Molecular Genetics in Inherited Renal Cell Carcinoma: Identification of Targets in the Hereditary Syndromes

Size: px
Start display at page:

Download "Molecular Genetics in Inherited Renal Cell Carcinoma: Identification of Targets in the Hereditary Syndromes"

Transcription

1 Molecular Genetics in Inherited Renal Cell Carcinoma: Identification of Targets in the Hereditary Syndromes Nadeem Dhanani, Cathy Vocke, Gennady Bratslavsky, and W. Marston Linehan Abstract Kidney cancer affects 51,000 in the United States each year and is responsible for nearly 13,000 deaths annually. Kidney cancer is not a single disease; it is made up of a number of different types of cancer that occur in the kidney. These distinct forms of kidney cancer each have a different histologic type, a different clinical course, respond differently to therapy, and are caused by different genes. The VHL gene is the gene for the inherited form of clear cell kidney cancer associated with von Hippel Lindau as well as for the common form of sporadic, noninherited clear cell kidney cancer. The product of the VHL gene forms a complex with other proteins and this complex targets the hypoxia-inducible factors (HIF) for ubiquitin-mediated degradation. A number of novel agents which target the VHL-HIF pathway have recently been approved by the FDA for treatment of patients with advanced kidney cancer. The MET gene is the gene for the inherited form of papillary kidney cancer associated with hereditary papillary renal carcinoma (HPRC) and has been found mutated in a subset of tumors from patients with sporadic, type I papillary kidney cancer. Clinical trials are currently underway evaluating the role of agents which target the MET pathway in patients affected with HPRC as well as sporadic papillary kidney cancer. The BHD gene is the gene for the inherited form of chromophobe kidney cancer associated with Birt Hogg Dubé (BHD). Biochemical studies have revealed that the BHD pathway interacts with the MTOR pathway and agents which block this pathway are currently being evaluated in preclinical models as a potential approach for the treatment of BHD-associated as well as sporadic chromophobe kidney cancer. The Krebs cycle enzyme, fumarate hydratase, is the gene for the inherited form of type II papillary kidney cancer associated with hereditary leiomyomatosis renal cell carcinoma (HLRCC). In vitro and in vivo studies are currently underway evaluating novel approaches for targeting of this kidney cancer pathway. It is hoped that understanding the genes that cause cancer of the kidney will provide the foundation for the development of effective forms of therapy for patients with this malignancy. W.M. Linehan ( ) Urologic Oncology Branch, National Cancer Institute, 10 Center Drive MSC 1107, Bldg 10 CRC Room1-5940, Bethesda, MD WML@nih.gov R.M. Bukowski et al. (eds.), Renal Cell Carcinoma, DOI: / _2, 13 Humana Press, a part of Springer Science + Business Media, LLC 2009

2 14 N. Dhanani et al. Keywords Kidney neoplasms VHL von Hippel Lindau BHD Birt Hogg Dubé Met Fumarate hydratase 1 Introduction An estimated 36,000 people will be diagnosed with kidney cancer this year, and close to 30% of these patients will die of their disease (1). On the basis of the data from the National Cancer Institute s SEER Cancer Statistics Review, 1 out of every 82 men and women will be diagnosed with cancer of the kidney over the course of their lifetime, and the incidence continues to rise. Men are affected almost twice as often as women, and the incidence among blacks is slightly higher than that of whites. With the increased use of axial abdominal imaging, kidney tumors are being diagnosed at earlier stages, often times incidentally while the patient is still asymptomatic. Nonetheless, at the time of presentation, 40% of these tumors will no longer be confined to the kidney, either through local extension or distant metastatic spread (2). While extirpative surgery is most often curative in tumors restricted to the kidney, treatment of metastatic disease has proven to be a formidable challenge with the traditional therapies currently available. As our understanding of the genetic basis of kidney cancer increases, exciting advances in molecular therapeutics offer novel approaches to treatment for these patients. 2 Identification of the VHL Gene As recently as 30 years ago, very little was known about the contribution of genetic mutations to the development of renal tumors. Like cancer of the colon, breast, and prostate, kidney cancer was known to occur in both sporadic and familial forms. On the basis of the earlier work by Knudson and Strong (3, 4), the concept of tumor suppressor gene inactivation was recognized as an etiological factor in Wilms tumor and retinoblastoma. In keeping with this hypothesis, when compared to the sporadic form, familial kidney cancers were more often multifocal, bilateral, and had earlier onset. Still, there was no gene identified that could be implicated in renal cancer. In 1979, Cohen et al. (5) noted a chromosomal translocation between the short arm of chromosome 3 and the long arm of chromosome 8 in eight of ten affected members of a family known to have heritable kidney cancer. This was followed by several additional reports characterizing chromosomal abnormalities in different families affected with renal cell carcinoma (RCC). In each of these lineages, chromosome 3 was involved, particularly the 3p13-3p14 region. Important insight into the link between the hereditary and sporadic forms of RCC was provided through work by Zbar and colleagues (6) when they reported loss of alleles at loci

3 Molecular Genetics in Inherited Renal Cell Carcinoma 15 on the short arm of chromosome 3 in 11 of 11 evaluable patients with sporadic renal cancers. Shortly thereafter, it was postulated that the genetic mutation responsible for von Hippel Lindau (VHL) was located in a region on chromosome 3p, distinct from the human homologue of RAF1, but apparently linked to it (7). All evidence was pointing to the existence of a tumor suppressor gene encoded on the short arm of chromosome 3, a mutation of which resulted in renal cell cancer. Unfortunately, gene localization was still not feasible because the region of interest was too large for the cloning techniques available at the time. Research efforts were thus shifted to the heritable form of renal cancer, with VHL being the model for investigation. 2.1 von Hippel Lindau VHL is transmitted in an autosomal-dominant pattern with an estimated incidence of 1 in 36,000 live births (8, 9). With a penetrance of over 95% by the age of 65 (10), affected individuals develop neoplastic tumors in multiple organ systems. Central nervous system lesions include retinal hemangioblastomas, endolymphatic sac tumors of the inner ear, and craniospinal hemangioblastomas in the cerebellum, brainstem, spinal cord, lumbosacral nerve roots, and supratentorial lesions. The pancreas may also be affected in these patients, developing cysts, cystadenomas, and neuroendocrine tumors. Benign epididymal papillary cystadenomas occur with increased frequency than the general population and can be bilateral. Rarely, women can have analogous lesions with papillary cystadenomas in the broad ligament. Tumors found in the kidney are solid renal cell cancers, simple cysts, and combinations thereof. In the setting of VHL, it has been estimated that a kidney may contain 600 microscopic tumors and over 1,000 cysts before the age of 40 years (11). Although simple cysts in these patients rarely transform to solid masses (12), complex cysts are known to contain malignant elements and may progress if left untreated. Adrenal lesions found in VHL are pheochromocytomas. Like the kidney tumors, these are frequently multiple and bilateral. Extra-adrenal paragangliomas are also known to occur in these patients, arising in periaortic tissues, the carotid body, and the glomus jugulare (9). In searching for the gene responsible for VHL, researchers explored the applicability of Knudson s two-hit hypothesis to tumor behavior in VHL patients with kidney cancer. Tory et al. (13) evaluated tissue from patients with multiple kidney tumors, and for each patient compared chromosome 3 from one tumor to another. They found that each patient had loss of the same allele of chromosome 3p in all of their tumors. Further analysis of haplotypes revealed that the lost allele was always from the wild-type chromosome, the contribution of the nonaffected parent. This provided strong support for the notion that alteration of a tumor suppressor gene was the causative factor in VHL, and in accordance with Knudson s theory, an

4 16 N. Dhanani et al. individual with a germline mutation was at risk for VHL if they incurred a second hit at the same locus thus inactivating the wild-type allele. Expanding upon earlier work by Seizinger et al. (14), Lerman s group (15) isolated and mapped 2,000 single copy DNA fragments of chromosome 3 from humans, thus generating vital tools which would be used for the future cloning of the VHL gene. With these reagents newly available, Hosoe and colleagues (16) performed further multipoint linkage analysis to localize the VHL gene to an interval between RAF1 and a polymorphic DNA marker, D3S18. Finally, in 1993, researchers at the National Cancer Institute reported identification of the VHL gene through cloning studies and described its role in RCC (17). This small gene, with 854 coding nucleotides on three exons, was found to be located on the short arm of chromosome 3 and responsible for encoding the VHL protein. The gene is evolutionarily conserved and its product shares homology with only a small region of a surface membrane protein of Trypanosoma brucei. Once the causative gene for VHL had been identified, clinicians were eager to find screening methods to identify patients with genetic mutations. Early laboratory studies generated germline mutation detection rates of 39 75% (18, 19). Mutation analyses showed that the type (e.g., insertion, deletion, missense, or nonsense) and location (e.g., codon position) of mutation correlated well with phenotype, thus allowing health care providers to predict the extent of involvement of the various organ systems for any given VHL family. In a study of 469 VHL families from North America, Europe, and Japan, researchers compared the effects of identical VHL germline mutations on different families. On the basis of their findings, VHL was broken down into three distinct phenotypes: pheochromocytoma along with RCC, pheochromocytoma alone, and RCC alone (20). Later studies correlated the relationship between length and location of germline mutations and the incidence of RCCs in VHL patients. A retrospective review of 123 patients from 55 families revealed that individuals harboring a partial deletion suffered a significantly higher rate of RCC when compared to those with complete gene deletions. Moreover, deletion mapping demonstrated the presence of a 30-kb gene on the short arm of chromosome 3, directly adjacent to the VHL gene which, when preserved, may promote the development of RCC (21). Further advances were made when Stolle s group (22) developed a new technique which improved germline mutation detection, accurately identifying a mutation in 93 out of 93 (100%) VHL families tested. The method involved a combination of tests that each demonstrated high sensitivity for the various types of mutations implicated in VHL. Qualitative Southern blotting to detect gene rearrangements and quantitative Southern blotting for the detection of entire gene deletions were the newly added components responsible for the dramatic increase in sensitivity. In addition, fluorescence in situ hybridization (FISH) and full gene sequencing completed the battery of tests. The 100% sensitivity of the new technique lent support to the notion that VHL is genetically homogeneous, and clinically allowed providers to counsel patients with reasonable certainty that a family member found to lack the gene mutation with the new test combination was unlikely to have VHL.

5 Molecular Genetics in Inherited Renal Cell Carcinoma Sporadic RCC Discovery of the VHL gene in the setting of familial RCC allowed scientists to then investigate its role in sporadic tumors. Gnarra et al. (23) used PCR amplification of the three exons of the VHL genes of 108 patients with sporadic RCC in order to analyze the entire coding region in each gene. They identified somatic mutations in the VHL gene in 57% of these patients, and nearly all (98%) were found to have loss of heterozygosity. It was clear that the VHL gene played a role in the development of sporadic RCC in a majority of patients; however, questions arose as to why gene mutations were not demonstrable in all renal cell cancers. One explanation is offered by an important mechanism for VHL gene inactivation as described by Herman and colleagues (24). They discovered hypermethylation of a CpG island in the 5 region of the VHL gene, a region which is normally unmethylated, in nearly 20% of VHL patients with RCC. No other mutation of the VHL gene could be demonstrated in 80% of these patients, and VHL gene expression was absent in all. Furthermore, when treated with 5-aza-2 deoxycytidine, a hypomethylating agent, the VHL gene was once again expressed. Additionally, one has to consider the limitations of current investigative techniques. There are still regions of the VHL gene which have not yet been thoroughly examined and this may hinder our ability to fully detect genetic variation. Furthermore, there is always the possibility of normal tissue interspersed with cancerous cells within a given tumor, thus confounding laboratory findings (25) Cystic Lesions in VHL In addition to solid RCCs, patients with VHL are also frequently found to have cystic lesions within their kidneys (Fig. 1). These lesions range from simple benign cysts, as characterized by radiographic imaging, to complex cystic masses suspicious for malignancy. In this patient population which can be expected to develop numerous multifocal and bilateral lesions requiring surgical extirpation, maximal nephron preservation relies upon the clinician s ability to predict the malignant potential of a cyst or mass, and the likelihood that treatment of that lesion will improve survival. In order to better characterize the relationship between cysts and solid renal masses, Lubensky et al. (26) analyzed 26 renal lesions from two VHL patients for loss of heterozygosity at the VHL region. They found loss of a VHL allele in 25 out of the 26 lesions, thereby demonstrating both benign and malignant lesions to share similar genetic aberration. In both sets of lesions, the mutated gene remained while the normal copy was the one that was lost, thus keeping with Knudson s two-hit hypothesis. Further evidence to support the theory that renal cysts potentially represent precursors to malignant RCC in VHL was provided by the work of Lee et al. (27) when they showed the consistent coexpression of erythropoietin and erythropoietin receptor in RCC as well as many renal cysts. Knowing that simple cysts harbored the same genetic abnormality as solid malignant lesions, clinicians were then faced with the dilemma of when to act on cysts found in the kidneys of VHL patients. If left untreated, simple cysts

6 18 N. Dhanani et al. Central nervous system Retina Cerebellum Brainstem Spinal cord Endolymphatic sac Visceral organs Kidneys Adrenal glands Pancreas Broad ligament (female) Testes (male) Fig. 1 Phenotypic manifestations of VHL. Renal masses are common in VHL patients. a CT scan of a VHL patient demonstrating characteristic bilateral multifocal renal lesions consisting of simple and complex cysts as well as enhancing solid masses. b Gross specimen removed from a VHL patient showing classic multiple golden-yellow tumors. c H&E stain of a classic clear cell renal carcinoma found in patients with VHL. d In addition to renal manifestations, VHL affects organs systems throughout the body. From Linehan et al. (76) (See Color Plates) may develop malignancy over time, and a plan of observation may prove fatal if progression to metastatic disease ensued. On the other hand, unnecessarily operating on benign lesions could lead to a dramatic increase in morbidity for VHL patients, including the perioperative risks of surgery as well as the subsequent renal insufficiency from loss of parenchyma. Thus, investigators focused on determining the natural history of cystic lesions in the VHL population (12). Two hundred and twenty-eight renal lesions from 28 patients were observed for a mean of 2.4 years with serial computed tomography scans. Overall, 74% of the cysts remained stable with respect to size, with an additional 9% actually decreasing in size. Only 2 patients were found to have malignant transformation of their simple cysts based on radiographic criteria. These results supported the practice of conservative management of simple cysts in the VHL population.

7 Molecular Genetics in Inherited Renal Cell Carcinoma Function of the VHL Gene Once the putative gene for RCC was identified, there was an effort to better define the function of the VHL protein, with the hope that this would eventually uncover potential therapeutic targets. One method of determining the function of a protein is to find out what other proteins it complexes with in order to reveal its role in a cellular pathway. In 1995, Duan and colleagues (28) localized the VHL gene product to the cytosol and the nucleus, indicating common translocation of the protein. They were also able to identify two additional proteins of 16 and 9 kda which formed a heterotrimeric complex with VHL. When certain missense mutations of the VHL gene were investigated, the complex did not form. Subsequent studies (29) offered a more detailed description of the protein complex. They explained the function of a transcription elongation factor, Elongin (SIII), made up of three distinct protein subunits, Elongins A, B, and C, which serves to prevent transient pauses of RNA polymerase II (Pol II) during transcription. Although VHL protein was shown to displace Elongin A and compete for binding with Elongins B and C in vitro, there was no evidence of such function in vivo. Iliopoulos et al. (30) demonstrated the effects of VHL protein on certain hypoxia-inducible genes. Under normoxic conditions, intact VHL was shown to downregulate vascular endothelial growth factor (VEGF), platelet-derived growth factor B (PDGF-B), and the glucose transporter GLUT1 by destabilizing their respective mrnas. Thus, presumably, with a VHL mutation there was unregulated expression of these proteins, a finding which was congruent with the known hypervascular characteristics of VHL-associated RCCs. In a search for proteins that interact with the VHL B C complex, Pause and colleagues (31) identified Hs-CUL-2, a newly described gene involved in cell cycle regulation of yeast and Caenorhabditis elegans. They observed that in the presence of a VHL gene mutation, the VHL- B-C-Hs-CUL-2 interaction was markedly diminished, suggesting a tumor suppressor role for this new protein. It was known that VEGF, GLUT1, and PDGF are all targets of hypoxia- inducible factor (HIF) and also that the clear cells of RCC express higher levels of these proteins than nonmalignant cells (32). The role of VHL was further elucidated when researchers showed that the previously described protein complex of VHL- B-C-CUL functioned as a ubiquitin ligase that targets HIF1α and HIF2α for degradation under normoxic conditions (33). Upon hydroxylation by oxygen-dependent prolyl hydroxylases, HIF1α binds to VHL and is subsequently degraded (34). If the hydroxylation does not occur, however, VHL binding is inhibited and ubiquitination of HIF1α fails (35). Transcription of HIF-dependent genes ensues leading to overexpression of VEGF and ultimately increased vascularity. Lending support to this pathway, Maranchie et al. (36) used a competitive inhibitor of the VHL-HIF1α binding site to assess functional outcomes. In preventing this interaction, they found accumulation of cellular HIF1α in normoxia and a conversion to the VHLnegative phenotype.

8 20 N. Dhanani et al. 3 Hereditary Papillary Renal Carcinoma While advances were being made in the genetic basis of RCC resulting from VHL mutations, in 1994 clinicians were uncovering a distinct familial syndrome which was also manifest by renal tumors. Zbar and colleagues (37) reported on a family in which renal tumors had developed in three generations, and whose tumors were multifocal and bilateral. Pathologically these tumors were papillary variants of RCC, as opposed to the conventional type associated with VHL, and they showed no abnormalities in chromosome 3. This new syndrome, termed hereditary papillary renal carcinoma (HPRC), appeared to have an autosomal dominant mode of inheritance with incomplete penetrance. Further analysis of 10 families with HPRC suggested renal cancers occur in both sexes, with a male:female ratio of 2.2:1, have Fig. 2 Manifestations and genetics of HPRC. Patients with HPRC primarily develop bilateral multifocal renal masses. a Abdominal CT demonstrates HPRC tumors with characteristic poor enhancement on contrasted study that may frequently be mistaken for simple cysts. The tumors are best seen on late phase images of a contrast CT. b Low and c high power H&E stain of type I papillary RCC seen in patients with HPRC. d Fluorescence in situ hybridization (FISH) using a MET probe demonstrating trisomy of chromosome 7 (red signal) in papillary type I RCC compared with chromosome 11 serving as control (green signal). From Schmidt et al. (42) (See Color Plates)

9 Molecular Genetics in Inherited Renal Cell Carcinoma 21 a late age of onset (50 70 years), are bilateral and multifocal in nature (38). A later study evaluated 88 surgical pathology slides of grossly normal areas of 12 kidneys from patients with HPRC. More than half of these samples were found to contain microscopic papillary renal cancers, thereby predicting the presence of 1,100 3,400 microscopic tumors in a single kidney of a patient with HPRC (39). Histologically these tumors display a distinct phenotype, with a majority of the architecture in a papillary/tubulopapillary pattern and a chromophil basophilic staining, consistent with a type I papillary renal carcinoma phenotype (40). Radiographically in stark contrast to the hypervascular tumors of VHL, tumors of HPRC display poor contrast enhancement and are markedly hypovascular (41, 42) (Fig. 2). 3.1 Identification of the Gene for HPRC Three years after describing the disease, researchers reported identification of the gene responsible for HPRC (43). Findings of chromosomal trisomy in malignant papillary renal carcinomas raised suspicions of proto-oncogene gene dysfunction and the defect was mapped to the long arm of chromosome 7. Missense mutations in the tyrosine kinase domain of the MET gene ultimately proved responsible for constitutive activation of the MET protein and interference with autoinhibitory mechanisms, resulting in papillary renal cancers. The MET transmembrane protein was found to be a receptor site for hepatocyte growth factor (HGF) also termed Scatter factor (SF) (44). Upon activation by HGF, MET tyrosine phosphorylation induces a host of signaling cascades responsible for embryonic development, cell branching, and invasion (45). 4 Birt Hogg Dubé In 1977, three physicians described a familial syndrome in which affected individuals developed multiple small skin-colored papules on the face, neck, and back (46). Histologically these lesions were found to be fibrofolliculomas, trichodiscomas, and acrochordons, and they were transmitted in an autosomal dominant pattern. Some patients with this constellation of findings, termed Birt Hogg Dubé (BHD), were also known to have concurrent visceral tumors, including thyroid carcinoma, colonic polyps, and one case of a renal tumor. In 1999, a group of clinicians noted that a significant number of their renal mass patients had these distinctive skin lesions that had previously been described in dermatologic literature. They therefore set out to evaluate a large cohort of patients with known familial renal tumors and assess the presence of cutaneous findings. As a result, Toro and colleagues (47) found three extended families in whom there appeared to be common segregation of renal tumors and the cutaneous lesions of BHD. They concluded that BHD seemed to be associated with renal tumors, both transmitted in an autosomal dominant manner.

10 22 N. Dhanani et al. As BHD began to attract more attention and closer scrutiny, numerous additional disease processes were identified in BHD patients. Spontaneous pneumothoraces, parotid oncocytomas, multiple lipomas, angiolipomas, parathyroid adenomas, and colonic polyposis were all postulated to have some connection with BHD (48 51). In order to better define the spectrum of disease processes associated with BHD, Zbar and colleagues (52) solicited participation from patients who were under the care of dermatologists from across the United States and Canada for classic BHD skin lesions. The patients were evaluated for concomitant health problems, particularly kidney, lung, and colon manifestations. The group eventually found no correlation between BHD and colon cancer or polyps. There was, however, a strong link Fig. 3 Phenotypic manifestations of BHD. Classic findings in BHD include (a) characteristic cutaneous fibrofolliculomas, (b) pulmonary cysts that result in a 30-fold increased incidence of spontaneous pneumothoraces, and (c) renal tumors that are usually multifocal and can vary in pathologic subtype, from (d) chromophobe RCC (most common) to oncocytoma, hybrid tumors, or clear cell carcinoma. From Zbar et al. (53) (See Color Plates)

11 Molecular Genetics in Inherited Renal Cell Carcinoma 23 Fig. 4 Phenotypic manifestations of HLRCC. a Classic cutaneous leiomyomatas presenting as multiple firm and erythematous macules and papules that are frequently painful. b Abdominal CT scan showing multiple uterine leiomyomas. This often leads to hysterectomy in HLRCC-affected women in their 20s or 30s. c CT abdomen demonstrating anterior upper pole mass in the left kidney. The renal lesions of HLRCC patients may present early and frequently have an aggressive clinical course. From Toro et al. (62) (See Color Plates) between BHD and renal tumors, as previously suspected, as well as spontaneous pneumothoraces. On multivariate analysis, patients with BHD had an odds ratio of ~9.0 for developing renal tumors, and a risk of developing spontaneous pneumothoraces 32 times higher than the general population (Fig. 3). In order to better characterize the renal neoplasms associated with BHD, researchers examined the pathologic findings of 130 renal tumors from 30 BHD patients from 19 different families (53). Close to 35% of the tumors were pure chromophobe variants of RCC, with an additional 50% being a hybrid of chromophobe RCC and oncocytoma. Less than 10% of the entire cohort had elements of clear cell (conventional) RCC. When present, the clear cell RCC were larger, with a mean diameter of 4.7 cm, versus the chromophobe tumors which averaged 3.0 cm, or the hybrid tumors with a mean diameter of 2.2 cm. Furthermore, analysis of grossly normal appearing surrounding renal parenchyma revealed multifocal oncocytosis throughout a majority of the specimens (Fig. 4). 4.1 Identification of the BHD Gene Knowledge of the genetic basis for BHD came largely in part from work by Schmidt and colleagues (54). Linkage analysis was used to localize the BHD gene to a locus on the short arm of chromosome 17 from a screen of the genome of a large BHD kindred. Further work by Nickerson et al. (55) utilized recombination mapping to localize the gene to a region of 17p11.2. A novel gene in this region was determined to exhibit mutations in the germlines of affected patients. The gene product, folliculin, was truncated as a result of insertions, deletions, or nonsense mutations. The frequency with which BHD is inactivated as a result of genetic

12 24 N. Dhanani et al. mutations suggested a tumor suppressor function. Vocke and coworkers (56) found support for this theory when they sequenced the DNA of 77 renal tumors from 12 patients with germline BHD mutations. They demonstrated a high frequency of mutations in the wild-type BHD allele, thus providing the second inactivating hit. The 579 amino acid protein, named for the hallmark dermatologic findings of the syndrome, has no known functional domains, but is highly preserved across species. BHD mrna expression as measured by FISH has been demonstrated in 17 human tissues, including the kidney, lung, skin, and brain (57). 5 Hereditary Leiomyomatosis Renal Cell Carcinoma A fourth familial syndrome of renal cancer was recently described by Launonen et al. (58). They noted cosegregation of cutaneous leiomyomas and type II papillary renal cell carcinoma in two familial lines (Fig. 4). This syndrome, termed hereditary leiomyomatosis renal cell carcinoma (HLRCC), was mapped to a 14-cM region on the long arm of chromosome 1 (59). Fumarate hydratase, the product of the putative gene for this syndrome, is a catalyst for the conversion of fumarate to malate in the 2C Acety 1 CoA NADH+H + Oxaloacetate 4C 6C Citric acid Malic acid 4C Fumaric acid 4C FH CO 2 6C Isocitric acid NADH+H + FADH 2 GTP P CO 2 5C a -Ketoglutaric acid NADH+H + 4C Succinic acid Shift towards glycolysis as an energy source Upregulation of HIF and HIF-dependent pathways Fig. 5 In HLRCC, mutation of the FH gene leads to dysfunctional fumarate hydratase, one of the key regulatory enzymes in the Kreb s cycle, necessary for mitochondrial respiration and oxidative energy production. This in turn leads to accumulation of fumarate but more importantly to preferential energy production from glycolysis, a phenomenon observed in other malignancies as well. It may also lead to upregulation of HIF and HIF-dependent pathways

13 Molecular Genetics in Inherited Renal Cell Carcinoma 25 Krebs cycle, and its activity is diminished in leiomyomatous tumors (60). The loss of FH function and impediment of the Krebs cycle creates reliance upon glycolytic metabolism and upregulation of HIF and HIF-inducible transcripts (61) (Fig. 5). The resultant environment is ideal for tumor cell survival and proliferation. The largest reported series of HLRCC patients revealed a 93% germline FH mutation detection rate in families suspected of harboring disease with an autosomal dominant inheritance pattern (62, 63). Details of the molecular mechanisms involved in the downstream pathway of this gene are still under investigation, but the renal cancers associated with it appear to be aggressive and lethal if allowed to progress. 6 Treatment 6.1 Localized Disease As our understanding of renal malignancies has evolved, so have our treatment strategies. In 1869, Gustav Simon performed the first planned nephrectomy in the treatment of a ureterovaginal fistula. A century later, Robson and colleagues (64) described refined techniques for radical nephrectomy for renal malignancies. Surgical extirpation remains the gold standard for treatment of localized renal cell carcinoma, although the surgical techniques have become more sophisticated. Since the first laparoscopic radical nephrectomy performed by Clayman (65), great strides have been made in minimally invasive approaches to removing kidneys. Laparoscopy offers patients decreased morbidity as compared with the historical open surgical procedures while not appearing to compromise cancer control. In the setting of localized renal tumors, nephron sparing surgery is becoming more common. In 1890, Czerny performed the first partial nephrectomy for malignancy. Since that time, the scope has increased with surgeons proposing a wide range of acceptable size limits for nephron sparing surgery, with general consensus around 4 cm in diameter (66, 67). Here, too, minimally invasive approaches are being employed and laparoscopic partial nephrectomies are now being performed at specialized centers across the country. Preservation of renal function and maximal sparing of nephrons during therapy is of paramount importance when treating patients with familial syndromes who are at risk for developing multiple, recurrent, bilateral tumors, and may require numerous therapeutic interventions over their lifetime. Nonetheless, cancer control cannot be compromised. In order to minimize the morbidities associated with renal replacement therapy while maintaining vigilance in the containment of cancer, a threshold of 3 cm has been employed whereby tumors are observed until they reach this size criterion (68). In determining the safety of this guideline, researchers found no patients developed metastatic disease nor did they require dialysis when the 3 cm rule was adhered to. In addition to surgical extirpation, ablative techniques have also been employed for the treatment of renal tumors. Thermal tissue ablation with radiofrequency

14 26 N. Dhanani et al. energy can be performed either percutaneously or laparoscopically. With higher wattage generators results for radiofrequency ablation appear promising. Hwang et al. (69) reported favorable outcomes for 23 out of 24 patients treated with RFA at a mean follow-up of 1 year. Nonetheless, this is still considered an experimental technique and further studies will need to be conducted with longer follow-up and validation of post-rfa imaging criteria. 6.2 Metastatic Disease Despite high success rates with treatment of localized renal cancers, the prognosis for patients with metastatic disease is far grimmer. Although immunotherapy has been used, with interleukin-2 being the standard treatment modality, overall response rates are only in the range of 15 22% (70). It is obvious that new strategies are needed for the successful treatment of these patients, and molecular therapeutics seem to hold the key. The success of the tyrosine kinase inhibitor STI-571 in combating gastrointestinal stromal tumors and chronic myelogenous leukemia has fueled enthusiasm for further investigation into the molecular mechanisms of oncogenesis and potential pharmacologic disruption of these pathways (71, 72). In the paradigm of renal cancers, molecular therapeutics can be thought of in two broad categories: those that seek to interrupt specific pathways of tumorigenesis and the individual proteins involved, and those that affect the cancer cell s adaptability. Given the variability of each distinct type of renal cancer, it should not be surprising that this heterogeneous group of diseases offers a wide range of unique molecular targets. Our understandings of the mechanisms involved in the familial syndromes greatly impact our ability to direct therapies at their sporadic counterparts. 6.3 Targeting VHL The VHL pathway offers a variety of targets for intervention. In VHL negative cells, the protein complex responsible for promoting HIF degradation is nonfunctional, resulting in the overabundance of HIF in a normoxic state. One therapeutic approach was demonstrated by Rapisarda et al. (73) when they used a small molecule inhibitor of the HIF-1 pathway, topotecan, to block the transcriptional activity of HIF-1. Although effective in reducing the accumulation of HIF-1α in hypoxic environments, the efficacy of topotecan for VHL remains to be determined since in vitro and in vivo studies in human VHL models suggest HIF-2 to be the major factor in oncogenic pathways (74, 75). Efforts are currently under way to better target HIF-2 function (76, 77). Several components of the downstream pathways in HIF have also been targeted (Fig. 6). Failure to adequately inactivate HIF leads to unregulated expression of

15 Fig. 6 VHL gene mutation, downstream effects, and molecular targeting of the VHL pathway. a. With a VHL gene mutation, the VHL complex is disrupted and allows for accumulation of HIF with subsequent activation of downstream pathways for angiogenesis, glucose transport, and growth. b. Inhibition of overaccumulated HIF and prevention of downstream activation with a small molecule is one of the strategies for molecular targeting of the VHL/HIF pathway. c. New tyrosine kinase inhibitors as well as direct VEGF and PDGF receptor blockers are examples of downstream targeting. From Linehan et al. (76)

16 28 N. Dhanani et al. gene products such as VEGF, PDGF, EGF, TGFα, and GLUT1. Pharmacotherapies inhibiting these pathways may offer a systemic modality to combat metastatic disease. Bevacizumab, a monoclonal antibody to VEGF, has been shown to decrease angiogenesis in renal cell carcinoma (78). Another drug, BAY , inhibits signal transduction and subsequent cell proliferation by antagonizing the tyrosine kinase receptors for VEGF and PDGF (79). The receptor of EGF can be blocked individually through the function of either ZD1839 or erlotinib, or in combination with the VEGF receptor by ZD6474 (80 82). 6.4 Altering the c-met Pathway Type I papillary RCC in HPRC has been shown to result from activating mutations in the cell surface tyrosine kinase receptor for HGF, c-met. Upon activation, the c-met receptor is autophosphorylated, thus recruiting multiple signaling molecules to its cytoplasmic domain and activating intra- and extracellular cascades which ultimately contribute to cellular proliferation, scattering, and invasion (45). On the basis of this knowledge, several therapeutic strategies have been proposed: inhibition of autophosphorylation by the prevention of ATP binding, inhibition of the interaction between HGF and its receptor, and suppression of the downstream signaling cascade of activated c-met (76). 6.5 HSP-90 Inhibition An alternative strategy in the molecular targeting of tumorigenesis is to affect the mechanisms used by the cancer cells to adapt and thrive in surrounding environments. One such group of targets is molecular chaperones, termed heat shock proteins (HSPs), which maintain appropriate protein conformation, assist in protein transport, and play a role in antigen presentation. Out of the entire family of molecular chaperones, heat shock protein 90 (HSP-90) has drawn attention for its active role in renal. HSP-90 is part of a complex that stabilizes and promotes the activity of HIF and the receptor tyrosine kinases MET and KIT (76). An inhibitor of HSP-90, 17-allylamino-17-desmethoxygeldanamycin (17-AAG), has been shown to disrupt the function of this complex, thus leading to rapid inactivation and degradation of its client proteins (83). As a result, HIF-dependent transcriptional activity is impaired, thus decreasing the downstream gene products in the HIF pathway. HSP-90 has also been shown to play a role in chromophobe and papillary RCC through its effects on KIT and MET and their downstream pathways (84, 85). In addition to direct inhibition of KIT, HSP-90 inhibitors also function on AKT and RAF, transcription promoters which are stimulated by KIT but are also themselves client proteins of HSP-90. Finally, with respect to MET, HSP-90 inhibitors may have a potential role as an adjunct to angiogenesis inhibitors. Hypoxia has been shown

17 Molecular Genetics in Inherited Renal Cell Carcinoma 29 to upregulate MET via the HIF pathway, including in vivo after the administration of antiangiogenic agents. Therefore, suppression of MET using HSP-90 inhibitors simultaneously with antagonists of angiogenesis may prove beneficial (76). 7 Conclusion Great strides have been made in the understanding of the genetic basis for renal malignancy. Through refined surgical techniques, patients afflicted with localized renal cancer have an excellent chance for survival with continued decrease in treatment-associated morbidities. Unfortunately, the current treatment modalities for those with advanced disease are not nearly as effective. Nonetheless, the future looks promising. Unrelenting research and dedication to understanding the cellular mechanisms of oncogenesis have the potential to change the face of renal cancer therapy and may provide these patients with the hope of a cure. Acknowledgment This research was supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research. References 1. Jemal A, Murray T, Ward E et al. Cancer statistics, CA Cancer J Clin 2005; 55(1): SEER Program. S E E R Knudson AG, Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971; 68: Knudson AG, Jr., Strong LC. Mutation and cancer: a model for Wilms tumor of the kidney. J Natl Cancer Inst 1972; 48: Cohen AJ, Li FP, Berg S et al. Hereditary renal-cell carcinoma associated with a chromosomal translocation. N Engl J Med 1979; 301: Zbar B, Brauch H, Talmadge C, Linehan WM. Loss of alleles of loci on the short arm of chromosome 3 in renal cell carcinoma. Nature 1987; 327: Seizinger BR, Rouleau GA, Ozelius LJ et al. Von Hippel Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature 1988; 332(6161): Linehan WM, Walther MM, Zbar B. The genetic basis of cancer of the kidney. J Urol 2003; 170: Lonser R, Glenn G, Walther MM et al. von Hippel Lindau disease. Lancet 2003; 361(9374): Maher ER, Yates JR, Harries R et al. Clinical features and natural history of von Hippel Lindau disease. Q J Med 1990; 77: Walther MM, Lubensky IA, Venzon D, Zbar B, Linehan WM. Prevalence of microscopic lesions in grossly normal renal parenchyma from patients with von Hippel Lindau disease, sporadic renal cell carcinoma and no renal disease: clinical implications. J Urol 1995; 154: Choyke PL, Glenn GM, Walther MM et al. The natural history of renal lesions in von Hippel Lindau disease: a serial CT study in 28 patients. Am J Roentgenol 1992; 159(6): Tory K, Brauch H, Linehan WM et al. Specific genetic change in tumors associated with von Hippel Lindau disease. J Natl Cancer Inst 1989; 81:

18 30 N. Dhanani et al. 14. Seizinger BR, Rouleau GA, Ozelius LJ et al. Von Hippel Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature 1988; 332: Lerman MI, Latif F, Glenn GM et al. Isolation and regional localization of a large collection (2,000) of single copy DNA fragments on human chromosome 3 for mapping and cloning tumor suppressor genes. Hum Genet 1991; 86: Hosoe S, Brauch H, Latif F et al. Localization of the von Hippel Lindau disease gene to a small region of chromosome 3. Genomics 1990; 8: Latif F, Tory K, Gnarra JR et al. Identification of the von Hippel Lindau disease tumor suppressor gene. Science 1993; 260: Whaley JM, Naglich J, Gelbert L et al. Germ-line mutations in the von Hipel-Lindau tumorsuppressor gene are similar to von Hippel Lindau aberrations in sporadic renal cell carcinoma. Am J Hum Genet 1994; 55: Chen F, Kishida T, Yao M et al. Germline mutations in the von Hippel Lindau disease tumor suppressor gene: correlation with phenotype. Hum Mutat 1995; 5: Zbar B, Kishida T, Chen F et al. Germline mutations in the von Hippel Lindau disease (VHL) gene in families from North America, Europe and Japan. Hum Mutat 1996; 8: Maranchie JK, Afonso A, Albert P et al. Solid renal tumor severity in von Hippel Lindau disease is related to germline deletion length and location. Hum Mutat 2004; 23(1): Stolle C, Glenn GM, Zbar B et al. Improved detection of germline mutations in the von Hippel Lindau disease tumor suppressor gene. Hum Mutat 1998; 12(6): Gnarra JR, Tory K, Weng Y et al. Mutation of the VHL tumour suppressor gene in renal carcinoma. Nat Genet 1994; 7: Herman JG, Latif F, Weng Y et al. Silencing of the VHL tumor suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci USA 1994; 91: Linehan WM, Lerman MI, Zbar B. Identification of the VHL gene: its role in renal carcinoma. J Am Med Assoc 1995; 273(7): Lubensky IA, Gnarra JR, Bertheau P, Walther MM, Linehan WM, Zhuang Z. Allelic deletions of the VHL gene detected in multiple microscopic clear cell renal lesions in von Hippel Lindau disease patients. Am J Pathol 1996; 149(6): Lee Y-S, Vortmeyer AO, Lubensky IA et al. Co-expression of erythropoietin and erythropoietin receptor in von Hippel Lindau disease-associated renal cysts and renal cell carcinoma. Clin Cancer Res 2005; 11(3): Duan DR, Humphrey JS, Chen DYT et al. Characterization of the VHL tumor suppressor gene product: localization, complex formation, and the effect of natural inactivating mutations. Proc Natl Acad Sci USA 1995; 92: Duan DR, Pause A, Burgess WH et al. Inhibition of transcription elongation by the VHL tumor suppressor protein. Science 1995; 269: Iliopoulos O, Jiang C, Levy AP, Kaelin WG, Goldberg MA. Negative regulation of hypoxiainducible genes by the von Hippel Lindau protein. Proc Natl Acad Sci USA 1996; 93(20): Pause A, Lee S, Worrell RA et al. The von Hippel Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc Natl Acad Sci USA 1997; 94(6): Siemeister G, Weindel K, Mohrs K, Barleon B, Martiny-Baron G, Marme D. Reversion of deregulated expression of vascular endothelial growth factor in human renal carcinoma cells by von Hippel Lindau tumor suppressor protein. Cancer Res 1996; 56: Cockman ME, Masson N, Mole DR et al. Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel Lindau tumor suppressor protein. J Biol Chem 2000; 275(33): Epstein AC, Gleadle JM, McNeill LA et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 2001; 107(1): Jaakkola P, Mole DR, Tian YM et al. Targeting of HIF-alpha to the von Hippel Lindau ubiquitylation complex by O 2 -regulated prolyl hydroxylation. Science 2001; 292:

19 Molecular Genetics in Inherited Renal Cell Carcinoma Maranchie JK, Vasselli JR, Riss J, Bonifacino JS, Linehan WM, Klausner RD. The contribution of VHL substrate binding and HIF1-α to the phenotype of VHL loss in renal cell carcinoma. Cancer Cell 2002; 1: Zbar B, Tory K, Merino M et al. Hereditary papillary renal cell carcinoma. J Urol 1994; 151: Zbar B, Glenn GM, Lubensky IA et al. Hereditary papillary renal cell carcinoma: clinical studies in 10 families. J Urol 1995; 153: Ornstein DK, Lubensky IA, Venzon D, Zbar B, Linehan WM, Walther MM. Prevalence of microscopic tumors in normal appearing renal parenchyma from patients with hereditary papillary renal cancer. J Urol 2000; 163(2): Lubensky IA, Schmidt L, Zhuang Z et al. Hereditary and sporadic papillary renal carcinomas with c-met mutations share a distinct morphological phenotype. Am J Pathol 1999; 155(2): Schmidt LS, Nickerson ML, Angeloni D, Glenn, GM, Walther MM, Albert PS, et al. Early onset Hereditary Papillary Renal Carcinoma: germline missense mutations in the tyrosine kinase domain of the Met proto-oncogene. J Urol 2004 Oct; 172(4, Part 1 Of 2): Choyke PL, Walther MM, Glenn GM et al. Imaging features of hereditary papillary renal cancers. J Comput Assist Tomogr 1997; 21(1997): Schmidt L, Duh F-M, Chen F et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet 1997; 16(May): Bottaro DP, Rubin JS, Faletto DL et al. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 1991; 251(4995): Zhang YW, Vande Woude GF. HGF/SF-met signaling in the control of branching morphogenesis and invasion. J Cell Biochem 2003; 88(2): Birt AR, Hogg GR, Dube WJ. Hereditary multiple fibrofolliculomas with trichodiscomas and acrochordons. Arch Dermatol 1977; 113(12): Toro J, Duray PH, Glenn GM et al. Birt Hogg Dube syndrome: a novel marker of kidney neoplasia. Arch Dermatol 1999; 135(10): Binet O, Robin J, Vicart M, Ventura G, Beltzer-Garelly E. Fibromes Perifolliculaires Polypose Colique Familaile Pneumothorax Spontanes Familiaux. Annales de Dermotologie et de Venereologie 1986; 113: Liu V, Kwan T, Page EH. Parotid oncocytoma in the Birt Hogg Dubé syndrome. J Am Acad Dermatol 2000; 43: Chung JY, Ramos-Caro FA, Beers B, Ford MJ, Flowers F. Multiple lipomas, angiolipomas, and parathyroid adenomas in a patient with Birt Hogg Dube syndrome. Int J Dermatol 1996; 35(5): Hornstein OP. Generalized dermal perifollicular fibromas with polyps of the colon. Hum Genet 1976; 33(2): Zbar B, Alvord G, Glenn G et al. Risk of renal and colon neoplasms and spontaneous pneumothorax in the Birt Hogg Dube syndrome. Cancer Epidemiol Biomarkers Prev 2002; 11(4): Pavlovich CP, Hewitt S, Walther MM et al. Renal tumors in the Birt Hogg Dube syndrome. Am J Surg Pathol 2002; 26(12): Schmidt LS, Warren MB, Nickerson ML et al. Birt Hogg Dube syndrome, a genodermatosis associated with spontaneous pneumothorax and kidney neoplasia, maps to chromosome 17p11.2. Am J Hum Genet 2001; 69: Nickerson ML, Warren MB, Toro JR, Matrosova V, Glenn GM, Turner ML, et al. Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt Hogg Dube syndrome. Cancer Cell 2002 Aug;2(2): Vocke CD, Yang Y, Pavlovich CP et al. High frequency of somatic frameshift BHD gene mutations in Birt Hogg Dube-associated renal tumors. J Natl Cancer Inst 2005; 97(12): Warren MB, Torres-Cabala CA, Turner ML et al. Expression of Birt Hogg Dube gene mrna in normal and neoplastic human tissues. Mod Pathol 2004; 17(8):

Renal Cell Carcinoma: Genetics & Imaging Srinivasa R Prasad University of Texas San Antonio

Renal Cell Carcinoma: Genetics & Imaging Srinivasa R Prasad University of Texas San Antonio Renal Cell Carcinoma: Genetics & Imaging Srinivasa R Prasad University of Texas HSC @ San Antonio No financial disclosures Acknowledgements Dr. Peter Choyke, NIH My Gurus @ MIR, MGH 2004 WHO Taxonomy of

More information

Preface. Histology. Ronald M. Bukowski, Robert J. Motzer, and Robert A. Figlin

Preface. Histology. Ronald M. Bukowski, Robert J. Motzer, and Robert A. Figlin Preface Ronald M. Bukowski, Robert J. Motzer, and Robert A. Figlin Renal cancer comprises 3% of all malignant tumors, with an estimated incidence of 39,000 new cases with 13,000 deaths in 2006 (1). A study

More information

Genetic basis of kidney cancer: a model for developing molecular-targeted therapies

Genetic basis of kidney cancer: a model for developing molecular-targeted therapies Original Article VIRA et al. enetic basis of kidney cancer: a model for developing molecular-targeted therapies Manish A. Vira, Kristian R. Novakovic, Peter A. Pinto and W. Marston Linehan Urologic Oncology

More information

Case Based Urology Learning Program

Case Based Urology Learning Program Case Based Urology Learning Program Resident s Corner: UROLOGY Case Number 18 CBULP 2011 041 Case Based Urology Learning Program Editor: Associate Editors: Manager: Case Contributors: Steven C. Campbell,

More information

Identification of a novel duplication mutation in the VHL gene in a large Chinese family with Von Hippel-Lindau (VHL) syndrome

Identification of a novel duplication mutation in the VHL gene in a large Chinese family with Von Hippel-Lindau (VHL) syndrome Identification of a novel duplication mutation in the VHL gene in a large Chinese family with Von Hippel-Lindau (VHL) syndrome L.H. Cao 1, B.H. Kuang 2, C. Chen 1, C. Hu 2, Z. Sun 1, H. Chen 2, S.S. Wang

More information

Case Based Learning Program

Case Based Learning Program Case Based Learning Program The Department of Urology Glickman Urological & Kidney Institute Cleveland Clinic Case Number 5 CBULP 2010 001 Case Based Urology Learning Program Editor: Associate Editor:

More information

Hereditary Leiomyomatosis and Renal Cell Carcinoma Variant of Reed s Syndrome - A Rare Case Report

Hereditary Leiomyomatosis and Renal Cell Carcinoma Variant of Reed s Syndrome - A Rare Case Report American Research Journal of Urology Volume 1, Issue 1, pp:26-30 Case Hereditary Leiomyomatosis and Renal Cell Carcinoma Variant of Reed s Syndrome - A Rare Case Manas Babu, Devesh Bansal, Sony Mehta,

More information

Case Report Bilateral Renal Tumour as Indicator for Birt-Hogg-Dubé Syndrome

Case Report Bilateral Renal Tumour as Indicator for Birt-Hogg-Dubé Syndrome Case Reports in Medicine, Article ID 618675, 4 pages http://dx.doi.org/10.1155/2014/618675 Case Report Bilateral Renal Tumour as Indicator for Birt-Hogg-Dubé Syndrome P. C. Johannesma, 1 R. J. A. van Moorselaar,

More information

Tumor suppressor genes D R. S H O S S E I N I - A S L

Tumor suppressor genes D R. S H O S S E I N I - A S L Tumor suppressor genes 1 D R. S H O S S E I N I - A S L What is a Tumor Suppressor Gene? 2 A tumor suppressor gene is a type of cancer gene that is created by loss-of function mutations. In contrast to

More information

Kidney Cancer Causes, Risk Factors, and Prevention

Kidney Cancer Causes, Risk Factors, and Prevention Kidney Cancer Causes, Risk Factors, and Prevention Risk Factors A risk factor is anything that affects your chance of getting a disease such as cancer. Learn more about the risk factors for kidney cancer.

More information

Development of Carcinoma Pathways

Development of Carcinoma Pathways The Construction of Genetic Pathway to Colorectal Cancer Moriah Wright, MD Clinical Fellow in Colorectal Surgery Creighton University School of Medicine Management of Colon and Diseases February 23, 2019

More information

A rare association of parotid oncocytoma, lipoma, multinodular goitre and uterine adenomysosis

A rare association of parotid oncocytoma, lipoma, multinodular goitre and uterine adenomysosis ISPUB.COM The Internet Journal of Otorhinolaryngology Volume 7 Number 2 A rare association of parotid oncocytoma, lipoma, multinodular goitre and uterine adenomysosis P Sinha, S Sharma, S Agarwal, R Ray

More information

Risk of Renal and Colonic Neoplasms and Spontaneous Pneumothorax in the Birt-Hogg-Dubé Syndrome 1

Risk of Renal and Colonic Neoplasms and Spontaneous Pneumothorax in the Birt-Hogg-Dubé Syndrome 1 Vol. 11, 393 400, April 2002 Cancer Epidemiology, Biomarkers & Prevention 393 Risk of Renal and Colonic Neoplasms and Spontaneous Pneumothorax in the Birt-Hogg-Dubé Syndrome 1 Berton Zbar, 2 W. Gregory

More information

Disclosure. Relevant Financial Relationship(s) None. Off Label Usage None MFMER slide-1

Disclosure. Relevant Financial Relationship(s) None. Off Label Usage None MFMER slide-1 Disclosure Relevant Financial Relationship(s) None Off Label Usage None 2013 MFMER slide-1 Case Presentation A 43 year old male, with partial nephrectomy for a right kidney mass 2013 MFMER slide-2 2013

More information

Targeted and immunotherapy in RCC

Targeted and immunotherapy in RCC Targeted and immunotherapy in RCC Treatment options Surgery (radical VS partial nephrectomy) Thermal ablation therapy Surveillance Immunotherapy Molecular targeted therapy Molecular targeted therapy Targeted

More information

Genetic Predisposition to Cancer

Genetic Predisposition to Cancer Genetic Predisposition to Cancer Elena Castro, MD, PhD Prostate Cancer and GU tumours Unit Spanish National Cancer Research Centre Madrid, Spain Abstract 750O: Early detection of hereditary renal cell

More information

Test Bank for Robbins and Cotran Pathologic Basis of Disease 9th Edition by Kumar

Test Bank for Robbins and Cotran Pathologic Basis of Disease 9th Edition by Kumar Link full download:https://getbooksolutions.com/download/test-bank-for-robbinsand-cotran-pathologic-basis-of-disease-9th-edition-by-kumar Test Bank for Robbins and Cotran Pathologic Basis of Disease 9th

More information

Test Bank for Robbins and Cotran Pathologic Basis of Disease 9th Edition by Kumar

Test Bank for Robbins and Cotran Pathologic Basis of Disease 9th Edition by Kumar Link full download: http://testbankair.com/download/test-bank-for-robbins-cotran-pathologic-basis-of-disease-9th-edition-bykumar-abbas-and-aster Test Bank for Robbins and Cotran Pathologic Basis of Disease

More information

The Genetics of VHL. Proper tissue growth - controlled traffic. How human cells and tissue grow and die?

The Genetics of VHL. Proper tissue growth - controlled traffic. How human cells and tissue grow and die? How human cells and tissue grow and die? The Genetics of VHL Xia Wang MD PhD Oct, 2017 Proper tissue growth - controlled traffic Normal tissue growth is regulated by many genetic factors Safe traffic is

More information

Agro/Ansc/Bio/Gene/Hort 305 Fall, 2017 MEDICAL GENETICS AND CANCER Chpt 24, Genetics by Brooker (lecture outline) #17

Agro/Ansc/Bio/Gene/Hort 305 Fall, 2017 MEDICAL GENETICS AND CANCER Chpt 24, Genetics by Brooker (lecture outline) #17 Agro/Ansc/Bio/Gene/Hort 305 Fall, 2017 MEDICAL GENETICS AND CANCER Chpt 24, Genetics by Brooker (lecture outline) #17 INTRODUCTION - Our genes underlie every aspect of human health, both in function and

More information

CANCER. Inherited Cancer Syndromes. Affects 25% of US population. Kills 19% of US population (2nd largest killer after heart disease)

CANCER. Inherited Cancer Syndromes. Affects 25% of US population. Kills 19% of US population (2nd largest killer after heart disease) CANCER Affects 25% of US population Kills 19% of US population (2nd largest killer after heart disease) NOT one disease but 200-300 different defects Etiologic Factors In Cancer: Relative contributions

More information

Multistep nature of cancer development. Cancer genes

Multistep nature of cancer development. Cancer genes Multistep nature of cancer development Phenotypic progression loss of control over cell growth/death (neoplasm) invasiveness (carcinoma) distal spread (metastatic tumor) Genetic progression multiple genetic

More information

Information for You and Your Family

Information for You and Your Family Information for You and Your Family What is Prevention? Cancer prevention is action taken to lower the chance of getting cancer. In 2017, more than 1.6 million people will be diagnosed with cancer in the

More information

Introduction. Cancer Biology. Tumor-suppressor genes. Proto-oncogenes. DNA stability genes. Mechanisms of carcinogenesis.

Introduction. Cancer Biology. Tumor-suppressor genes. Proto-oncogenes. DNA stability genes. Mechanisms of carcinogenesis. Cancer Biology Chapter 18 Eric J. Hall., Amato Giaccia, Radiobiology for the Radiologist Introduction Tissue homeostasis depends on the regulated cell division and self-elimination (programmed cell death)

More information

Aberrant Promoter CpG Methylation is a Mechanism for Lack of Hypoxic Induction of

Aberrant Promoter CpG Methylation is a Mechanism for Lack of Hypoxic Induction of Aberrant Promoter CpG Methylation is a Mechanism for Lack of Hypoxic Induction of PHD3 in a Diverse Set of Malignant Cells Abstract The prolyl-hydroxylase domain family of enzymes (PHD1-3) plays an important

More information

oncogenes-and- tumour-suppressor-genes)

oncogenes-and- tumour-suppressor-genes) Special topics in tumor biochemistry oncogenes-and- tumour-suppressor-genes) Speaker: Prof. Jiunn-Jye Chuu E-Mail: jjchuu@mail.stust.edu.tw Genetic Basis of Cancer Cancer-causing mutations Disease of aging

More information

Clonal evolution of human cancers

Clonal evolution of human cancers Clonal evolution of human cancers -Pathology-based microdissection and genetic analysis precisely demonstrates molecular evolution of neoplastic clones- Hiroaki Fujii, MD Ageo Medical Laboratories, Yashio

More information

Introduction to Genetics

Introduction to Genetics Introduction to Genetics Table of contents Chromosome DNA Protein synthesis Mutation Genetic disorder Relationship between genes and cancer Genetic testing Technical concern 2 All living organisms consist

More information

Biochemistry of Cancer and Tumor Markers

Biochemistry of Cancer and Tumor Markers Biochemistry of Cancer and Tumor Markers The term cancer applies to a group of diseases in which cells grow abnormally and form a malignant tumor. It is a long term multistage genetic process. The first

More information

Disclosures 3/27/2017. Case 5. Clinical History. Disclosure of Relevant Financial Relationships

Disclosures 3/27/2017. Case 5. Clinical History. Disclosure of Relevant Financial Relationships Hereditary Cancer Predisposition in Children Case 5 Cristina R. Antonescu, MD Disclosure of Relevant Financial Relationships USCAP requires that all planners (Education Committee) in a position to influence

More information

Oncogenes and Tumor Suppressors MCB 5068 November 12, 2013 Jason Weber

Oncogenes and Tumor Suppressors MCB 5068 November 12, 2013 Jason Weber Oncogenes and Tumor Suppressors MCB 5068 November 12, 2013 Jason Weber jweber@dom.wustl.edu Oncogenes & Cancer DNA Tumor Viruses Simian Virus 40 p300 prb p53 Large T Antigen Human Adenovirus p300 E1A

More information

mirna Dr. S Hosseini-Asl

mirna Dr. S Hosseini-Asl mirna Dr. S Hosseini-Asl 1 2 MicroRNAs (mirnas) are small noncoding RNAs which enhance the cleavage or translational repression of specific mrna with recognition site(s) in the 3 - untranslated region

More information

Genetics and Genomics in Endocrinology

Genetics and Genomics in Endocrinology Genetics and Genomics in Endocrinology Dr. Peter Igaz MD MSc PhD 2 nd Department of Medicine Faculty of Medicine Semmelweis University Genetics-based endocrine diseases I. Monogenic diseases: Multiple

More information

number Done by Corrected by Doctor Maha Shomaf

number Done by Corrected by Doctor Maha Shomaf number 19 Done by Waseem Abo-Obeida Corrected by Abdullah Zreiqat Doctor Maha Shomaf Carcinogenesis: the molecular basis of cancer. Non-lethal genetic damage lies at the heart of carcinogenesis and leads

More information

Tumors of kidney and urinary bladder

Tumors of kidney and urinary bladder Tumors of kidney and urinary bladder Overview of kidney tumors Benign and malignant Of the benign: papillary adenoma -cortical -small (0.5cm) -in 40% of population -clinically insignificant The most common

More information

Focus on kidney cancer

Focus on kidney cancer Focus on kidney cancer W. Marston Linehan 1,* and Berton Zbar 2 1 Urologic Oncology Branch 2 Laboratory of Immunobiology Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892

More information

10/11/2018. Clinical and Surgical Management of VHL-Related Cysts and Cystic RCC. Outline. VHL Renal Manifestations. VHL Renal Manifestations

10/11/2018. Clinical and Surgical Management of VHL-Related Cysts and Cystic RCC. Outline. VHL Renal Manifestations. VHL Renal Manifestations Outline Clinical and Surgical Management of VHL-Related Cysts and Cystic RCC Mark W. Ball, MD Assistant Research Physician Attending Surgeon Urologic Oncology Branch, National Cancer Institute Prevalence

More information

UNIVERSITY OF MEDICINE AND PHARMACY CRAIOVA PhD SCHOOL. PhD THESIS

UNIVERSITY OF MEDICINE AND PHARMACY CRAIOVA PhD SCHOOL. PhD THESIS UNIVERSITY OF MEDICINE AND PHARMACY CRAIOVA PhD SCHOOL PhD THESIS THE IMPORTANCE OF TUMOR ANGIOGENESIS IN CEREBRAL TUMOR DIAGNOSIS AND THERAPY ABSTRACT PhD COORDINATOR: Prof. univ. dr. DRICU Anica PhD

More information

A novel mutation links to von Hippel-Lindau syndrome in a Chinese family with hemangioblastoma

A novel mutation links to von Hippel-Lindau syndrome in a Chinese family with hemangioblastoma A novel mutation links to von Hippel-Lindau syndrome in a Chinese family with hemangioblastoma X.M. Fu 1, S.L. Zhao 2, J.C. Gui 2, Y.Q. Jiang 2, M.N. Shen 2, D.L. Su 2, B.J. Gu 2, X.Q. Wang 2, Q.J. Ren

More information

The Natural History of Cerebellar Hemangioblastomas in von Hippel-Lindau Disease

The Natural History of Cerebellar Hemangioblastomas in von Hippel-Lindau Disease AJNR Am J Neuroradiol 24:1570 1574, September 2003 The Natural History of Cerebellar Hemangioblastomas in von Hippel-Lindau Disease Andrew Slater, Niall R. Moore, and Susan M. Huson BACKGROUND AND PURPOSE:

More information

St. Dominic s Annual Cancer Report Outcomes

St. Dominic s Annual Cancer Report Outcomes St. Dominic s 2017 Annual Cancer Report Outcomes Cancer Program Practice Profile Reports (CP3R) St. Dominic s Cancer Committee monitors and ensures that patients treated at St. Dominic Hospital receive

More information

A Japanese Family with Multiple Lung Cysts and Recurrent Pneumothorax: A Possibility of Birt-Hogg-Dubé Syndrome

A Japanese Family with Multiple Lung Cysts and Recurrent Pneumothorax: A Possibility of Birt-Hogg-Dubé Syndrome CASE REPORT A Japanese Family with Multiple Lung Cysts and Recurrent Pneumothorax: A Possibility of Birt-Hogg-Dubé Syndrome Hiroshi Ishii 1, Hiroaki Oka 1, Yuka Amemiya 1, Atsuko Iwata 1, Satoshi Otani

More information

Von Hippel Lindau Disease, Involvement of Multiple Members of the Same Families

Von Hippel Lindau Disease, Involvement of Multiple Members of the Same Families ORIGINAL ARTICLE Von Hippel Lindau Disease, Involvement of Multiple Members of the Same Families AMIR AZIZ, YASER-UD-DIN HOTI, KHURRAM ISHAQ Tariq Salah-ud-Din Department of Neurosurgery Unit II, Lahore

More information

Mosaicism in von Hippel Lindau Disease: Lessons from Kindreds with Germline Mutations Identified in Offspring with Mosaic Parents

Mosaicism in von Hippel Lindau Disease: Lessons from Kindreds with Germline Mutations Identified in Offspring with Mosaic Parents Am. J. Hum. Genet. 66:84 91, 2000 Mosaicism in von Hippel Lindau Disease: Lessons from Kindreds with Germline Mutations Identified in Offspring with Mosaic Parents M. T. Sgambati, 1,* C. Stolle, 4,* P.

More information

ACCME/Disclosures. M31078/07 Ondřej Hes 4/13/2016

ACCME/Disclosures. M31078/07 Ondřej Hes 4/13/2016 M31078/07 Ondřej Hes Department of Pathology Charles University and University Hospital Plzeň Bioptická laboratoř Plzeň Czech Republic ACCME/Disclosures The USCAP requires that anyone in a position to

More information

Case report. Open Access. Abstract

Case report. Open Access. Abstract Case report Bilateral synchronous occurrence of three different histological types of renal tumor: a case report Demetrios Radopoulos, Anastasios Tahmatzopoulos*, Nikolaos Kalinderis and Georgios Dimitriadis

More information

Renal tumors of adults

Renal tumors of adults Renal tumors of adults Urinary Tract Tumors 2%-3% of all cancers in adults. The most common malignant tumor of the kidney is renal cell carcinoma. Tumors of the lower urinary tract are twice as common

More information

Von Hippel-Lindau (VHL) Syndrome: A Critical Insight

Von Hippel-Lindau (VHL) Syndrome: A Critical Insight 114 Review Article Von Hippel-Lindau (VHL) Syndrome: A Critical Insight Tapan Behl*, Ishneet Kaur, Puneet Sudan, Monika Sharma, Heena Goel Department of Pharmacology, Doaba Group of Colleges, Kharar, Mohali,

More information

Renal Cancer. By Jamie Calderwood

Renal Cancer. By Jamie Calderwood Renal Cancer By Jamie Calderwood ("Kidney Cancer")*1 ("What are the different types of kidney mass?")*2 What is it? Renal cancer is more commonly known as kidney cancer. Wilms tumor Another name for kidney

More information

Section D: The Molecular Biology of Cancer

Section D: The Molecular Biology of Cancer CHAPTER 19 THE ORGANIZATION AND CONTROL OF EUKARYOTIC GENOMES Section D: The Molecular Biology of Cancer 1. Cancer results from genetic changes that affect the cell cycle 2. Oncogene proteins and faulty

More information

A Random Approach to the Determination of Amino Acid Pairs in Von Hippel-Lindau Disease Tumor Suppressor (G7 Protein)

A Random Approach to the Determination of Amino Acid Pairs in Von Hippel-Lindau Disease Tumor Suppressor (G7 Protein) A Random Approach to the Determination of Amino Acid Pairs in Von Hippel-Lindau Disease Tumor Suppressor (G7 Protein) G. Wu, MD, PhD S-M. Yan, MD, PhD DreamSciTech Consulting Co. Ltd., Shenzhen, Guangdong

More information

PATHOBIOLOGY OF NEOPLASIA

PATHOBIOLOGY OF NEOPLASIA PATHOBIOLOGY OF NEOPLASIA Department of Pathology Gadjah Mada University School of Medicine dr. Harijadi Blok Biomedis, 6 Maret 2009 [12] 3/17/2009 1 The pathobiology of neoplasia Normal cells Malignant

More information

RAS Genes. The ras superfamily of genes encodes small GTP binding proteins that are responsible for the regulation of many cellular processes.

RAS Genes. The ras superfamily of genes encodes small GTP binding proteins that are responsible for the regulation of many cellular processes. ۱ RAS Genes The ras superfamily of genes encodes small GTP binding proteins that are responsible for the regulation of many cellular processes. Oncogenic ras genes in human cells include H ras, N ras,

More information

Introduction to Cancer Biology

Introduction to Cancer Biology Introduction to Cancer Biology Robin Hesketh Multiple choice questions (choose the one correct answer from the five choices) Which ONE of the following is a tumour suppressor? a. AKT b. APC c. BCL2 d.

More information

Pancreatic Involvement in Von Hippel-Lindau Disease: The Role of Integrated Imaging

Pancreatic Involvement in Von Hippel-Lindau Disease: The Role of Integrated Imaging MULTIMEDIA ARTICLE - Clinical Imaging Pancreatic Involvement in Von Hippel-Lindau Disease: The Role of Integrated Imaging Lucia Calculli 1, Marta Fiscaletti 1, Riccardo Casadei 2, Raffaele Pezzilli 3,

More information

609G: Concepts of Cancer Genetics and Treatments (3 credits)

609G: Concepts of Cancer Genetics and Treatments (3 credits) Master of Chemical and Life Sciences Program College of Computer, Mathematical, and Natural Sciences 609G: Concepts of Cancer Genetics and Treatments (3 credits) Text books: Principles of Cancer Genetics,

More information

Identification of Somatic Mutations in the von Hippel Lindau (VHL) Gene in a Patient With Renal Cell Carcinoma

Identification of Somatic Mutations in the von Hippel Lindau (VHL) Gene in a Patient With Renal Cell Carcinoma CASE REPORT Identification of Somatic Mutations in the von Hippel Lindau (VHL) Gene in a Patient With Renal Cell Carcinoma Wen-Chung Wang, 1 Hui-Ju Chen, 2 Yu-Hua Tseng, 3 Yen-Chein Lai 2 * One of the

More information

Renal tumours: use of immunohistochemistry & molecular pathology. Dr Lisa Browning John Radcliffe Hospital Oxford

Renal tumours: use of immunohistochemistry & molecular pathology. Dr Lisa Browning John Radcliffe Hospital Oxford Renal tumours: use of immunohistochemistry & molecular pathology Dr Lisa Browning John Radcliffe Hospital Oxford Renal tumours: the use of immunohistochemistry & molecular pathology Classification of RCC

More information

Problem Set 5 KEY

Problem Set 5 KEY 2006 7.012 Problem Set 5 KEY ** Due before 5 PM on THURSDAY, November 9, 2006. ** Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. You are studying the development

More information

Cancer. Questions about cancer. What is cancer? What causes unregulated cell growth? What regulates cell growth? What causes DNA damage?

Cancer. Questions about cancer. What is cancer? What causes unregulated cell growth? What regulates cell growth? What causes DNA damage? Questions about cancer What is cancer? Cancer Gil McVean, Department of Statistics, Oxford What causes unregulated cell growth? What regulates cell growth? What causes DNA damage? What are the steps in

More information

Cancer. October is National Breast Cancer Awareness Month

Cancer. October is National Breast Cancer Awareness Month Cancer October is National Breast Cancer Awareness Month Objectives 1: Gene regulation Explain how cells in all the different parts of your body develop such different characteristics and functions. Contrast

More information

Evolution of Systemic Therapy Clinical Trials in VHL

Evolution of Systemic Therapy Clinical Trials in VHL Evolution of Systemic Therapy Clinical Trials in VHL Ramaprasad Srinivasan, M.D., Ph.D. Investigator and Head, Molecular Cancer Section Urologic Oncology Branch Center for Cancer Research National Cancer

More information

Patient Selection for Ablative Therapies. Adrian D Joyce Leeds UK

Patient Selection for Ablative Therapies. Adrian D Joyce Leeds UK Patient Selection for Ablative Adrian D Joyce Leeds UK Therapy Renal Cell Ca USA: 30,000 new cases annually >12,000 deaths RCC accounts for 3% of all adult malignancy 40% of patients will die from their

More information

VHL Syndrome and Hemangioblastoma Management

VHL Syndrome and Hemangioblastoma Management VHL Syndrome and Hemangioblastoma Management Eric Jonasch Professor of Medicine UT MD Anderson Cancer Center Fourteenth International Kidney Cancer Symposium Miami, Florida, USA November 6-7, 2015 www.kidneycancersymposium.com

More information

BHD mutations, clinical and molecular genetic investigations of Birt Hogg Dubé syndrome: a new series of 50 families and a review of published reports

BHD mutations, clinical and molecular genetic investigations of Birt Hogg Dubé syndrome: a new series of 50 families and a review of published reports BHD mutations, clinical and molecular genetic investigations of Birt Hogg Dubé syndrome: a new series of 50 families and a review of published reports J R Toro, 1 M-H Wei, 1,2 G M Glenn, 1 M Weinreich,

More information

The Biology and Genetics of Cells and Organisms The Biology of Cancer

The Biology and Genetics of Cells and Organisms The Biology of Cancer The Biology and Genetics of Cells and Organisms The Biology of Cancer Mendel and Genetics How many distinct genes are present in the genomes of mammals? - 21,000 for human. - Genetic information is carried

More information

Analysis of the Birt Hogg Dubé (BHD) tumour suppressor gene in sporadic renal cell carcinoma and colorectal cancer

Analysis of the Birt Hogg Dubé (BHD) tumour suppressor gene in sporadic renal cell carcinoma and colorectal cancer 820 SHORT REPORT Analysis of the Birt Hogg Dubé (BHD) tumour suppressor gene in sporadic renal cell carcinoma and colorectal cancer N Fernandes da Silva, D Gentle, L B Hesson, D G Morton, F Latif, E R

More information

Dr Rodney Itaki Lecturer Anatomical Pathology Discipline. University of Papua New Guinea School of Medicine & Health Sciences Division of Pathology

Dr Rodney Itaki Lecturer Anatomical Pathology Discipline. University of Papua New Guinea School of Medicine & Health Sciences Division of Pathology Neoplasia Dr Rodney Itaki Lecturer Anatomical Pathology Discipline University of Papua New Guinea School of Medicine & Health Sciences Division of Pathology General Considerations Overview: Neoplasia uncontrolled,

More information

Src-INACTIVE / Src-INACTIVE

Src-INACTIVE / Src-INACTIVE Biology 169 -- Exam 1 February 2003 Answer each question, noting carefully the instructions for each. Repeat- Read the instructions for each question before answering!!! Be as specific as possible in each

More information

1. Basic principles 2. 6 hallmark features 3. Abnormal cell proliferation: mechanisms 4. Carcinogens: examples. Major Principles:

1. Basic principles 2. 6 hallmark features 3. Abnormal cell proliferation: mechanisms 4. Carcinogens: examples. Major Principles: Carcinogenesis 1. Basic principles 2. 6 hallmark features 3. Abnormal cell proliferation: mechanisms 4. Carcinogens: examples Carcinogenesis Major Principles: 1. Nonlethal genetic damage is central to

More information

Cancer Genetics. What is Cancer? Cancer Classification. Medical Genetics. Uncontrolled growth of cells. Not all tumors are cancerous

Cancer Genetics. What is Cancer? Cancer Classification. Medical Genetics. Uncontrolled growth of cells. Not all tumors are cancerous Session8 Medical Genetics Cancer Genetics J avad Jamshidi F a s a U n i v e r s i t y o f M e d i c a l S c i e n c e s, N o v e m b e r 2 0 1 7 What is Cancer? Uncontrolled growth of cells Not all tumors

More information

Bihong Zhao, M.D, Ph.D Department of Pathology

Bihong Zhao, M.D, Ph.D Department of Pathology Bihong Zhao, M.D, Ph.D Department of Pathology 04-28-2009 Is tumor self or non-self? How are tumor antigens generated? What are they? How does immune system respond? Introduction Tumor Antigens/Categories

More information

HST.161 Molecular Biology and Genetics in Modern Medicine Fall 2007

HST.161 Molecular Biology and Genetics in Modern Medicine Fall 2007 MIT OpenCourseWare http://ocw.mit.edu HST.161 Molecular Biology and Genetics in Modern Medicine Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Cancer genetics

Cancer genetics Cancer genetics General information about tumorogenesis. Cancer induced by viruses. The role of somatic mutations in cancer production. Oncogenes and Tumor Suppressor Genes (TSG). Hereditary cancer. 1

More information

Determination Differentiation. determinated precursor specialized cell

Determination Differentiation. determinated precursor specialized cell Biology of Cancer -Developmental Biology: Determination and Differentiation -Cell Cycle Regulation -Tumor genes: Proto-Oncogenes, Tumor supressor genes -Tumor-Progression -Example for Tumor-Progression:

More information

The Met Pathway as a Target in RCC

The Met Pathway as a Target in RCC The Met Pathway as a Target in RCC Harriet Kluger, M.D. Associate Professor Yale Cancer Center Disclosures pertinent to this presentation - none c-met Pathway (Biocarta) Rationale for c-met targeting in

More information

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation Cancer The fundamental defect is unregulated cell division. Properties of Cancerous Cells Altered growth and proliferation Loss of growth factor dependence Loss of contact inhibition Immortalization Alterated

More information

DOES THE BRCAX GENE EXIST? FUTURE OUTLOOK

DOES THE BRCAX GENE EXIST? FUTURE OUTLOOK CHAPTER 6 DOES THE BRCAX GENE EXIST? FUTURE OUTLOOK Genetic research aimed at the identification of new breast cancer susceptibility genes is at an interesting crossroad. On the one hand, the existence

More information

Renal Parenchymal Neoplasms

Renal Parenchymal Neoplasms Renal Parenchymal Neoplasms د. BENIGN TUMORS : Benign renal tumors include adenoma, oncocytoma, angiomyolipoma, leiomyoma, lipoma, hemangioma, and juxtaglomerular tumors. Renal Adenomas : The adenoma is

More information

Mechanisms of Gene Regulation and Signal! Transduction in Hypoxia!

Mechanisms of Gene Regulation and Signal! Transduction in Hypoxia! Mechanisms of Gene Regulation and Signal! Transduction in Hypoxia! Lorenz Poellinger! Dept. of Cell and Molecular Biology! Karolinska Institutet, Stockholm, Sweden! Normoxia - O 2 availability is in balance

More information

BRAIN & SPINAL LESIONS: NOT JUST A SCIENCE. Rimas V. Lukas, MD Associate Professor Director of Medical Neuro-Oncology University of Chicago

BRAIN & SPINAL LESIONS: NOT JUST A SCIENCE. Rimas V. Lukas, MD Associate Professor Director of Medical Neuro-Oncology University of Chicago BRAIN & SPINAL LESIONS: NOT JUST A SCIENCE Rimas V. Lukas, MD Associate Professor Director of Medical Neuro-Oncology University of Chicago OVERVIEW Background Clinical Presentation Clinical Management

More information

Evolution of Pathology

Evolution of Pathology 1 Traditional pathology Molecular pathology 2 Evolution of Pathology Gross Pathology Cellular Pathology Morphologic Pathology Molecular/Predictive Pathology Antonio Benivieni (1443-1502): First autopsy

More information

Case Report A Case of Hereditary Leiomyomatosis and Renal Cell Carcinoma

Case Report A Case of Hereditary Leiomyomatosis and Renal Cell Carcinoma Case Reports in Dermatological Medicine Volume 2016, Article ID 3793986, 4 pages http://dx.doi.org/10.1155/2016/3793986 Case Report A Case of Hereditary Leiomyomatosis and Renal Cell Carcinoma Sarah Mehrtens,

More information

R enal cell carcinoma (RCC) is the most common adult

R enal cell carcinoma (RCC) is the most common adult 706 ORIGINAL ARTICLE Molecular genetic analysis of FIH-1, FH, and SDHB candidate tumour suppressor genes in renal cell carcinoma M R Morris, E N Maina, N V Morgan, D Gentle, D Astuti, H Moch, T Kishida,

More information

Early Embryonic Development

Early Embryonic Development Early Embryonic Development Maternal effect gene products set the stage by controlling the expression of the first embryonic genes. 1. Transcription factors 2. Receptors 3. Regulatory proteins Maternal

More information

Neoplasia 2018 lecture 11. Dr H Awad FRCPath

Neoplasia 2018 lecture 11. Dr H Awad FRCPath Neoplasia 2018 lecture 11 Dr H Awad FRCPath Clinical aspects of neoplasia Tumors affect patients by: 1. their location 2. hormonal secretions 3. paraneoplastic syndromes 4. cachexia Tumor location Even

More information

An information leaflet for patients and families. Von Hippel- Lindau Disease

An information leaflet for patients and families. Von Hippel- Lindau Disease An information leaflet for patients and families Von Hippel- Lindau Disease What is Von Hippel-Lindau disease? Von Hippel-Lindau (VHL) disease is a rare inherited disorder caused by a genetic alteration

More information

Case Report Staged, Open, No-Ischemia Nephron-Sparing Surgery for Bilateral-Multiple Kidney Tumors in a Patient with Birt-Hogg-Dubé Syndrome

Case Report Staged, Open, No-Ischemia Nephron-Sparing Surgery for Bilateral-Multiple Kidney Tumors in a Patient with Birt-Hogg-Dubé Syndrome Case Reports in Medicine Volume 2012, Article ID 639629, 6 pages doi:10.1155/2012/639629 Case Report Staged, Open, No-Ischemia Nephron-Sparing Surgery for Bilateral-Multiple Kidney Tumors in a Patient

More information

InnovativeHealth SINAS DRAMIS LAW FIRM. Michigan SUMMER 2017 AUTO NO-FAULT SPECIAL ISSUE CATHOLIC CHARITIES. NeuroTrauma Association THE LEGACY OF THE

InnovativeHealth SINAS DRAMIS LAW FIRM. Michigan SUMMER 2017 AUTO NO-FAULT SPECIAL ISSUE CATHOLIC CHARITIES. NeuroTrauma Association THE LEGACY OF THE Can be accessed online at: http://www.emagcloud.com/innovativehealthmagazine/ihm422017online4/#/100/ InnovativeHealth Michigan SUMMER 2017 W E L L N E S S A N D H E A L T H C A R E M A G A Z I N E ONE

More information

Samer Ghosn, MD Associate professor, Derpartment of Dermatology American University of Beirut Medical Center. Follicular lesions

Samer Ghosn, MD Associate professor, Derpartment of Dermatology American University of Beirut Medical Center. Follicular lesions Samer Ghosn, MD Associate professor, Derpartment of Dermatology American University of Beirut Medical Center Follicular lesions Introduction Follicular lesions are important to recognize: For proper management

More information

Genetics and Cancer Ch 20

Genetics and Cancer Ch 20 Genetics and Cancer Ch 20 Cancer is genetic Hereditary cancers Predisposition genes Ex. some forms of colon cancer Sporadic cancers ~90% of cancers Descendants of cancerous cells all cancerous (clonal)

More information

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation Cancer The fundamental defect is unregulated cell division. Properties of Cancerous Cells Altered growth and proliferation Loss of growth factor dependence Loss of contact inhibition Immortalization Alterated

More information

Osamu Tetsu, MD, PhD Associate Professor Department of Otolaryngology-Head and Neck Surgery School of Medicine, University of California, San

Osamu Tetsu, MD, PhD Associate Professor Department of Otolaryngology-Head and Neck Surgery School of Medicine, University of California, San Osamu Tetsu, MD, PhD Associate Professor Department of Otolaryngology-Head and Neck Surgery School of Medicine, University of California, San Francisco Lung Cancer Classification Pathological Classification

More information

FGL2 A new biomarker for cancer in a simple blood test

FGL2 A new biomarker for cancer in a simple blood test FGL2 A new biomarker for cancer in a simple blood test WHO IS FGL2 Human gene (chromosome 7) is 7 kb long, 2 exons, monomer protein 70 KD, tetramer in solution. Fibrinogen-like protein 2 (Fgl2), a member

More information

OPHTHALMIC MOLECULAR GENETICS

OPHTHALMIC MOLECULAR GENETICS OPHTHALMIC MOLECULAR GENETICS Genotype-Phenotype Correlation in von Hippel-Lindau Disease With Retinal Angiomatosis Wai T. Wong, MD, PhD; Elvira Agrón, MS; Hanna R. Coleman, MD; George F. Reed, PhD; Karl

More information

The Incidental Renal Mass in the Primary Care Setting

The Incidental Renal Mass in the Primary Care Setting The Incidental Renal Mass in the Primary Care Setting Adele M. Caruso, MSN, CRNP Adult Nurse Practitioner The Perelman School of Medicine at the University of Pennsylvania Abstract There are approximately

More information

Chapter 11 Gene Expression

Chapter 11 Gene Expression Chapter 11 Gene Expression 11-1 Control of Gene Expression Gene Expression- the activation of a gene to form a protein -a gene is on or expressed when it is transcribed. -cells do not always need to produce

More information

Chapter 18- Oncogenes, tumor suppressors & Cancer

Chapter 18- Oncogenes, tumor suppressors & Cancer Chapter 18- Oncogenes, tumor suppressors & Cancer - Previously we have talked about cancer which is an uncontrolled cell proliferation and we have discussed about the definition of benign, malignant, metastasis

More information

DIAGNOSTIC SLIDE SEMINAR: PART 1 RENAL TUMOUR BIOPSY CASES

DIAGNOSTIC SLIDE SEMINAR: PART 1 RENAL TUMOUR BIOPSY CASES DIAGNOSTIC SLIDE SEMINAR: PART 1 RENAL TUMOUR BIOPSY CASES Dr. Andrew J. Evans MD, PhD, FACP, FRCPC Consultant in Genitourinary Pathology University Health Network, Toronto, ON Case 1 43 year-old female,

More information

7/6/2015. Cancer Related Deaths: United States. Management of NSCLC TODAY. Emerging mutations as predictive biomarkers in lung cancer: Overview

7/6/2015. Cancer Related Deaths: United States. Management of NSCLC TODAY. Emerging mutations as predictive biomarkers in lung cancer: Overview Emerging mutations as predictive biomarkers in lung cancer: Overview Kirtee Raparia, MD Assistant Professor of Pathology Cancer Related Deaths: United States Men Lung and bronchus 28% Prostate 10% Colon

More information