

Deep Brain Stimulation: Indications and Ethical Applications Deep Brain Stimulation Overview Kara D. Beasley, DO, MBe, FACOS Boulder Neurosurgical and Spine Associates (303) 562-1372 Deep Brain Stimulation: Indications and Ethical Applications Instrument of Change

More information

The motor regulator. 2) The cerebellum

The motor regulator. 2) The cerebellum The motor regulator 2) The cerebellum Motor control systems outside the cortex Cerebellum -controls neural programs for the executionl of skilled movements Feed-back and feed-forward control circuits By

More information

Combining tdcs and fmri. OHMB Teaching Course, Hamburg June 8, Andrea Antal

Combining tdcs and fmri. OHMB Teaching Course, Hamburg June 8, Andrea Antal Andrea Antal Department of Clinical Neurophysiology Georg-August University Goettingen Combining tdcs and fmri OHMB Teaching Course, Hamburg June 8, 2014 Classical Biomarkers for measuring human neuroplasticity

More information

Treatment of Depression: A Brief History

Treatment of Depression: A Brief History 2500 82nd Place Urbandale, Ia Treatment of Depression: A Brief History 1960 s to Present Community Based Services SSRI Antidepressants SNRI Antidepressants 1970 s to present 20% of patients do not respond

More information

Stuttering Research. Vincent Gracco, PhD Haskins Laboratories

Stuttering Research. Vincent Gracco, PhD Haskins Laboratories Stuttering Research Vincent Gracco, PhD Haskins Laboratories Stuttering Developmental disorder occurs in 5% of children Spontaneous remission in approximately 70% of cases Approximately 1% of adults with

More information

The neurolinguistic toolbox Jonathan R. Brennan. Introduction to Neurolinguistics, LSA2017 1

The neurolinguistic toolbox Jonathan R. Brennan. Introduction to Neurolinguistics, LSA2017 1 The neurolinguistic toolbox Jonathan R. Brennan Introduction to Neurolinguistics, LSA2017 1 Psycholinguistics / Neurolinguistics Happy Hour!!! Tuesdays 7/11, 7/18, 7/25 5:30-6:30 PM @ the Boone Center

More information

Embryonic MGE Cells as a Treatment for Epilepsy December 1, 2012

Embryonic MGE Cells as a Treatment for Epilepsy December 1, 2012 Embryonic MGE Cells as a Treatment for Epilepsy December 1, 2012 Scott C. Baraban, PhD University of California, San Francisco American Epilepsy Society Annual Meeting Disclosure Name of Commercial Interest

More information

Advances in Clinical Neuroimaging

Advances in Clinical Neuroimaging Advances in Clinical Neuroimaging Joseph I. Tracy 1, PhD, ABPP/CN; Gaelle Doucet 2, PhD; Xaiosong He 2, PhD; Dorian Pustina 2, PhD; Karol Osipowicz 2, PhD 1 Department of Radiology, Thomas Jefferson University,

More information

Structural and Functional Neuroimaging of Restricted and Repetitive Behavior in Autism Spectrum Disorder

Structural and Functional Neuroimaging of Restricted and Repetitive Behavior in Autism Spectrum Disorder Journal of Intellectual Disability - Diagnosis and Treatment, 2015, 3, 21-34 21 Structural and Functional Neuroimaging of Restricted and Repetitive Behavior in Autism Spectrum Disorder Jenna M. Traynor

More information

Tammie Benzinger, MD, PhD

Tammie Benzinger, MD, PhD Tammie Benzinger, MD, PhD benzingert@wustl.edu Disclosure: Tammie L.S. Benzinger, M.D., Ph.D. Research Support / Grants: NIH/NIA 5P01AG026276, 1U01AG032438, AG003991-27, 1R01NS066905-01, 1P01NS059560-01A1,

More information

Functional Neuroanatomy and Physiology for Movement Disorders

Functional Neuroanatomy and Physiology for Movement Disorders Functional Neuroanatomy and Physiology for Movement Disorders Chang, Won Seok Division of Stereotactic and Functional Neurosurgery, Department of Neurosurgery, Brain Research Institute, Yonsei University

More information

Changes in the Default Mode Network and Functional Connectivity in Epilepsy

Changes in the Default Mode Network and Functional Connectivity in Epilepsy Changes in the Default Mode Network and Functional Connectivity in Epilepsy Ambica M. Tumkur, MD Emory University School of Medicine, Atlanta, Georgia Abstract Recent studies using novel imaging techniques

More information

International Brain Bee Syllabus 2012 Department of Neurosciences, Universiti Sains Malaysia

International Brain Bee Syllabus 2012 Department of Neurosciences, Universiti Sains Malaysia BRAIN DEVELOPMENT The cells of the nervous system connect with one another in trillions of remarkably specific patterns that form and change over the course of an organism s life. These connections develop

More information

Patients with disorders of consciousness: how to treat them?

Patients with disorders of consciousness: how to treat them? Patients with disorders of consciousness: how to treat them? Aurore THIBAUT PhD Student Coma Science Group LUCA meeting February 25 th 2015 Pharmacological treatments Amantadine Giacino (2012) 184 TBI

More information

American University of Beirut University of Minnesota present. Depression: A complex landscape

American University of Beirut University of Minnesota present. Depression: A complex landscape Medial and Lateral Prefrontal Cortex Neuromodulation Therapies in Depression: A Continuum Ziad Nahas, MD, MSCR Professor and Vice Chair for Clinical Affairs Department of Psychiatry; University of Minnesota

More information

What is Repetitive Transcranial Magnetic Stimulation?

What is Repetitive Transcranial Magnetic Stimulation? rtms for Refractory Depression: Findings and Future Jonathan Downar, MD PhD Asst Professor, Dept of Psychiatry University of Toronto, Canada Co-Director, rtms Clinic Toronto Western Hospital University

More information

9/13/2018. Neurobiological Aspects of Attention Deficit Hyperactivity Disorder (ADHD) DSM-5 Diagnostic Criteria

9/13/2018. Neurobiological Aspects of Attention Deficit Hyperactivity Disorder (ADHD) DSM-5 Diagnostic Criteria DSM-5 Diagnostic Criteria Neurobiological Aspects of Attention Deficit Hyperactivity Disorder (ADHD) Neil P. Jones 7th Annual Conference on ADHD and Executive Function September 14, 218 Diagnosis Child

More information

Cerebral Cortex Advance Access published July 22, 2011

Cerebral Cortex Advance Access published July 22, 2011 Cerebral Cortex Advance Access published July 22, 2011 Cerebral Cortex doi:10.1093/cercor/bhr171 Reduced Functional Integration and Segregation of Distributed Neural Systems Underlying Social and Emotional

More information

Brain Imaging Applied to Memory & Learning

Brain Imaging Applied to Memory & Learning Brain Imaging Applied to Memory & Learning John Gabrieli Department of Brain & Cognitive Sciences Institute for Medical Engineering & Sciences McGovern Institute for Brain Sciences MIT Levels of Analysis

More information

Brain rhythm hypersynchrony in soldiers with PTSD

Brain rhythm hypersynchrony in soldiers with PTSD Brain rhythm hypersynchrony in soldiers with PTSD Dr. Benjamin T. Dunkley, Ph.D. MEG Clinical Associate, Diagnostic Imaging, Neurosciences & Mental Health Hospital for Sick Children Assistant Professor,

More information

Setting up a TMS Treatment Program

Setting up a TMS Treatment Program Setting up a TMS Treatment Program Alvaro Pascual-Leone, M.D., Ph.D. Professor in Neurology Harvard Medical School Beth Israel Deaconess Medical Center Daniel Cohen, M.D., M.M.Sc. Instructor in Neurology

More information

Structural And Functional Integration: Why all imaging requires you to be a structural imager. David H. Salat

Structural And Functional Integration: Why all imaging requires you to be a structural imager. David H. Salat Structural And Functional Integration: Why all imaging requires you to be a structural imager David H. Salat salat@nmr.mgh.harvard.edu Salat:StructFunct:HST.583:2015 Structural Information is Critical

More information

NIH Public Access Author Manuscript Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2010 January 1.

NIH Public Access Author Manuscript Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2010 January 1. NIH Public Access Author Manuscript Published in final edited form as: Conf Proc IEEE Eng Med Biol Soc. 2009 ; 1: 4719 4722. doi:10.1109/iembs.2009.5334195. Estimation of Brain State Changes Associated

More information

Sincerely, Ms. Paoloni and Mrs. Whitney

Sincerely, Ms. Paoloni and Mrs. Whitney Dear Students, Welcome to AP Psychology! We will begin our course of study focusing on the nervous system with a particular emphasis on how the brain and neurotransmitters influence our behaviors. In preparation

More information

Deep Brain Stimulation: Patient selection

Deep Brain Stimulation: Patient selection Deep Brain Stimulation: Patient selection Halim Fadil, MD Movement Disorders Neurologist Kane Hall Barry Neurology Bedford/Keller, TX 1991: Thalamic (Vim) DBS for tremor Benabid AL, et al. Lancet. 1991;337(8738):403-406.

More information

Diagnosing Complicated Epilepsy: Mapping of the Epileptic Circuitry. Michael R. Sperling, M.D. Thomas Jefferson University Philadelphia, PA

Diagnosing Complicated Epilepsy: Mapping of the Epileptic Circuitry. Michael R. Sperling, M.D. Thomas Jefferson University Philadelphia, PA Diagnosing Complicated Epilepsy: Mapping of the Epileptic Circuitry Michael R. Sperling, M.D. Thomas Jefferson University Philadelphia, PA Overview Definition of epileptic circuitry Methods of mapping

More information

Chapter 2: Studies of Human Learning and Memory. From Mechanisms of Memory, second edition By J. David Sweatt, Ph.D.

Chapter 2: Studies of Human Learning and Memory. From Mechanisms of Memory, second edition By J. David Sweatt, Ph.D. Chapter 2: Studies of Human Learning and Memory From Mechanisms of Memory, second edition By J. David Sweatt, Ph.D. Medium Spiny Neuron A Current Conception of the major memory systems in the brain Figure

More information

Name: Period: Chapter 2 Reading Guide The Biology of Mind

Name: Period: Chapter 2 Reading Guide The Biology of Mind Name: Period: Chapter 2 Reading Guide The Biology of Mind The Nervous System (pp. 55-58) 1. What are nerves? 2. Complete the diagram below with definitions of each part of the nervous system. Nervous System

More information

The motor regulator. 2) The cerebellum

The motor regulator. 2) The cerebellum The motor regulator 2) The cerebellum Motor control systems outside the cortex Cerebellum -controls neural programs for the executionl of skilled movements Cerebellar Peduncles Atlas Fig. 2-31 Atlas Fig.

More information

Large-scale brain systems in ADHD: beyond the prefrontal striatal model

Large-scale brain systems in ADHD: beyond the prefrontal striatal model Review Special Issue: Cognition in Neuropsychiatric Disorders Large-scale brain systems in ADHD: beyond the prefrontal striatal model F. Xavier Castellanos 1,2 and Erika Proal 1,3 1 Phyllis Green and Randolph

More information

Supplemental Digital Content 4: Effect sizes

Supplemental Digital Content 4: Effect sizes Supplemental Digital Content 4: Effect sizes Effect size within each of the pre-defined regions of interest for each studied network across experimental conditions and for the correlation analysis. Legend

More information

Laurence M. Hirshberg, Sufen Chiu, and Jean A. Frazier

Laurence M. Hirshberg, Sufen Chiu, and Jean A. Frazier EMERGING INTERVENTIONS Foreword Melvin Lewis xi Preface Laurence M. Hirshberg, Sufen Chiu, and Jean A. Frazier xiii Emerging Brain-Based Interventions for Children and Adolescents: Overview and Clinical

More information

The human brain. of cognition need to make sense gives the structure of the brain (duh). ! What is the basic physiology of this organ?

The human brain. of cognition need to make sense gives the structure of the brain (duh). ! What is the basic physiology of this organ? The human brain The human brain! What is the basic physiology of this organ?! Understanding the parts of this organ provides a hypothesis space for its function perhaps different parts perform different

More information

Validation of non- REM sleep stage decoding from resting state fmri using linear support vector machines

Validation of non- REM sleep stage decoding from resting state fmri using linear support vector machines Validation of non- REM sleep stage decoding from resting state fmri using linear support vector machines Altmann A. 1,2,7 *, Schröter M.S. 1,3 *, Spoormaker V.I. 1, Kiem S.A. 1, Jordan D. 4, Ilg R. 5,6,

More information

tdcs in Clinical Disorders

tdcs in Clinical Disorders HBM Educational course Brain Stimulation: Past, Present and Future Hamburg, June 8th, 2014 tdcs in Clinical Disorders Agnes Flöel NeuroCure Clinical Research Center, Neurology, & Center for Stroke Research

More information

Avalanche dynamics and the human connectome

Avalanche dynamics and the human connectome Avalanche dynamics and the human connectome J. Matias Palva Neuroscience Center, University of Helsinki http://www.helsinki.fi/neurosci/groups/palva.html matias.palva@helsinki.fi Three tiers of systems

More information

The Wonders of the Basal Ganglia

The Wonders of the Basal Ganglia Basal Ganglia The Wonders of the Basal Ganglia by Mackenzie Breton and Laura Strong /// https://kin450- neurophysiology.wikispaces.com/basal+ganglia Introduction The basal ganglia are a group of nuclei

More information

Nuclear imaging of the human brain

Nuclear imaging of the human brain Nuclear imaging of the human brain Steven Laureys Coma Science Group Cyclotron Research Centre & Neurology Dept. University of Liège, Belgium Neuroimaging structure function Neuroimaging: Modalities Structural

More information

Funding: NIDCF UL1 DE019583, NIA RL1 AG032119, NINDS RL1 NS062412, NIDA TL1 DA

Funding: NIDCF UL1 DE019583, NIA RL1 AG032119, NINDS RL1 NS062412, NIDA TL1 DA The Effect of Cognitive Functioning, Age, and Molecular Variables on Brain Structure Among Carriers of the Fragile X Premutation: Deformation Based Morphometry Study Naomi J. Goodrich-Hunsaker*, Ling M.

More information

Frontal Contributions to Memory Encoding Before and After Unilateral Medial Temporal Lobectomy

Frontal Contributions to Memory Encoding Before and After Unilateral Medial Temporal Lobectomy Frontal Contributions to Memory Encoding Before and After Unilateral Medial Temporal Lobectomy Jeff Ojemann, MD Department of Neurological Surgery University of Washington Children s Hospital & Regional

More information

Brain anatomy and artificial intelligence. L. Andrew Coward Australian National University, Canberra, ACT 0200, Australia

Brain anatomy and artificial intelligence. L. Andrew Coward Australian National University, Canberra, ACT 0200, Australia Brain anatomy and artificial intelligence L. Andrew Coward Australian National University, Canberra, ACT 0200, Australia The Fourth Conference on Artificial General Intelligence August 2011 Architectures

More information

Diffusion Tensor Imaging in Dementia. Howard Rosen UCSF Department of Neurology Memory and Aging Center

Diffusion Tensor Imaging in Dementia. Howard Rosen UCSF Department of Neurology Memory and Aging Center Diffusion Tensor Imaging in Dementia Howard Rosen UCSF Department of Neurology Memory and Aging Center www.memory.ucsf.edu Overview Examples of DTI findings in Alzheimer s disease And other dementias Explore

More information

DEEP BRAIN STIMULATION

DEEP BRAIN STIMULATION DEEP BRAIN STIMULATION Non-Discrimination Statement and Multi-Language Interpreter Services information are located at the end of this document. Coverage for services, procedures, medical devices and drugs

More information

Supplementary Material. Functional connectivity in multiple cortical networks is associated with performance. across cognitive domains in older adults

Supplementary Material. Functional connectivity in multiple cortical networks is associated with performance. across cognitive domains in older adults Supplementary Material Functional connectivity in multiple cortical networks is associated with performance across cognitive domains in older adults Emily E. Shaw 1,2, Aaron P. Schultz 1,2,3, Reisa A.

More information

ApoE, Brain Networks and Behavior: A Cautionary Tale

ApoE, Brain Networks and Behavior: A Cautionary Tale ApoE, Brain Networks and Behavior: A Cautionary Tale Michael Greicius, MD Functional Imaging in Neuropsychiatric Disorders (FIND) Lab Department of Neurology and Neurological Sciences Stanford University

More information

Intracranial Studies Of Human Epilepsy In A Surgical Setting

Intracranial Studies Of Human Epilepsy In A Surgical Setting Intracranial Studies Of Human Epilepsy In A Surgical Setting Department of Neurology David Geffen School of Medicine at UCLA Presentation Goals Epilepsy and seizures Basics of the electroencephalogram

More information

Cover Page. The handle holds various files of this Leiden University dissertation

Cover Page. The handle  holds various files of this Leiden University dissertation Cover Page The handle http://hdl.handle.net/1887/32078 holds various files of this Leiden University dissertation Author: Pannekoek, Nienke Title: Using novel imaging approaches in affective disorders

More information

Supplementary Material S3 Further Seed Regions

Supplementary Material S3 Further Seed Regions Supplementary Material S3 Further Seed Regions Figure I. Changes in connectivity with the right anterior insular cortex. (A) wake > mild sedation, showing a reduction in connectivity between the anterior

More information

Biomedical Technology Research Center 2011 Workshop San Francisco, CA

Biomedical Technology Research Center 2011 Workshop San Francisco, CA Diffusion Tensor Imaging: Parkinson s Disease and Atypical Parkinsonism David E. Vaillancourt court1@uic.edu Associate Professor at UIC Departments t of Kinesiology i and Nutrition, Bioengineering, and

More information

Deep Brain Stimulation for Parkinson s Disease & Essential Tremor

Deep Brain Stimulation for Parkinson s Disease & Essential Tremor Deep Brain Stimulation for Parkinson s Disease & Essential Tremor Albert Fenoy, MD Assistant Professor University of Texas at Houston, Health Science Center Current US Approvals Essential Tremor and Parkinsonian

More information

The Neural Crossroads of Psychiatric Illness: An Emerging Target for Brain Stimulation

The Neural Crossroads of Psychiatric Illness: An Emerging Target for Brain Stimulation Opinion The Neural Crossroads of Psychiatric Illness: An Emerging Target for Brain Stimulation Jonathan Downar, 1,2,3,4, * Daniel M. Blumberger, 1,2,5 and Zafiris J. Daskalakis 1,2,5 Recent meta-analyses

More information

Diffusion Tensor Imaging in Psychiatry

Diffusion Tensor Imaging in Psychiatry 2003 KHBM DTI in Psychiatry Diffusion Tensor Imaging in Psychiatry KHBM 2003. 11. 21. 서울대학교 의과대학 정신과학교실 권준수 Neuropsychiatric conditions DTI has been studied in Alzheimer s disease Schizophrenia Alcoholism

More information

COGNITIVE NEUROSCIENCE

COGNITIVE NEUROSCIENCE HOW TO STUDY MORE EFFECTIVELY (P 187-189) Elaborate Think about the meaning of the information that you are learning Relate to what you already know Associate: link information together Generate and test

More information

UNIT 5 REVIEW GUIDE - NERVOUS SYSTEM 1) State the 3 functions of the nervous system. 1) 2) 3)

UNIT 5 REVIEW GUIDE - NERVOUS SYSTEM 1) State the 3 functions of the nervous system. 1) 2) 3) UNIT 5 REVIEW GUIDE - NERVOUS SYSTEM State the 3 functions of the nervous system. Briefly describe the general function(s) of each of the following neuron types: a) SENSORY NEURONS: b) INTERNEURONS: c)

More information

Epilepsy & Functional Neurosurgery

Epilepsy & Functional Neurosurgery Epilepsy & Functional Neurosurgery An Introduction The LSU-Shreveport Department of Neurosurgery Presenting Authors: Neurosurgery Residents & Faculty Epilepsy Neurosurgery What is a seizure? continuous

More information

The Tools: Imaging the Living Brain

The Tools: Imaging the Living Brain The Tools: Imaging the Living Brain I believe the study of neuroimaging has supported the localization of mental operations within the human brain. -Michael I. Posner, 2003 Neuroimaging methods Since Descarte

More information

SUBJECT INDEX. Page numbers in italics refer to tables and figures.

SUBJECT INDEX. Page numbers in italics refer to tables and figures. SUBJECT INDEX Page numbers in italics refer to tables and figures. a-linolenic acid (ALA), 61, 159 abuse, 95 academic achievement. See scholastic achievement accelerometer, objective physical activity

More information

What goes wrong with balance in Parkinson s Disease? Fay B Horak, PhD, PT Professor of Neurology Oregon Health and Science. CoM

What goes wrong with balance in Parkinson s Disease? Fay B Horak, PhD, PT Professor of Neurology Oregon Health and Science. CoM What goes wrong with balance in Parkinson s Disease? Fay B Horak, PhD, PT Professor of Neurology Oregon Health and Science CoM CoM Course Objectives Understand different types of balance systems affected

More information

Attention-deficit/hyperactivity disorder (ADHD) is characterized

Attention-deficit/hyperactivity disorder (ADHD) is characterized REVIEW Cool Inferior Frontostriatal Dysfunction in Attention-Deficit/Hyperactivity Disorder Versus Hot Ventromedial Orbitofrontal-Limbic Dysfunction in Conduct Disorder: A Review Katya Rubia Attention-deficit/hyperactivity

More information

The Nervous System. Biological School. Neuroanatomy. How does a Neuron fire? Acetylcholine (ACH) TYPES OF NEUROTRANSMITTERS

The Nervous System. Biological School. Neuroanatomy. How does a Neuron fire? Acetylcholine (ACH) TYPES OF NEUROTRANSMITTERS Biological School The Nervous System It is all about the body!!!! It starts with an individual nerve cell called a NEURON. Synapse Neuroanatomy Neurotransmitters (chemicals held in terminal buttons that

More information