CD40 stimulation on CLL cells

Size: px
Start display at page:

Download "CD40 stimulation on CLL cells"

Transcription

1 Pathways of apoptosis 0 stimulation on cells 0 stimulation on cells NC Survivin Actin ymphoid tissues in Proliferation Centres Survivin Proliferation Centres Ki7 <% Normal N p27 >9% N 0 cl-2 Aberrant immune response? he proliferating compartment Survival Proliferation CC22 (CC17) Cognitive ic elements Activation/proliferation Affinity maturation Resting Naive cells Mantle zone ight zone Dark zone 0 (I-) 1

2 cells show IGV somatic mutations () DEFINIION Accumulation of small, resting, mature + lymphocytes in peripheral blood, bone marrow, lymph nodes and spleen () omogeneous phenotype: +, CD23 +, sigm low eterogeneous clinical course Indolent course Aggressive course Survival: 12-1 years Survival: 3- years herapy: No need or late herapy: Early and frequent Small ymphocytic ymphoma (S) ow-grade, indolent ymphomas Fais et al, 1998 Gastric ymphoma Chronic. pylori infection 10-20% of cancers associated with infections Direct. pylori specific cells + Stimulation Infiltrating autoreactive cells Early. pylori MA t(11;18) dependent ymphoma t(1;1)/t(1;2) C-10 mutations? ate Aggressive. pylori MA MA independent ymphoma ymphoma ransformed? MA ymphoma epatitis C iver cancer ymphoma (splenic y villous lymphocytes) V1 Adult -cell leukaemia Campylobacter ymphoma Epstein-arr virus odgkin's disease Intest. ymphoma Nasopharyngeal cancer Kaposi's sarcoma V8 Chlamydia Psitt Primary effusion lymphoma Papilloma virus Cervical cancer ymphoma Ocul. Adn. Gastric cancer elicobacter pylori Gastric lymphoma..catastrophes ususally depend upon a combination of errors. lood count, blood film and immunophenotype omogeneous phenotype: +, CD23 +, sigm low eterogeneous clinical course (years vs decades) lood count, blood film and immunophenotype omogeneous phenotype: +, CD23 +, sigm low eterogeneous clinical course (years vs decades) lood count, blood film and immunophenotype omogeneous phenotype: +, CD23 +, sigm low eterogeneous clinical course (years vs decades) Classic Prognostic factors Classic Prognostic factors iological Prognostic factors Clinical Stage (Rai/inet) Define disease Clinical Stage (Rai/inet) Define disease β2-microglobulin Correlate with one Marrow istology extension one Marrow istology extension Serum CD23 disease burden D D Serum hymidine Kinase Staging reatment strategy New biological Prognostic factors Stage A (0) Wait and watch IGV mutational status Predict prognosis Stage (I-II) reat if progression CD38 expression at diagnosis Stage C (III-IV) reat at onset ZAP-70 expression FIS 2

3 ZAP-70, CD38 and IGV mutations Zap-70 expression is a continuum IGV genes in IGV3-21 ~ 3% of all IGV genes used in M M M M UM UM Rassenti,. Z. et al. 200 Crespo et al, 2003 IGV1-9 ~ 10% of all IGV genes used in amblin,. Z. et al Rassenti,. Z. et al ymphocytes ( + )...a distinct cell lineage? In the fetus and newborn: predominant population In the adult: in the Mantle Zone (1% of circulating cells) Natural autoantibodies production Reconstitution Experiments in the mouse Absence of somatic mutations Conventional cells produce autoantibodies hey readily appear after M Few somatic mutations = Naive Why do cells interact with? CEMOKINE P N CC22/MDC - + CC17/ARC - +/- CC/Rantes + + CC3/Mip-1! + + CC20ARC - - CC19/EC - - CC21/SC - - CC1/I CC2/eck - - CXC8/I CXC10/IP CXC9Mig - - CXC12/SDF CXC12CA CXC13/CA CXC3C1/Fractalkine - - Activated + Cells Express CCR cells: short vs long term survival CD100 and Plexin-1 in Stroma ime (days) 3

4 Scenario A: ic stimulation is an activation marker Scenario A: antigenic stimulation (auto) anti-µ Mutated IG + cell Mutated I- + cell Unmutated I-1 Unmutated IG I-2 Scenario : no CR stimulation Caligaris-Cappio et al. lood 1989; Wortis et al, PNAS 199 Scenario : auto (super) antigenic stimulation Unrelated patients carry similar CDR3 () () Case P131 IA-D2 FRA-33 IA- N13 FRA-28 CDR3 AR DAN GMDV (K)CDR3 QVWDSGSDPWV IGV3-21 DIAGNOSIS 1) Absolute cell lymphocytosis >000/ul for > weeks 2) (>30% linfociti in MO) 3) Immunophenotype - ight chain (κ/λ) restriction Characteristic phenotype: +, CD23 +, low, sigm low IA-1 P1321 FRA M Q R , +, CD ow surface Ig FRA D ---- SPA R G P32 IA-3 FRA-09 -I -R A D G FRA Q- D--- IA P D-----Y- FRA-299 N A A--- QQYNNWPPE M-G--- G obin et al, lood 2002 Ghia et al, lood 200 allek et al, lood 2008 cell clonal expansions in the elderly rasforming events Microenvironment Interactions Sequential genetic abnormalities rasforming events Microenvironment Interactions Sequential genetic abnormalities Monoclonal Gammopathy of uncertain significance (MGUS) Step 1: ransformation Step 2: Accumulation Step 3: Autonomous Growth Step 1: ransformation Step 2: Accumulation Step 3: Autonomous Growth MGUS: 1%/year MM

5 Accumulation of lymphocytes: +, CD23 +, sigm low IGV N1 IGD N2 IGJ FRA-081 C A R E Q W V R S F D Y W P3073 C A R E Q W V R V N F D Y W P23 C A R A Q W V V N F D Y W FRA-178 C A R E Q W V R F D Y W P3129 C A R E Q W D A F D Y W SPA-91 C A R A Q W V P F D Y W FRA-270 C A R E Q W V F D Y W N3088 C A R E Q W V K E F F D Y W FRA-19 C A R Q W V R D Y F D Y W N2837 C A R V Q W V R E Y F D Y W FRA-190 C A R D Q W V D Y F D Y W P39 C A R W Q W V G Y F D Y W FRA-210 C A R E Q W A K P F D Y W P1173 C A R E Q W G I K N F D Y W FRA-22 C A R I Q W G P P S F D Y W FRA-293 C A R E Q W G P F D Y W FRA-290 C A R D Q W P N N F D Y W SPA- C A R D Q W P I N Y F D Y W N17 C A R K Q W P Q Y Y F D Y W SPA- C A R A Q W S I N Y Y F D Y W omogeneous phenotype: +, CD23 +, sigm low cells in the Proliferation Centres he proliferating compartment omogeneous phenotype: +, CD23 +, sigm low eterogeneous clinical course Survival Indolent course Aggressive course CD23 CC22 (CC17) Proliferation Survival: 12-1 years herapy: No or late need New biological Prognostic factors IGV mutational status CD38 expression ZAP-70 expression Genomic abnormalities Survival: 3- years herapy: Early and frequent Predict prognosis at diagnosis CD Medium only Medium ime (days) Granziero et al, 2001; Ghia et al, 2002; Granziero et al, 2003 Ki7 0 0 (I-) CDR3 analysis EAVY CAIN V D J C V J C IG CAIN IMMUNOOGY AND MAEMAICS ' 3' ' 3 ' 3 9- x 2 3 x 3-37 x 300 POENIA RECOMINAIONS POENIA RECOMINAIONS N-DIVERSIY SOMAIC MUAIONS X x - ambda ' 3 ' ' 3' Mathematical chances that two different cell clones might share the same CR ~.3 x 10 POSSIIIIES ~ 3. x 10 POSSIIIIES 2 x DIFFEREN ANIODIES 1:10-12 FR1 FR2 FR3 IGV CDR1 CDR2 IGD CDR3 IGJ 0, %

6 1, 1, 1,2 1,0 0,8 0, 0, 0,2 0,0 ZAP70 is differentially expressed in cells ZAP70 correlates with clinical course Cell Receptor (CR) β α ε δ γ ε Rassenti,. Z. et al. 200 Crespo et al, 2003 SP-7 Itk/Rlk Zap-70 ζ ζ ck Rosenwald et al 2001 Wiestner et al, 2003 Rassenti,. Z. et al. 200 PC-γ ZAP70 is expressed in normal cells ZAP70: recent/persistent activation? Scenario A: initial CR stimulation CD3+ Memory Naive GC ZAP-70 β actin ZAP-70/β -ac tin (OD ratio) CD3+ Memory Naive GC CD1+ CD1+ CD3+ ZAP-70 β actin activation Mantle zone ight zone Dark zone cell Good prognosis ad prognosis P Cells Scelzo et al, eukemia 200 ZAP-70 expression Scenario : ongoing CR stimulation Aberrant immune response? Cognitive Activation/proliferation Resting omogeneous phenotype: +, CD23 +, sigm low omogeneous phenotype: +, CD23 +, sigm low eterogeneous clinical course ic elements Indolent course Aggressive course Survival: 12-1 years Survival: 3- years herapy: No or late need herapy: Early and frequent

7 Chromosomal abnormalities in cells in the Proliferation Centres he proliferating compartment Survival CD23? CD3 mir-1a mir-1-1 p3 100 risomy 12: 1% 90 13q deletion: 3% Medium only Medium Ki AM? Proliferation CC22 (CC17) ime (days) 0 11q deletion: 18% 17p deletion: 7% Dohner et al (I-) Granziero e t al, 2001; Ghia et al, 2002; Granziero et al, 2003 Ghia et al, Sem Cancer iol 2002 Aberrant immune response? Cognitive Activation/proliferation Resting ic elements 7

Prepared by: Dr.Mansour Al-Yazji

Prepared by: Dr.Mansour Al-Yazji C L L CLL Prepared by: Abd El-Hakeem Abd El-Rahman Abu Naser Ahmed Khamis Abu Warda Ahmed Mohammed Abu Ghaben Bassel Ziad Abu Warda Nedal Mostafa El-Nahhal Dr.Mansour Al-Yazji LEUKEMIA Leukemia is a form

More information

Pathology of the indolent B-cell lymphomas Elias Campo

Pathology of the indolent B-cell lymphomas Elias Campo Pathology of the indolent B-cell lymphomas Elias Campo Hospital Clinic, University of Barcelona Small B-cell lymphomas Antigen selection NAIVE -B LYMPHOCYTE MEMORY B-CELL MCL FL LPL MZL CLL Small cell

More information

The 1 World Congress on Controversies in Hematology (COHEM) Rome, September 2010

The 1 World Congress on Controversies in Hematology (COHEM) Rome, September 2010 The 1 World Congress on Controversies in Hematology (COHEM) Rome, September 2010 Is the wait and watch philosophy still practical in the treatment of CLL even in younger patients? Expected to say NO Federico

More information

Chronic Lymphocytic Leukemia Mantle Cell Lymphoma Elias Campo

Chronic Lymphocytic Leukemia Mantle Cell Lymphoma Elias Campo Chronic Lymphocytic Leukemia Mantle Cell Lymphoma Elias Campo Hospital Clinic, University of Barcelona Small B-cell lymphomas NAIVE -B LYMPHOCYTE MEMORY CELL CLL MCL FL MZL Small cell size Low proliferation

More information

Introduction. Introduction. Lymphocyte development (maturation)

Introduction. Introduction. Lymphocyte development (maturation) Introduction Abbas Chapter 8: Lymphocyte Development and the Rearrangement and Expression of Antigen Receptor Genes Christina Ciaccio, MD Children s Mercy Hospital January 5, 2009 Lymphocyte development

More information

Global warming in the leukaemia microenvironment: Chronic Lymphocytic Leukaemia (CLL) Nina Porakishvili

Global warming in the leukaemia microenvironment: Chronic Lymphocytic Leukaemia (CLL) Nina Porakishvili Global warming in the leukaemia microenvironment: Chronic Lymphocytic Leukaemia (CLL) Nina Porakishvili Working plan Case study; Epidemiology; Diagnosis; Immunobiology; Prognostication; Stratification

More information

Immunological aspects in chronic lymphocytic leukemia (CLL) development

Immunological aspects in chronic lymphocytic leukemia (CLL) development Ann Hematol (2012) 91:981 996 DOI 10.1007/s00277-012-1460-z REVIEW ARTICLE Immunological aspects in chronic lymphocytic leukemia (CLL) development Ricardo García-Muñoz & Verónica Roldan Galiacho & Luis

More information

Hematology 101. Rachid Baz, M.D. 5/16/2014

Hematology 101. Rachid Baz, M.D. 5/16/2014 Hematology 101 Rachid Baz, M.D. 5/16/2014 Florida 101 Epidemiology Estimated prevalence 8,000 individuals in U.S (compare with 80,000 MM patients) Annual age adjusted incidence 3-8/million-year 1 More

More information

The development of clonality testing for lymphomas in the Bristol Genetics Laboratory. Dr Paula Waits Bristol Genetics Laboratory

The development of clonality testing for lymphomas in the Bristol Genetics Laboratory. Dr Paula Waits Bristol Genetics Laboratory The development of clonality testing for lymphomas in the Bristol Genetics Laboratory Dr Paula Waits Bristol Genetics Laboratory Introduction The majority of lymphoid malignancies belong to the B cell

More information

Supplementary Figure 1: Expression of NFAT proteins in Nfat2-deleted B cells (a+b) Protein expression of NFAT2 (a) and NFAT1 (b) in isolated splenic

Supplementary Figure 1: Expression of NFAT proteins in Nfat2-deleted B cells (a+b) Protein expression of NFAT2 (a) and NFAT1 (b) in isolated splenic Supplementary Figure 1: Expression of NFAT proteins in Nfat2-deleted B cells (a+b) Protein expression of NFAT2 (a) and NFAT1 (b) in isolated splenic B cells from WT Nfat2 +/+, TCL1 Nfat2 +/+ and TCL1 Nfat2

More information

PRECURSOR LYMHPOID NEOPLASMS. B lymphoblastic leukaemia/lymphoma T lymphoblastic leukaemia/lymphoma

PRECURSOR LYMHPOID NEOPLASMS. B lymphoblastic leukaemia/lymphoma T lymphoblastic leukaemia/lymphoma PRECURSOR LYMHPOID NEOPLASMS B lymphoblastic leukaemia/lymphoma T lymphoblastic leukaemia/lymphoma B lymphoblastic leukaemia/lymphoma Definition: B lymphoblastic leukaemia/lymphoma is a neoplasm of precursor

More information

B cell activation and antibody production. Abul K. Abbas UCSF

B cell activation and antibody production. Abul K. Abbas UCSF 1 B cell activation and antibody production Abul K. Abbas UCSF 2 Lecture outline B cell activation; the role of helper T cells in antibody production Therapeutic targeting of B cells 3 Principles of humoral

More information

From Pathogenesis to Treatment of Chronic Lymphocytic Leukaemia (printer-friendly)

From Pathogenesis to Treatment of Chronic Lymphocytic Leukaemia (printer-friendly) www.medscape.com Authors and Disclosures Thorsten Zenz*, Daniel Mertens*, Ralf Küppers, Hartmut Döhner* & Stephan Stilgenbauer* *Department of Internal Medicine III, University of Ulm, Ulm 89081, Germany.

More information

Molecular Pathology of Lymphoma (Part 1) Rex K.H. Au-Yeung Department of Pathology, HKU

Molecular Pathology of Lymphoma (Part 1) Rex K.H. Au-Yeung Department of Pathology, HKU Molecular Pathology of Lymphoma (Part 1) Rex K.H. Au-Yeung Department of Pathology, HKU Lecture outline Time 10:00 11:00 11:15 12:10 12:20 13:15 Content Introduction to lymphoma Review of lymphocyte biology

More information

CLL Ireland Information Day Presentation

CLL Ireland Information Day Presentation CLL Ireland Information Day Presentation 5 May 2018 Professor Patrick Thornton Consultant Haematologist, Senior Lecturer RCSI, and Clinical Director Hermitage Medical Clinic Laboratory Chronic Lymphocytic

More information

Lymphoma/CLL 101: Know your Subtype. Dr. David Macdonald Hematologist, The Ottawa Hospital

Lymphoma/CLL 101: Know your Subtype. Dr. David Macdonald Hematologist, The Ottawa Hospital Lymphoma/CLL 101: Know your Subtype Dr. David Macdonald Hematologist, The Ottawa Hospital Function of the Lymph System Lymph Node Lymphocytes B-cells develop in the bone marrow and influence the immune

More information

MECHANISMS OF B-CELL LYMPHOMA PATHOGENESIS

MECHANISMS OF B-CELL LYMPHOMA PATHOGENESIS MECHANISMS OF B-CELL LYMPHOMA PATHOGENESIS Ralf Küppers Abstract Chromosomal translocations involving the immunoglobulin loci are a hallmark of many types of B-cell. Other factors, however, also have important

More information

Template for Reporting Results of Biomarker Testing of Specimens From Patients With Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma

Template for Reporting Results of Biomarker Testing of Specimens From Patients With Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma Template for Reporting Results of Biomarker Testing of Specimens From Patients With Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma Version: CLLBiomarkers 1.0.0.2 Protocol Posting Date: June 2017

More information

Lymphoma: What You Need to Know. Richard van der Jagt MD, FRCPC

Lymphoma: What You Need to Know. Richard van der Jagt MD, FRCPC Lymphoma: What You Need to Know Richard van der Jagt MD, FRCPC Overview Concepts, classification, biology Epidemiology Clinical presentation Diagnosis Staging Three important types of lymphoma Conceptualizing

More information

Follicular Lymphoma. ced3 APOPTOSIS. *In the nematode Caenorhabditis elegans 131 of the organism's 1031 cells die during development.

Follicular Lymphoma. ced3 APOPTOSIS. *In the nematode Caenorhabditis elegans 131 of the organism's 1031 cells die during development. Harvard-MIT Division of Health Sciences and Technology HST.176: Cellular and Molecular Immunology Course Director: Dr. Shiv Pillai Follicular Lymphoma 1. Characterized by t(14:18) translocation 2. Ig heavy

More information

Session 5. Pre-malignant clonal hematopoietic proliferations. Chairs: Frank Kuo and Valentina Nardi

Session 5. Pre-malignant clonal hematopoietic proliferations. Chairs: Frank Kuo and Valentina Nardi Session 5 Pre-malignant clonal hematopoietic proliferations Chairs: Frank Kuo and Valentina Nardi Pre-malignant clonal hematopoietic proliferations Clonal LYMPHOID proliferations: - Monoclonal gammopathy

More information

Antigen-Independent B-Cell Development Bone Marrow

Antigen-Independent B-Cell Development Bone Marrow Antigen-Independent B-Cell Development Bone Marrow 1. DNA rearrangements establish the primary repertoire, creating diversity 2. Allelic exclusion ensures that each clone expresses a single antibody on

More information

7 Omar Abu Reesh. Dr. Ahmad Mansour Dr. Ahmad Mansour

7 Omar Abu Reesh. Dr. Ahmad Mansour Dr. Ahmad Mansour 7 Omar Abu Reesh Dr. Ahmad Mansour Dr. Ahmad Mansour -Leukemia: neoplastic leukocytes circulating in the peripheral bloodstream. -Lymphoma: a neoplastic process in the lymph nodes, spleen or other lymphatic

More information

T cell development October 28, Dan Stetson

T cell development October 28, Dan Stetson T cell development October 28, 2016 Dan Stetson stetson@uw.edu 441 Lecture #13 Slide 1 of 29 Three lectures on T cells (Chapters 8, 9) Part 1 (Today): T cell development in the thymus Chapter 8, pages

More information

Andrea s Final Exam Review PCB 3233 Spring Practice Final Exam

Andrea s Final Exam Review PCB 3233 Spring Practice Final Exam NOTE: Practice Final Exam Although I am posting the answer key for this practice exam, I want you to use this practice to gauge your knowledge, and try to figure out the right answer by yourself before

More information

T Cell Differentiation

T Cell Differentiation T Cell Differentiation Ned Braunstein, MD MHC control of Immune Responsiveness: Concept Whether or not an individual makes an immune response to a particular antigen depends on what MHC alleles an individual

More information

Andrea s SI Session PCB Practice Test Test 3

Andrea s SI Session PCB Practice Test Test 3 Practice Test Test 3 READ BEFORE STARTING PRACTICE TEST: Remember to please use this practice test as a tool to measure your knowledge, and DO NOT use it as your only tool to study for the test, since

More information

Ig light chain rearrangement: Rescue pathway

Ig light chain rearrangement: Rescue pathway B Cell Development Ig light chain rearrangement: Rescue pathway There is only a 1:3 chance of the join between the V and J region being in frame Vk Jk Ck Non-productive Rearrangement Light chain has a

More information

Adaptive Immunity: Humoral Immune Responses

Adaptive Immunity: Humoral Immune Responses MICR2209 Adaptive Immunity: Humoral Immune Responses Dr Allison Imrie 1 Synopsis: In this lecture we will review the different mechanisms which constitute the humoral immune response, and examine the antibody

More information

Mathematical models of chronic lymphocytic leukemia

Mathematical models of chronic lymphocytic leukemia Mathematical models of chronic lymphocytic leukemia Introduction to CLL Ibrutinib therapy understanding the kinetics Calculating personalized treatments Dominik Wodarz Department of Ecology and Evolutionary

More information

GENETIC MARKERS IN LYMPHOMA a practical overview. P. Heimann Dpt of Medical Genetics Erasme Hospital - Bordet Institute

GENETIC MARKERS IN LYMPHOMA a practical overview. P. Heimann Dpt of Medical Genetics Erasme Hospital - Bordet Institute GENETIC MARKERS IN LYMPHOMA a practical overview P. Heimann Dpt of Medical Genetics Erasme Hospital - Bordet Institute B and T cell monoclonalities Rearrangement of immunoglobin and TCR genes may help

More information

Diagnostic Molecular Pathology of Lymphoid Neoplasms

Diagnostic Molecular Pathology of Lymphoid Neoplasms Diagnostic Molecular Pathology of Lymphoid Neoplasms (Part II) Rational use of molecular testing in lymphomas Beirut, Lebanon Friday December 2, 2011: Hematopathology Session Adam Bagg University of Pennsylvania

More information

The Lymphomas. An overview..

The Lymphomas. An overview.. The Lymphomas An overview.. Peter Anglin MD, FRCPC, MBA Stronach Regional Cancer Centre Newmarket, ON The lymphomas are an important part of the history of medicine 1666 Magpighi publishes first recorded

More information

Innate immunity (rapid response) Dendritic cell. Macrophage. Natural killer cell. Complement protein. Neutrophil

Innate immunity (rapid response) Dendritic cell. Macrophage. Natural killer cell. Complement protein. Neutrophil 1 The immune system The immune response The immune system comprises two arms functioning cooperatively to provide a comprehensive protective response: the innate and the adaptive immune system. The innate

More information

Overview B cell development T cell development

Overview B cell development T cell development Topics Overview B cell development T cell development Lymphocyte development overview (Cont) Receptor diversity is produced by gene rearrangement and is random Includes specificities that will bind to

More information

FOLLICULARITY in LYMPHOMA

FOLLICULARITY in LYMPHOMA FOLLICULARITY in LYMPHOMA Reactive Follicular Hyperplasia Follicular Hyperplasia irregular follicles Follicular Hyperplasia dark and light zones Light Zone Dark Zone Follicular hyperplasia MIB1 Follicular

More information

Low-grade B-cell lymphoma

Low-grade B-cell lymphoma Low-grade B-cell lymphoma Patho-Basic 11. September 2018 Stephan Dirnhofer Pathology Outline Definition LPL, MBL/CLL/SLL, MCL FL Subtypes & variants Diagnosis including Grading Transformation Summary Be

More information

CLL: disease specific biology and current treatment. Dr. Nathalie Johnson

CLL: disease specific biology and current treatment. Dr. Nathalie Johnson CLL: disease specific biology and current treatment Dr. Nathalie Johnson Disclosures Consultant and Advisory boards Roche, Abbvie, Gilead, Jansson, Lundbeck,Merck Research funding Roche, Abbvie, Lundbeck

More information

κ λ Antigen-Independent B-Cell Development Bone Marrow Ordered Rearrangement of Ig Genes During B-Cell Development in the Bone Marrow

κ λ Antigen-Independent B-Cell Development Bone Marrow Ordered Rearrangement of Ig Genes During B-Cell Development in the Bone Marrow Antigen-Independent B-Cell Development Bone Marrow 1. DNA rearrangements establish the primary repertoire, creating diversity 2. Allelic exclusion ensures that each clone expresses a single antibody on

More information

accumulation the blood, marrow, lymph nodes, and spleen.

accumulation the blood, marrow, lymph nodes, and spleen. Chronic Lymphocytic Leukemia accumulation of mature-appearing appearing lymphocytes in the blood, marrow, lymph nodes, and spleen. CLL cells are: monoclonal l B lymphocytes that express CD19. CD5, and

More information

T cell and Cell-mediated immunity

T cell and Cell-mediated immunity T cell and Cell-mediated immunity Lu Linrong ( 鲁林荣 ) PhD Laboratory of Immune Regulation Institute of Immunology Zhejiang University, it School of Medicine i Medical Research Building B815-819 Email: Lu.Linrong@gmail.com

More information

WHO Classification. B-cell chronic lymphocytic leukemia/small T-cell granular lymphocytic leukemia

WHO Classification. B-cell chronic lymphocytic leukemia/small T-cell granular lymphocytic leukemia Blood Malignancies-II Prof. Dr. Herman Hariman, a Ph.D, SpPK (KH). Prof. Dr. Adikoesoema Aman, SpPK (KH) Dept. of Clinical Pathology, School of Medicine, University of North Sumatra WHO classification

More information

membrane form secreted form 13 aa 26 aa K K V V K K 3aa

membrane form secreted form 13 aa 26 aa K K V V K K 3aa Harvard-MIT Division of Health Sciences and Technology HST.176: Cellular and Molecular Immunology Course Director: Dr. Shiv Pillai secreted form membrane form 13 aa 26 aa K K V V K K 3aa Hapten monosaccharide

More information

Pathology #07. Hussein Al-Sa di. Dr. Sohaib Al-Khatib. Mature B-Cell Neoplasm. 0 P a g e

Pathology #07. Hussein Al-Sa di. Dr. Sohaib Al-Khatib. Mature B-Cell Neoplasm. 0 P a g e Pathology #07 Mature B-Cell Neoplasm Hussein Al-Sa di Dr. Sohaib Al-Khatib 0 P a g e Thursday 18/2/2016 Our lecture today (with the next 2 lectures) will be about lymphoid tumors This is a little bit long

More information

Immune Regulation and Tolerance

Immune Regulation and Tolerance Immune Regulation and Tolerance Immunoregulation: A balance between activation and suppression of effector cells to achieve an efficient immune response without damaging the host. Activation (immunity)

More information

Differential diagnosis of hematolymphoid tumors composed of medium-sized cells. Brian Skinnider B.C. Cancer Agency, Vancouver General Hospital

Differential diagnosis of hematolymphoid tumors composed of medium-sized cells. Brian Skinnider B.C. Cancer Agency, Vancouver General Hospital Differential diagnosis of hematolymphoid tumors composed of medium-sized cells Brian Skinnider B.C. Cancer Agency, Vancouver General Hospital Lymphoma classification Lymphoma diagnosis starts with morphologic

More information

Test Utilization: Chronic Lymphocytic Leukemia

Test Utilization: Chronic Lymphocytic Leukemia Test Utilization: Chronic Lymphocytic Leukemia Initial Evaluation Diagnostic Criteria Selection of Tests for Prognosis Response to Therapy Challenges Assessment for persistent disease Paul J. Kurtin, M.D.

More information

Sheena Surindran Grand Rounds 2/15/11

Sheena Surindran Grand Rounds 2/15/11 Sheena Surindran Grand Rounds 2/15/11 Affects 5 12 person per million / year 5 10% associated with myeloma Median survival without treatment is 12 40 months Most commonly affected organs are kidney, heart

More information

Eurekah Bioscience Collection

Eurekah Bioscience Collection in Malignant 5/31/06 12:09 PM in Malignant to Leukemia and Lymphoma Eurekah Bioscience Collection in Malignant Sarah E. enrickson Elena M. artmann German Ott Andreas Rosenwald* The practice of clinical

More information

Corrigenda. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (revised 4th edition): corrections made in second print run

Corrigenda. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (revised 4th edition): corrections made in second print run Corrigenda WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (revised 4th edition): corrections made in second print run In addition to corrections of minor typographical errors, corrections

More information

Immunobiology 7. The Humoral Immune Response

Immunobiology 7. The Humoral Immune Response Janeway Murphy Travers Walport Immunobiology 7 Chapter 9 The Humoral Immune Response Copyright Garland Science 2008 Tim Worbs Institute of Immunology Hannover Medical School 1 The course of a typical antibody

More information

Follicular Lymphoma: the WHO

Follicular Lymphoma: the WHO Follicular Lymphoma: the WHO and the WHERE? Yuri Fedoriw, MD Associate Professor of Pathology and Laboratory Medicine Director of Hematopathology University of North Carolina Chapel Hill, NC Disclosure

More information

Georg Hopfinger 3. Med.Abt and LBI for Leukemiaresearch and Haematology Hanusch Krankenhaus,Vienna, Austria

Georg Hopfinger 3. Med.Abt and LBI for Leukemiaresearch and Haematology Hanusch Krankenhaus,Vienna, Austria Chronic lymphocytic Leukemia Georg Hopfinger 3. Med.Abt and LBI for Leukemiaresearch and Haematology Hanusch Krankenhaus,Vienna, Austria georg.hopfinger@wgkk.at CLL Diagnosis and Staging Risk Profile Assessment

More information

Lymphoid Neoplasms. Sylvie Freeman Department of Clinical Immunology, University of Birmingham

Lymphoid Neoplasms. Sylvie Freeman Department of Clinical Immunology, University of Birmingham Lymphoid Neoplasms Sylvie Freeman Department of Clinical Immunology, University of Birmingham Incidence of Haematological Malignancies UK2001 (CRUK) Malignancy New Cases All Cancers 271,000 Leukaemia 6,760

More information

T-cell activation T cells migrate to secondary lymphoid tissues where they interact with antigen, antigen-presenting cells, and other lymphocytes:

T-cell activation T cells migrate to secondary lymphoid tissues where they interact with antigen, antigen-presenting cells, and other lymphocytes: Interactions between innate immunity & adaptive immunity What happens to T cells after they leave the thymus? Naïve T cells exit the thymus and enter the bloodstream. If they remain in the bloodstream,

More information

T-cell activation T cells migrate to secondary lymphoid tissues where they interact with antigen, antigen-presenting cells, and other lymphocytes:

T-cell activation T cells migrate to secondary lymphoid tissues where they interact with antigen, antigen-presenting cells, and other lymphocytes: Interactions between innate immunity & adaptive immunity What happens to T cells after they leave the thymus? Naïve T cells exit the thymus and enter the bloodstream. If they remain in the bloodstream,

More information

Development of B and T lymphocytes

Development of B and T lymphocytes Development of B and T lymphocytes What will we discuss today? B-cell development T-cell development B- cell development overview Stem cell In periphery Pro-B cell Pre-B cell Immature B cell Mature B cell

More information

Introduction to Immunology Part 2 September 30, Dan Stetson

Introduction to Immunology Part 2 September 30, Dan Stetson Introduction to Immunology Part 2 September 30, 2016 Dan Stetson stetson@uw.edu 441 Lecture #2 Slide 1 of 26 CLASS ANNOUNCEMENT PLEASE NO TREE NUTS IN CLASS!!! (Peanuts, walnuts, almonds, cashews, etc)

More information

CLL Biology and Initial Management. Gordon D. Ginder, MD Director, Massey Cancer Center Lipman Chair in Oncology

CLL Biology and Initial Management. Gordon D. Ginder, MD Director, Massey Cancer Center Lipman Chair in Oncology CLL Biology and Initial Management Gordon D. Ginder, MD Director, Massey Cancer Center Lipman Chair in Oncology CLL- Epidemiology Most common adult leukemia 25-30% in western world Incidence in US 4.5

More information

The Adaptive Immune Response. B-cells

The Adaptive Immune Response. B-cells The Adaptive Immune Response B-cells The innate immune system provides immediate protection. The adaptive response takes time to develop and is antigen specific. Activation of B and T lymphocytes Naive

More information

Principles of Adaptive Immunity

Principles of Adaptive Immunity Principles of Adaptive Immunity Chapter 3 Parham Hans de Haard 17 th of May 2010 Agenda Recognition molecules of adaptive immune system Features adaptive immune system Immunoglobulins and T-cell receptors

More information

Short Telomeres Predict Poor Prognosis in Chronic Lymphocytic Leukemia

Short Telomeres Predict Poor Prognosis in Chronic Lymphocytic Leukemia Short Telomeres Predict Poor Prognosis in Chronic Lymphocytic Leukemia L. Yang Internal Medicine Resident University of Manitoba Supervisor: Dr. J. Johnston Prognostic factors Clinical course is unpredictable

More information

How plasma cells develop. Deutsches Rheuma Forschungs Zentrum, Berlin Institut der Leibniz Gemeinschaft

How plasma cells develop. Deutsches Rheuma Forschungs Zentrum, Berlin Institut der Leibniz Gemeinschaft How plasma cells develop Deutsches Rheuma Forschungs Zentrum, Berlin Institut der Leibniz Gemeinschaft 1 Plasma cells develop from activated B cells Toll Like Receptor B Cell Receptor B cell B cell microbia

More information

Bone Marrow. Procedures Blood Film Aspirate, Cell Block Trephine Biopsy, Touch Imprint

Bone Marrow. Procedures Blood Film Aspirate, Cell Block Trephine Biopsy, Touch Imprint Bone Marrow Protocol applies to acute leukemias, myelodysplastic syndromes, myeloproliferative disorders, chronic lymphoproliferative disorders, malignant lymphomas, plasma cell dyscrasias, histiocytic

More information

Osteosclerotic Myeloma (POEMS Syndrome)

Osteosclerotic Myeloma (POEMS Syndrome) Osteosclerotic Myeloma (POEMS Syndrome) Osteosclerotic Myeloma (POEMS Syndrome) Synonyms Crow-Fukase syndrome Multicentric Castleman disease Takatsuki syndrome Acronym coined by Bardwick POEMS Scheinker,

More information

T cell maturation. T-cell Maturation. What allows T cell maturation?

T cell maturation. T-cell Maturation. What allows T cell maturation? T-cell Maturation What allows T cell maturation? Direct contact with thymic epithelial cells Influence of thymic hormones Growth factors (cytokines, CSF) T cell maturation T cell progenitor DN DP SP 2ry

More information

Commentary on the WHO Classification of Tumors of Lymphoid Tissues (2008): Indolent B Cell Lymphomas

Commentary on the WHO Classification of Tumors of Lymphoid Tissues (2008): Indolent B Cell Lymphomas Commentary on the WHO Classification of Tumors of Lymphoid Tissues (2008): Indolent B Cell Lymphomas The Harvard community has made this article openly available. Please share how this access benefits

More information

Non-Hodgkin lymphomas (NHLs) Hodgkin lymphoma )HL)

Non-Hodgkin lymphomas (NHLs) Hodgkin lymphoma )HL) Non-Hodgkin lymphomas (NHLs) Hodgkin lymphoma )HL) Lymphoid Neoplasms: 1- non-hodgkin lymphomas (NHLs) 2- Hodgkin lymphoma 3- plasma cell neoplasms Non-Hodgkin lymphomas (NHLs) Acute Lymphoblastic Leukemia/Lymphoma

More information

Aggressive B-Cell Lymphomas

Aggressive B-Cell Lymphomas Aggressive B-cell Lymphomas Aggressive B-Cell Lymphomas Stephen Hamilton Dutoit Institute of Pathology Aarhus Kommunehospital B-lymphoblastic lymphoma Diffuse large cell lymphoma, NOS T-cell / histiocyte-rich;

More information

Understanding your diagnosis. Dr Graham Collins Consultant Haemtologist Oxford University Hospitals

Understanding your diagnosis. Dr Graham Collins Consultant Haemtologist Oxford University Hospitals Understanding your diagnosis Dr Graham Collins Consultant Haemtologist Oxford University Hospitals Common questions I get asked What is lymphoma? What subtype do I have and what does that mean? What are

More information

Reactive and Neoplastic Lymphocytosis

Reactive and Neoplastic Lymphocytosis Reactive and Neoplastic Lymphocytosis Koranda A. Walsh, VMD, BS Assistant Professor, Clinical Pathobiology University of Pennsylvania School of Veterinary Medicine PLEASE NOTE: These notes are meant as

More information

1. Basic principles 2. 6 hallmark features 3. Abnormal cell proliferation: mechanisms 4. Carcinogens: examples. Major Principles:

1. Basic principles 2. 6 hallmark features 3. Abnormal cell proliferation: mechanisms 4. Carcinogens: examples. Major Principles: Carcinogenesis 1. Basic principles 2. 6 hallmark features 3. Abnormal cell proliferation: mechanisms 4. Carcinogens: examples Carcinogenesis Major Principles: 1. Nonlethal genetic damage is central to

More information

The patient had a mild splenomegaly but no obvious lymph node enlargement. The consensus phenotype obtained from part one of the exercise was:

The patient had a mild splenomegaly but no obvious lymph node enlargement. The consensus phenotype obtained from part one of the exercise was: Case History An 86 year old male was admitted to hospital with chest infection. Haematological examination subsequently revealed the following: Hb- 11.0 g/dl; WBC- 67.1 x 10^9/l; PLT- 99 x10^9/l; RBC-

More information

Lymphoma and microenvironment

Lymphoma and microenvironment Lymphoma and microenvironment Valter Gattei, MD Head Clinical and Experimental Oncology Unit IRCCS Aviano (PN) % viable cells CLL cells do need microenvironmental CLL and microenvironment... interactions

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 4,000 116,000 120M Open access books available International authors and editors Downloads Our

More information

WBCs Disorders 1. Dr. Nabila Hamdi MD, PhD

WBCs Disorders 1. Dr. Nabila Hamdi MD, PhD WBCs Disorders 1 Dr. Nabila Hamdi MD, PhD ILOs Compare and contrast ALL, AML, CLL, CML in terms of age distribution, cytogenetics, morphology, immunophenotyping, laboratory diagnosis clinical features

More information

CHAPTER 9 BIOLOGY OF THE T LYMPHOCYTE

CHAPTER 9 BIOLOGY OF THE T LYMPHOCYTE CHAPTER 9 BIOLOGY OF THE T LYMPHOCYTE Coico, R., Sunshine, G., (2009) Immunology : a short course, 6 th Ed., Wiley-Blackwell 1 CHAPTER 9 : Biology of The T Lymphocytes 1. 2. 3. 4. 5. 6. 7. Introduction

More information

How T cells recognize antigen: The T Cell Receptor (TCR) Identifying the TCR: Why was it so hard to do? Monoclonal antibody approach

How T cells recognize antigen: The T Cell Receptor (TCR) Identifying the TCR: Why was it so hard to do? Monoclonal antibody approach How T cells recognize antigen: The T Cell Receptor (TCR) Identifying the TCR: Why was it so hard to do By the early 1980s, much about T cell function was known, but the receptor genes had not been identified

More information

Seminar. Chronic lymphocytic leukaemia

Seminar. Chronic lymphocytic leukaemia Chronic lymphocytic leukaemia G Dighiero, T J Hamblin Chronic lymphocytic leukaemia is the commonest form of leukaemia in Europe and North America, and mainly, though not exclusively, affects older individuals.

More information

A second type of TCR TCR: An αβ heterodimer

A second type of TCR TCR: An αβ heterodimer How s recognize antigen: The T Cell Receptor (TCR) Identifying the TCR: Why was it so hard to do By the early 1980s, much about function was known, but the receptor genes had not been identified Recall

More information

Methods used to diagnose lymphomas

Methods used to diagnose lymphomas Institut für Pathologie Institut für Pathologie Methods used to diagnose lymphomas Prof. Dr.Med. Leticia Quintanilla-Fend Molecular techniques NGS histology Cytology AS-PCR Sanger seq. MYC Immunohistochemistry

More information

SPECIFIC IMMUNITY = ACQUIRED IMMUNITY = ADAPTIVE IMMUNITY SPECIFIC IMMUNITY - BASIC CHARACTERISTIC

SPECIFIC IMMUNITY = ACQUIRED IMMUNITY = ADAPTIVE IMMUNITY SPECIFIC IMMUNITY - BASIC CHARACTERISTIC SPECIFIC IMMUNITY - BASIC CHARACTERISTIC SPECIFIC IMMUNITY = ACQUIRED IMMUNITY = ADAPTIVE IMMUNITY BASIC TERMINOLOGY SPECIFIC IMMUNITY humoral mediated with antibodies cellular mediated with T lymphocytes

More information

Autoimmunity in CLL. Anne Silva, MD Hematology Fellows Conference

Autoimmunity in CLL. Anne Silva, MD Hematology Fellows Conference Autoimmunity in CLL Anne Silva, MD Hematology Fellows Conference Case Presentation Mr. M is a 62 year old male with multiple medical problems including pulmonary sarcoidosis on steroids, was incidentally

More information

Anaemias and other Pesky Haematology Questions

Anaemias and other Pesky Haematology Questions Anaemias and other Pesky Haematology Questions 3 main topics How do I work out an anaemia.. That oh too common paraprotein patient. Those mildly raised lymphocyte count GP discussed patient with me over

More information

Chapter 11. B cell generation, Activation, and Differentiation. Pro-B cells. - B cells mature in the bone marrow.

Chapter 11. B cell generation, Activation, and Differentiation. Pro-B cells. - B cells mature in the bone marrow. Chapter B cell generation, Activation, and Differentiation - B cells mature in the bone marrow. - B cells proceed through a number of distinct maturational stages: ) Pro-B cell ) Pre-B cell ) Immature

More information

Plasma cell myeloma (multiple myeloma)

Plasma cell myeloma (multiple myeloma) Plasma cell myeloma (multiple myeloma) Common lymphoid neoplasm, present at old age (70 years average) Remember: plasma cells are terminally differentiated B-lymphocytes that produces antibodies. B-cells

More information

Persistent lymphocytosis. Persistent lymphocytosis: are there prognostic indicators? Problem. Questions. Basic markers used to identify lymphocytes

Persistent lymphocytosis. Persistent lymphocytosis: are there prognostic indicators? Problem. Questions. Basic markers used to identify lymphocytes Persistent lymphocytosis Persistent lymphocytosis: are there prognostic indicators? Paul R. Avery VMD, PhD, DACVP Marjorie Williams, DVM Anne C. Avery VMD, PhD Clinical Immunology Laboratory Colorado State

More information

The Development of Lymphocytes: B Cell Development in the Bone Marrow & Peripheral Lymphoid Tissue Deborah A. Lebman, Ph.D.

The Development of Lymphocytes: B Cell Development in the Bone Marrow & Peripheral Lymphoid Tissue Deborah A. Lebman, Ph.D. The Development of Lymphocytes: B Cell Development in the Bone Marrow & Peripheral Lymphoid Tissue Deborah A. Lebman, Ph.D. OBJECTIVES 1. To understand how ordered Ig gene rearrangements lead to the development

More information

T cell Receptor. Chapter 9. Comparison of TCR αβ T cells

T cell Receptor. Chapter 9. Comparison of TCR αβ T cells Chapter 9 The αβ TCR is similar in size and structure to an antibody Fab fragment T cell Receptor Kuby Figure 9-3 The αβ T cell receptor - Two chains - α and β - Two domains per chain - constant (C) domain

More information

Carcinogenesis. Carcinogenesis. 1. Basic principles 2. 6 hallmark features 3. Abnormal cell proliferation: mechanisms 4. Carcinogens: examples

Carcinogenesis. Carcinogenesis. 1. Basic principles 2. 6 hallmark features 3. Abnormal cell proliferation: mechanisms 4. Carcinogens: examples Carcinogenesis 1. Basic principles 2. 6 hallmark features 3. Abnormal cell proliferation: mechanisms 4. Carcinogens: examples Major Principles (cont d) 4. Principle targets of genetic damage: 4 classes

More information

Chapter 11. B cell generation, Activation, and Differentiation. Pro-B cells. - B cells mature in the bone marrow.

Chapter 11. B cell generation, Activation, and Differentiation. Pro-B cells. - B cells mature in the bone marrow. Chapter B cell generation, Activation, and Differentiation - B cells mature in the bone marrow. - B cells proceed through a number of distinct maturational stages: ) Pro-B cell ) Pre-B cell ) Immature

More information

Immunopathology of Lymphoma

Immunopathology of Lymphoma Immunopathology of Lymphoma Noraidah Masir MBBCh, M.Med (Pathology), D.Phil. Department of Pathology Faculty of Medicine Universiti Kebangsaan Malaysia Lymphoma classification has been challenging to pathologists.

More information

Small B-cell (Histologically Low Grade) Lymphoma

Small B-cell (Histologically Low Grade) Lymphoma Frequency of Lymphoid Neoplasms Small B-cell (Histologically Low Grade) Lymphoma Stephen Hamilton-Dutoit Institute of Pathology Aarhus University Hospital B-cell neoplasms 88% Diffuse large B-cell lymphoma

More information

Introduction. Abbas Chapter 10: B Cell Activation and Antibody Production. General Features. General Features. General Features

Introduction. Abbas Chapter 10: B Cell Activation and Antibody Production. General Features. General Features. General Features Introduction Abbas Chapter 10: B Cell Activation and Antibody Production January 25, 2010 Children s Mercy Hospitals and Clinics Humoral immunity is mediated by secreted antibodies (Ab) Ab function to

More information

Highlights of ICML 2015

Highlights of ICML 2015 Highlights of ICML 2015 Jonathan W. Friedberg M.D. Director, James P. Wilmot Cancer Center Statistics, ICML 2015: a global meeting Almost 3700 participants. 90 countries represented. Attendees: USA 465

More information

B Lymphocyte Development and Activation

B Lymphocyte Development and Activation Harvard-MIT Division of Health Sciences and Technology HST.176: Cellular and Molecular Immunology Course Director: Dr. Shiv Pillai 09/26/05; 9 AM Shiv Pillai B Lymphocyte Development and Activation Recommended

More information

NGS IMMUNOGENETICS IN CLL RESEARCH. Andreas Agathangelidis Post-doc researcher Institute of Applied Biosciences, CERTH

NGS IMMUNOGENETICS IN CLL RESEARCH. Andreas Agathangelidis Post-doc researcher Institute of Applied Biosciences, CERTH NGS IMMUNOGENETICS IN CLL RESEARCH Andreas Agathangelidis Post-doc researcher Institute of Applied Biosciences, CERTH ERIC & Euroclonality-NGS workshop Rotterdam, 24 November 2017 1. NGS Immunoprofiling

More information

Chronic Lymphocytic Leukemia

Chronic Lymphocytic Leukemia Chronic Lymphocytic Leukemia Neil E. Kay, Terry J. Hamblin, Diane F. Jelinek, Gordon W. Dewald, John C. Byrd, Sherif Farag, Margaret Lucas, and Thomas Lin This update of early stage B-cell chronic lymphocytic

More information

COURSE: Medical Microbiology, MBIM 650/720 - Fall TOPIC: Antigen Processing, MHC Restriction, & Role of Thymus Lecture 12

COURSE: Medical Microbiology, MBIM 650/720 - Fall TOPIC: Antigen Processing, MHC Restriction, & Role of Thymus Lecture 12 COURSE: Medical Microbiology, MBIM 650/720 - Fall 2008 TOPIC: Antigen Processing, MHC Restriction, & Role of Thymus Lecture 12 FACULTY: Dr. Mayer Office: Bldg. #1, Rm B32 Phone: 733-3281 Email: MAYER@MED.SC.EDU

More information

Early Life Intervention Diminishes Manifestations. NOD.H-2 h4 mice. Tamer Mahmoud. Rachel Ettinger. Postdoctoral Fellow.

Early Life Intervention Diminishes Manifestations. NOD.H-2 h4 mice. Tamer Mahmoud. Rachel Ettinger. Postdoctoral Fellow. Early Life Intervention Diminishes Manifestations of Sjögren's Syndrome in NOD.H-2 h4 mice Tamer Mahmoud Postdoctoral Fellow Rachel Ettinger Senior Scientist Clinical Manifestations of Sjögren s Syndrome

More information