Differentiation of radionecrosis from tumor recurrence

Size: px
Start display at page:

Download "Differentiation of radionecrosis from tumor recurrence"

Transcription

1 Neuro-Oncology 15(12): , doi: /neuonc/not130 NEURO-ONCOLOGY Extent of perilesional edema differentiates radionecrosis from tumor recurrence following stereotactic radiosurgery for brain metastases Jonathan E. Leeman, David A. Clump, John C. Flickinger, Arlan H. Mintz, Steven A. Burton, and Dwight E. Heron Department of Radiation Oncology (J.E.L., D.A.C., J.C.F., S.A.B., D.E.H.) and Department of Neurological Surgery (A.H.M.), University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania Background. Differentiation of tumor recurrence from radionecrosis is a critical step in the follow-up management of patients treated with stereotactic radiosurgery (SRS) for brain metastases. A method that can reliably differentiate tumor recurrence from radiation necrosis using standard MR sequences would be of significant value. Methods. We analyzed the records of 49 patients with 52 brain metastases treated with SRS who subsequently underwent surgical resection of the same lesion. Fortyseven of the lesions had preoperative MRI available for review (90%), including T1 postcontrast, T2, and fluid attenuated inversion recovery sequences. Pre-SRS and preoperative lesion and edema volumes were manually contoured and measured in a blinded fashion using radiation treatment planning software. A neuropathologist analyzed samples for the presence of tumor and/or radiation necrosis. Results. Longer time between SRS and resection (P,.001) and a larger edema/lesion volume ratio (high T2/ T1c, P ¼.002) were found to be predictive of radionecrosis as opposed to tumor recurrence. Using a cutoff value of 10 for the edema/lesion volume ratio, we were able to predict the presence of tumor with a positive predictive value of 92%, which increased to 100% when looking only at patients who underwent resection,18 months following SRS. Conclusions. On follow-up imaging, lesions with a high edema/lesion volume ratio and lesions that progress later after SRS are more likely to contain radionecrosis. These indices may help guide clinical decision making in the context of evolving lesions after SRS for brain metastases and thereby avoid unnecessary interventions. Keywords: brain metastases, magnetic resonance imaging, radionecrosis, stereotactic radiosurgery. Differentiation of radionecrosis from tumor recurrence is a critical step in the follow-up management of patients treated with stereotactic radiosurgery (SRS) for a brain metastasis. Whether progression of the lesion is evident from imaging or evolution of neurological symptoms, accurate diagnosis of the lesion s histology is critical for appropriate management. When tumor recurrence is suspected, surgical resection becomes an important consideration, whereas radiation effects may be managed more conservatively. Multiple studies have attempted to utilize advanced imaging techniques, including PET, single-photon emission CT (SPECT), and MR spectroscopy (MR SPECT) to evaluate progressing lesions, 1 6 but the current standard for follow-up imaging remains traditional MRI. As such, a method that can reliably differentiate tumor recurrence from radiation necrosis using standard MR sequences would be of significant value. In this study, we sought to validate the technique of using T1-T2 match as an indicator of tumor recurrence as well as present a new method for detection of recurrence utilizing the edema/lesion volume ratio. We also hypothesized that other parameters, such as time from radiosurgery until resection, tumor volume, and radioresistant histology, might help in predicting whether the resected specimens show only radiation effect, only persistent/progressing tumor, or a mixture of both. Materials and Methods Received April 29, 2013; accepted July 11, Corresponding Author: Dwight E. Heron, MD, FACRO, FACR, UPMC Cancer Pavilion, Department of Radiation Oncology, 5150 Centre Avenue, #545, Pittsburgh, PA (herond2@upmc.edu). Patient and Lesion Characteristics We retrospectively analyzed the charts of 49 patients with 52 lesions treated with SRS for a brain metastasis between May 2005 and August 2011 who subsequently # The Author(s) Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please journals.permissions@oup.com.

2 underwent surgical resection of the same lesion. Of these, 5 patients were excluded because preop imaging with all necessary MR sequences was unavailable, leaving 44 patients with 47 lesions included in our imaging correlation analysis. All 49 patients were included in the remainder of analyses. Patient and tumor characteristics are presented in Table 1. The median age at the time of SRS was 58 years (range, 29 83). Nineteen patients were male (39%), and 30 were female (61%). The median KPS was 80 (range, Table 1. Characteristics of patients who received SRS for a brain metastasis followed by surgical resection Characteristic Value Patients, n (F/M) 49 (19/30) Lesions, n 52 Lesions with preop MRI, n (%) 47 (90) Median age, y 58 Primary malignancy, n Lung 20 Melanoma 13 Breast 9 Colon 4 Renal 3 Other 3 Median KPS score (range) 80 (70 90) Median number of brain metastases (range) 2 (1 7) Median graded prognostic assessment score 1.5 ( ) (range) Recursive partitioning analysis class, n I 27 II 23 III 0 Symptoms at time of surgery, n (%) Symptomatic 41 (79) Asymptomatic 11 (21) Median interval between primary diagnosis and 28.7 (0 247) SRS, mo (range) Median tumor volume, cc (range) 4.6 ( ) Received WBRT, n (%) 11 (22) Prior to SRS 5 (10) After SRS 6 (12) Treatment order, n (%) SRS resection 34 (65) SRS resection SRS 8 (15) Resection SRS resection 10 (19) Repeat SRS, n (%) 20 (38) Median SRS dose, Gy (range) 20.5 (8 29) Treatment fractions, n (%) 1 44 (85) 2 1 (2) 3 3 (6) 5 1 (5) Treatment modality, n (%) Cyberknife 51 (98) Trilogy 1 (2) 70 90). The median number of brain metastases at the time of SRS was 2 (range, 1 7), and 28 patients (54%) had active systemic disease at the time of SRS. The median graded prognostic assessment was 1.5 (range, ). Twenty-seven patients (54%) were class I in recursive partitioning analysis, 23 (46%) were class II, and none were class III. Primary histologies included lung (n ¼ 20), melanoma (n ¼ 13), breast (n ¼ 9), colon (n ¼ 4), renal (n ¼ 3), endometrial (n ¼ 1), ovarian (n ¼ 1), and germ cell (n ¼ 1). The median time between primary diagnosis and diagnosis of brain metastases was 28.7 months (range, 0 247). Five patients had received whole brain radiation therapy (WBRT) prior to SRS (10%), while 6 patients received WBRT after SRS (12%). Ten lesions were resected, received adjuvant SRS to the resection bed, and were subsequently resected again (19%), while 8 of the lesions received SRS and then subsequent adjuvant SRS after resection (15%). The remaining 34 lesions received SRS followed by resection (65%). A total of 20 lesions received repeat SRS (38%). The median time between SRS and resection was 4.6 months (range, ). Resection was performed due to lesion progression on follow-up imaging following SRS, worsening of symptoms, or failure of a course of steroids. SRS Treatment Characteristics The median treatment volume was 4.6 cc (range, ) treated with a median prescription dose of 20.5 Gy (range, 8 29) to the 80% isodose line. Forty-four of the lesions were treated in a single fraction (85%); 1 was treated in 2 fractions (2%); 3 were treated in 3 fractions (6%); and 1 was treated in 5 fractions (2%). The median tumor coverage was 98.4% (range, 86.6% 100%). Fifty-one lesions (98%) were treated using the Cyberknife Radiosurgery System (Accuray), and 1 (2%) was treated using the Trilogy Radiosurgery System (Varian Medical Systems). Analysis of Pre-SRS Preoperative Imaging Forty-seven (90%) of the lesions had preoperative MRI available for review, including T1 sequences pre- and postcontrast, T2 with and without fluid attenuated inversion recovery (FLAIR) as well as thin-slice contrast-enhanced spoiled gradient recalled acquisition in steady state (SPGR). Lesion volumes were measured using Eclipse radiation treatment planning software (Varian Medical Systems). For T1 and SPGR images, lesion volume was determined by contouring the contrast-enhancing lesion volume on every slice. For T2 and FLAIR images, the outline of the lesion was contoured by distinguishing the area of decreased signal surrounded by the volume of high T2 signal. T2 edema volume was determined by contouring the entire T2 enhancing area surrounding the lesion on each slice. Lesion and edema volumes were similarly contoured and measured for pre-srs images. All lesions were contoured in a blinded fashion without NEURO-ONCOLOGY DECEMBER

3 regard to the lesion histology. The median number of days between imaging and resection was 5 (range, 0 50). Histological Determination Resected tissue was analyzed by a neuropathologist. Samples were determined to consist of pure recurrent tumor, pure radiation effect, or a mixture of both entities and were reported per our institutional standards. Statistics A 2-sided P-value of.05 was accepted as statistically significant for all tests. Coding for pathology outcome was scored as 0 for pure radiation effect (necrosis) with no viable tumor and as 1.0 for pure tumor recurrence, with 0.5 for mixed tumor plus radiation effect. Nonparametric ordinal univariate correlations between those pathology outcome values and preop variables were assessed with the Spearman Rho rank correlation test. Multivariate analysis of these correlations was performed with forward stepwise multivariate linear regression. Bivariate logistic regression was used to analyze outcome coded as pure radiation effect versus tumor (combining the pure tumor and mixed tumor/radiation effect categories into one). Survival time was computed from the time of SRS and median survival was calculated using the Kaplan Meier method. 7 All statistical tests were carried out using SPSS v15.0. This project was reviewed and approved by the University of Pittsburgh Institutional Review Board. Clinical Outcomes Results The median length of follow-up was 10 months (range, ). Seven patients (13%) suffered postoperative complications, including pulmonary emboli (n ¼ 3), postsurgical meningitis (n ¼ 1), cerebrospinal fluid leak (n ¼ 1), third nerve palsy (n ¼ 1), and pseudomeningocele (n ¼ 1). Forty-three of the lesions (83%) had follow-up imaging available for review postoperatively. Of these, 23 were found to have a distant brain failure (53%). The median time from SRS to distant brain failure was 8 months (range, ). At the time of analysis, 33 patients (67%) were dead, 13 patients (27%) were alive, and 3 patients (6%) were lost to follow-up. Ten patients (30%) died from neurological causes, 3 (9%) died from systemic causes, and 20 (61%) died from unknown causes. The median survival from the time of SRS was 11.1 months. Pathology Results After analysis by a neuropathologist, 27 of the resected lesions (52%) were reported as containing tumor recurrence alone, 14 (27%) were classified as containing radionecrosis alone, and 11 (21%) contained a mixture of both tumor and radionecrosis. Imaging/Pathology Correlates Table 2 presents results of univariate and multivariate analyses for correlation of preoperative imaging indices with pathology. No pre-srs imaging variables were found to predict lesion pathology following resection. Analysis of preoperative imaging demonstrated that the ratio of edema (signified by high T2 signal) to T1 enhancing volume was highly predictive of lesion pathology on univariate (P ¼.001) and multivariate analysis (P ¼.002). Specifically, lesions that presented with a greater degree of surrounding edema were more likely to consist of radionecrosis (Fig. 1). No other preop imaging indices were found to predict lesion pathology, including T1-T2 match (Fig. 2). Examples of preoperative images of patients with tumor recurrence or radionecrosis identified following resection are displayed in Fig. 3. Time to Resection As shown in Table 2, the time between SRS and resection was found to be significantly correlated with lesion pathology on both univariate (P,.01) and multivariate (P,.01) analyses. Specifically, a longer latent period between SRS and progression was associated with a higher likelihood of radionecrosis. All lesions that were resected.12 months following SRS demonstrated radiation effect without evidence of tumor on pathological analysis (Figs. 2 and 3). Table 2. Correlation of pathology outcome with preop imaging and treatment parameters Variable P (uni Spearman) P (multi LinearRegr) Time SRS to resection Preop edema/lesion volume ratio a Preop T1/T2 mismatch b Preop Low T2/T1c c Pre-SRS Low T2/T1c Pre-SRS edema/lesion volume ratio Pre-SRS dose Pre-SRS treatment volume Pre-SRS fractions Pre-SRS whole brain radiation Repeat SRS Radioresistant d Pure radiation necrosis was assigned a value of 0, pure tumor was assigned a value of 1, and mixed lesions were assigned a value of 0.5. Univariate (uni) P-values are nonparametric Spearman Rho rank correlations. Multivariate (multi) values are from forward stepwise linear regression (LinearRegr) with only significant variables (P,.05) entered into the final model. a Edema/lesion volume ratio ¼ ratio of the edema or high T2 MR signal volume divided by T1 contrast-enhancing volume. b T1/T2 mismatch ¼ qualitative assessment of lesion size matching between T1 contrast-enhancing and T2 sequences. c Low T2/T1c ¼ ratio of low T2 MR signal volume in the region of the tumor divided by the T1 contrast-enhancing tumor volume. d Radioresistant ¼ melanoma, renal cell, or gastrointestinal primary NEURO-ONCOLOGY DECEMBER 2013

4 Fig. 1. Scatter plot of pathological outcomes classified by time since radiosurgery and ratios of the edema (high T2 signal) volume in the region of the tumor divided by the volume of the T1 contrast-enhancing volume. All of the lesions resected,18 months from SRS with a ratio of edema to enhancing tumor,10 showed the presence of tumor with or without radiation effect. Fig. 2. Scatter plot of pathological outcomes classified by time since radiosurgery and ratios of the low T2 signal volume divided by the volume of the T1 contrast-enhancing volume. T1-T2 lesion volume match was not predictive of histology. Prediction of Persistent Tumor Table 3 shows the results of logistic regression univariate and multivariate forward stepwise analysis of factors predicting the presence of tumor being present (pure tumor or mixed tumor and radiation effect) versus pure radiation effect (with no viable tumor) at the time of resection. Using a cutoff value of 10 for the edema/lesion volume ratio (volume of high T2 edema signal divided by the contrast-enhancing tumor volume), we found that tumor was present in 22/24 resected tumors with edema/lesion volume ratio,10 and 13/24 tumors with edema/lesion volume ratio 10. An edema/lesion volume ratio,10 predicted persistent tumor with a sensitivity of 63% ¼ 22/( ), a specificity of 85% ¼ 11/(11 + 2), a positive predictive value (PPV) of 92% ¼ 22/(22 + 2), and a negative predictive value (NPV) of 46% ¼ 11/24. If an edema/lesion volume ratio,10 was evaluated as a predictive parameter for residual tumor only in patients undergoing surgery,18 months after radiosurgery, 22/22 resected tumors with edema/lesion volume ratio,10 had tumor present (PPV ¼ 100%) and 10/23 with edema/lesion volume ratio 10 had tumor present (NPV ¼ 43%) for a sensitivity of 63% ¼ 22/35 and specificity of 100% (10/10). Discussion SRS is becoming a more widespread treatment for initial management of brain metastases. In cases where lesions progress following treatment, the importance of distinguishing the recurrence of tumor from radionecrosis is paramount. Patients with recurrent cancer may benefit more from surgical resection or repeat SRS, while patients without remaining tumor may be spared craniotomy and effectively be managed more conservatively with the use of steroids and other medical treatments, including vitamin E, pentoxyphylline, or bevacizumab. As MRI remains the current standard for follow-up evaluation of brain metastases, the ability to differentiate these two entities with standard sequences is desirable. Kano et al 8 correlated preoperative MRI with histopathological findings in 68 patients treated with gamma knife radiosurgery for a brain metastasis. They found that a correspondence between the contrast-enhancing T1 and low-signal T2 volumes was associated with tumor recurrence, while the lack of a clearly defined T2 lesion was associated with radiation necrosis. The T1/ T2 mismatch was found to have a sensitivity of 83% and a specificity of 91% for detecting radionecrosis. Additionally, they found that a shorter time interval between SRS and resection was associated with tumor recurrence. In their study, T1/T2 mismatch was determined by qualitative assessment of the match between lesion borders on the different sequences. Dequesada et al 9 reviewedpreoperative MRI and pathological specimens from 32 patients who underwent radiosurgery for a brain metastasis and defined a novel radiographic feature, the lesion quotient, as the ratio of the maximum cross-sectional area of a lesion on axial T1- and T2-weighted sequences. A lesion quotient of.0.3 had a NPV for radiation necrosis of 96% (sensitivity 80%, specificity 96%), while a lesion quotient of,0.6 had a NPV for recurrent tumor of 100% (sensitivity 15%, specificity 100%). The lesion quotient NEURO-ONCOLOGY DECEMBER

5 Fig. 3. A 42-year-old female with breast cancer was treated with 21 Gy in a single fraction to a right parietal brain metastasis. She received repeat SRS with 20 Gy in a single fraction 7 months later following progression. She subsequently developed left-sided motor weakness 5 months following repeat SRS. (A C) MRI demonstrated enlargement of the lesion with a large volume of high T2 signal. Upon resection, pathology demonstrated radionecrosis with no viable tumor. A 45-year-old female with colon cancer was treated for a left frontal brain metastasis with 18 Gy in a single fraction. (D F) Six weeks following treatment, speech deficits developed and MRI demonstrated enlargement of the T1 enhancing lesion with minimal surrounding edema. Following resection, pathology demonstrated adenocarcinoma. demonstrated superior predictive value to other preoperative imaging findings, including heterogeneous enhancement, marginal enhancement, and cyst formation. Stockham et al 10 attempted to confirm the validity of the lesion quotient for prediction of lesion pathology in 51 patients treated with gamma knife radiosurgery followed by either biopsy or resection using the same method as Dequesada et al. Their analysis demonstrated a PPV and NPV of only 25% and 73%, respectively, for the prediction of radionecrosis and only 62% and 39% for recurrent tumor. Importantly, we found a significant correlation between the ratio of high T2 signal and T1 contrast-enhancing volume on preoperative imaging and lesion pathology. Specifically, lesions with more edema identified on T2-weighted sequences were more likely to demonstrate necrotic pathology without evidence of residual or recurrent tumor. Using a cutoff value of 10 for the edema/ lesion volume ratio, we were able to predict the presence of tumor with a PPV of 92%, which increased to 100% when looking only at patients who underwent resection,18 months following SRS. To our knowledge, this is the first report of quantitative measurement of edema for prediction of lesion pathology following SRS for brain metastases. The extent of edema surrounding a lesion is readily assessable by clinicians and may provide an additional tool for accurate diagnosis of growing lesions. Our data also reveal longer time between SRS and resection to be predictive of radionecrosis. This is in keeping with previous reports that also show that recurrent tumor is more likely to result in faster tumor progression. 8 Furthermore, combining the time to resection with the edema/lesion volume ratio on preoperative imaging allowed for improved prediction, where all of the 22 lesions that were resected,18 months following SRS with an edema/lesion ratio,10 demonstrated the presence of tumor with or without necrosis. Detecting tumor, whether in the presence of necrosis or not, is critical for management of such lesions, as it indicates the need for further surgical or radiotherapeutic intervention. However, because tumor cells, whether viable or not, may be present for months following SRS, it remains unclear whether tumor in this time period is residual or recurrent. A prospective study utilizing MRI indices for determination of lesion pathology and management would clarify the utility of these techniques. Patel et al 11 have demonstrated that patients with a brain metastasis that increases in size following treatment may actually benefit from improved survival compared with patients whose lesions decrease in size or remain stable. Increase in lesion size, as well as increase in surrounding edema, may be indicative of a therapeutic immune response that portends improved tumor control and improved survival. Biologically, necrotic areas may be expected to induce more edema given the inflammatory response that accompanies radionecrosis. Furthermore, in their study, 10 patients with enlarging lesions and surrounding edema post-srs underwent salvage surgery 1736 NEURO-ONCOLOGY DECEMBER 2013

6 Table 3. Correlation of pathology outcome determination of pure radiation effect with preop imaging and treatment parameters Variable P (uni LogRegr) P (multi LogRegr) Time SRS to resection.007 (.005 a ),.021 Preop edema/lesion volume ratio b Preop edema/lesion (.046 a ) Preop T1/T2 mismatch c Preop Low T2/T1c d Pre-SRS Low T2/T1c Pre-SRS edema/lesion volume ratio Pre-SRS dose Pre-SRS treatment volume Pre-SRS fractions Pre-SRS whole brain radiation Repeat SRS Radioresistant e Univariate (uni) and multivariate (multi) forward stepwise logistic regression (LogRegr) were used with only significant variables (P,.05) entered into the full final model. a.005 and.046 are the multivariate P-values using edema/lesion 10 in a separate model instead of the variable preop edema/t1c with continuous values. b Edema/lesion volume ratio ¼ ratio of the edema or high T2 MR signal volume divided by T1 contrast-enhancing volume. c T1/T2 mismatch ¼ qualitative assessment of lesion size matching between T1 contrast-enhancing and T2 sequences. d Low T2/T1c ¼ ratio of low T2 MR signal volume in the region of the tumor divided by the T1 contrast-enhancing tumor volume. e Radioresistant ¼ melanoma, renal cell, or gastrointestinal primary. where histopathology demonstrated radiation-induced necrosis in all cases. Taken together, these findings suggest that increases in perilesional edema posttreatment, particularly when they occur later after treatment, may be indicative of a beneficial inflammatory response rather than tumor progression. Such lesions, therefore, may be better managed medically rather than surgically, especially given the limited survival of patients with brain metastases who might be spared a craniotomy in their final months of life. It is unknown what the effect of steroids and other agents aimed at reducing swelling may have on a potentially favorable immune response. Therefore, the optimal management of brain metastases with progressive edema post-srs remains unknown and requires further clinical study. Importantly, our study puts forth a method that may aid clinicians in reliably differentiating radionecrosis from tumor recurrence using standard MR sequences that are commonly used for follow-up imaging. Some centers may utilize advanced imaging methods (PET, SPECT, MR SPECT) in an attempt to improve specificity, but these methods are expensive and not widely available, and their use may prolong the time before the patient receives appropriate treatment. As such, the ability to make an accurate diagnosis with traditional MR sequences and tools available to radiation oncologists and neurosurgeons in all settings is highly advantageous. Similar to Stockham et al, 10 our analysis did not find T1-T2 match a correlation between the T1 enhancing volume and low T2 signal to be predictive of recurrence. Prior studies have demonstrated T1-T2 match assessed qualitatively 8 or by measurement of lesion cross-sectional area 9 to be significantly associated with tumor recurrence. To our knowledge, this is the first study directly and quantitatively measuring tumor volumes to assess T1-T2 match. Because not all brain metastases are of spherical or ellipsoid morphology, accurate volume measurement with the use of contouring software may be a more accurate and reliable measurement for matching lesions between MR sequences. Further studies may be necessary to compare various techniques of measuring T1-T2 match, their agreement, and their predictive values. The identification of factors that may predict increased likelihood of radionecrosis versus tumor recurrence at the time of SRS would be of significant value for following patients with progression after SRS. Unfortu-nately, our study did not find any significant correlation of pre-srs imaging indices, SRS treatment volume, SRS fractionation, SRS dose, prior WBRT, repeat SRS, or radioresistant histology with lesion pathology at the time of resection. Our study is limited by its retrospective nature and associated biases as well as its sample size. The cohort that we analyzed was also somewhat heterogeneous and comprised patients who underwent resection and SRS or SRS alone prior to their final resection. Furthermore, in this study, we have not analyzed the relationship between the amount of edema surrounding a lesion and intracranial location. The extent of measured high T2 signal may be governed in part by the location of the lesion or the presence of adjacent structures. For instance, the edema surrounding a tumor that abuts the cranium may be spatially limited. This potentially confounding factor will need to be explored further in future studies. Reliable methods for distinguishing tumor recurrence from radionecrosis noninvasively have been elusive. This difficulty is one of the most common and most challenging issues in the care of patients with brain metastases or other tumors treated with radiation therapy. Our study presents a new method for quantitative determination of lesion pathology following radiosurgery by measuring the volume of edema surrounding the tumor. This index is easily measurable and utilizes imaging techniques that are widely used. This measurement may allow improved prediction of lesion pathology when combined with time between SRS and resection. Further studies are in order to validate this technique and its applicability to other tumors treated with radiotherapy. Conflict of interest statement. None declared. Funding This work was supported by internal institutional funding only. NEURO-ONCOLOGY DECEMBER

7 References 1. Alexiou GA, Fotopoulos AD, Papadopoulos A, Kyritsis AP, Polyzoidis KS, Tsiouris S. Evaluation of brain tumor recurrence by (99 m)tctetrofosmin SPECT: a prospective pilot study. Ann Nucl Med. 2007;21(5): BelohlavekO, SimonovaG, KantorovaI, Novotny J, Jr., Liscak R. Brainmetastases after stereotactic radiosurgery using the Leksell gamma knife: can FDG PET help to differentiate radionecrosis from tumour progression? Eur J Nucl Med Mol Imaging. 2003;30(1): Bobek-Billewicz B, Stasik-Pres G, Majchrzak H, Zarudzki L. Differentiation between brain tumor recurrence and radiation injury using perfusion, diffusion-weighted imaging and MR spectroscopy. Folia Neuropathol. 2010;48(2): Gomez-Rio M, Martinez Del Valle Torres D, Rodriguez-Fernandez A, et al. (201)Tl-SPECT in low-grade gliomas: diagnostic accuracy in differential diagnosis between tumour recurrence and radionecrosis. Eur J Nucl Med Mol Imaging. 2004;31(9): Ortega-Lozano SJ, del Valle-Torres DM, Gomez-Rio M, Llamas-Elvira JM. Thallium-201 SPECTin brain gliomas: quantitativeassessment in differential diagnosis between tumor recurrence and radionecrosis. Clin Nucl Med. 2009;34(8): Tan H, Chen L, Guan Y, Lin X. Comparison of MRI, F-18 FDG, and 11C-choline PET/CT for their potentials in differentiating brain tumor recurrence from brain tumor necrosis following radiotherapy. Clin Nucl Med. 2011;36(11): Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc. 1958;53: Kano H, Kondziolka D, Lobato-Polo J, ZorroO, Flickinger JC, Lunsford LD. T1/T2 matching to differentiate tumor growth from radiation effects after stereotactic radiosurgery. Neurosurgery. 2010;66(3): Discussion Dequesada IM, Quisling RG, Yachnis A, Friedman WA. Can standard magnetic resonance imaging reliably distinguish recurrent tumor from radiation necrosis after radiosurgery for brain metastases? A radiographicpathological study. Neurosurgery. 2008;63(5): Discussion Stockham AL, Tievsky AL, Koyfman SA, et al. Conventional MRI does not reliably distinguish radiation necrosis from tumor recurrence after stereotactic radiosurgery. J Neurooncol. 2012;109(1): Patel TR, McHugh BJ, Bi WL, Minja FJ, Knisely JP, Chiang VL. A comprehensive review of MR imaging changes following radiosurgery to 500 brain metastases. AJNR Am J Neuroradiol. 2011;32(10): NEURO-ONCOLOGY DECEMBER 2013

A Population-Based Study on the Uptake and Utilization of Stereotactic Radiosurgery (SRS) for Brain Metastasis in Nova Scotia

A Population-Based Study on the Uptake and Utilization of Stereotactic Radiosurgery (SRS) for Brain Metastasis in Nova Scotia A Population-Based Study on the Uptake and Utilization of Stereotactic Radiosurgery (SRS) for Brain Metastasis in Nova Scotia Gaurav Bahl, Karl Tennessen, Ashraf Mahmoud-Ahmed, Dorianne Rheaume, Ian Fleetwood,

More information

Survival and Intracranial Control of Patients With 5 or More Brain Metastases Treated With Gamma Knife Stereotactic Radiosurgery

Survival and Intracranial Control of Patients With 5 or More Brain Metastases Treated With Gamma Knife Stereotactic Radiosurgery ORIGINAL ARTICLE Survival and Intracranial Control of Patients With 5 or More Brain Metastases Treated With Gamma Knife Stereotactic Radiosurgery Ann C. Raldow, BS,* Veronica L. Chiang, MD,w Jonathan P.

More information

Neurological Change after Gamma Knife Radiosurgery for Brain Metastases Involving the Motor Cortex

Neurological Change after Gamma Knife Radiosurgery for Brain Metastases Involving the Motor Cortex ORIGINAL ARTICLE Brain Tumor Res Treat 2016;4(2):111-115 / pissn 2288-2405 / eissn 2288-2413 http://dx.doi.org/10.14791/btrt.2016.4.2.111 Neurological Change after Gamma Knife Radiosurgery for Brain Metastases

More information

Laboratory data from the 1970s first showed that malignant melanoma

Laboratory data from the 1970s first showed that malignant melanoma 2265 Survival by Radiation Therapy Oncology Group Recursive Partitioning Analysis Class and Treatment Modality in Patients with Brain Metastases from Malignant Melanoma A Retrospective Study Jeffrey C.

More information

The Role of Radiation Therapy in the Treatment of Brain Metastases. Matthew Cavey, M.D.

The Role of Radiation Therapy in the Treatment of Brain Metastases. Matthew Cavey, M.D. The Role of Radiation Therapy in the Treatment of Brain Metastases Matthew Cavey, M.D. Objectives Provide information about the prospective trials that are driving the treatment of patients with brain

More information

Tania Kaprealian, M.D. Assistant Professor UCLA Department of Radiation Oncology August 22, 2015

Tania Kaprealian, M.D. Assistant Professor UCLA Department of Radiation Oncology August 22, 2015 Tania Kaprealian, M.D. Assistant Professor UCLA Department of Radiation Oncology August 22, 2015 Most common brain tumor, affecting 8.5-15% of cancer patients. Treatment options: Whole brain radiation

More information

PRINCESS MARGARET CANCER CENTRE CLINICAL PRACTICE GUIDELINES

PRINCESS MARGARET CANCER CENTRE CLINICAL PRACTICE GUIDELINES PRINCESS MARGARET CANCER CENTRE CLINICAL PRACTICE GUIDELINES CENTRAL NERVOUS SYSTEM BRAIN METASTASES CNS Site Group Brain Metastases Author: Dr. Norm Laperriere Date: February 20, 2018 1. INTRODUCTION

More information

KEY WORDS gamma knife surgery metastatic brain tumor radiation injury tumor recurrence thallium-201 single-photon emission computerized tomography

KEY WORDS gamma knife surgery metastatic brain tumor radiation injury tumor recurrence thallium-201 single-photon emission computerized tomography J Neurosurg (Suppl) 102:266 271, 2005 Diagnostic value of thallium-201 chloride single-photon emission computerized tomography in differentiating tumor recurrence from radiation injury after gamma knife

More information

Br a i n metastases occur in 20 40% of all patients. The results of resection after stereotactic radiosurgery for brain metastases.

Br a i n metastases occur in 20 40% of all patients. The results of resection after stereotactic radiosurgery for brain metastases. J Neurosurg 111:825 831, 2009 The results of resection after stereotactic radiosurgery for brain metastases Clinical article Hi d e y u k i Ka n o, M.D., Ph.D., 1,3 Do u g l a s Ko n d z i o l k a, M.D.,

More information

Radiotherapy and Brain Metastases. Dr. K Van Beek Radiation-Oncologist BSMO annual Meeting Diegem

Radiotherapy and Brain Metastases. Dr. K Van Beek Radiation-Oncologist BSMO annual Meeting Diegem Radiotherapy and Brain Metastases Dr. K Van Beek Radiation-Oncologist BSMO annual Meeting Diegem 24-02-2017 Possible strategies Watchful waiting Surgery Postop RT to resection cavity or WBRT postop SRS

More information

SUCCESSFUL TREATMENT OF METASTATIC BRAIN TUMOR BY CYBERKNIFE: A CASE REPORT

SUCCESSFUL TREATMENT OF METASTATIC BRAIN TUMOR BY CYBERKNIFE: A CASE REPORT SUCCESSFUL TREATMENT OF METASTATIC BRAIN TUMOR BY CYBERKNIFE: A CASE REPORT Cheng-Ta Hsieh, 1 Cheng-Fu Chang, 1 Ming-Ying Liu, 1 Li-Ping Chang, 2 Dueng-Yuan Hueng, 3 Steven D. Chang, 4 and Da-Tong Ju 1

More information

Prescription dose and fractionation predict improved survival after stereotactic radiotherapy for brainstem metastases

Prescription dose and fractionation predict improved survival after stereotactic radiotherapy for brainstem metastases Leeman et al. Radiation Oncology 2012, 7:107 RESEARCH Open Access Prescription dose and fractionation predict improved survival after stereotactic radiotherapy for brainstem metastases Jonathan E Leeman

More information

Stereotactic Radiosurgery for Brain Metastasis: Changing Treatment Paradigms. Overall Clinical Significance 8/3/13

Stereotactic Radiosurgery for Brain Metastasis: Changing Treatment Paradigms. Overall Clinical Significance 8/3/13 Stereotactic Radiosurgery for Brain Metastasis: Changing Treatment Paradigms Jason Sheehan, MD, PhD Departments of Neurosurgery and Radiation Oncology University of Virginia, Charlottesville, VA USA Overall

More information

Hong Kong Hospital Authority Convention 2018

Hong Kong Hospital Authority Convention 2018 Hong Kong Hospital Authority Convention 2018 Stereotactic Radiosurgery in Brain Metastases - Development of the New Treatment Paradigm in HA, Patients Profiles and Their Clinical Outcomes 8 May 2018 Dr

More information

Optimal Management of Isolated HER2+ve Brain Metastases

Optimal Management of Isolated HER2+ve Brain Metastases Optimal Management of Isolated HER2+ve Brain Metastases Eliot Sims November 2013 Background Her2+ve patients 15% of all breast cancer Even with adjuvant trastuzumab 10-15% relapse Trastuzumab does not

More information

Management of single brain metastasis: a practice guideline

Management of single brain metastasis: a practice guideline PRACTICE GUIDELINE SERIES Management of single brain metastasis: a practice guideline A. Mintz MD,* J. Perry MD, K. Spithoff BHSc, A. Chambers MA, and N. Laperriere MD on behalf of the Neuro-oncology Disease

More information

Evidence Based Medicine for Gamma Knife Radiosurgery. Metastatic Disease GAMMA KNIFE SURGERY

Evidence Based Medicine for Gamma Knife Radiosurgery. Metastatic Disease GAMMA KNIFE SURGERY GAMMA KNIFE SURGERY Metastatic Disease Evidence Based Medicine for Gamma Knife Radiosurgery Photos courtesy of Jean Régis, Timone University Hospital, Marseille, France Brain Metastases The first report

More information

1. Introduction. Correspondence should be addressed to Christopher M. Lee; Received 9 July 2013; Accepted 27 August 2013

1. Introduction. Correspondence should be addressed to Christopher M. Lee; Received 9 July 2013; Accepted 27 August 2013 Case Reports in Oncological Medicine Volume 2013, Article ID 431857, 5 pages http://dx.doi.org/10.1155/2013/431857 Case Report Long-Term Survival and Improved Quality of Life following Multiple Repeat

More information

Impact of Targeted/Immunotherapy on Gamma Knife Radiosurgery

Impact of Targeted/Immunotherapy on Gamma Knife Radiosurgery Impact of Targeted/Immunotherapy on Gamma Knife Radiosurgery Veronica Chiang, MD Yale University Department of Neurosurgery IGKRF Scientific Session University of Pennsylvania, Philadelphia June 23-24,

More information

Surgery for recurrent brain metastases

Surgery for recurrent brain metastases Surgery for recurrent brain metastases Pr Philippe METELLUS Neurosurgeon, Clairval Hospital Center, Marseille 8th Annual Brain Metastases Research and Emerging Therapy Conference September 21st, 2018 Conflict

More information

World Journal of Radiology

World Journal of Radiology W J R World Journal of Radiology Submit a Manuscript: http://www.wjgnet.com/esps/ Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx DOI: 10.4329/wjr.v8.i12.916 World J Radiol 2016 December 28; 8(12):

More information

Mehmet Ufuk ABACIOĞLU Neolife Medical Center, İstanbul, Turkey

Mehmet Ufuk ABACIOĞLU Neolife Medical Center, İstanbul, Turkey Updated Oncology 2015: State of the Art News & Challenging Topics CURRENT STATUS OF STEREOTACTIC RADIOSURGERY IN BRAIN METASTASES Mehmet Ufuk ABACIOĞLU Neolife Medical Center, İstanbul, Turkey Bucharest,

More information

Brain metastases: changing visions

Brain metastases: changing visions Brain metastases: changing visions Roberto Spiegelmann, MD Baiona, 2014 Head, Stereotactic Radiosurgery Unit Dept of Neurosurgery, Chaim Sheba Medical Center Tel Hashomer, Israel The best current estimate

More information

RESEARCH HUMAN CLINICAL STUDIES

RESEARCH HUMAN CLINICAL STUDIES TOPIC RESEARCH HUMAN CLINICAL STUDIES RESEARCH HUMAN CLINICAL STUDIES Suzanne R. Sharpton, MD* Eric K. Oermann, BS Dominic T. Moore, PhD Eric Schreiber, PhD Riane Hoffman, BA David E. Morris, MD Matthew

More information

Utility of 18 F-FDG PET/CT in metabolic response assessment after CyberKnife radiosurgery for early stage non-small cell lung cancer

Utility of 18 F-FDG PET/CT in metabolic response assessment after CyberKnife radiosurgery for early stage non-small cell lung cancer Utility of F-FDG PET/CT in metabolic response assessment after CyberKnife radiosurgery for early stage non-small cell lung cancer Ngoc Ha Le 1*, Hong Son Mai 1, Van Nguyen Le 2, Quang Bieu Bui 2 1 Department

More information

Treating Multiple. Brain Metastases (BM)

Treating Multiple. Brain Metastases (BM) ESTRO 36 5-9 May 2017, Vienna Austria, Accuray Symposium Treating Multiple Brain Metastases (BM) with CyberKnife System Frederic Dhermain MD PhD, Radiation Oncologist Gustave Roussy University Hospital,

More information

We have previously reported good clinical results

We have previously reported good clinical results J Neurosurg 113:48 52, 2010 Gamma Knife surgery as sole treatment for multiple brain metastases: 2-center retrospective review of 1508 cases meeting the inclusion criteria of the JLGK0901 multi-institutional

More information

Potential role for LINAC-based stereotactic radiosurgery for the treatment of 5 or more radioresistant melanoma brain metastases

Potential role for LINAC-based stereotactic radiosurgery for the treatment of 5 or more radioresistant melanoma brain metastases clinical article J Neurosurg 123:1261 1267, 2015 Potential role for LINAC-based stereotactic radiosurgery for the treatment of 5 or more radioresistant melanoma brain metastases *Jessica M. Frakes, MD,

More information

Prognostic Factors for Survival in Patients Treated With Stereotactic Radiosurgery for Recurrent Brain Metastases After Prior Whole Brain Radiotherapy

Prognostic Factors for Survival in Patients Treated With Stereotactic Radiosurgery for Recurrent Brain Metastases After Prior Whole Brain Radiotherapy International Journal of Radiation Oncology biology physics www.redjournal.org Clinical Investigation: Metastases Prognostic Factors for Survival in Patients Treated With Stereotactic Radiosurgery for

More information

Is it cost-effective to treat brain metastasis with advanced technology?

Is it cost-effective to treat brain metastasis with advanced technology? Is it cost-effective to treat brain metastasis with advanced technology? Cost-effectiveness analysis of whole brain RT, stereotactic radiosurgery and craniotomy in HA setting Lam, Tai-Chung, Choi CW Horace,

More information

Case Report Prolonged Survival following Repetitive Stereotactic Radiosurgery in a Patient with Intracranial Metastatic Renal Cell Carcinoma

Case Report Prolonged Survival following Repetitive Stereotactic Radiosurgery in a Patient with Intracranial Metastatic Renal Cell Carcinoma Case Reports in Neurological Medicine Volume 2015, Article ID 872915, 5 pages http://dx.doi.org/10.1155/2015/872915 Case Report Prolonged Survival following Repetitive Stereotactic Radiosurgery in a Patient

More information

Stereotactic Radiosurgery. Extracranial Stereotactic Radiosurgery. Linear accelerators. Basic technique. Indications of SRS

Stereotactic Radiosurgery. Extracranial Stereotactic Radiosurgery. Linear accelerators. Basic technique. Indications of SRS Stereotactic Radiosurgery Extracranial Stereotactic Radiosurgery Annette Quinn, MSN, RN Program Manager, University of Pittsburgh Medical Center Using stereotactic techniques, give a lethal dose of ionizing

More information

RESEARCH HUMAN CLINICAL STUDIES

RESEARCH HUMAN CLINICAL STUDIES TOPIC RESEARCH HUMAN CLINICAL STUDIES RESEARCH HUMAN CLINICAL STUDIES Radiosurgery to the Surgical Cavity as Adjuvant Therapy for Resected Brain Metastasis Jared R. Robbins, MD* Samuel Ryu, MD* Steven

More information

magnetic resonance (MR) imaging, since both J. L. Kline, R. B. Noto, and M. Glantz

magnetic resonance (MR) imaging, since both J. L. Kline, R. B. Noto, and M. Glantz Single-Photon Emission CT in the Evaluation of Recurrent Brain Tumor in Patients Treated with Gamma Knife Radiosurgery or Conventional Radiation Therapy J. L. Kline, R. B. Noto, and M. Glantz PURPOSE:

More information

Whole-tumor apparent diffusion coefficient measurements in nephroblastoma: Can it identify blastemal predominance? Abstract Purpose To explore the

Whole-tumor apparent diffusion coefficient measurements in nephroblastoma: Can it identify blastemal predominance? Abstract Purpose To explore the Whole-tumor apparent diffusion coefficient measurements in nephroblastoma: Can it identify blastemal predominance? Abstract Purpose To explore the potential relation between whole-tumor apparent diffusion

More information

Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy

Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy Policy Number: Original Effective Date: MM.05.008 05/12/1999 Line(s) of Business: Current Effective Date: HMO; PPO; QUEST Integration 04/01/2015

More information

Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy

Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy Policy Number: Original Effective Date: MM.05.008 05/12/1999 Line(s) of Business: Current Effective Date: HMO; PPO; QUEST Integration 11/20/2015

More information

FDG-PET/CT in Gynaecologic Cancers

FDG-PET/CT in Gynaecologic Cancers Friday, August 31, 2012 Session 6, 9:00-9:30 FDG-PET/CT in Gynaecologic Cancers (Uterine) cervical cancer Endometrial cancer & Uterine sarcomas Ovarian cancer Little mermaid (Edvard Eriksen 1913) honoring

More information

Otolaryngologist s Perspective of Stereotactic Radiosurgery

Otolaryngologist s Perspective of Stereotactic Radiosurgery Otolaryngologist s Perspective of Stereotactic Radiosurgery Douglas E. Mattox, M.D. 25 th Alexandria International Combined ORL Conference April 18-20, 2007 Acoustic Neuroma Benign tumor of the schwann

More information

Selecting the Optimal Treatment for Brain Metastases

Selecting the Optimal Treatment for Brain Metastases Selecting the Optimal Treatment for Brain Metastases Clinical Practice Today CME Co-provided by Learning Objectives Upon completion, participants should be able to: Understand the benefits, limitations,

More information

Stereotactic radiosurgery for the treatment of melanoma and renal cell carcinoma brain metastases

Stereotactic radiosurgery for the treatment of melanoma and renal cell carcinoma brain metastases ONCOLOGY REPORTS 29: 407-412, 2013 Stereotactic radiosurgery for the treatment of melanoma and renal cell carcinoma brain metastases SHELLY LWU 1, PABLO GOETZ 1, ERIC MONSALVES 1, MANDANA ARYAEE 1, JULIUS

More information

VINCENT KHOO. 8 th EIKCS Symposium: May 2013

VINCENT KHOO. 8 th EIKCS Symposium: May 2013 8 th EIKCS Symposium: May 2013 VINCENT KHOO Royal Marsden NHS Foundation Trust & Institute of Cancer Research St George s Hospital & University of London Austin Health & University of Melbourne Disclosures

More information

Gamma Knife Radiosurgery A tool for treating intracranial conditions. CNSA Annual Congress 2016 Radiation Oncology Pre-congress Workshop

Gamma Knife Radiosurgery A tool for treating intracranial conditions. CNSA Annual Congress 2016 Radiation Oncology Pre-congress Workshop Gamma Knife Radiosurgery A tool for treating intracranial conditions CNSA Annual Congress 2016 Radiation Oncology Pre-congress Workshop ANGELA McBEAN Gamma Knife CNC State-wide Care Coordinator Gamma Knife

More information

Surgical treatment of multiple brain metastases

Surgical treatment of multiple brain metastases J Neurosurg 79:210-216, 1993 Surgical treatment of multiple brain metastases RAJESH K. BINDAL, B.A., RAYMOND SAWAYA, M.D., MILAM E. LEAVENS, M.D., ANO J. JACK LEE, PH.D. Departments of Neurosurgery and

More information

ARROCase Brain Metastases

ARROCase Brain Metastases ARROCase Brain Metastases Colin Hill*, Daniel M. Trifiletti*, Timothy N. Showalter*, Jason P. Sheehan Radiation Oncology* and Neurosurgery University of Virginia Charlottesville, VA Case: HPI 64 year old

More information

Imaging for suspected glioma

Imaging for suspected glioma Imaging for suspected glioma 1.1.1 Offer standard structural MRI (defined as T2 weighted, FLAIR, DWI series and T1 pre- and post-contrast volume) as the initial diagnostic test for suspected glioma, unless

More information

Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy

Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy Policy Number: Original Effective Date: MM.05.008 05/12/1999 Line(s) of Business: Current Effective Date: HMO; PPO; QUEST 03/01/2013 Section:

More information

Tr a d i t i o n a l ly, WBRT has been the standard approach

Tr a d i t i o n a l ly, WBRT has been the standard approach Neurosurg Focus 27 (6):E7, 2009 Stereotactic radiosurgery boost to the resection bed for oligometastatic brain disease: challenging the tradition of adjuvant whole-brain radiotherapy Br i a n J. Ka r l

More information

Collection of Recorded Radiotherapy Seminars

Collection of Recorded Radiotherapy Seminars IAEA Human Health Campus Collection of Recorded Radiotherapy Seminars http://humanhealth.iaea.org The Role of Radiosurgery in the Treatment of Gliomas Luis Souhami, MD Professor Department of Radiation

More information

Gamma Knife Surgery for Brain Metastasis from Renal Cell Carcinoma : Relationship Between Radiological Characteristics and Initial Tumor Response

Gamma Knife Surgery for Brain Metastasis from Renal Cell Carcinoma : Relationship Between Radiological Characteristics and Initial Tumor Response online ML Comm www.jkns.or.kr Clinical Article Jin Wook Kim, M.D. Jung Ho Han, M.D. Chul-Kee Park, M.D. Hyun-Tai Chung, Ph.D. Sun Ha Paek, M.D. Dong Gyu Kim, M.D. Department of Neurosurgery Seoul National

More information

Management of Single Brain Metastases Practice Guideline Report #9-1

Management of Single Brain Metastases Practice Guideline Report #9-1 Management of Single Brain Metastases Practice Guideline Report #9-1 A.P. Mintz, J. Perry, G. Cairncross, A. Chambers and members of the Neuro-oncology Disease Site Group Report Date: August 17, 2004 SUMMARY

More information

Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy

Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy Policy Number: Original Effective Date: MM.05.008 05/12/1999 Line(s) of Business: Current Effective Date: HMO; PPO; QUEST Integration 04/01/2017

More information

CNS SESSION 3/8/ th Multidisciplinary Management of Cancers: A Case based Approach

CNS SESSION 3/8/ th Multidisciplinary Management of Cancers: A Case based Approach CNS SESSION Chair: Ruben Fragoso, MD/PhD UC Davis Fellow: Michael Cardenas, MD UC Davis Panel: Gordon Li, MD Stanford Seema Nagpal, MD Stanford Jennie Taylor, MD UCSF HPI: 46 yo right handed woman who

More information

Imaging changes after stereotactic radiosurgery of primary and secondary malignant brain tumors

Imaging changes after stereotactic radiosurgery of primary and secondary malignant brain tumors Journal of Neuro-Oncology 56: 175 181, 2002. 2002 Kluwer Academic Publishers. Printed in the Netherlands. Clinical Study Imaging changes after stereotactic radiosurgery of primary and secondary malignant

More information

Efficacy of neuroradiological imaging, neurological examination, and symptom status in follow-up assessment of patients with high-grade gliomas

Efficacy of neuroradiological imaging, neurological examination, and symptom status in follow-up assessment of patients with high-grade gliomas J Neurosurg 93:201 207, 2000 Efficacy of neuroradiological imaging, neurological examination, and symptom status in follow-up assessment of patients with high-grade gliomas EVANTHIA GALANIS, M.D., JAN

More information

FOR PUBLIC CONSULTATION ONLY STEREOTACTIC RADIOSURGERY/ STEROTACTIC RADIOTHERAPY FOR PILOCYTIC ASTROCYTOMA

FOR PUBLIC CONSULTATION ONLY STEREOTACTIC RADIOSURGERY/ STEROTACTIC RADIOTHERAPY FOR PILOCYTIC ASTROCYTOMA 1 EVIDENCE SUMMARY REPORT FOR PUBLIC CONSULTATION ONLY STEREOTACTIC RADIOSURGERY/ STEROTACTIC RADIOTHERAPY FOR PILOCYTIC ASTROCYTOMA QUESTIONS TO BE ADDRESSED: SUMMARY 1. What is the evidence for the clinical

More information

The incidence of brain metastasis (BM) in adult patients

The incidence of brain metastasis (BM) in adult patients clinical article J Neurosurg 125:17 23, 2016 Does immunotherapy increase the rate of radiation necrosis after radiosurgical treatment of brain metastases? *Rovel J. Colaco, MD, FRCR, 1 Pierre Martin, BSc,

More information

The role of WBRT in the management of a resected. Cavity-directed radiosurgery as adjuvant therapy after resection of a brain metastasis

The role of WBRT in the management of a resected. Cavity-directed radiosurgery as adjuvant therapy after resection of a brain metastasis J Neurosurg 114:1585 1591, 2011 Cavity-directed radiosurgery as adjuvant therapy after resection of a brain metastasis Clinical article Courtney A. Jensen, M.D., 1 Michael D. Chan, M.D., 1 Thomas P. McCoy,

More information

Dosimetry, see MAGIC; Polymer gel dosimetry. Fiducial tracking, see CyberKnife radiosurgery

Dosimetry, see MAGIC; Polymer gel dosimetry. Fiducial tracking, see CyberKnife radiosurgery Subject Index Acoustic neuroma, neurofibromatosis type 2 complications 103, 105 hearing outcomes 103, 105 outcome measures 101 patient selection 105 study design 101 tumor control 101 105 treatment options

More information

Clinical Indications for Gamma Knife Radiosurgery

Clinical Indications for Gamma Knife Radiosurgery Clinical Indications for Gamma Knife Radiosurgery A Review of the Published Clinical Evidence through 2014 Prof Bodo Lippitz Consultant Neurosurgeon Co-Director Cromwell Gamma Knife Centre Bupa Cromwell

More information

PRINCESS MARGARET CANCER CENTRE CLINICAL PRACTICE GUIDELINES

PRINCESS MARGARET CANCER CENTRE CLINICAL PRACTICE GUIDELINES PRINCESS MARGARET CANCER CENTRE CLINICAL PRACTICE GUIDELINES CENTRAL NERVOUS SYSTEM ANAPLASTIC GLIOMAS CNS Site Group Anaplastic Gliomas Author: Dr. Norm Laperriere Date: February 20, 2018 1. INTRODUCTION

More information

Cerebral metastases occur in 20% 40% of cancer

Cerebral metastases occur in 20% 40% of cancer See the corresponding editorial, DOI: 10.3171/2012.1.JNS12103. DOI: 10.3171/2012.4.JNS11870 Stereotactic radiosurgery using the Leksell Gamma Knife Perfexion unit in the management of patients with 10

More information

2007 ANNUAL SITE STUDY HODGKIN S LYMPHOMA

2007 ANNUAL SITE STUDY HODGKIN S LYMPHOMA 2007 ANNUAL SITE STUDY HODGKIN S LYMPHOMA SUSQUEHANNA HEALTH David B. Nagel, M.D. April 11, 2008 Hodgkin s lymphoma was first described by Thomas Hodgkin in 1832. It remained an incurable malignancy until

More information

Update on management of metastatic brain disease. Peter Hoskin Mount Vernon Cancer Centre Northwood UK

Update on management of metastatic brain disease. Peter Hoskin Mount Vernon Cancer Centre Northwood UK Update on management of metastatic brain disease Peter Hoskin Mount Vernon Cancer Centre Northwood UK Incidence 15-30% of patients with solid tumours will develop brain metastases Most common primary sites

More information

STEREOTACTIC RADIOSURGERY FOR LIMITED BRAIN METASTASES IN IRANIAN BREAST CANCER PATIENTS

STEREOTACTIC RADIOSURGERY FOR LIMITED BRAIN METASTASES IN IRANIAN BREAST CANCER PATIENTS STEREOTACTIC RADIOSURGERY FOR LIMITED BRAIN METASTASES IN IRANIAN BREAST CANCER PATIENTS Yousefi Kashi A. SH, Mofid B. 1 Department of Radiation Oncology,Shohada Tajrish Hospital,Shahid Beheshti University

More information

Stereotactic Diffusion Tensor Tractography For Gamma Knife Stereotactic Radiosurgery

Stereotactic Diffusion Tensor Tractography For Gamma Knife Stereotactic Radiosurgery Disclosures The authors of this study declare that they have no commercial or other interests in the presentation of this study. This study does not contain any use of offlabel devices or treatments. Stereotactic

More information

Clinical significance of conformity index and gradient index in patients undergoing stereotactic radiosurgery for a single metastatic tumor

Clinical significance of conformity index and gradient index in patients undergoing stereotactic radiosurgery for a single metastatic tumor CLINICAL ARTICLE J Neurosurg (Suppl) 129:103 110, 2018 Clinical significance of conformity index and gradient index in patients undergoing stereotactic radiosurgery for a single metastatic tumor Hitoshi

More information

Results of acoustic neuroma radiosurgery: an analysis of 5 years experience using current methods

Results of acoustic neuroma radiosurgery: an analysis of 5 years experience using current methods See the Letter to the Editor and the Response in this issue in Neurosurgical Forum, pp 141 142. J Neurosurg 94:1 6, 2001 Results of acoustic neuroma radiosurgery: an analysis of 5 years experience using

More information

Treatment of Recurrent Brain Metastases

Treatment of Recurrent Brain Metastases Treatment of Recurrent Brain Metastases Penny K. Sneed, M.D. Dept. of Radiation Oncology University of California San Francisco Background Brain metastases occur in 8.5-15% of cancer pts in population-

More information

Department of Oncology and Palliative Medicine, Nordland Hospital, 8092 Bodø, Norway 2

Department of Oncology and Palliative Medicine, Nordland Hospital, 8092 Bodø, Norway 2 The Scientific World Journal Volume 212, Article ID 69323, 5 pages doi:1.11/212/69323 The cientificworldjournal Clinical Study Towards Improved Prognostic Scores Predicting Survival in Patients with Brain

More information

Clinical Trials for Adult Brain Tumors - the Imaging Perspective

Clinical Trials for Adult Brain Tumors - the Imaging Perspective Clinical Trials for Adult Brain Tumors - the Imaging Perspective Whitney B. Pope, M.D., Ph.D. Department of Radiology David Geffen School of Medicine at UCLA August 22, 2015 1 Disclosure of Financial Relationships

More information

Nonsmall Cell Lung Cancer Presenting with Synchronous Solitary Brain Metastasis

Nonsmall Cell Lung Cancer Presenting with Synchronous Solitary Brain Metastasis 1998 Nonsmall Cell Lung Cancer Presenting with Synchronous Solitary Brain Metastasis Chaosu Hu, M.D. 1 Eric L. Chang, M.D. 2 Samuel J. Hassenbusch III, M.D., Ph.D. 3 Pamela K. Allen, Ph.D. 2 Shiao Y. Woo,

More information

LONG-TERM FOLLOW-UP OF ACOUSTIC SCHWANNOMA RADIOSURGERY WITH MARGINAL TUMOR DOSES OF 12 TO 13 Gy

LONG-TERM FOLLOW-UP OF ACOUSTIC SCHWANNOMA RADIOSURGERY WITH MARGINAL TUMOR DOSES OF 12 TO 13 Gy doi:10.1016/j.ijrobp.2007.01.001 Int. J. Radiation Oncology Biol. Phys., Vol. 68, No. 3, pp. 845 851, 2007 Copyright 2007 Elsevier Inc. Printed in the USA. All rights reserved 0360-3016/07/$ see front

More information

Clinical Study on Prognostic Factors and Nursing of Breast Cancer with Brain Metastases

Clinical Study on Prognostic Factors and Nursing of Breast Cancer with Brain Metastases Clinical Study on Prognostic Factors and Nursing of Breast Cancer with Brain Metastases Ying Zhou 1#, Kefang Zhong 1#, Fang Zhou* 2 ABSTRACT This paper aims to explore the clinical features and prognostic

More information

Leptomeningeal metastasis: management and guidelines. Emilie Le Rhun Lille, FR Zurich, CH

Leptomeningeal metastasis: management and guidelines. Emilie Le Rhun Lille, FR Zurich, CH Leptomeningeal metastasis: management and guidelines Emilie Le Rhun Lille, FR Zurich, CH Definition of LM LM is defined as the spread of tumor cells within the leptomeninges and the subarachnoid space

More information

Brain metastasis is the most common malignant

Brain metastasis is the most common malignant CLINICAL ARTICLE J Neurosurg 126:735 743, 2017 Impact of the radiosurgery prescription dose on the local control of small (2 cm or smaller) brain metastases Alireza M. Mohammadi, MD, 1,2 Jason L. Schroeder,

More information

Case Report Cerebral Metastasis from a Previously Undiagnosed Appendiceal Adenocarcinoma

Case Report Cerebral Metastasis from a Previously Undiagnosed Appendiceal Adenocarcinoma Case Reports in Oncological Medicine Volume 2012, Article ID 192807, 4 pages doi:10.1155/2012/192807 Case Report Cerebral Metastasis from a Previously Undiagnosed Appendiceal Adenocarcinoma Antonio Biroli,

More information

Precision of pre-sirt predictive dosimetry

Precision of pre-sirt predictive dosimetry International Course on THERANOSTICS AND MOLECULAR RADIOTHERAPY Precision of pre-sirt predictive dosimetry Hugo Levillain Department of Nuclear Medicine Medical Physics Jules Bordet Institute, Université

More information

Gamma knife radiosurgery for Koos grade 4 vestibular schwannomas

Gamma knife radiosurgery for Koos grade 4 vestibular schwannomas Gamma knife radiosurgery for Koos grade 4 vestibular schwannomas David Mathieu MD FRCSC, Christian Iorio-Morin MD PhD, Fahd Al Subaie MD MSc FRCSC Division of neurosurgery, Université de Sherbrooke, Centre

More information

Estimating the Risks of Adverse Radiation Effects After Gamma Knife Radiosurgery for Arteriovenous Malformations

Estimating the Risks of Adverse Radiation Effects After Gamma Knife Radiosurgery for Arteriovenous Malformations Estimating the Risks of Adverse Radiation Effects After Gamma Knife Radiosurgery for Arteriovenous Malformations Hideyuki Kano, MD, PhD; John C. Flickinger, MD; Daniel Tonetti, MD; Alan Hsu, MD; Huai-che

More information

Protocolos de consenso: MTS Cerebrales Resumen ASTRO. Javier Aristu y Germán Valtueña Servicio Oncología Rad. Depart.

Protocolos de consenso: MTS Cerebrales Resumen ASTRO. Javier Aristu y Germán Valtueña Servicio Oncología Rad. Depart. Protocolos de consenso: MTS Cerebrales Resumen ASTRO Javier Aristu y Germán Valtueña Servicio Oncología Rad. Depart. ASTRO 2013 Brain met SRS Abstracts 97. Comparative Effectiveness of SRS versus WBRT

More information

TABLES. Table 1: Imaging. Congress of Neurological Surgeons Author (Year) Description of Study Classification Process / Evidence Class

TABLES. Table 1: Imaging. Congress of Neurological Surgeons Author (Year) Description of Study Classification Process / Evidence Class TABLES Table 1: Imaging Kremer et al (2002) 2 Study Design: Prospective followed case series. Patient Population: Fifty adult patients with NFPA Study Description: Patients underwent MRI before surgery,

More information

FRACTIONATED STEREOTACTIC RADIOTHERAPY FOR ACOUSTIC NEUROMAS

FRACTIONATED STEREOTACTIC RADIOTHERAPY FOR ACOUSTIC NEUROMAS PII S0360-3016(02)02763-3 Int. J. Radiation Oncology Biol. Phys., Vol. 54, No. 2, pp. 500 504, 2002 Copyright 2002 Elsevier Science Inc. Printed in the USA. All rights reserved 0360-3016/02/$ see front

More information

Laser Interstitial Thermal Therapy (LITT) in Neuro-Oncology. Tim Lucas, MD, PhD Neurosurgery

Laser Interstitial Thermal Therapy (LITT) in Neuro-Oncology. Tim Lucas, MD, PhD Neurosurgery Laser Interstitial Thermal Therapy (LITT) in Neuro-Oncology Tim Lucas, MD, PhD Neurosurgery Timothy.Lucas@uphs.upenn.edu 2016 Laser Interstitial Thermal Therapy (LITT) in Neuro-Oncology Tim Lucas, MD,

More information

Is dosimetry of multiple mets radiosurgery vendor platform dependent? Y. Zhang

Is dosimetry of multiple mets radiosurgery vendor platform dependent? Y. Zhang Is dosimetry of multiple mets radiosurgery vendor platform dependent? Y. Zhang Linac Based -TrueBeam -Trilogy CyberKnife GammaKnife 2 Objectives To provide an overview of the physics of GammaKnife, CyberKnife

More information

brain SPINE 2 SRS Matures into breast lung spine LUNG Dr. Robert Timmerman Discusses SBRT for Inoperable Lung Cancer BRAIN

brain SPINE 2 SRS Matures into breast lung spine LUNG Dr. Robert Timmerman Discusses SBRT for Inoperable Lung Cancer BRAIN NEWS AND ADVANCES IN THE MANAGEMENT AND TREATMENT OF SERIOUS DISEASE brain SPINE 2 SRS Matures into Mainstream Extracranial Technique lung spine breast LUNG Dr. Robert Timmerman Discusses SBRT for Inoperable

More information

Imaging in gastric cancer

Imaging in gastric cancer Imaging in gastric cancer Gastric cancer remains a deadly disease because of late diagnosis. Adenocarcinoma represents 90% of malignant tumors. Diagnosis is based on endoscopic examination with biopsies.

More information

PET IMAGING (POSITRON EMISSION TOMOGRAPY) FACT SHEET

PET IMAGING (POSITRON EMISSION TOMOGRAPY) FACT SHEET Positron Emission Tomography (PET) When calling Anthem (1-800-533-1120) or using the Point of Care authorization system for a Health Service Review, the following clinical information may be needed to

More information

ANALYSIS OF TREATMENT OUTCOMES WITH LINAC BASED STEREOTACTIC RADIOSURGERY IN INTRACRANIAL ARTERIOVENOUS MALFORMATIONS

ANALYSIS OF TREATMENT OUTCOMES WITH LINAC BASED STEREOTACTIC RADIOSURGERY IN INTRACRANIAL ARTERIOVENOUS MALFORMATIONS ANALYSIS OF TREATMENT OUTCOMES WITH LINAC BASED STEREOTACTIC RADIOSURGERY IN INTRACRANIAL ARTERIOVENOUS MALFORMATIONS Dr. Maitri P Gandhi 1, Dr. Chandni P Shah 2 1 Junior resident, Gujarat Cancer & Research

More information

Br a i n metastases are the tumors most frequently. Safety and efficacy of Gamma Knife surgery for brain metastases in eloquent locations

Br a i n metastases are the tumors most frequently. Safety and efficacy of Gamma Knife surgery for brain metastases in eloquent locations J Neurosurg 113:79 83, 2010 Safety and efficacy of Gamma Knife surgery for brain metastases in eloquent locations Clinical article Ni c o l a s De a, M.D., Mar t i n Bo r d u a s, Br e n d a n Ke n n y,

More information

Place of tumor bed radiosurgery and focal radiotherapy following resec7on of brain metastases: A new paradigm Lucyna Kepka

Place of tumor bed radiosurgery and focal radiotherapy following resec7on of brain metastases: A new paradigm Lucyna Kepka Place of tumor bed radiosurgery and focal radiotherapy following resec7on of brain metastases: A new paradigm Lucyna Kepka Department of Radia7on Oncology; M. Sklodowska- Curie Memorial Cancer Center and

More information

Neurosurgery Review. Mudit Sharma, MD May 16 th, 2008

Neurosurgery Review. Mudit Sharma, MD May 16 th, 2008 Neurosurgery Review Mudit Sharma, MD May 16 th, 2008 Dr. Mudit Sharma, Neurosurgeon Manassas, Fredericksburg, Virginia http://www.virginiaspinespecialists.com Phone: 1-855-SPINE FIX (774-6334) Fundamentals

More information

Outline. WBRT field. Brain Metastases. Whole Brain RT Prophylactic WBRT Stereotactic radiosurgery (SRS) 1 fraction Stereotactic frame

Outline. WBRT field. Brain Metastases. Whole Brain RT Prophylactic WBRT Stereotactic radiosurgery (SRS) 1 fraction Stereotactic frame Radiation Therapy for Advanced NSC Lung Ca Alexander Gottschalk, M.D., Ph.D. Associate Professor Director of CyberKnife Radiosurgery Department of Radiation Oncology University of California San Francisco

More information

Leksell Gamma Knife Icon. Treatment information

Leksell Gamma Knife Icon. Treatment information Leksell Gamma Knife Icon Treatment information You may be feeling frightened or overwhelmed by your recent diagnosis. It can be confusing trying to process a diagnosis, understand a new and challenging

More information

Stereotactic Radiosurgery of World Health Organization Grade II and III Intracranial Meningiomas

Stereotactic Radiosurgery of World Health Organization Grade II and III Intracranial Meningiomas Stereotactic Radiosurgery of World Health Organization Grade II and III Intracranial Meningiomas Treatment Results on the Basis of a 22-Year Experience Bruce E. Pollock, MD 1,2 ; Scott L. Stafford, MD

More information

DIAGNOSTIC PITFALLS OF BRAIN METASTASES AFTER BRAIN IRRADIATION.

DIAGNOSTIC PITFALLS OF BRAIN METASTASES AFTER BRAIN IRRADIATION. DOI: 10.5272/jimab.1632010_32-37 Journal of IMAB - Annual Proceeding (Scientific Papers) vol. 16, book 3, 2010 DIAGNOSTIC PITFALLS OF BRAIN METASTASES AFTER BRAIN IRRADIATION. Nikolay A. Peev, Svetoslav

More information

Overview of MLC-based Linac Radiosurgery

Overview of MLC-based Linac Radiosurgery SRT I: Comparison of SRT Techniques 1 Overview of MLC-based Linac Radiosurgery Grace Gwe-Ya Kim, Ph.D. DABR 2 MLC based Linac SRS Better conformity for irregular target Improved dose homogeneity inside

More information

Update on IGKRF Activities

Update on IGKRF Activities Stereotactic radiosurgery research, education and publishing for the purpose of improving public health Fall 2016 In this issue: Update on IGKRF Activities The IGKRF Recently Published Articles Topics

More information

What Radiologists do?

What Radiologists do? Multimodality Imaging in Oncology 2018 March 5 th 9th Diagnostic Imaging in Oncology What Radiologists do? Chikako Suzuki, MD, PhD Department of Diagnostic Radiology, KS Solna Department of Molecular Medicine

More information

Outcomes after Reirradiation for Brain Metastases

Outcomes after Reirradiation for Brain Metastases Original Article PROGRESS in MEDICAL PHYSICS Vol. 26, No. 3, September, 2015 http://dx.doi.org/10.14316/pmp.2015.26.3.137 Outcomes after Reirradiation for Brain Metastases Jesang Yu, Ji Hoon Choi, Sun

More information