Summary Talk of the Workshop

Size: px
Start display at page:

Download "Summary Talk of the Workshop"

Transcription

1 Medical experience

2 History of IBT Pituitary 1st He pt Treatment 1st C, Ne pt Eye treatment Phase-1 He Phase I-II Ne Phase I-II Ne & He 1st Comp Tx Plan 3D planning LBNL CT LBNL MRI Image Correlation 1957 Uppsala 1961 MGH/HCL 1967 Dubna

3 LBL: evolution of treatment planning

4 the first clinical proton therapy center: LLUMC

5 IBT facilities in the USA Courtesy of Mark Buntaine (Still-Rivers Rivers-Systems)

6 is prostate cancer a good indication? 1. The dose distribution difference between IMRT & protons is very small, so there is no reason to believe there should be a difference. 2. Neutron contamination issues? 3. Not cost effective? 4. Early stage pts require long fu & many pts & PSA inadequate! High risk pts Tx systemic Dz? 5. The NCI will not fund a study that does not use Overall Survival as an endpoint (e.g. RTOG 0815) 6. There are very few Centers & it is not in their $$$ best interest to turn away pts. MRIII

7 is prostate cancer a good indication? Conclusions: In the range higher than 60 Gy/CGE, IMRT achieved significantly better sparing of the bladder, whereas rectal sparing was similar IJROBP 69, 444, 2007

8 prostate cancer: H-scattering vs. X-IMRT 7F-IMRT 2F-proton Ratio V70(Bla) V30(Rec) V

9 example: prostate cancer LLUMC tumor stages ca patients T1c-T2c 23% each T1a/b & T3 3% each 2-F proton 10Y survival (bned) 73% (brachytherapy: 70%) complications grade 2 9% grade 3 <1% grade 4 none 6-F photon equivalent survival rates no surgery, no hormone therapy necessary

10 prostate cancer: pro and con protons 1. Proton Beam Radiotherapy touted as best choice but not supported by the evidence! 2. Same doses will yield same results! 3. Risk of second cancers higher with passive scanning? 4. Cost of facilities is prohibitive and not Green!: a. Single prototype vaults ~ 20 M b. Multi-vault units: 70 to 140 M 5. Brachy yields equal or better results & is: a. Less expensive b. More available c. Has broader applications d. Potential for further improvements? MRIII 10

11 neutrons: scanning vs scattering 10 x 10 cm 2 field Doses are highly facility dependent Full benefit of protons (6-MV) achieved with scanning technique but none use it! MRIII These data are considered incorrect! Hall, IJROBP 65:1-7;2006) 11

12 pro and con of heavy ions relative dose 1,2 1 0,8 0,6 narrower Bragg peak 60-Co 14.5 MeV Neu 20 MeV e 160 MeV H 270 MeV/u C 70 MeV Pi carbon proton increased biol. effectiveness nuclear fragmentation 0,4 0, less lateral scattering more expensive lateral scattering (mm) proton helium carbon depth in water (cm)

13 prostate treatment with carbon ions Comparison of CRT vs. XRT (with or without hormones) for prostate cancer shows 10-15% higher OS for CRT Tsujii et al., 2008

14 contributions of PSI to proton therapy The Spot Scanning Gantry at PSI Spot scanning and a compact gantry for proton therapy of deep seated tumors PSIs (and Eros Pedronis) pioneering contribution to cancer treatment GG-Erce 09

15 PSI: the eye tumor program OPTIS The eye is the perfect model for proton therapy: NO bones, NO strong inhomogeneities, a mobile and controllable organ, a well circumscribed functional compartment GG03/09 but nevertheless not an easy case! GG-Erce 09

16 2993 Patients analyzed (2006), who received proton radiation therapy between III/1984 and VIII/2005 Follow up 15 months 21 years; median 5ys 3ms Confirmed diagnosis of melanoma (HOJG Lausanne) Unilateral disease No reduced (<2mm) safety margin Negative familial history Visible fundus No adjuvant chemotherapy Proton dose of 4x15= 60 Gy RBE (former CGE, Cobalt Gray Equivalent) GG 03/09 GG-Erce 09

17 Conclusion - OPTIS Summary Talk of the Workshop Center for Proton Therapy OPTIS Proton radiotherapy for ocular melanoma results in very satisfying local control (overall 97%@5ys, 96%@10ys, 94%@15ys) and tumor specific survival (overall 91%@5ys, 83%@10ys, 79%@15 ys) Differentiated outcome analysis shows that age tumor size (diameter and thickness) localization and relation to other structures (optic disc, ciliary body, iris) have the strongest influence on local failure, enucleation rate and survival GG 03/09 GG-Erce 09

18 tumor Summary Talk of the Workshop example: uveal melanoma MGH, PSI, LLUMC: ca patients 15Y local control 95% eye retained 80% 20/200 vision saved: 40% 5Y survival > 70% local control similar to enucleation number of metastases not increased more flexible than plaque therapy HMI, Berlin

19 PSI: pediatric tumors XRT PT Choroid-Plexus Carcinoma 2 year old girl Slide courtesy of B. Timmermann GG-Erce 09

20 dose distribution: an example protons dose (%) 100 photons Relapsing desmoid tumor in a 12 y/o boy field spot scanning 9-field IMRT Lomax, 2003

21 dose distribution: an example protons photons dose (%) x higher integral dose for photons field spot scanning 9-field IMRT Lomax, 2003

22 example: comparative dose distribution for child with medulloblastoma conventional X-rays intensity-modulated X-rays spot-scanned scanned protons target volume (spinal cord) Miralbell et al, 2002

23 Summary Talk of the Workshop Pediatric Proton Therapy Conclusion Patients are treated within or in adaptation to existing protocols overall 86% Outcomes are very satisfying with good local control rates Acute toxicities where extension and protocol-defined safety margins require irradiation of normal tissues up to dose levels with known risk of acute (and late) toxicities. Protons can reduce CTX-related toxicities through sparing of normal tissues (e.g. oral mucosa). Local recurrences occured in-field; no geographic misses, but local relapses due to aggressiveness of the disease (? higher local doses beneficial?) Late toxicities Grade 3 & 4 were related to the tumor geometry site, size, shape and necessary dose levels; 1 grade 5 fatalty occured in a high risk patient who was treated for recurrent disease. 1/51 GG-Erce 09

24 25 Years of Proton Radiation Therapy at PSI - Conclusion Philosophy and performance in all medical and related projects at SIN/PSI were positive Indications for proton therapy at a physics research institute were wisely chosen according to medical needs and technical/logistic possibilities A new technology was introduced into the spectrum of Radiation Oncology with caution and great care, ongoing improvement and learning All developments were focussed on patient safety & comfort and were optimized according to medical needs Clinical outcomes for various tumors and sites were good to excellent Outcome analyses and comparison with other centers showed appropriate and in part outstanding treatment results Adverse effects or events were understood and actions were taken Technology and medical results have made PSI a reference place for PT GG-Erce 09

25 PSI: outlook From bony tumors, tumors attached to bones or in immobile anatomic positions to Soft Tissue tumors in a soft tissue environment to Mobile soft tissue tumors moving with respiration Step I. upper GI (Liver / Bile / Pancreas) Step II. Lung Ca, Mesothelioma, Mediastinal tumors Slide courtesy of E. Hug GG-Erce 09

26 CNAO: treatment indications Who shall we treat at CNAO? RO, CNAO

27 CNAO: identifying new indications RO, CNAO

28 Category A Summary Talk of the Workshop All the tumors in which the use of hadrontherapy IBT is clearly demonstrated to be advantageous, being the only way to give a curative dose to the target volume minimizing the incidence of severe side effects Category B ranking of indications A great variety of tumors characterized mainly by a local evolution, with a limited probability of distant spread, and therefore potentially cured if the locoregional control can be obtained RO, CNAO

29 Category A. Protons New patients per year Patients treatable with protons Uveal Melanoma % Chordomas of the skull base and of the spinal column % Chondrosarcomas of the cephalic extremity and of the trunk % Meningiomas of the skull base % Paraspinal tumours % Schwannomas of the cranial nerves % Pituitary adenomas % Paediatric solid tumours % TOTAL

30 Category A. Carbon ions New patients per year Patients treatable with Carbons Salivary gland tumours % Maxillary sinus adenocarcinomas % Mucosal melanoma of the head and neck area and other districts % Bone sarcomas % Soft tissue sarcomas % Liver/Biliary tract/pancreatic tumours % Recurrent tumours % TOTAL

31 possible indications tumor type applicability (%) pat./year in Germany chordoma and chondrosarcoma eye melanoma basal meningioma pediatric tumors soft tissue sarcomas nasopharyngeal tumors gliomas grade I & II glioblastoma hepatocellular carcinoma prostate carcinoma NSC lung carcinoma solitary metastases local recurrencies Sum 21000

32 estimate of patient numbers First Author (Country) Year Bengt (Sweden) 2005 Orrecchia (Italy) 1998 Baron (France) 2004 Type of study Rad Onc, Physicist, tumor registry stats for Sweden, literature, #pts getting RT Estimation based # RT pts Estimation based # RT pts Conclusions per yr or ~ 14-15% of all RT pts 16% 14.5% Mayer (Austria) 2004 Estimation based # RT pts 13.5% approx. 15% of RT patients are presently considered candidates for IBT

33 criteria for usage tumors neighboring critical structures pediatric tumors deep-lying irregularly shaped extensive tumors profit from precision steep dose gradient favorable dose distribution well demarcated non-invasive tumors improved local tumor control lower risk for healthy tissue simplified treatment plan

34 Eye & Orbit uveal melanoma retinoblastoma choroidal hemangioma Summary Talk of the Workshop FDA-approved indications CNS chordoma/chondrosarcoma gliomas, meningeoma pediatric brain tumors, metastases Head & Neck oropharynx CA nasopharynx CA recurrent tumors Chest NSC lung cancer Abdomen paraspinal tumors soft tissue sarcomas Pelvis prostate CA cervix CA Wilms tumor

35 example: cervical cancer Cervical cancer is the second most common cancer among women worldwide Estimated new cases and deaths in the year 2000 Survival rates vary between regions 69% in the North American Surveillance Epidemiology and End Results registry (SEER) 49% in developing countries RM, MedAustron

36 cervical cancer: treatment results Radiotherapy of locally extended disease: Conventional RT Proton Therapy Mean 5-year survival Mean 10-year survival 65-70% (Stage IIB) 89% (Stage IIB) 34-52% (Stage III B) 40% (Stage IIIB/IV) 0-19% (Stage IV) Gerbaulet A et al. GEC ESTRO handbook of brachytherapy Arimoto T, et al. Cancer 1991; 68:79. 2 Kagei K, et al. Int J Radiat Oncol Biol Phys 2003; 55:1265.

37 major schools of thought 1. Unethical to do Trial - Protons are obviously better so no trial needed 2. Ethical to do Trial - Protons not obviously better so a trial is needed 3. Not ready to do Trial quite yet -Protons are better but need to Tweak before trial started 4. Waste of time & money to do Trial - obviously not better, conceptual framework does not justify trial. a. They (don t) have them and (don t) believe it b. They are financially motivated c. They are a. & b.

38 5th school of thought 5. Ethical to do Trial - Protons are in principle better but treatment methodology might not always be optimum. So a trial is needed a. They don t have them but believe in them b. They are financially motivated c. They are a. & b.

39 necessary initiatives Correct methodology Clear guidelines Controlled clinical trials Reproducibility of results Small series Technical heterogeneity Clinical heterogeneity

40 IBT publications YEARS STUDIES CLINICAL PHYSIC BIOLOGICAL TOTAL IJ ROBP, Lancet, Radiother Oncol, JCO, Semin Oncol, Rad Prot Dosimetry, Phys Med Biol, Head and Neck, Int J Clin Oncol, J Radiat Res, J Thorac Oncol, Lung Cancer RO, CNAO

41 hadron therapy vs. ion beam therapy Hadrons: subatomic particles built from quarks baryons Ions:charged atoms or molecules with a lack or excess of electrons Nucleus: ion with maximum positive charge mesons therapy with protons or other ions = IBT

25 Years of Proton Radiation Therapy at PSI an Overview

25 Years of Proton Radiation Therapy at PSI an Overview 25 Years of Proton Radiation Therapy at PSI an Overview Gudrun Goitein for the Team of the Center for Proton Therapy Center for Proton Therapy Paul Scherrer Institut (www.psi.ch) 5232 Villigen PSI Switzerland

More information

HEAVY PARTICLE THERAPY

HEAVY PARTICLE THERAPY HEAVY PARTICLE THERAPY DR. G.V. GIRI KIDWAI MEMORIAL INSTITUTE OF ONCOLOGY ICRO 2012 BHATINDA HEAVY PARTICLES USED IN A EFFORT TO IMPROVE TUMOR CONTROL, THAT DO NOT RESPOND TO PHOTONS OR ELECTRONS BETTER

More information

Current Status and Future Medical Perspectives at MedAustron. U. Mock EBG MedAustron GmbH

Current Status and Future Medical Perspectives at MedAustron. U. Mock EBG MedAustron GmbH Current Status and Future Medical Perspectives at MedAustron U. Mock EBG MedAustron GmbH Cancer treatment facility Ion beam therapy with protons and carbon ions Research facility Medical physics Radiobiology

More information

-Proton Beam Therapy in Paediatric Radiation Oncology -

-Proton Beam Therapy in Paediatric Radiation Oncology - -Proton Beam Therapy in Paediatric Radiation Oncology - Beate Timmermann, M.D. West German Proton Therapy Centre Essen Germany Preview Survival Toxicity Why protons? (theoretically) Experiences so far

More information

Proton and heavy ion radiotherapy: Effect of LET

Proton and heavy ion radiotherapy: Effect of LET Proton and heavy ion radiotherapy: Effect of LET As a low LET particle traverses a DNA molecule, ionizations are far apart and double strand breaks are rare With high LET particles, ionizations are closer

More information

Advances in external beam radiotherapy

Advances in external beam radiotherapy International Conference on Modern Radiotherapy: Advances and Challenges in Radiation Protection of Patients Advances in external beam radiotherapy New techniques, new benefits and new risks Michael Brada

More information

Status of H 1 and C 12

Status of H 1 and C 12 Status of H 1 and C 12 Herman Suit No Conflict of Interest 1 Goal of a New Treatment Modality Tumor Control Probability or No in Complication Rate 2 Truism No Advantage to: any Patient for any Radiation

More information

Proton Radiation Therapy of Ocular Melanoma at PSI

Proton Radiation Therapy of Ocular Melanoma at PSI Proton Radiation Therapy of Ocular Melanoma at PSI G. Goitein*, A. Schalenbourg, J. Verwey*, A. Bolsi*, C. Ares*, L. Chamot, E. Hug*, L. Zografos *Paul Scherrer Institut, 5232 Villigen PSI; Hôpital Ophtalmique,

More information

PEDIATRIC ORBITAL TUMORS RADIOTHERAPY PLANNING

PEDIATRIC ORBITAL TUMORS RADIOTHERAPY PLANNING PEDIATRIC ORBITAL TUMORS RADIOTHERAPY PLANNING ANATOMY ANATOMY CONT ANATOMY CONT. ANATOMY CONT. EYE OF A CHILD Normal tissue tolerance doses (in conventional #) TD 5/5 TD 50/5 Endpoint Gy Gy Optic nerve

More information

PROGRESS IN HADRONTHERAPY

PROGRESS IN HADRONTHERAPY PROGRESS IN HADRONTHERAPY Saverio Braccini TERA Foundation for Oncological Hadrontherapy IPRD06 - Siena - 01.10.06 - SB 1 Outline Introduction Radiation therapy with X rays and hadrontherapy Hadrontherapy

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy File Name: Origination: Last CAP Review: Next CAP Review: Last Review: charged_particle_radiotherapy 3/12/96 5/2017 5/2018 5/2017 Description of Procedure or Service Charged-particle

More information

NCCN GUIDELINES ON PROTON THERAPY (AS OF 4/23/18) BONE (Version , 03/28/18)

NCCN GUIDELINES ON PROTON THERAPY (AS OF 4/23/18) BONE (Version , 03/28/18) BONE (Version 2.2018, 03/28/18) NCCN GUIDELINES ON PROTON THERAPY (AS OF 4/23/18) Radiation Therapy Specialized techniques such as intensity-modulated RT (IMRT); particle beam RT with protons, carbon ions,

More information

Carbon Ion Radiotherapy for Skull Base and Paracervical Chordomas

Carbon Ion Radiotherapy for Skull Base and Paracervical Chordomas Carbon Ion Radiotherapy for Skull Base and Paracervical Chordomas Azusa Hasegawa, Jun-etsu Mizoe and Hirohiko Tsujii Research Center Hospital for Charged Particle Therapy National Institute of Radiological

More information

III. Proton-therapytherapy. Rome SB - 5/5 1

III. Proton-therapytherapy. Rome SB - 5/5 1 Outline Introduction: an historical review I Applications in medical diagnostics Particle accelerators for medicine Applications in conventional radiation therapy II III IV Hadrontherapy, the frontier

More information

Disclosures. Proton therapy advantages. Why are comparing therapies difficult? Proton Therapy for Low Risk Prostate Cancer

Disclosures. Proton therapy advantages. Why are comparing therapies difficult? Proton Therapy for Low Risk Prostate Cancer Proton Therapy for Low Risk Prostate Cancer Disclosures No relevant financial disclosures This presentation will not discuss off-label or investigational treatments Andrew K. Lee, MD, MPH Associate Professor

More information

Proton- Radiotherapy: Overview of Clinical Indications

Proton- Radiotherapy: Overview of Clinical Indications Proton- Radiotherapy: Overview of Clinical Indications Eugen B. Hug (with emphasis on indications treated at PSI For comprehensive clinical reviews: ESTRO or PTCOG seminars) HUG 11/07 Complication Free

More information

Hadrons from Berkeley to the World and Back: an American Perspective Circa 2009

Hadrons from Berkeley to the World and Back: an American Perspective Circa 2009 Mack Roach III MD Professor and Chair Department of Radiation Oncology University of California, San Francisco California, USA Hadrons from Berkeley to the World and Back: an American Perspective Circa

More information

Proton-Radiotherapy for Tumors of the Skull Base: Indications, Advantages, Limitations

Proton-Radiotherapy for Tumors of the Skull Base: Indications, Advantages, Limitations Proton-Radiotherapy for Tumors of the Skull Base: Indications, Advantages, Limitations Eugen B. Hug, MD Director, Center for Proton-Radiotherapy, Paul Scherrer Institut, Villigen and Chair of Proton-Radiotherapy.

More information

Proton Radiation Therapy for Osteosarcomas, Chondrogenic Tumors and Soft Tissue Sarcomas

Proton Radiation Therapy for Osteosarcomas, Chondrogenic Tumors and Soft Tissue Sarcomas Proton Radiation Therapy for Osteosarcomas, Chondrogenic Tumors and Soft Tissue Sarcomas Eugen B. Hug Center for Proton Radiation Therapy Paul Scherrer Institute Is there a place for Proton/Particle Radiotherapy

More information

Clinical Concept and History of Protons. Relevance and Limitations of Conformality. Gudrun Goitein

Clinical Concept and History of Protons. Relevance and Limitations of Conformality. Gudrun Goitein Clinical Concept and History of Protons Relevance and Limitations of Conformality Gudrun Goitein PSI Winter School January 2010 Bad Zurzach and PSI, Villigen Switzerland P + Who came first: The Clinical

More information

Pediatrics -Proton Beam Therapy in Children -

Pediatrics -Proton Beam Therapy in Children - Pediatrics -Proton Beam Therapy in Children - Beate Timmermann, M.D. West German Proton Therapy Centre Essen Germany Preview Survival Toxicity Why protons? (theoretically) Experiences so far (clinically)

More information

Clinical Results of Carbon Ion Radiotherapy: The Heidelberg Experience

Clinical Results of Carbon Ion Radiotherapy: The Heidelberg Experience Clinical Results of Carbon Ion Radiotherapy: The Heidelberg Experience Stephanie E. Combs, MD Department of Radiation Oncology University of Heidelberg, Germany Carbon ion RT at GSI Active beam delivery

More information

FROM ICARO1 TO ICARO2: THE MEDICAL PHYSICS PERSPECTIVE. Geoffrey S. Ibbott, Ph.D. June 20, 2017

FROM ICARO1 TO ICARO2: THE MEDICAL PHYSICS PERSPECTIVE. Geoffrey S. Ibbott, Ph.D. June 20, 2017 FROM ICARO1 TO ICARO2: THE MEDICAL PHYSICS PERSPECTIVE Geoffrey S. Ibbott, Ph.D. June 20, 2017 1 DISCLOSURES My institution holds Strategic Partnership Research Agreements with Varian, Elekta, and Philips

More information

The Rise, Fall, and Rise Again of Proton Therapy or Never count out a well-financed therapy

The Rise, Fall, and Rise Again of Proton Therapy or Never count out a well-financed therapy The Rise, Fall, and Rise Again of Proton Therapy or Never count out a well-financed therapy Anthony Zietman MD Shipley Professor of Radiation Oncology Massachusetts General Hospital Harvard Medical School

More information

Andrew K. Lee, MD, MPH Associate Professor Department tof fradiation Oncology M.D. Anderson Cancer Center

Andrew K. Lee, MD, MPH Associate Professor Department tof fradiation Oncology M.D. Anderson Cancer Center Proton Therapy for Prostate Cancer Andrew K. Lee, MD, MPH Associate Professor Department tof fradiation Oncology M.D. Anderson Cancer Center Seungtaek Choi, MD Assistant Professor Department tof fradiation

More information

Future Directions in Prostate Cancer: The Case for Protons. John J. Coen, MD Helen & Harry Gray Cancer Center

Future Directions in Prostate Cancer: The Case for Protons. John J. Coen, MD Helen & Harry Gray Cancer Center Future Directions in Prostate Cancer: The Case for Protons John J. Coen, MD Helen & Harry Gray Cancer Center November 14, 2012 Protons and prostate cancer Early proton experience at the MGH The case for

More information

Proton Therapy Dosimetry & Clinical Implementation. Baldev Patyal, Ph.D., Chief Medical Physicist Department of Radiation Medicine

Proton Therapy Dosimetry & Clinical Implementation. Baldev Patyal, Ph.D., Chief Medical Physicist Department of Radiation Medicine Proton Therapy Dosimetry & Clinical Implementation Baldev Patyal, Ph.D., Chief Medical Physicist Department of Radiation Medicine Outline» Proton Therapy Basics» Why Proton Therapy? (Dosimetric Superiority)»

More information

ACR TXIT TM EXAM OUTLINE

ACR TXIT TM EXAM OUTLINE ACR TXIT TM EXAM OUTLINE Major Domain Sub-Domain 1 Statistics 1.1 Study design 1.2 Definitions of statistical terms 1.3 General interpretation & analysis 1.4 Survival curves 1.5 Specificity/sensitivity

More information

IMPT with Carbon Ions

IMPT with Carbon Ions IMPT with Carbon Ions PTCOG 48, Heidelberg, 28.09.-03.10.2009 Malte Ellerbrock Medical Physics Expert Heidelberg Ion-Beam Therapy Center HIT Betriebs GmbH am Universitätsklinikum Heidelberg http://www.hit-centrum.de

More information

UCSF Uveal Melanoma Program: Outcomes with Proton Beam Radiation Therapy Kavita K. Mishra, M.D., M.P.H. UCSF Comprehensive Cancer Center

UCSF Uveal Melanoma Program: Outcomes with Proton Beam Radiation Therapy Kavita K. Mishra, M.D., M.P.H. UCSF Comprehensive Cancer Center Disclosures UCSF Uveal Melanoma Program: Outcomes with Proton Beam Radiation Therapy No disclosures Kavita K. Mishra, M.D., M.P.H. UCSF Comprehensive Cancer Center UCSF Uveal Melanoma Program: Ocular Melanoma

More information

PTCOG 46. Educational Workshop Session IV. Head & Neck CLINICAL. J. Mizoe (NIRS, Japan)

PTCOG 46. Educational Workshop Session IV. Head & Neck CLINICAL. J. Mizoe (NIRS, Japan) PTCOG 46 Educational Workshop Session IV CLINICAL Head & Neck J. Mizoe (NIRS, Japan) Photon X-Ray γ-ray Fast Neutron Non-Charged Radiation Electron Proton Helium Light Ion Heavy Particle Carbon Neon Argon

More information

Radiation Oncology Study Guide

Radiation Oncology Study Guide Radiation Oncology Study Guide For the Initial CertificationQualifying (Computer-Based) Examination General and Radiation Oncology This examination is designed to assess your understanding of the entire

More information

Sarcoma and Radiation Therapy. Gabrielle M Kane MB BCh EdD FRCPC Muir Professorship in Radiation Oncology University of Washington

Sarcoma and Radiation Therapy. Gabrielle M Kane MB BCh EdD FRCPC Muir Professorship in Radiation Oncology University of Washington Sarcoma and Radiation Therapy Gabrielle M Kane MB BCh EdD FRCPC Muir Professorship in Radiation Oncology University of Washington Objective: Helping you make informed decisions Introduction Process Radiation

More information

Proton Radiation Therapy for Osteosarcomas, Chondrogenic Tumors and Soft Tissue Sarcomas

Proton Radiation Therapy for Osteosarcomas, Chondrogenic Tumors and Soft Tissue Sarcomas Proton Radiation Therapy for Osteosarcomas, Chondrogenic Tumors and Soft Tissue Sarcomas Eugen B. Hug Center for Proton Radiation Therapy Paul Scherrer Institute Histologies Osteogenic Tumors Osteogenic

More information

Demands and Perspectives of Hadron Therapy

Demands and Perspectives of Hadron Therapy Demands and Perspectives of Hadron Therapy Alexander Lin, M.D. Assistant Professor University of Pennsylvania Direction of Operations Roberts Proton Therapy Center Disclosures Teva Pharmaceuticals: Advisory

More information

Present status and future of Proton beam therapy

Present status and future of Proton beam therapy Present status and future of Proton beam therapy Description At present, the types of proven treatment for cancer are surgery, radiotherapy, and chemotherapy. Depending on the characteristics of cancer

More information

MP Charged-Particle (Proton or Helium Ion) Radiotherapy for Neoplastic Conditions

MP Charged-Particle (Proton or Helium Ion) Radiotherapy for Neoplastic Conditions Medical Policy BCBSA Ref. Policy: 8.01.10 Last Review: 07/25/2018 Effective Date: 07/25/2018 Section: Therapy Related Policies 6.01.10 Stereotactic Radiosurgery and Stereotactic Body Radiotherapy 8.01.46

More information

Particle Radiation Therapy: CurrentStatus Indications -Results

Particle Radiation Therapy: CurrentStatus Indications -Results Particle Radiation Therapy: CurrentStatus Indications -Results Eugen B. Hug Center for Proton Therapy Paul Scherrer Institute and University of Zürich Switzerland Particle Radiation Therapy: Selection

More information

The Advantages of Particle Therapy and the Status of the Heidelberg Iontherapy Center

The Advantages of Particle Therapy and the Status of the Heidelberg Iontherapy Center The Advantages of Particle Therapy and the Status of the Heidelberg Iontherapy Center Thomas Haberer, Scientific Technical Director, Heidelberg Ion Therapy Center Situation / Indications 2/3 patients suffer

More information

Clinical Treatment Planning

Clinical Treatment Planning Radiation Therapy Services Benefits to Change for the CSHCN Services Program Effective October 1, 2008, benefits for radiation therapy services will change for the Children with Special Health Care Needs

More information

Charged-Particle (Proton or Helium Ion) Radiotherapy for Neoplastic Conditions

Charged-Particle (Proton or Helium Ion) Radiotherapy for Neoplastic Conditions Charged-Particle (Proton or Helium Ion) Radiotherapy for Neoplastic Conditions Policy Number: 8.01.10 Last Review: 11/2017 Origination: 11/2006 Next Review: 11/2018 Policy Blue Cross and Blue Shield of

More information

Hypofractionation in particle therapy. Marco Durante

Hypofractionation in particle therapy. Marco Durante Hypofractionation in particle therapy Marco Durante 29.04.2014 Radiosurgery (SBRT): the new frontier in stereotactic imageguided radiotherapy Stage I (T1N0M0) NSCLC Oligometastases Hepatocellular carcinoma

More information

Proton Stereotactic Radiotherapy: Clinical Overview. Brian Winey, Ph.D. Physicist, MGH Assistant Professor, HMS

Proton Stereotactic Radiotherapy: Clinical Overview. Brian Winey, Ph.D. Physicist, MGH Assistant Professor, HMS Proton Stereotactic Radiotherapy: Clinical Overview Brian Winey, Ph.D. Physicist, MGH Assistant Professor, HMS Acknowledgements Radiation Oncologists and Physicists at various institutions (MGH, MDACC,

More information

Effectiveness and Safety of Spot Scanning Proton Radiation Therapy for Skull Base Tumors: First Long Term Report of the PSI Experience

Effectiveness and Safety of Spot Scanning Proton Radiation Therapy for Skull Base Tumors: First Long Term Report of the PSI Experience Effectiveness and Safety of Spot Scanning Proton Radiation Therapy for Skull Base Tumors: First Long Term Report of the PSI Experience Carmen Ares, Antony J Lomax, Eugen B Hug, Alessandra Bolsi, Beate

More information

Role of protons, heavy ions and BNCT in brain tumors

Role of protons, heavy ions and BNCT in brain tumors Role of protons, heavy ions and BNCT in brain tumors Prof G K Rath Head, NCI (AIIMS-2) Chief, Dr. BRA IRCH, Professor Radiation Oncology All India Institute of Medical Sciences, New Delhi 1 Overview of

More information

Sacral Chordoma: The Loma Linda University Radiation Medicine Experience. Kevin Yiee MD, MPH Resident Physician

Sacral Chordoma: The Loma Linda University Radiation Medicine Experience. Kevin Yiee MD, MPH Resident Physician Sacral Chordoma: The Loma Linda University Radiation Medicine Experience Kevin Yiee MD, MPH Resident Physician What is a chordoma? 1 st chordoma discovered in clivus by Virchow and Luschka 1856 Rare tumor

More information

Treatment Planning (Protons vs. Photons)

Treatment Planning (Protons vs. Photons) Treatment Planning Treatment Planning (Protons vs. Photons) Acquisition of imaging data Delineation of regions of interest Selection of beam directions Dose calculation Optimization of the plan Hounsfield

More information

11/27/2017. Proton Therapy for Brain Tumors: Hope or Hype? Financial Disclosures. Objectives. None

11/27/2017. Proton Therapy for Brain Tumors: Hope or Hype? Financial Disclosures. Objectives. None Proton Therapy for Brain Tumors: Hope or Hype? 1 Financial Disclosures None 2 Objectives Discuss the rationale and evidence for proton therapy in children and adults Discuss the late effects that can be

More information

Radiation Related Second Cancers. Stephen F. Kry, Ph.D., D.ABR.

Radiation Related Second Cancers. Stephen F. Kry, Ph.D., D.ABR. Radiation Related Second Cancers Stephen F. Kry, Ph.D., D.ABR. Objectives Radiation is a well known carcinogen Atomic bomb survivors Accidental exposure Occupational exposure Medically exposed Radiotherapy

More information

Protons for Head and Neck Cancer. William M Mendenhall, M.D.

Protons for Head and Neck Cancer. William M Mendenhall, M.D. Protons for Head and Neck Cancer William M Mendenhall, M.D. Protons for Head and Neck Cancer Potential Advantages: Reduce late complications via more conformal dose distributions Likely to be the major

More information

HEALTH RISKS FROM EXPOSURE TO FAST NEUTRONS. Prof. Marco Durante

HEALTH RISKS FROM EXPOSURE TO FAST NEUTRONS. Prof. Marco Durante HEALTH RISKS FROM EXPOSURE TO FAST NEUTRONS Prof. Marco Durante Risk from neutrons Risk from exposure to fission spectrum neutrons has been extensively studied in the 60 s at nuclear reactors using animal

More information

IMRT - the physician s eye-view. Cinzia Iotti Department of Radiation Oncology S.Maria Nuova Hospital Reggio Emilia

IMRT - the physician s eye-view. Cinzia Iotti Department of Radiation Oncology S.Maria Nuova Hospital Reggio Emilia IMRT - the physician s eye-view Cinzia Iotti Department of Radiation Oncology S.Maria Nuova Hospital Reggio Emilia The goals of cancer therapy Local control Survival Functional status Quality of life Causes

More information

Innovations in Radiation Therapy, including SBRT, IMRT, and Proton Beam Therapy. Sue S. Yom, M.D., Ph.D.

Innovations in Radiation Therapy, including SBRT, IMRT, and Proton Beam Therapy. Sue S. Yom, M.D., Ph.D. Innovations in Radiation Therapy, including SBRT, IMRT, and Proton Beam Therapy Sue S. Yom, M.D., Ph.D. Disclosures Genentech: advisory, research support ImClone: research support Plexxikon: research support

More information

Clinical Report for Wanjie Proton Therapy Center. Li Jiamin, MD Wanjie Proton Therapy Center

Clinical Report for Wanjie Proton Therapy Center. Li Jiamin, MD Wanjie Proton Therapy Center Clinical Report for Wanjie Proton Therapy Center Li Jiamin, MD Wanjie Proton Therapy Center General Information Wanjie Proton Therapy Center was founded in June 2001 The first patient was treated in Dec.

More information

Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy

Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy Policy Number: Original Effective Date: MM.05.008 05/12/1999 Line(s) of Business: Current Effective Date: HMO; PPO; QUEST Integration 11/20/2015

More information

Intensity Modulated Radiation Therapy (IMRT)

Intensity Modulated Radiation Therapy (IMRT) Intensity Modulated Radiation Therapy (IMRT) Policy Number: Original Effective Date: MM.05.006 03/09/2004 Line(s) of Business: Current Effective Date: HMO; PPO; QUEST Integration 05/01/2017 Section: Radiology

More information

Specifics of treatment planning for active scanning and IMPT

Specifics of treatment planning for active scanning and IMPT Specifics of treatment planning for active scanning and IMPT SFUD IMPT Tony Lomax, Centre for Proton Radiotherapy, Paul Scherrer Institute, Switzerland Treatment planning for scanning 1. Single Field,

More information

Approved January 14, HERC Coverage Guidance

Approved January 14, HERC Coverage Guidance HEALTH EVIDENCE REVIEW COMMISSION (HERC) COVERAGE GUIDANCE: PROTON BEAM THERAPY HERC Coverage Guidance Proton beam therapy (PBT) is recommended for coverage for malignant ocular tumors (strong recommendation).

More information

Locally advanced disease & challenges in management

Locally advanced disease & challenges in management Gynecologic Cancer InterGroup Cervix Cancer Research Network Cervix Cancer Education Symposium, February 2018 Locally advanced disease & challenges in management Carien Creutzberg Radiation Oncology, Leiden

More information

Dosimetric Analysis of 3DCRT or IMRT with Vaginal-cuff Brachytherapy (VCB) for Gynaecological Cancer

Dosimetric Analysis of 3DCRT or IMRT with Vaginal-cuff Brachytherapy (VCB) for Gynaecological Cancer Dosimetric Analysis of 3DCRT or IMRT with Vaginal-cuff Brachytherapy (VCB) for Gynaecological Cancer Tan Chek Wee 15 06 2016 National University Cancer Institute, Singapore Clinical Care Education Research

More information

Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy

Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy Policy Number: Original Effective Date: MM.05.008 05/12/1999 Line(s) of Business: Current Effective Date: HMO; PPO; QUEST Integration 04/01/2017

More information

State of the Art Radiotherapy for Pediatric Tumors. Suzanne L. Wolden, MD Memorial Sloan-Kettering Cancer Center

State of the Art Radiotherapy for Pediatric Tumors. Suzanne L. Wolden, MD Memorial Sloan-Kettering Cancer Center State of the Art Radiotherapy for Pediatric Tumors Suzanne L. Wolden, MD Memorial Sloan-Kettering Cancer Center Introduction Progress and success in pediatric oncology Examples of low-tech and high-tech

More information

Stereotactic radiotherapy

Stereotactic radiotherapy Stereotactic radiotherapy Influence of patient positioning and fixation on treatment planning - clinical results Frank Zimmermann Institut für Radioonkologie Universitätsspital Basel Petersgraben 4 CH

More information

Ion Beam Therapy should we prioritise research on helium beams?

Ion Beam Therapy should we prioritise research on helium beams? Ion Beam Therapy should we prioritise research on helium beams? Stuart Green Medical Physics University Hospital Birmingham NHS Trust Follow-up from the EUCARD2 workshop, ION Beam Therapy: Clinical, Scientific

More information

Can Protons replace Eye Brachytherapy? 1 Department of Radiation Oncology

Can Protons replace Eye Brachytherapy? 1 Department of Radiation Oncology Can Protons replace Eye Brachytherapy? Richard Pötter 1,2, Roman Dunavölgyi 3, Karin Dieckmann 1, Dietmar Georg 1,2 1 Department of Radiation Oncology 2 Christian Doppler Laboratory for Medical Radiation

More information

Disclosures 5/13/2013. Principles and Practice of Radiation Oncology First Annual Cancer Rehabilitation Symposium May 31, 2013

Disclosures 5/13/2013. Principles and Practice of Radiation Oncology First Annual Cancer Rehabilitation Symposium May 31, 2013 Principles and Practice of Radiation Oncology First Annual Cancer Rehabilitation Symposium May 31, 2013 Josh Yamada MD FRCPC Department of Radiation Oncology Memorial Sloan Kettering Cancer Center Disclosures

More information

Charged-Particle (Proton or Helium Ion) Radiotherapy for Neoplastic Conditions

Charged-Particle (Proton or Helium Ion) Radiotherapy for Neoplastic Conditions Charged-Particle (Proton or Helium Ion) Radiotherapy for Neoplastic Conditions Policy Number: Original Effective Date: MM.05.005 07/01/2009 Line(s) of Business: Current Effective Date: HMO; PPO; QUEST

More information

Lessons from treatment of pediatric sarcomas at difficult sites. Dr. Andrea Ferrari Pediatric Oncology Unit Istituto Nazionale Tumori, Milan, Italy

Lessons from treatment of pediatric sarcomas at difficult sites. Dr. Andrea Ferrari Pediatric Oncology Unit Istituto Nazionale Tumori, Milan, Italy Lessons from treatment of pediatric sarcomas at difficult sites Dr. ndrea Ferrari Pediatric Oncology Unit stituto Nazionale Tumori, Milan, taly Disclosure slide have no potential conflicts of interest

More information

LIST OF ADVANCED TREATMENTS COVERABLE UNDER MEDICAL BENEFITS. Bladder cancer. Classical Hodgkin lymphoma. Head and neck cancer

LIST OF ADVANCED TREATMENTS COVERABLE UNDER MEDICAL BENEFITS. Bladder cancer. Classical Hodgkin lymphoma. Head and neck cancer LIST OF ADVANCED TREATMENTS COVERABLE UNDER MEDICAL BENEFITS ADVANCE TREATMENT COVERABLE CONDITIONS 1 Cryoablation Primary therapy alternative to surgery for individuals with localized disease or as a

More information

Chapter 5 Section 3.1

Chapter 5 Section 3.1 Radiology Chapter 5 Section 3.1 Issue Date: March 27, 1991 Authority: 32 CFR 199.4(b)(2), (b)(2)(x), (c)(2)(viii), and (g)(15) 1.0 CPT 1 PROCEDURE CODES 37243, 61793, 61795, 77261-77421, 77427-77799, 0073T

More information

Characterization and implementation of Pencil Beam Scanning proton therapy techniques: from spot scanning to continuous scanning

Characterization and implementation of Pencil Beam Scanning proton therapy techniques: from spot scanning to continuous scanning Characterization and implementation of Pencil Beam Scanning proton therapy techniques: from spot scanning to continuous scanning Supervisors Prof. V. Patera PhD R. Van Roermund Candidate Annalisa Patriarca

More information

Nuclear Data for Radiation Therapy

Nuclear Data for Radiation Therapy Symposium on Nuclear Data 2004 Nov. 12, 2004 @ JAERI, Tokai Nuclear Data for Radiation Therapy ~from macroscopic to microscopic~ Naruhiro Matsufuji, Yuki Kase and Tatsuaki Kanai National Institute of Radiological

More information

AMERICAN BRAIN TUMOR ASSOCIATION. Proton Therapy

AMERICAN BRAIN TUMOR ASSOCIATION. Proton Therapy AMERICAN BRAIN TUMOR ASSOCIATION Proton Therapy ACKNOWLEDGEMENTS ABOUT THE AMERICAN BRAIN TUMOR ASSOCIATION Founded in 1973, the American Brain Tumor Association (ABTA) was the first national nonprofit

More information

Radiobiology for particle therapy

Radiobiology for particle therapy Radiobiology for particle therapy Marco Durante CNAO-NIRS meeting, Pavia 21.03.2010 INFN Workshop, Napoli, 4.4.2014 2 The radiobiological adavantages of particle therapy Jakob et al., PNAS 2009 PIDE database

More information

...some UK and Australian hadron therapy initiatives...

...some UK and Australian hadron therapy initiatives... Particles for patients, Radiotherapy with protons (and other ions): potential, problems and $$$s...some UK and Australian hadron therapy initiatives... David Thwaites Institute of Medical Physics Context

More information

Radiation Technology, Hyogo Ion Beam Medical Center, Tatsuno, Hyogo, JAPAN

Radiation Technology, Hyogo Ion Beam Medical Center, Tatsuno, Hyogo, JAPAN Analysis of Visual Loss Due to Radiation- Induced Optic Neuropathy After Particle Therapy for Head and Neck and Skull Base Tumors Adjacent to Optic Nerves Y. Demizu 1, M. Murakami 1, D. Miyawaki 1, Y.

More information

Charged-Particle (Proton or Helium Ion) Radiation Therapy. Original Policy Date

Charged-Particle (Proton or Helium Ion) Radiation Therapy. Original Policy Date MP 8.01.08 Charged-Particle (Proton or Helium Ion) Radiation Therapy Medical Policy Section Therapy Issue 12/2013 Original Policy Date 12/2013 Last Review Status/Date Reviewed with literature search/12/2013

More information

Proton- Radiotherapy:

Proton- Radiotherapy: Proton- Radiotherapy: Future of Medical Indications and Treatment Concepts Eugen B. Hug and Ralf A. Schneider HUG 11/07 The emerging role of Proton Radiotherapy in the framework of modern Photon-RT 2000

More information

Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy

Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy Policy Number: Original Effective Date: MM.05.008 05/12/1999 Line(s) of Business: Current Effective Date: HMO; PPO; QUEST Integration 04/01/2015

More information

Proton Therapy for tumors of the skull base - RESULTS. Eugen B. Hug, MD Medical Director, ProCure Proton Therapy Centers, NY

Proton Therapy for tumors of the skull base - RESULTS. Eugen B. Hug, MD Medical Director, ProCure Proton Therapy Centers, NY Proton Therapy for tumors of the skull base - RESULTS Eugen B. Hug, MD Medical Director, ProCure Proton Therapy Centers, NY Petroclival Chondrosarcoma: 68 72 Gy(RBE) at 1.8 or 2.0 Gy(RBE) GTV: 70.2 Gy(RBE)

More information

Proton and helium beams: the present and the future of light ion beam therapy

Proton and helium beams: the present and the future of light ion beam therapy Proton and helium beams: the present and the future of light ion beam therapy Dr. Andrea Mairani Group Leader Biophysics in Particle Therapy Heidelberg Ion Beam Therapy Center HIT Department of Radiation

More information

Prostate Cancer in comparison to Radiotherapy alone:

Prostate Cancer in comparison to Radiotherapy alone: Prostate Cancer in comparison to Radiotherapy alone: 1 RTOG 86-10 (2001) 456 patients with > a-goserelin 2 month before RTand during RT + Cyproterone acetate (1 month) vs b-pelvic irradiation (50 gy) +

More information

Collection of Recorded Radiotherapy Seminars

Collection of Recorded Radiotherapy Seminars IAEA Human Health Campus Collection of Recorded Radiotherapy Seminars http://humanhealth.iaea.org Conservative Treatment of Invasive Bladder Cancer Luis Souhami, MD Professor Department of Radiation Oncology

More information

Evidence shows that local tumor response depends on the dose of radiation delivered, and

Evidence shows that local tumor response depends on the dose of radiation delivered, and Medical Policy Manual Topic: Charged-Particle (Proton or Helium Ion) Radiation Therapy Date of Origin: April 1998 Section: Medicine Last Reviewed Date: June 2014 Policy No: 49 Effective Date: September

More information

Outline. Outline 3/30/12. Second Cancers from. Radiotherapy Procedures. Stephen F. Kry, Ph.D., D.ABR.

Outline. Outline 3/30/12. Second Cancers from. Radiotherapy Procedures. Stephen F. Kry, Ph.D., D.ABR. Second Cancers from Radiotherapy Procedures Stephen F. Kry, Ph.D., D.ABR. Outline Radiation and cancer induction Medically exposed people Estimating risk of second cancers Minimizing the risk Outline Radiation

More information

Introduction to Ion Beam Cancer Therapy

Introduction to Ion Beam Cancer Therapy Introduction to Ion Beam Cancer Therapy Andrew M. Sessler (with some slides from David Robin) Lawrence Berkeley National Laboratory Berkeley, CA 94720 Cyclotron 10, Lanzhou September 10, 2010 Contents

More information

Update on Sarcomas of the Head and Neck. Kevin Harrington

Update on Sarcomas of the Head and Neck. Kevin Harrington Update on Sarcomas of the Head and Neck Kevin Harrington Overview Classification and incidence of sarcomas Clinical presentation Challenges to treatment Management approaches Prognostic factors Radiation-induced

More information

First, how does radiation work?

First, how does radiation work? Hello, I am Prajnan Das, Faculty Member in the Department of Radiation Oncology at The University of Texas MD Anderson Cancer Center. We are going to talk today about some of the basic principles regarding

More information

Charged-Particle (Proton) Radiotherapy

Charged-Particle (Proton) Radiotherapy Medical Policy Manual Medicine, Policy No. 49 Charged-Particle (Proton) Radiotherapy Next Review: June 2019 Last Review: October 2018 Effective: December 1, 2018 IMPORTANT REMINDER Medical Policies are

More information

Basic Press Information

Basic Press Information Basic Press Information Contact MedAustron EBG MedAustron GmbH Marie Curie-Strasse 5 A-2700 Wiener Neustadt Austria T +43 2622 26 100-0 e-mail: office@medaustron.at Internet: www.medaustron.at Press contact:

More information

ADVANCES IN RADIATION TECHNOLOGIES IN THE TREATMENT OF CANCER

ADVANCES IN RADIATION TECHNOLOGIES IN THE TREATMENT OF CANCER ADVANCES IN RADIATION TECHNOLOGIES IN THE TREATMENT OF CANCER Bro. Dr. Collie Miller IARC/WHO Based on trends in the incidence of cancer, the International Agency for Research on Cancer (IARC) and WHO

More information

Clinical Appropriateness Guidelines: Radiation Oncology

Clinical Appropriateness Guidelines: Radiation Oncology Clinical Appropriateness Guidelines: Radiation Oncology Proton Beam Treatment Guidelines Effective Date: September 5, 2017 Proprietary Date of Origin: 05/14/2014 Last revised: 01/08/2015 Last reviewed:

More information

MRI Based treatment planning for with focus on prostate cancer. Xinglei Shen, MD Department of Radiation Oncology KUMC

MRI Based treatment planning for with focus on prostate cancer. Xinglei Shen, MD Department of Radiation Oncology KUMC MRI Based treatment planning for with focus on prostate cancer Xinglei Shen, MD Department of Radiation Oncology KUMC Overview How magnetic resonance imaging works (very simple version) Indications for

More information

Particle (proton) Therapy Randomized trials vs. Prospective registry. Andrew K. Lee, MD, MPH Associate Professor Department of Radiation Oncology

Particle (proton) Therapy Randomized trials vs. Prospective registry. Andrew K. Lee, MD, MPH Associate Professor Department of Radiation Oncology Particle (proton) Therapy Randomized trials vs. Prospective registry Andrew K. Lee, MD, MPH Associate Professor Department of Radiation Oncology Should we do randomized trials? Are randomized trials needed

More information

Radiation Oncology MOC Study Guide

Radiation Oncology MOC Study Guide Radiation Oncology MOC Study Guide The following study guide is intended to give a general overview of the type of material that will be covered on the Radiation Oncology Maintenance of Certification (MOC)

More information

Medical physics is beautiful

Medical physics is beautiful Translational research in particle therapy Marco Durante Medical physics is beautiful Pisa, 31.10.2014 Relative dose 1. 2 1. 0 Tumor Durante & Loeffler, Nature Rev Clin Oncol 2010 0. 8 Normal tissue 0.

More information

Prostate Cancer Treatments. Hasan Murshed, MD., DABR Radiation Oncology Residency, UAB Fellowship, MDACC Board Certified, ABR

Prostate Cancer Treatments. Hasan Murshed, MD., DABR Radiation Oncology Residency, UAB Fellowship, MDACC Board Certified, ABR Prostate Cancer Treatments Hasan Murshed, MD., DABR Radiation Oncology Residency, UAB Fellowship, MDACC Board Certified, ABR A Brief History of Radiation Wilhelm Roentgen discovered X- rays on November

More information

Proton Radiotherapy for Skull Base and Para-spinal Tumors

Proton Radiotherapy for Skull Base and Para-spinal Tumors Proton Radiotherapy for Skull Base and Para-spinal Tumors Carmen Ares Primary tumors Tumors of the Skull Base - Chordomas, Chondrosarcomas Secondary infiltration or involvement by intracranial tumors -

More information

The role of chemoradiotherapy in GE junction and gastric cancer. Karin Haustermans

The role of chemoradiotherapy in GE junction and gastric cancer. Karin Haustermans The role of chemoradiotherapy in GE junction and gastric cancer Karin Haustermans Overview Postoperative chemoradiotherapy Preoperative chemoradiotherapy Palliative radiation Technical aspects Overview

More information

CURRENT STANDARD OF CARE IN NASOPHARYNGEAL CANCER

CURRENT STANDARD OF CARE IN NASOPHARYNGEAL CANCER CURRENT STANDARD OF CARE IN NASOPHARYNGEAL CANCER Jean-Pascal Machiels Department of medical oncology Institut I Roi Albert II Cliniques universitaires Saint-Luc Université catholique de Louvain, Brussels,

More information