LABORATORY SCIENCES. Attenuation of Iodine 125 Radiation With Vitreous Substitutes in the Treatment of Uveal Melanoma

Size: px
Start display at page:

Download "LABORATORY SCIENCES. Attenuation of Iodine 125 Radiation With Vitreous Substitutes in the Treatment of Uveal Melanoma"

Transcription

1 LABORATORY SCIENCES Attenuation of Iodine 125 Radiation With Vitreous Substitutes in the Treatment of Uveal Melanoma Scott C. N. Oliver, MD; Min Y. Leu, PhD; John J. DeMarco, PhD; Philip E. Chow, MS; Steve P. Lee, MD, PhD; Tara A. McCannel, MD, PhD Objective: To demonstrate attenuation of radiation from iodine 125 ( 125 I) to intraocular structures using liquid vitreous substitutes. Methods: Four candidate vitreous substitutes were tested for attenuation using empirical measurement and theoretical calculation. In vitro and ex vivo cadaveric dosimetry measurements were obtained with lithium fluoride thermoluminescent dosimeters to demonstrate the attenuation effect of vitreous substitution during 125 I simulated plaque brachytherapy. Theoretical dosimetry calculations were based on Monte Carlo simulation. Results: In a cylindrical phantom at a 17-mm depth, liquid vitreous substitutes as compared with saline showed significant reduction of radiation penetration (48% for 1000-centistoke [cst] silicone oil [polydimethyl-nsiloxane], 47% for 5000-cSt silicone oil [polydimethyln-siloxane], 40% for heavy oil [perfluorohexyloctane/ polydimethyl-n-siloxane], and 35% for perfluorocarbon liquid [perfluoro-n-octane]). Human cadaveric ex vivo measurements demonstrated a 1000-cSt silicone oil to saline dose ratio of 35%, 52%, 55%, and 48% at arc lengths of 7.6, 10.6, 22.3, and 28.6 mm from the plaque edge, respectively, along the surface of the globe. Monte Carlo simulation of a human globe projected attenuation as high as 57% using 1000-cSt silicone oil. Conclusions: Intraocular vitreous substitutes including silicone oil, heavy oil, and perfluorocarbon liquid attenuate the radiation dose from 125 I. Cadaveric ex vivo measurements and Monte Carlo simulation both demonstrate radiation attenuation using 1000-cSt silicone oil at distances corresponding to vital ocular structures. Clinical Relevance: Attenuation of radiation with silicone oil endotamponade in the treatment of uveal melanoma may significantly reduce radiation-induced injury to vital ocular structures. Arch Ophthalmol. 2010;128(7): Author Affiliations: Department of Ophthalmology, Jules Stein Eye Institute (Drs Oliver and McCannel), Department of Radiation Oncology (Drs Leu, DeMarco, and Lee and Mr Chow), and Jonsson Comprehensive Cancer Center (Dr McCannel), University of California, Los Angeles. Dr Oliver is now with the Rocky Mountain Lions Eye Institute, University of Colorado Denver, Aurora. MELANOMA ARISING from the choroid and ciliary body is the most common primary intraocular cancer. 1 The Collaborative Ocular Melanoma Study (COMS) randomized clinical trial of iodine 125 ( 125 I) brachytherapy vs enucleation for medium-sized choroidal melanoma ( mm in thickness and 16 mm in diameter) showed that for patients who met the eligibility criteria, there was no statistically significant difference in all-cause mortality between 125 I brachytherapy and enucleation 5, 10, and 12 years following treatment. 2-4 The COMS supported the use of globe-conserving 125 I brachytherapy. Following brachytherapy, however, visual acuity in the treated eye generally declined at a rate of approximately 2 lines of visual acuity per year and nearly 45% of patients lost ambulatory vision (visual acuity 20/200) in the treated eye by 3 years. 5 Adverse effects of plaque brachytherapy include cataract, radiationassociated proliferative retinopathy, maculopathy, and papillopathy. Radiation maculopathy, which may result in decreased central vision, cystoid macular edema, macular ischemia, and chorioretinal atrophy, was reported in other series to occur in 18% to 43% of treated eyes within 5 years after brachytherapy. 6,7 In the COMS, photographic and angiographic evidence of radiation-associated macular pathology was as high as 75% at 5 years. 8 Typical onset occurred 18 to 24 months following treatment. 6,9 Primary risk factors for radiation papillopathy and maculopathy include total radiation dose to the affected structures, proximity of the tu- 888

2 125 I plaque Tumor 125I seed Thin plastic film Thin-walled plastic container Radiation-attenuating liquid is placed in the vitreous space 17 mm Solution TLD chips Optic nerve mor to the affected structures, and systemic conditions such as diabetes mellitus. 7,10,11 No treatment for radiation maculopathy or papillopathy has been proven to be effective in a randomized clinical trial. The target dose to the tumor apex in the COMS was 85 Gy (to convert to rad, multiply by 100). 12,13 Current plaque design methods are based on the parameters of tumor base diameter and tumor height. Collateral injury to the optic nerve and macula has been retrospectively observed to occur at threshold doses of approximately 35 Gy and 21 Gy to each structure, respectively. 14,15 The maximum tolerance dose to the optic nerve for blindness is 50 Gy based on the Radiation Therapy Oncology Group recommendation of 1.8 Gy per fraction, 5 fractions per week. 16 Using the COMS protocol, plaque design is not altered even if collateral injury is anticipated to occur. Radiation injury to vital structures may be shielded with the use of materials such as lead that have a higher effective atomic number and density than tissue. However, solid metals are not amenable to use within the eye. Based on these considerations, we present a new method to reduce radiation penetration through the eye from plaque brachytherapy. This study demonstrates the ability of 4 liquids commonly used in vitreoretinal surgery to attenuate gamma radiation from 125 I. In the future, placement of one of these liquids in the eye at the time of plaque brachytherapy may significantly reduce collateral injury to adjacent structures in vivo (Figure 1). METHODS Field of radiation Figure 1. Schematic drawing of vitreous substitution to shield vital intraocular structures during iodine 125 ( 125 I) brachytherapy for uveal melanoma. Four candidate vitreous substitutes were tested for attenuation effect using both empirical measurement and theoretic calculation methods. The measurements were conducted using individually calibrated high-sensitivity lithium fluoride thermoluminescent dosimeters (TLDs) (TLD-100H; Thermo Fisher Scientific, Inc, Waltham, Massachusetts). Dosimetry calculations based on a Monte Carlo code were also performed to verify the measured attenuation effect. In vitro and ex vivo dosimetry was studied to simulate the attenuation effect of vitreous substitution during 125 I plaque brachytherapy for the treatment of uveal melanoma. Figure 2. In vitro thermoluminescent dosimeter (TLD) measurement of the radiation attenuation by vitreous substitutes. An iodine 125 ( 125 I) source (top) was placed over a cup containing 9.0 ml of each substance. Four TLD chips were placed under the cup. RADIATION ATTENUATION EFFECT OF 4 CANDIDATE VITREOUS SUBSTITUTES The radiation attenuation effect was assessed for 4 substances commonly used in vitreoretinal surgical procedures. They are the following: (1) 1000-centistoke (cst) silicone oil (SILIKON 1000 silicone oil; Alcon Laboratories, Inc, Fort Worth, Texas); (2) 5000-cSt silicone oil (ADATO SIL-OL 5000; Bausch & Lomb, Inc, Rochester, New York); (3) heavy oil (Densiron 68; Geuder AG, Heidelberg, Germany); and (4) perfluorocarbon liquid (perfluoro-n-octane) (Perfluoron; Alcon Laboratories, Inc). A sodium chloride saline solution was used as a control. Both cst and 5000-cSt silicone oils are purified polymeric polydimethyln-siloxane, approved by the US Food and Drug Administration for long-term retinal endotamponade. The 2 oils differ only in polymer length and thus viscosity; 1000-cSt silicone oil is less viscous than 5000-cSt silicone oil. Densiron 68 heavy oil is a blend of polydimethyl-n-siloxane and perfluorohexyloctane that is denser than water. It is not approved by the US Food and Drug Administration but is available in Europe for retinal endotamponade. Perfluoro-n-octane is a US Food and Drug Administration approved heavy liquid used in vitreoretinal surgery. TLD Measurement High-sensitivity lithium fluoride TLDs, mm in dimension, were calibrated and assigned individual chip factors to compensate for the difference in individual chip responses. The estimated SD of the TLD readings for the dose range used in this study is 2.5%. The corrected TLD readings were further converted to radiation doses using a third-order polynomial regression formula, which has an adjusted r 2 greater than for the dose range of interest. A thin plastic cylindrical cup, 26 mm in diameter and 20 mm in height, was filled with 9.0 ml, or 17 mm in height, of each candidate substance. A brachytherapy 125 I source (MED3631-A/M; North American Scientific Medical, Chatsworth, California) was placed above the cylinder, and 4 TLD-100H chips (Figure 2) were placed on the bottom. The whole system was put on a plastic slab to simulate radiation backscatter in a human body. The TLD chips were irradiated for approximately 25 hours for each attenuating solution. The measured doses were further corrected for source decay and collecting time difference. Monte Carlo Calculation Theoretical calculations of the attenuated radiation dose were performed using a general-purpose Monte Carlo code 889

3 125 I plaque 4.15 mm 3.4 mm 3.0 mm Optic nerve A B C 11.7 mm D 6.3 mm (MCNPX_26C). This standard modeling package, capable of simulating coupled photon-electron interactions with media in a 3-dimensional heterogeneous geometry system, has recently been studied by our group and found accurate in predicting dose distributions in tissue from 125 I brachytherapy seeds. The calculated radial dose function in water of an 125 I source from this module showed good agreement with the consensus data of the American Association of Physicists in Medicine Task Group No and the Monte Carlo calculations of Rivard. 18 The discrepancy was within ±5% for radial distance less than 3.0 cm and gradually increased to ±14% at a distance of 7.0 cm. The TLD measurement geometry described earlier was also simulated using Monte Carlo calculations to verify the measured attenuation. Monte Carlo simulation requires estimation of the effective atomic number of each vitreous substitute. The 1000-cSt silicone oil is a polydimethyl-n-siloxane (C 8 H 24 N 3 O 2 ) polymer with a repeating middle chain. The cst silicone oil has a similar composition except for a slightly higher viscosity due to the longer average chain length. The exact average chain length for each substance is protected by trade secret. However, a comparison using the Monte Carlo model of polydimethyl-n-siloxane effective atomic numbers of 1 and 10 repeating middle chains found minimal difference in calculated attenuation effect. The Monte Carlo calculation was not performed for Densiron 68 heavy oil as the proportional mixture of polydimethyl-n-siloxane and perfluorohexyloctane is protected by trade secret. The effective atomic number of perfluoro-n-octane was calculated based on the published company data sheet. ATTENUATION EFFECT TO CRITICAL OCULAR STRUCTURES Ex Vivo Testing Cornea Figure 3. Dosimetry points in a cadaveric human eye model of vitreous substitution for radiation blockade. A indicates macula; B, proximal margin of optic nerve; C, distal margin of optic nerve; D, equator; and E, ora serrata. 125 I indicates iodine 125. Arc distances are in millimeters based on standard dimensions from the Collaborative Ocular Melanoma Study. 19 E The University of California, Los Angeles eye plaque design is similar to a COMS-style plaque but uses a custom-fabricated gold shield and a spherically symmetric seed design. The brachytherapy seeds are glued onto the inner surface of the gold plaque, and the plaque opening is filled with a tissue-equivalent sealant material. The 1000-cSt silicone oil, hereafter referred to as silicone oil, was selected for further testing because this substance exhibited the maximum attenuation effect. To simulate the effect of vitreous replacement with silicone oil, a cadaveric experiment using 3 donor globes was performed. In each experiment, calibrated TLD chips were wrapped in a single layer of impermeable polyvinyl chloride film and placed against the globe at specified locations corresponding to vital ocular structures (Figure 3). An 125 I plaque was then affixed to the globe in a horizontal plane 7.6 mm temporal to the posterior optic nerve margin. After a measured period, the chips and plaque were removed and vitreous was excised using either a 3-port pars plana vitrectomy or a limbal incision with manual scissors vitrectomy. Silicone oil was then infused to fill the eye. All wounds were sutured closed. Newly calibrated TLD chips were placed at identical locations of the prior measurement sites. The same radioactive plaque was sutured to the previous location for a measured period. The radiation dose rates were determined after compensating for source decay and duration of TLD placement. The dose ratio at each site before and after vitreous substitution was calculated. The results are summarized in Table 1. Monte Carlo Modeling A 15-seed eye plaque, 16 mm in diameter, was simulated using a Monte Carlo model to account for the intrinsic seed properties, the physical seed geometry, and the gold plaque. The calculation was based on a spherically symmetric globe with an equatorial diameter equal to 24 mm and filled with water or replacement silicone oil. The sclera was modeled as a 1-mmthick, separate spherical layer surrounding the globe. The dose ratios at the same vital structures were estimated as earlier. RESULTS The measured and calculated penetration factors of the 4 candidate substances compared with those of saline are listed in Table 2. The most robust attenuation effect was from 1000-cSt silicone oil (48%), followed by 5000-cSt silicone oil (47%), heavy oil (40%), and perfluorocarbon liquid (35%). The attenuation results of Monte Carlo calculations ranged from 42% to 52% and were within 6% to 11% agreement of measured results (Table 2 and Figure 4). Ex vivo testing demonstrated attenuation of radiation to structures opposite the plaque (Table 1). With a plaque placed 7.6 mm temporal to the optic nerve, mean attenuation was 35% at the proximal optic nerve, 52% at the distal optic nerve, 55% at the equator, and 48% at the ora serrata. Measurements at the macula (4.2 mm from the plaque edge) were highly variable, and some dose ratios were higher than The TLD localization was accurate to the nearest millimeter. However, measurements near the plaque margin are increasingly susceptible to dose variation because of inaccuracies in localization. The overall experimental error can be assessed by including the following uncertainties: (1) the SD of TLD readings is 2.5%; (2) plaque and TLD localization inaccuracy of up to 1 mm may result in measurement errors as high as 9.2% at the macula, 6.5% at the proximal optic nerve, 5.0% at the distal optic nerve, 1.6% at the equator, and 0.5% at the ora serrata; and (3) a slight tilt of the plaque may cause a significant change in the doses delivered to the points near the plaque edge such as the macula and proximal optical nerve. 890

4 Table 1. Human Ex Vivo Measurements Comparing Radiation Attenuation of 1000-Centistoke Silicone Oil vs Vitreous at Selected Points on the Surface of the Globe a Point Location 1000-cSt Silicone Oil vs Human Vitreous, Measured Dose Ratio b Globe 1 Globe 2 Globe 3 Dose Ratio, Mean (SD) Attenuation, Mean, % A Macula c c (0.50) NA B Proximal optic nerve c (0.23) 35 C Distal optic nerve Not measured (0.02) 52 D Equator (0.08) 55 E Ora serrata (0.12) 48 Abbreviations: cst, centistoke; NA, not applicable. a Ratios of doses were measured using high-sensitivity thermoluminescent dosimeters with and without 1000-cSt silicone oil substitution. b The plaque diameters were 14 mm (notched) in globe 1, 13 mm in globe 2, and 14 mm in globe 3. c Values are higher than 1.000, which may result from errors in thermoluminescent dosimeter placement or plaque tilt. Table 2. In Vitro Comparison of Radiation Attenuation by Vitreous Substitutes Relative to Saline a Solution TLD Measurement SD MC Calculation MC Calculation vs TLD, % Difference Saline NA 1000-cSt silicone oil Heavy oil NA b NA 5000-cSt silicone oil Perfluorocarbon liquid Abbreviations: cst, centistoke; MC, Monte Carlo; NA, not applicable; TLD, thermoluminescent dosimeter. a Normalized penetration factor of vitreous substitutes, 17 mm in height, from iodine 125 radiation. b The elemental composition and mass density are protected by trade secret; thus, the effective atomic number could not be calculated. Reduction Relative to Saline, % Saline 1000-cSt Silicone Oil 5000-cSt Silicone Oil Vitreous Substitute Heavy Oil In vitro Monte Carlo PFCL Table 3. Monte Carlo Modeling of Radiation Attenuation Comparing Radiation Attenuation of 1000-Centistoke Silicone Oil vs Saline at Selected Points on the Surface of the Globe a Point Location 1000-cSt Silicone Oil vs Saline, Calculated Dose Ratio Attenuation, Mean, % A Macula B Proximal optic nerve C Distal optic nerve NC NA D Equator E Ora serrata Figure 4. In vitro measurement and Monte Carlo calculation of penetration of iodine 125 ( 125 I) gamma radiation through a 17-mm depth of vitreous substitutes. cst indicates centistoke; PFCL, perfluorocarbon liquid (perfluoro-n-octane).the effective atomic number of heavy oil is protected by trade secret; theoretical penetration could not be calculated. Monte Carlo simulation of the human globe projected a dose reduction of 25% at the macula, 35% at the proximal optic nerve, 57% at the equator, and 58% at the ora serrata (Table 3). COMMENT The COMS supported the use of globe-conserving 125 I brachytherapy 3,4 ; however, nearly half of patients lose ambulatory vision (visual acuity 20/200) within 3 years. 5 An effective means of shielding the macula and optic nerve Abbreviations: cst, centistoke; NA, not applicable; NC, not calculated. a Ratios of doses were calculated at various ocular structures on a simulated globe using a Monte Carlo code with and without 1000-cSt silicone oil substitution. from collateral injury has been heretofore unproven. In this article, we have demonstrated the ability of silicone oil to significantly reduce radiation penetration. Substitution of vitreous with silicone oil at the time of plaque brachytherapy may allow for complete treatment of the tumor with reduced collateral injury and improved visual outcomes. Radiation blockade is routinely performed by radiation oncologists in other parts of the body. Radio-opaque materials (usually metal) are constructed to focus the shape of the radiation field. Unfortunately, it is extremely difficult to fixate a solid metal within the eye. Liquid metals such as mercury would be limited by toxicity. 891

5 In 1990, Finger et al 20 injected liquid iodinated contrast dyes, including iohexol and iophendylate, into rabbit eyes to block radiation. Marked attenuation of radiation occurred; however, the solubility of the dyes resulted in rapid clearance from the globe. Dye toxic effects, including intraocular inflammation and retinal degeneration, limited clinical applicability of these agents. The most notable technique in current use for the prevention of collateral injury from plaque brachytherapy is the collimated plaque developed by Astrahan et al. 21 The standard COMS gold plaque provides excellent posterior and lateral shielding in the orbit, but there is no shielding anterior to the scleral plane. By recessing the radioactive seeds into slots within the collimated plaque, side scatter is sharply reduced. This design may be particularly helpful for reducing optic nerve and macular damage in the treatment of tumors adjacent to vital structures; however, the design does not reduce the dose to structures directly across from the plaque. In this study, we performed detailed theoretical calculations and in vitro and ex vivo measurements to confirm the radiation attenuation effect of 1000-cSt silicone oil, 5000-cSt silicone oil, heavy oil, and perfluorocarbon liquid. The 1000-cSt silicone oil is a commercially available product that has the most robust attenuation effect. It has been shown to be nontoxic, nonpyrogenic, nonmutagenic, nonirritating, and readily removable, which make it an attractive tool for long-term endotamponade in vitreoretinal surgery These attributes make silicone oil attractive as a radiation-blocking substance. LIMITATIONS Clinical application of this technique requires consideration of the effect of silicone oil on the tumor as well as tolerability of the procedure. Silicone oil endotamponade should not alter the radiation dose delivered to the tumor as the oil will not be present between the tumor and the radioactive plaque. A backscatter effect from the silicone oil, which might result in increased dose to the tumor, was calculated to be negligible using Monte Carlo modeling. In the first 2 globes tested in this study, the relative radiation dose was greater than for TLD chips near the plaque edge. In globe 1, chips placed 4.2 and 7.6 mm from the plaque margin resulted in relative radiation dose ratios greater than 1.000, and in globe 2, only the chip 4.2 mm from the plaque margin showed a dose ratio greater than These findings are inconsistent with the measurements in globe 3 as well as Monte Carlo calculations. Possible causes of these findings include the effect of a notched plaque (globe 1), imprecision in TLD localization, and possible plaque edge tilt. The first globe used a notched plaque. While the notch was placed 180 from the TLDs, it is possible that some radiation was unshielded. For this reason, the notched plaque was not used for subsequent tests. Dose variability may proportionally increase with proximity to the plaque margin due to difficulty in placing and stabilizing a 3-mm square chip. Progressively meticulous attention was paid to plaque localization with each successive test. Finally, plaque tilt may significantly affect delivery of the radiation dose, resulting in reduction of the dose to the tumor apex (approximately 10%-20% for each millimeter of tilt) 27 as well as an increase of the dose to structures lateral to the tilted edge. CLINICAL APPLICATION The target dose to the tumor apex in the COMS was 85 Gy. 12,13 The optic nerve has a tolerance dose for blindness of 50 Gy 16 when irradiated with a regular high-doserate teletherapy scheme (1.8 Gy per fraction, 5 fractions per week). Based on the linear quadratic model, 28 the tolerance dose for blindness is equivalent to a dose of approximately 60 Gy with a continuous low-dose-rate irradiation for 168 hours (7 days). However, retrospective studies have demonstrated clinical evidence of optic neuropathy and maculopathy with threshold doses of 35 Gy and 21 Gy to each structure, respectively. 14,15 The potential benefit of radiation shielding may be calculated from a cohort of patients with choroidal melanoma. In a prospective study of 42 patients treated with 125 I plaque brachytherapy, 29 the median total radiation doses were 36.2 Gy (range, Gy) to the foveola and 42.8 Gy (range, Gy) to the optic nerve. Post hoc analysis of this cohort reveals that a 25% reduction of radiation to the macula would result in 21% fewer patients subjected to the 21-Gy threshold dose, while a 50% reduction in the macular dose would result in 42% fewer patients subjected to the threshold dose. A similar calculation at the optic nerve indicates that a 25% reduction in radiation to the optic nerve would result in 24% fewer patients sustaining the threshold dose of 35 Gy or higher, and a reduction by 50% would reduce this number of susceptible patients by 52%. CONCLUSIONS We have described a novel finding that silicone oil and other vitreous substitutes attenuate gamma radiation from an 125 I source. Our empirical data and theoretical calculations both demonstrate that silicone oil attenuates radiation in the human eye by as much as 55% compared with saline. In the future, this technique may be applied by performing vitrectomy and silicone oil endotamponade at the time of plaque treatment of uveal melanoma. The melanoma will still be directly irradiated using the established protocol, but radiation to other healthy ocular structures may be shielded. Vitrectomy with silicone oil endotamponade is a common and established surgical technique used in the treatment of retinal detachment, diabetic retinopathy, and macular hole. Safety and tolerability of short-term silicone oil endotamponade is well established. Future in vivo studies are required to confirm the safety and efficacy of simultaneous plaque placement, vitrectomy, and silicone oil endotamponade followed by plaque and oil removal. Attenuation of injury to vital ocular structures is calculated to reduce clinical radiation-induced complications by approximately 50%. This new technique may improve our ability to preserve vision in patients treated with plaque brachytherapy for choroidal melanoma. 892

6 Submitted for Publication: May 26, 2009; final revision received December 1, 2009; accepted January 7, Correspondence: Tara A. McCannel, MD, PhD, Department of Ophthalmology, Jules Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza, Los Angeles, CA Author Contributions: Dr Oliver had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Financial Disclosure: None reported. Funding/Support: This work was supported by unrestricted grants from Research to Prevent Blindness, the George E. and Ruth Moss Trust, and the Frederic G. Rappaport Fellowship Award (Dr Oliver). Role of the Sponsors: The sponsors had no role in the design or conduct of the study. Additional Contributions: Bradley R. Straatsma, MD, JD, provided insightful comments on the manuscript. REFERENCES 1. Scotto J, Fraumeni JF Jr, Lee JA. Melanomas of the eye and other noncutaneous sites: epidemiologic aspects. J Natl Cancer Inst. 1976;56(3): Diener-West M, Earle JD, Fine SL, et al; Collaborative Ocular Melanoma Study Group. The COMS randomized trial of iodine 125 brachytherapy for choroidal melanoma, III: initial mortality findings: COMS report No. 18. Arch Ophthalmol. 2001;119(7): Collaborative Ocular Melanoma Study Group. Ten-year follow-up of fellow eyes of patients enrolled in Collaborative Ocular Melanoma Study randomized trials: COMS report No. 22. Ophthalmology. 2004;111(5): Collaborative Ocular Melanoma Study Group. The COMS randomized trial of iodine 125 brachytherapy for choroidal melanoma, V: twelve-year mortality rates and prognostic factors: COMS report No. 28. Arch Ophthalmol. 2006;124(12): Melia BM, Abramson DH, Albert DM, et al; Collaborative Ocular Melanoma Study Group. Collaborative Ocular Melanoma Study (COMS) randomized trial of I-125 brachytherapy for medium choroidal melanoma, I: visual acuity after 3 years: COMS report No. 16. Ophthalmology. 2001;108(2): Quivey JM, Char DH, Phillips TL, Weaver KA, Castro JR, Kroll SM. High intensity 125-iodine (125I) plaque treatment of uveal melanoma. Int J Radiat Oncol Biol Phys. 1993;26(4): Gündüz K, Shields CL, Shields JA, Cater J, Freire JE, Brady LW. Radiation retinopathy following plaque radiotherapy for posterior uveal melanoma. Arch Ophthalmol. 1999;117(5): Boldt HC, Melia BM, Liu JC, Reynolds SM; Collaborative Ocular Melanoma Study Group. I-125 brachytherapy for choroidal melanoma photographic and angiographic abnormalities: the Collaborative Ocular Melanoma Study: COMS Report No ;116(1): e1. 9. Quivey JM, Augsburger J, Snelling L, Brady LW. 125I plaque therapy for uveal melanoma: analysis of the impact of time and dose factors on local control. Cancer. 1996;77(11): Gragoudas ES, Li W, Lane AM, Munzenrider J, Egan KM. Risk factors for radiation maculopathy and papillopathy after intraocular irradiation. Ophthalmology. 1999;106(8): Gündüz K, Shields CL, Shields JA, Cater J, Freire JE, Brady LW. Radiation complications and tumor control after plaque radiotherapy of choroidal melanoma with macular involvement. Am J Ophthalmol. 1999;127(5): Nag S, Quivey JM, Earle JD, Followill D, Fontanesi J, Finger PT; American Brachytherapy Society. The American Brachytherapy Society recommendations for brachytherapy of uveal melanomas. Int J Radiat Oncol Biol Phys. 2003;56(2): Nath R, Anderson LL, Luxton G, Weaver KA, Williamson JF, Meigooni AS; American Association of Physicists in Medicine. Dosimetry of interstitial brachytherapy sources: recommendations of the AAPM Radiation Therapy Committee Task Group No. 43. Med Phys. 1995;22(2): Brown GC, Shields JA, Sanborn G, Augsburger JJ, Savino PJ, Schatz NJ. Radiation optic neuropathy. Ophthalmology. 1982;89(12): Cruess AF, Augsburger JJ, Shields JA, Donoso LA, Amsel J. Visual results following cobalt plaque radiotherapy for posterior uveal melanomas. Ophthalmology. 1984;91(2): Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21(1): Rivard MJ, Coursey BM, DeWerd LA, et al. Update of AAPM Task Group No. 43 report: a revised AAPM protocol for brachytherapy dose calculations. Med Phys. 2004;31(3): Rivard MJ. Monte Carlo calculations of AAPM Task Group report No. 43 dosimetry parameters for the MED3631-A/M125I source. Med Phys. 2001;28(4): Collaborative Ocular Melanoma Study Group. COMS Manual of Procedures. Springfield, VA: National Technical Information Service; Finger PT, Ho TK, Fastenberg DM, et al. Intraocular radiation blocking. Invest Ophthalmol Vis Sci. 1990;31(9): Astrahan MA, Luxton G, Pu Q, Petrovich Z. Conformal episcleral plaque therapy. Int J Radiat Oncol Biol Phys. 1997;39(2): Davis JL, Serfass MS, Lai MY, Trask DK, Azen SP. Silicone oil in repair of retinal detachments caused by necrotizing retinitis in HIV infection. Arch Ophthalmol. 1995;113(11): Brourman ND, Blumenkranz MS, Cox MS, Trese MT. Silicone oil for the treatment of severe proliferative diabetic retinopathy. Ophthalmology. 1989;96(6): Aylward GW, Cooling RJ, Leaver PK. Trauma-induced retinal detachment associated with giant retinal tears. Retina. 1993;13(2): Sell CH, McCuen BW II, Landers MB III, Machemer R. Long-term results of successful vitrectomy with silicone oil for advanced proliferative vitreoretinopathy. Am J Ophthalmol. 1987;103(1): Brinton GS, Aaberg TM, Reeser FH, Topping TM, Abrams GW. Surgical results in ocular trauma involving the posterior segment. Am J Ophthalmol. 1982; 93(3): Almony A, Breit S, Zhao H, Garcia-Ramirez J, Mansur DB, Harbour JW. Tilting of radioactive plaques after initial accurate placement for treatment of uveal melanoma. Arch Ophthalmol. 2008;126(1): Hall EJ. Radiobiology for the Radiologist. 5th ed. Philadelphia, PA: Lippincott Williams & Wilkins; Oliver SC, Young TA, Kobe LH, et al. Assessment of central vision and macular structure in patients undergoing iodine-125 brachytherapy for ciliochoroidal melanoma. Am J Clin Oncol. 2008;31(5):

Factory loaded, sterilized, ready to implant plaques:!

Factory loaded, sterilized, ready to implant plaques:! in partnership with Factory loaded, sterilized, ready to implant plaques: Eye Physics plaques. 2 nd generation plaques (cast in 18K gold from hand carved wax prototypes). 3 rd generation plaques (cast

More information

A REANALYSIS OF THE COLLABORATIVE OCULAR MELANOMA STUDY MEDIUM TUMOR TRIAL EYE PLAQUE DOSIMETRY

A REANALYSIS OF THE COLLABORATIVE OCULAR MELANOMA STUDY MEDIUM TUMOR TRIAL EYE PLAQUE DOSIMETRY doi:10.1016/s0360-3016(03)00211-6 Int. J. Radiation Oncology Biol. Phys., Vol. 56, No. 3, pp. 889 898, 2003 Copyright 2003 Elsevier Inc. Printed in the USA. All rights reserved 0360-3016/03/$ see front

More information

Dosimetric Benefit of a New Ophthalmic Radiation Plaque

Dosimetric Benefit of a New Ophthalmic Radiation Plaque International Journal of Radiation Oncology biology physics www.redjournal.org Physics Contribution Dosimetric Benefit of a New Ophthalmic Radiation Plaque Gaurav Marwaha, MD,*,x Allan Wilkinson, PhD,*,x

More information

ROPES eye plaque dosimetry: commissioning and verification of an ophthalmic brachytherapy treatment planning system

ROPES eye plaque dosimetry: commissioning and verification of an ophthalmic brachytherapy treatment planning system University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2013 ROPES eye plaque dosimetry: commissioning

More information

Visual Acuity, Contrast Sensitivity and Color Vision Three Years After Iodine-125 Brachytherapy for Choroidal and Ciliary Body Melanoma

Visual Acuity, Contrast Sensitivity and Color Vision Three Years After Iodine-125 Brachytherapy for Choroidal and Ciliary Body Melanoma Send Orders for Reprints to reprints@benthamscience.ae The Open Ophthalmology Journal, 2015, 9, 131-135 131 Open Access Visual Acuity, Contrast Sensitivity and Color Vision Three Years After Iodine-125

More information

A practical approach to estimating optic disc dose and macula dose without treatment planning in ocular brachytherapy using 125 I COMS plaques

A practical approach to estimating optic disc dose and macula dose without treatment planning in ocular brachytherapy using 125 I COMS plaques Lee et al. Radiation Oncology (2018) 13:221 https://doi.org/10.1186/s13014-018-1166-z RESEARCH Open Access A practical approach to estimating optic disc dose and macula dose without treatment planning

More information

Vitreoretinal surgical management In ocular oncology

Vitreoretinal surgical management In ocular oncology www.ophtalmique.ch Vitreoretinal surgical management In ocular oncology Pournaras Jean-Antoine C Vitreoretinal Surgery Unit 1. Surgical resection after proton beam therapy 2. Ocular Biopsy 3. RD in advanced

More information

Dose distribution and dosimetry parameters calculation of MED3633 palladium-103 source in water phantom using MCNP

Dose distribution and dosimetry parameters calculation of MED3633 palladium-103 source in water phantom using MCNP Iran. J. Radiat. Res., 2006; 4 (1): 15-19 Dose distribution and dosimetry parameters calculation of MED3633 palladium- source in water phantom using MCNP A.A. Mowlavi 1*,A. Binesh 2, H. Moslehitabar 3

More information

An Interactive TreatmentPlanning System For Ophthalmic Plaque Radiotherapy

An Interactive TreatmentPlanning System For Ophthalmic Plaque Radiotherapy An Interactive TreatmentPlanning System For Ophthalmic Plaque Radiotherapy Melvin A. Astrahan, PH.D.,¹ Gary Luxton, PH.D.,¹ Gabor Jozsef, PH.D.,¹ Thomas D. Kampp, PH.D.,¹ Peter E. Liggett, M.D.,² Michael

More information

Seed coordinates of a new COMS-like 24 mm plaque verified using the FARO Edge

Seed coordinates of a new COMS-like 24 mm plaque verified using the FARO Edge JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 16, NUMBER 6, 2015 Seed coordinates of a new COMS-like 24 mm plaque verified using the FARO Edge Sarah E. McCauley Cutsinger, 1a Keith M. Furutani, 1

More information

Comparison of dosimetry parameters of two commercially available Iodine brachytherapy seeds using Monte Carlo calculations

Comparison of dosimetry parameters of two commercially available Iodine brachytherapy seeds using Monte Carlo calculations Iran. J. Radiat. Res., 21; 7 (4): 217-222 Comparison of dosimetry parameters of two commercially available Iodine brachytherapy seeds using Monte Carlo calculations Downloaded from ijrr.com at 6:52 +33

More information

Research Article Outcomes and Control Rates for I-125 Plaque Brachytherapy for Uveal Melanoma: A Community-Based Institutional Experience

Research Article Outcomes and Control Rates for I-125 Plaque Brachytherapy for Uveal Melanoma: A Community-Based Institutional Experience ISRN Ophthalmology, Article ID 95975, 7 pages http://dx.doi.org/1.1155/214/95975 Research Article Outcomes and Control Rates for I-125 Plaque Brachytherapy for Uveal Melanoma: A Community-Based Institutional

More information

Monte Carlo simulation of 192 Ir radioactive source in a phantom designed for brachytherapy dosimetry and source position evaluation.

Monte Carlo simulation of 192 Ir radioactive source in a phantom designed for brachytherapy dosimetry and source position evaluation. Monte Carlo simulation of 192 Ir radioactive source in a phantom designed for brachytherapy dosimetry and source position evaluation Samuel Chiquita 1 1 University of Porto, Porto, Portugal Abstract In

More information

Method for verifying the air kerma strength of I-125 plaques for the treatment of ocular melanoma

Method for verifying the air kerma strength of I-125 plaques for the treatment of ocular melanoma JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 15, NUMBER 4, 2014 Method for verifying the air kerma strength of I-125 plaques for the treatment of ocular melanoma L. W. Zimmermann, 1a D. Allan Wilkinson

More information

Transvitreal Fine Needle Aspiration Biopsy of Choroidal Melanoma via Pars Plana Vitrectomy

Transvitreal Fine Needle Aspiration Biopsy of Choroidal Melanoma via Pars Plana Vitrectomy Surgical Technique Is pars plana vitrectomy a safe method for performing fine needle aspiration biopsy of choroidal melanoma? What are the rates of complications? Clinical Characteristics Do tumor thickness

More information

Dosimetric characteristics of 137 Cs sources used in after loading Selectron system by Monte Carlo method

Dosimetric characteristics of 137 Cs sources used in after loading Selectron system by Monte Carlo method Iran. J. Radiat. Res., 2007; 5 (3): 147-152 Dosimetric characteristics of Cs sources used in after loading Selectron system by Monte Carlo method M.B.Tavakoli, D. Shahbazi-Gahrouei *, M. Hosseinpour Department

More information

Intraoperative Visualization of Peripheral Retina with Wide-Angle Viewing Systems

Intraoperative Visualization of Peripheral Retina with Wide-Angle Viewing Systems Intraoperative Visualization of Peripheral Retina with Wide-Angle Viewing Systems Homayoun Tabandeh, M.D., MS, Francesco Boscia, M.D. 1. Retina -Vitreous Associates Medical Group, Los Angeles, California,

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 3,900 116,000 120M Open access books available International authors and editors Downloads Our

More information

Can Protons replace Eye Brachytherapy? 1 Department of Radiation Oncology

Can Protons replace Eye Brachytherapy? 1 Department of Radiation Oncology Can Protons replace Eye Brachytherapy? Richard Pötter 1,2, Roman Dunavölgyi 3, Karin Dieckmann 1, Dietmar Georg 1,2 1 Department of Radiation Oncology 2 Christian Doppler Laboratory for Medical Radiation

More information

Coagulative necrosis in a malignant melanoma of the choroid at the macula with extensive subretinal hemorrhage

Coagulative necrosis in a malignant melanoma of the choroid at the macula with extensive subretinal hemorrhage Coagulative necrosis in a malignant melanoma of the choroid at the macula with extensive subretinal hemorrhage Robert D. Yee, Robert Y. Foos, and Bradley R. Straatsma The authors present a case report

More information

Progressive Symptomatic Retinal Detachment Complicating Retinoschisis. Initial Reporting Questionnaire

Progressive Symptomatic Retinal Detachment Complicating Retinoschisis. Initial Reporting Questionnaire Progressive Symptomatic Retinal Detachment Complicating Retinoschisis In association with the British Ophthalmological Surveillance Unit Ethics ref: 13/NW/0037 Initial Reporting Questionnaire Case Definition:

More information

Episcleral plaque brachytherapy has been proposed as an

Episcleral plaque brachytherapy has been proposed as an Effect of Radiation Dose on Ocular Complications after Iodine Brachytherapy for Large Uveal Melanoma: Empirical Data and Simulation of Collimating Plaques Ilkka Puusaari, 1 Jorma Heikkonen, 2 and Tero

More information

Manik Aima, Larry A. DeWerd, Wesley S. Culberson

Manik Aima, Larry A. DeWerd, Wesley S. Culberson Manik Aima, Larry A. DeWerd, Wesley S. Culberson University of Wisconsin Medical Radiation Research Center, Madison, WI 25 th Annual Meeting of the Council of Ionizing Radiation Measurements and Standards,

More information

Inherent precision. Ru-106 Eye Applicators and I-125 Ophthalmic Seeds.

Inherent precision. Ru-106 Eye Applicators and I-125 Ophthalmic Seeds. Inherent precision Ru-106 Eye Applicators and I-125 Ophthalmic Seeds www.bebig.com Brachytherapy for Eye Tumors Ophthalmic Brachytherapy The treatment of ocular tumors is selected according to the size

More information

Proton Radiation Therapy of Ocular Melanoma at PSI

Proton Radiation Therapy of Ocular Melanoma at PSI Proton Radiation Therapy of Ocular Melanoma at PSI G. Goitein*, A. Schalenbourg, J. Verwey*, A. Bolsi*, C. Ares*, L. Chamot, E. Hug*, L. Zografos *Paul Scherrer Institut, 5232 Villigen PSI; Hôpital Ophtalmique,

More information

Intraoperative biometry for intraocular lens (IOL) power calculation at silicone oil removal

Intraoperative biometry for intraocular lens (IOL) power calculation at silicone oil removal European Journal of Ophthalmology / Vol. 13 no. 7, 2003 / pp. 622-626 Intraoperative biometry for intraocular lens (IOL) power calculation at silicone oil removal S.M. EL-BAHA, A. EI-SAMADONI, H.F. IDRIS,

More information

Episcleral eye plaque dosimetry comparison for the Eye Physics EP917 using Plaque Simulator and Monte Carlo simulation

Episcleral eye plaque dosimetry comparison for the Eye Physics EP917 using Plaque Simulator and Monte Carlo simulation JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 16, NUMBER 6, 2015 Episcleral eye plaque dosimetry comparison for the Eye Physics EP917 using Plaque Simulator and Monte Carlo simulation Leonard W.

More information

Royal Berkshire Hospital Dunedin Hospital. Prince Charles Eye Unit Pi Princess Margaret Hospital

Royal Berkshire Hospital Dunedin Hospital. Prince Charles Eye Unit Pi Princess Margaret Hospital Vitreoretinal Surgery Mr Vaughan Tanner www.tanner-eyes.co.uk eyes Reading Royal Berkshire Hospital Dunedin Hospital Windsor Prince Charles Eye Unit Pi Princess Margaret Hospital Success rates VR surgery

More information

2018 OPTIONS FOR INDIVIDUAL MEASURES: REGISTRY ONLY. MEASURE TYPE: Outcome

2018 OPTIONS FOR INDIVIDUAL MEASURES: REGISTRY ONLY. MEASURE TYPE: Outcome Quality ID #191 (NQF 0565): Cataracts: 20/40 or Better Visual Acuity within 90 Days Following Cataract Surgery National Quality Strategy Domain: Effective Clinical Care 2018 OPTIONS FOR INDIVIDUAL MEASURES:

More information

Retina Center of Oklahoma Sam S. Dahr, M.D. Adult Intraocular Tumors

Retina Center of Oklahoma   Sam S. Dahr, M.D. Adult Intraocular Tumors Adult Intraocular Tumors Sam S. Dahr, M.D. Retina Center of Oklahoma www.retinacenteroklahoma.com www.rcoklahoma.com Table of Contents Posterior uveal malignant melanoma Uveal metastasis Uveal melanoma

More information

Application of MCNP4C Monte Carlo code in radiation dosimetry in heterogeneous phantom

Application of MCNP4C Monte Carlo code in radiation dosimetry in heterogeneous phantom Iran. J. Radiat. Res., 2003; 1(3): 143-149 Application of MCNP4C Monte Carlo code in radiation dosimetry in heterogeneous phantom A. Mostaar 1, M. Allahverdi 1,2, M. Shahriari 3 1 Medical Physics Department,

More information

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 6, NUMBER 2, SPRING 2005

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 6, NUMBER 2, SPRING 2005 JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 6, NUMBER 2, SPRING 2005 Advantages of inflatable multichannel endorectal applicator in the neo-adjuvant treatment of patients with locally advanced

More information

CLINICAL SCIENCES. Pretreatment Characteristics and Response to Plaque Radiation Therapy

CLINICAL SCIENCES. Pretreatment Characteristics and Response to Plaque Radiation Therapy CLINICAL SCIENCES Subfoveal Choroidal Melanoma Pretreatment Characteristics and Response to Plaque Radiation Therapy Hadas Newman, MD; Kimberly J. Chin, OD; Paul T. Finger, MD Objective: To evaluate the

More information

Note: This is an outcome measure and can be calculated solely using registry data.

Note: This is an outcome measure and can be calculated solely using registry data. Measure #191 (NQF 0565): Cataracts: 20/40 or Better Visual Acuity within 90 Days Following Cataract Surgery -- National Quality Strategy Domain: Effective Clinical Care DESCRIPTION: Percentage of patients

More information

Anatomical results and complications after silicone oil removal

Anatomical results and complications after silicone oil removal Romanian Journal of Ophthalmology, Volume 61, Issue 4, October-December 2017. pp:261-266 GENERAL ARTICLE Anatomical results and complications after silicone oil removal Brănişteanu Daniel Constantin* **,

More information

Optimisation of eye plaque dosimetry using Monte Carlo method. J. Green, D. Cutajar, S. Guatelli, & Rosenfeld, A.B.

Optimisation of eye plaque dosimetry using Monte Carlo method. J. Green, D. Cutajar, S. Guatelli, & Rosenfeld, A.B. Optimisation of eye plaque dosimetry using Monte Carlo method J. Green, D. Cutajar, S. Guatelli, & Rosenfeld, A.B. Cancer of the eye is a rare and challenging disease Uveal melanoma is the most prevalent

More information

Review of TG-186 recommendations

Review of TG-186 recommendations Review of TG-186 recommendations Implementation of advanced brachytherapy dose calculation algorithms beyond TG-43 Rowan M. Thomson Carleton Laboratory for Radiotherapy Physics Carleton University Ottawa

More information

Measure #191: Cataracts: 20/40 or Better Visual Acuity within 90 Days Following Cataract Surgery

Measure #191: Cataracts: 20/40 or Better Visual Acuity within 90 Days Following Cataract Surgery Measure #191: Cataracts: 20/40 or Better Visual Acuity within 90 Days Following Cataract Surgery 2012 PHYSICIAN QUALITY REPORTING OPTIONS FOR INDIVIDUAL MEASURES: REGISTRY ONLY DESCRIPTION: Percentage

More information

Quantitative OCT Angiography Evaluation of Peripapillary Retinal Circulation after Plaque Brachytherapy

Quantitative OCT Angiography Evaluation of Peripapillary Retinal Circulation after Plaque Brachytherapy Quantitative OCT Angiography Evaluation of Peripapillary Retinal Circulation after Plaque Brachytherapy Alison H. Skalet, MD, PhD, 1,2, * Liang Liu, MD, 1, * Christina Binder, MD, PhD, 2 Audra K. Miller,

More information

Risk of a second cancer after radiotherapy

Risk of a second cancer after radiotherapy Risk of a second cancer after radiotherapy Francesco d Errico University of Pisa, Italy Yale University, USA Medical radiological procedures worldwide 2.5 billion diagnostic radiological examinations 78%

More information

NOVEL SOFTWARE MODULES FOR TREATMENT PLANNING OF 106 RU EYE PLAQUE BRACHYTHERAPY

NOVEL SOFTWARE MODULES FOR TREATMENT PLANNING OF 106 RU EYE PLAQUE BRACHYTHERAPY NOVEL SOFTWARE MODULES FOR TREATMENT PLANNING OF 106 RU EYE PLAQUE BRACHYTHERAPY Gerd Heilemann, Lukas Fetty, Matthias Blaickner, Nicole Nesvacil, R. Dunavölgyi, and Dietmar Georg ESTRO 35 Forum 29 April

More information

1.1 Terminology of Mechanical Injuries: the Birmingham Eye Trauma Terminology (BETT)

1.1 Terminology of Mechanical Injuries: the Birmingham Eye Trauma Terminology (BETT) 1.1 Terminology of Mechanical Injuries: the Birmingham Eye Trauma Terminology (BETT) Ferenc Kuhn, Robert Morris, Viktória Mester, C. Douglas Witherspoon 1.1.1 If the Terminology Is Not Standardized Akin

More information

Sudden Vision Loss. Brendan Girschek, MD, FRCSC, FACS Vitreoretinal Surgery Cedar Valley Medical Specialists

Sudden Vision Loss. Brendan Girschek, MD, FRCSC, FACS Vitreoretinal Surgery Cedar Valley Medical Specialists Sudden Vision Loss Brendan Girschek, MD, FRCSC, FACS Vitreoretinal Surgery Cedar Valley Medical Specialists My Credentials -Residency in Ophthalmology at the LSU Eye Center in New Orleans, LA -Fellowship

More information

Laser pointer phototoxicity. Antonio Ciardella Bologna, Italy

Laser pointer phototoxicity. Antonio Ciardella Bologna, Italy Laser pointer phototoxicity Antonio Ciardella Bologna, Italy Handheld Green Laser-Pointer Maculopathy (HLPM) Laser pointer class 3 B can cause permanent eye damage with exposures of 1/100 th of a second

More information

Acute Retinal Necrosis Secondary to Varicella Zoster Virus in an Immunosuppressed Post-Kidney Transplant Patient

Acute Retinal Necrosis Secondary to Varicella Zoster Virus in an Immunosuppressed Post-Kidney Transplant Patient CM&R Rapid Release. Published online ahead of print September 20, 2012 as Aperture Acute Retinal Necrosis Secondary to Varicella Zoster Virus in an Immunosuppressed Post-Kidney Transplant Patient Elizabeth

More information

TLD as a tool for remote verification of output for radiotherapy beams: 25 years of experience

TLD as a tool for remote verification of output for radiotherapy beams: 25 years of experience IAEA-CN-96-82 TLD as a tool for remote verification of output for radiotherapy beams: 25 years of experience J. Francisco Aguirre, Ramesh C. Tailor, Geoffrey S. Ibbott, Marilyn Stovall and William F. Hanson

More information

Carlo Mosci. Ocular Oncology Service Galliera Hospital Genova Italy (www.galliera.it)

Carlo Mosci. Ocular Oncology Service Galliera Hospital Genova Italy (www.galliera.it) RADIATION INDUCED Carlo Mosci Ocular Oncology Service Galliera Hospital Genova Italy (www.galliera.it) "Working Day - Radiation Side Effects" carlo.mosci@galliera.it RADIATION INDUCED Different treatment

More information

2019 COLLECTION TYPE: MIPS CLINICAL QUALITY MEASURES (CQMS) MEASURE TYPE: Outcome High Priority

2019 COLLECTION TYPE: MIPS CLINICAL QUALITY MEASURES (CQMS) MEASURE TYPE: Outcome High Priority Quality ID #191 (NQF 0565): Cataracts: 20/40 or Better Visual Acuity within 90 Days Following Cataract Surgery National Quality Strategy Domain: Effective Clinical Care Meaningful Measure Area: Management

More information

Ophthalmic tumors. Wolfgang Sauerwein

Ophthalmic tumors. Wolfgang Sauerwein Ophthalmic tumors Wolfgang Sauerwein Today s menu Introduction and some basics on uveal melanoma Brachytherapy for intraocular tumors Proton therapy for intraocular tumors Proton therapy for conjunctival

More information

University of Wollongong. Research Online

University of Wollongong. Research Online University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2013 I-125 ROPES eye plaque dosimetry: Validation

More information

Venturi versus peristaltic pumps 33 vitrectomy dynamics 34 Fluorescein, vitreous staining 120

Venturi versus peristaltic pumps 33 vitrectomy dynamics 34 Fluorescein, vitreous staining 120 Subject Index Accurus 35, 83 Aflibercept, diabetic macular edema management 167, 168 Air-forced infusion, Stellaris PC 12, 13 Alcon Constellation, see Constellation system Autoclave sterilization lens

More information

Late-onset Retinal Detachment Associated with Regressed Retinopathy of Prematurity

Late-onset Retinal Detachment Associated with Regressed Retinopathy of Prematurity Late-onset Retinal Detachment Associated with Regressed Retinopathy of Prematurity Hiroko Terasaki*, and Tatsuo Hirose* *Schepens Retina Associates, Schepens Eye Research Institute, Harvard Medical School,

More information

AAPM Administrative Policy: Joint AAPM/IROC Houston Registry of Brachytherapy Sources Complying with AAPM Dosimetric Prerequisites

AAPM Administrative Policy: Joint AAPM/IROC Houston Registry of Brachytherapy Sources Complying with AAPM Dosimetric Prerequisites AAPM Administrative Policy: Joint AAPM/IROC Houston Registry of Brachytherapy Sources Complying with AAPM Dosimetric Prerequisites A. Purpose and Rationale Many individual users contact the AAPM Brachytherapy

More information

SURGICAL VITREORETINAL FELLOWSHIP PROGRAM. UNIVERSITY OF KENTUCKY AND RETINA ASSOCIATES OF KENTUCKY Lexington, Kentucky

SURGICAL VITREORETINAL FELLOWSHIP PROGRAM. UNIVERSITY OF KENTUCKY AND RETINA ASSOCIATES OF KENTUCKY Lexington, Kentucky SURGICAL VITREORETINAL FELLOWSHIP PROGRAM UNIVERSITY OF KENTUCKY AND RETINA ASSOCIATES OF KENTUCKY Lexington, Kentucky UK Fellowship Director P. Andrew Pearson, M.D. UK Vitreoretinal Faculty Romulo Albuquerque,

More information

Case Rep Oncol 2012;5: DOI: /

Case Rep Oncol 2012;5: DOI: / This is an Open Access article licensed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License (www.karger.com/oa-license), applicable to the online version of the article

More information

Spinal Cord Doses in Palliative Lung Radiotherapy Schedules

Spinal Cord Doses in Palliative Lung Radiotherapy Schedules Journal of the Egyptian Nat. Cancer Inst., Vol. 8, No., June: -, 00 Spinal Cord Doses in Palliative Lung Radiotherapy Schedules HODA AL-BOOZ, FRCR FFRRCSI M.D.* and CAROL PARTON, Ph.D.** The Departments

More information

Protection of the contralateral breast during radiation therapy for breast cancer

Protection of the contralateral breast during radiation therapy for breast cancer Protection of the contralateral breast during radiation therapy for breast cancer Edgardo Garrigó a*, Alejandro Germanier b, Silvia Zunino a a Instituto Privado de Radioterapia, Ob Oro 423 (5000) Córdoba,

More information

An anthropomorphic head phantom with a BANG polymer gel insert for dosimetric evaluation of IMRT treatment delivery

An anthropomorphic head phantom with a BANG polymer gel insert for dosimetric evaluation of IMRT treatment delivery An anthropomorphic head phantom with a BANG polymer gel insert for dosimetric evaluation of IMRT treatment delivery G. Ibbott a, M. Beach a, M. Maryanski b a M.D. Anderson Cancer Center, Houston, Texas,

More information

Diode calibration for dose determination in total body irradiation

Diode calibration for dose determination in total body irradiation Iran. J. Radiat. Res., 2008; 6 (1): 43-50 Diode calibration for dose determination in total body irradiation M.Allahverdi 1*, Gh. Geraily 1, M. Esfehani 3,A. Sharafi 2,A. Shirazi 1 1 Department of Medical

More information

Recurrences of retinal detachment after vitreoretinal surgery, and surgical approach

Recurrences of retinal detachment after vitreoretinal surgery, and surgical approach European Journal of Ophthalmology / Vol. 11 n. 2, 2001 / pp. 166-170 Recurrences of retinal detachment after vitreoretinal surgery, and surgical approach Z. KAPRAN 1, O.M. UYAR 1, V. KAYA 2, K. ELTUTAR

More information

Radiochromic film dosimetry in water phantoms

Radiochromic film dosimetry in water phantoms INSTITUTE OF PHYSICS PUBLISHING PHYSICS IN MEDICINE AND BIOLOGY Phys. Med. Biol. 46 (2001) N27 N31 www.iop.org/journals/pb PII: S0031-9155(01)16858-2 NOTE Radiochromic film dosimetry in water phantoms

More information

Dosimetric characterization of surface applicators for use with the Xoft ebx system

Dosimetric characterization of surface applicators for use with the Xoft ebx system Dosimetric characterization of surface applicators for use with the Xoft ebx system R.M. Kennedy University of Wisconsin Medical Research Center Madison, WI April 23, 2010 Introduction Squamous and basal

More information

Online in vivo dosimetry in conformal radiotherapies with MOSkin detectors

Online in vivo dosimetry in conformal radiotherapies with MOSkin detectors Online in vivo dosimetry in conformal radiotherapies with MOSkin detectors G.Gambarini 1, C.Tenconi 1, N.Mantaut 1 M.Carrara 2, M.Borroni 2, E.Pignoli 2 D.Cutajar 3, M.Petasecca 3, I.Fuduli 3, M.Lerch

More information

Choroidal detachment following retinal detachment surgery: An analysis and a new hypothesis to minimize its occurrence in high-risk cases

Choroidal detachment following retinal detachment surgery: An analysis and a new hypothesis to minimize its occurrence in high-risk cases European Journal of Ophthalmology / Vol. 14 no. 4, 2004 / pp. 325-329 Choroidal detachment following retinal detachment surgery: An analysis and a new hypothesis to minimize its occurrence in high-risk

More information

Management and Outcome of Uveal Melanoma in a Single Tertiary Cancer Center in Jordan

Management and Outcome of Uveal Melanoma in a Single Tertiary Cancer Center in Jordan Original Article doi:./tjpath.. Management and Outcome of Uveal Melanoma in a Single Tertiary Cancer Center in Jordan Ahmed Zewar, Ibrahim Nawaiseh, Imad Jaradat, Jakub Khzouz, Khaleel AlRawashdeh, Ghadeer

More information

The Foundation. RETINA HEALTH SERIES Facts from the ASRS

The Foundation. RETINA HEALTH SERIES Facts from the ASRS Complex Retinal Detachment: Proliferative Vitreoretinopathy and Giant Retinal Tears Proliferative vitreoretinopathy (PVR) is a condition in which retinal scar tissue, or membranes form; this may occur

More information

PART 1: GENERAL RETINAL ANATOMY

PART 1: GENERAL RETINAL ANATOMY PART 1: GENERAL RETINAL ANATOMY General Anatomy At Ora Serrata At Optic Nerve Head Fundoscopic View Of Normal Retina What Is So Special About Diabetic Retinopathy? The WHO definition of blindness is

More information

Systemic and ocular follow-up after conservative management of an intraocular tumor

Systemic and ocular follow-up after conservative management of an intraocular tumor Systemic and ocular follow-up after conservative management of an intraocular tumor 7 th Thessaloniki international Vitreo Retinal Summer School,26.6-1.7.2017 L. Zografos MD Jules Gonin Eye Hospital Periodic

More information

Intraocular Radiation Therapy for Age-Related Macular Degeneration

Intraocular Radiation Therapy for Age-Related Macular Degeneration Medical Policy Manual Medicine, Policy No. 134 Intraocular Radiation Therapy for Age-Related Macular Degeneration Next Review: April 2019 Last Review: June 2018 Effective: August 1, 2018 IMPORTANT REMINDER

More information

Tall, dark and.. Uh oh

Tall, dark and.. Uh oh Tall, dark and.. Uh oh Jesse L. Berry, MD Arizona Ophthalmology Society 2017 Ocular Oncology Service USC Eye Institute Financial Disclosures Research Support: Bright Eyes Nautica Foundation Knights Templar

More information

Tiffany L. Kruger, D.O. Children s Hospital of Michigan Wayne State University/Kresge Eye Institute

Tiffany L. Kruger, D.O. Children s Hospital of Michigan Wayne State University/Kresge Eye Institute Pediatric Cases Nt Not To Be Missed Tiffany L. Kruger, D.O. Pediatric Ophthalmology Fellow Children s Hospital of Michigan Wayne State University/Kresge Eye Institute Case Presentation CC: Left eye turns

More information

Note: This is an outcome measure and will be calculated solely using registry data.

Note: This is an outcome measure and will be calculated solely using registry data. Measure #384: Adult Primary Rhegmatogenous Retinal Detachment Surgery: No Return to the Operating Room Within 90 Days of Surgery National Quality Strategy Domain: Effective Clinical Care 2017 OPTIONS FOR

More information

Patient dosimetry for total body irradiation using single-use MOSFET detectors

Patient dosimetry for total body irradiation using single-use MOSFET detectors JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 9, NUMBER 4, FALL 2008 Patient dosimetry for total body irradiation using single-use MOSFET detectors Tina Marie Briere, 1 Ramesh Tailor, 1 Naresh Tolani,

More information

Dose to professionals in epiescleral brachytherapy

Dose to professionals in epiescleral brachytherapy Dose to professionals in epiescleral brachytherapy De Frutos-Baraja JM, del Castillo-Belmonte A, Hernando-González I, Sánchez-Carmona G, Cid-Galache A, Barrio-Lazo FJ, Pereda-Barroeta N, Giraldo-Arguello

More information

National Guidelines for the management of uveal melanoma. Sponsored by Melanoma Focus

National Guidelines for the management of uveal melanoma. Sponsored by Melanoma Focus National Guidelines for the management of uveal melanoma Sponsored by Melanoma Focus GDG Members Paul Nathan (Chair Oncologist Mt Vernon) Kieran McGuirk (Ocumel) Lesley Kirkpatrick (Ocumel) Kathryn Curtis

More information

at the Leading Edge Cannulas 20 & 23 Gauge Instruments Vitreoretinal

at the Leading Edge Cannulas 20 & 23 Gauge Instruments Vitreoretinal E s ta bl is h ed i n 19 59 20 & Instruments 20g 23g Vitreoretinal 23g 25g Cannulas Re-usable Titanium Cannulas Enhanced performance with better fixation and stabilisation compared to single use 7 Marquis

More information

Insertion of an epiretinal prosthesis for retinitis pigmentosa

Insertion of an epiretinal prosthesis for retinitis pigmentosa NATIONAL INSTITUTE FOR HEALTH AND CARE EXCELLENCE Interventional procedure consultation document Insertion of an epiretinal prosthesis for retinitis pigmentosa Retinitis pigmentosa is a disease that affects

More information

Absorbed Dose Response in Water of Kilovoltage X-rays Beams of Radiochromic Film and Thermoluminescent for Brachytherapy Dosimetry

Absorbed Dose Response in Water of Kilovoltage X-rays Beams of Radiochromic Film and Thermoluminescent for Brachytherapy Dosimetry Absorbed Dose Response in Water of Kilovoltage X-rays Beams of Radiochromic Film and Thermoluminescent for Brachytherapy Dosimetry Chien-Hau Chu 1, Uei-Tyng Lin 1, Ngot-Swan Chong 2, Wen-Song Hwang 1,

More information

Extracranial doses in stereotactic and conventional radiotherapy for pituitary adenomas

Extracranial doses in stereotactic and conventional radiotherapy for pituitary adenomas JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 7, NUMBER 2, SPRING 2006 Extracranial doses in stereotactic and conventional radiotherapy for pituitary adenomas Thomas Samuel Ram, a Paul B. Ravindran,

More information

A Little Physics. How Does It Work? Radiation Therapy for Choroidal Neovascularisation in AMD A Review. => cell death

A Little Physics. How Does It Work? Radiation Therapy for Choroidal Neovascularisation in AMD A Review. => cell death Radiation Therapy for Choroidal Neovascularisation in AMD A Review Jen Anikina ST4 Hillingdon Hospital A Little Physics One gray is the absorption of one joule of ionizing radiation energy per kilogram

More information

Comparison Between 20- Gauge And 23-Gauge Vitrectomy In Diabetic Patients

Comparison Between 20- Gauge And 23-Gauge Vitrectomy In Diabetic Patients Asok Nataraj MS Abstract Aim: - Comparison Between 20- Gauge And 23-Gauge Vitrectomy In Diabetic Patients The purpose of this study was to directly compare the outcome, safety and efficacy of the 20G and

More information

CLINICAL SCIENCES. Conclusions: A distinctive postbrachytherapy regression

CLINICAL SCIENCES. Conclusions: A distinctive postbrachytherapy regression horoidal Melanomas With a ollar-utton onfiguration Response Pattern fter Iodine 125 rachytherapy Dennis M. Robertson, MD LINIL SIENES Objective: To describe a distinctive type of postbrachytherapy response

More information

Implantation of a corneal graft keratoprosthesis for severe corneal opacity in wet blinking eyes

Implantation of a corneal graft keratoprosthesis for severe corneal opacity in wet blinking eyes NATIONAL INSTITUTE FOR HEALTH AND CARE EXCELLENCE Interventional procedure consultation document Implantation of a corneal graft keratoprosthesis for severe corneal opacity in wet blinking eyes The cornea

More information

Scleral buckling. Surgical Treatment

Scleral buckling. Surgical Treatment Dr. Ayman M. Khattab MD, FRCS professor of Ophthalmology Cairo University Surgical Treatment Pneumatic retinopexy. Primary pars plana vitrectomy. 1 Indications for scleral buckling. SB is used to treat

More information

Assessment of variation of wedge factor with depth, field size and SSD for Neptun 10PC Linac in Mashhad Imam Reza Hospital

Assessment of variation of wedge factor with depth, field size and SSD for Neptun 10PC Linac in Mashhad Imam Reza Hospital Iran. J. Radiat. Res., 2004; 2 (2): 53-58 Assessment of variation of wedge factor with depth, field size and SSD for Neptun 10PC Linac in Mashhad Imam Reza Hospital M. Hajizadeh Saffar 1*, M.R. Ghavamnasiri

More information

Uveal Melanoma. Protocol applies to malignant melanoma of the uvea.

Uveal Melanoma. Protocol applies to malignant melanoma of the uvea. Uveal Melanoma Protocol applies to malignant melanoma of the uvea. Protocol revision date: January 2005 Based on AJCC/UICC TNM, 6 th edition Procedures Cytology (No Accompanying Checklist) Biopsy (No Accompanying

More information

Research Article Dose Distributions of an 192 Ir Brachytherapy Source in Different Media

Research Article Dose Distributions of an 192 Ir Brachytherapy Source in Different Media BioMed Research International, Article ID 946213, 11 pages http://dx.doi.org/10.1155/2014/946213 Research Article Dose Distributions of an 192 Ir Brachytherapy Source in Different Media C. H. Wu, 1 Y.

More information

Ocular Trauma: Principles and Practice

Ocular Trauma: Principles and Practice Ocular Trauma: Principles and Practice von Dante J. Pieramici Ferenc Kuhn 1. Auflage Thieme 2002 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 13 125771 0 Zu Leseprobe schnell und portofrei erhältlich

More information

Cyberknife Radiosurgery for Uveal Melanoma

Cyberknife Radiosurgery for Uveal Melanoma Cyberknife Radiosurgery for Uveal Melanoma Kirsten Eibl, Alexander Muacevic, Anselm Kampik Cyberknife Center Munich-Großhadern in cooperation with the University Hospital of the University Munich Uveal

More information

I t is possible to apply large doses of

I t is possible to apply large doses of Proton irradiation of simulated ocular tumors Ian J. Constable, Andreas M. Koehler, and Robert A. Schmidt Silicone sponges were sutured to the sclera of owl monkeys to create an indentation which would

More information

Vanderbilt Eye Institute Clinical Trials

Vanderbilt Eye Institute Clinical Trials April, 2010 Vanderbilt Eye Institute Clinical Trials Ophthalmology Actively Recruiting Studies For information on our clinical trials and other studies, please contact: Sandy Owings, COA, CCRP Clinic Director

More information

Vitrectomy for Diabetic Cystoid Macular Edema

Vitrectomy for Diabetic Cystoid Macular Edema Vitrectomy for Diabetic Cystoid Macular Edema Yukihiro Sato, Zeon Lee and Hiroyuki Shimada Department of Ophthalmology, Nihon University School of Medicine, Tokyo, Japan Purpose: We evaluated visual outcomes

More information

RETINAL DETACHMENT AT THE POSTERIOR POLE*

RETINAL DETACHMENT AT THE POSTERIOR POLE* Brit. J. Ophthal. (1958) 42, 749. RETINAL DETACHMENT AT THE POSTERIOR POLE* BY CALBERT I. PHILLIPSt Institute of Ophthalmology, University oflondon THE common feature of the cases to be described in this

More information

Eye plaque dosimetry verification using novel solid state devices

Eye plaque dosimetry verification using novel solid state devices University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 2014 Eye plaque dosimetry verification using novel solid state devices Talia

More information

Three-dimensional dosimetry imaging of I-125 plaque for eye cancer treatment

Three-dimensional dosimetry imaging of I-125 plaque for eye cancer treatment University of Wollongong Research Online Sydney Business School - Papers Faculty of Business 2011 Three-dimensional dosimetry imaging of I-125 plaque for eye cancer treatment Michael Weaver University

More information

FEP Medical Policy Manual

FEP Medical Policy Manual FEP Medical Policy Manual Last Review: September 2016 Next Review: September 2017 Related Policies 6.01.10 Stereotactic Radiosurgery and Stereotactic Body Radiotherapy 8.01.10 Charged-Particle (Proton

More information

METHODS FOR coding the

METHODS FOR coding the Assessment of Metastatic Disease Status at Death in 435 Patients With Large Choroidal Melanoma in the Collaborative Ocular Melanoma Study (COMS) COMS Report No. 15 The Collaborative Ocular Melanoma Study

More information

Standard calibration of ionization chambers used in radiation therapy dosimetry and evaluation of uncertainties

Standard calibration of ionization chambers used in radiation therapy dosimetry and evaluation of uncertainties Standard calibration of ionization chambers used in radiation therapy dosimetry and evaluation of uncertainties A. Solimanian and M. Ghafoori * Iran. J. Radiat. Res., 2010; 8 (3): 195-199 Radiation Dosimetry

More information

ICO-Ophthalmology Surgical Competence Assessment Rubric Vitrectomy (ICO-OSCAR:VIT)

ICO-Ophthalmology Surgical Competence Assessment Rubric Vitrectomy (ICO-OSCAR:VIT) ICO-Ophthalmology Surgical Competence Assessment Rubric Vitrectomy (ICO-OSCAR:VIT) Date Resident Evaluator Novice (score = 2) Beginner (score = 3) Advanced Beginner (score = 4) Competent (score = 5) Not

More information