MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Size: px
Start display at page:

Download "MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question."

Transcription

1 Exam 3 BIOL 1406, Fall 2012 HCC Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) When biologists wish to study the internal ultrastructure of cells, they can achieve the finest resolution by using A) a phase-contrast light microscope. B) a confocal fluorescence microscope. C) a scanning electron microscope. D) a super-resolution fluorescence microscope. E) a transmission electronic microscope. 1) 2) The advantage of light microscopy over electron microscopy is that 2) A) light microscopy provides for higher resolving power than electron microscopy. B) light microscopy provides higher contrast than electron microscopy. C) light microscopy provides for higher magnification than electron microscopy. D) specimen preparation for light microcopy does not produce artifacts. E) light microscopy allows one to view dynamic processes in living cells. 3) What technique would be most appropriate to use to observe the movements of condensed chromosomes during cell division? A) light microscopy B) super-resolution fluorescence microscopy C) transmission electron microscopy D) confocal fluorescence microscopy E) scanning electron microscopy 3) 4) All of the following are part of a prokaryotic cell except 4) A) a cell wall. B) a plasma membrane. C) ribosomes. D) DNA. E) an endoplasmic reticulum. 5) Which of the following is a major cause of the size limits for certain types of cells? 5) A) rigid cell walls that limit cell size expansion B) evolutionary progression in cell size; more primitive cells have smaller sizes C) the difference in plasma membranes between prokaryotes and eukaryotes D) the need for a surface area of sufficient area to support the cell's metabolic needs E) limitation on the strength and integrity of the plasma membrane as cell size increases 6) Prokaryotes are classified as belonging to two different domains. What are the domains? 6) A) Bacteria and Archaea B) Bacteria and Eukarya C) Archaea and Protista D) Bacteria and Fungi E) Bacteria and Protista 1

2 7) A cell with a predominance of free ribosomes is most likely 7) A) constructing an extensive cell wall or extracellular matrix. B) enlarging its vacuole. C) producing primarily cytoplasmic proteins. D) producing primarily proteins for secretion. E) digesting large food particles. 8) Which term most precisely describes the cellular process of breaking down large molecules into smaller ones? A) dehydration B) catabolism C) metabolism D) anabolism 8) 9) Which structure is the site of the synthesis of proteins that may be exported from the cell? 9) A) Golgi vesicles B) free cytoplasmic ribosomes C) rough ER D) plasmodesmata E) lysosomes 2

3 10) According to this figure, which of the following is large enough to see in the light microscope? 10) A) viruses B) mitochondria C) proteins D) atoms 11) Which of the following is (are) true for anabolic pathways? 11) A) They do not depend on enzymes. B) They are usually highly spontaneous chemical reactions. C) They consume energy to build up polymers from monomers. D) They consume energy to decrease the entropy of the organism and its environment. E) They release energy as they degrade polymers to monomers. 3

4 12) The function of chloroplasts is 12) A) cellular respiration. B) intracellular digestion. C) photosynthesis. D) lipid synthesis. 13) Microfilaments differ from microtubules in that microfilaments 13) A) are found only in plants, whereas microtubules are found in both plant and animal cells. B) are mainly composed of actin, whereas microtubules are composed of tubulin. C) help to anchor organelles, whereas microtubules primarily function to help cells change shape and move. D) are thicker than microtubules. 14) Resolution is the 14) A) size of an image. B) ability of an optical instrument to magnify an image. C) ability of an optical instrument to show two close objects as separate. D) distance between the lenses of a microscope. 15) Which of the following statements about the cytoskeleton is false? 15) A) The cytoskeleton is composed of three types of fibers: microfilaments, microtubules, and intermediate filaments. B) The cytoskeleton plays an important role in amoeboid motion. C) Once laid down, the elements of the cytoskeleton are fixed and remain permanently in place. D) The cytoskeleton helps to support cells. 16) Which part of the mitochondrion shown enhances its ability to produce ATP by increasing the surface area of a mitochondrial membrane? 16) A) structure A B) structure B C) structure C D) structure D 17) Which of the following is a statement of the first law of thermodynamics? 17) A) The entropy of the universe is constant. B) Energy cannot be transferred or transformed. C) The entropy of the universe is decreasing. D) Energy cannot be created or destroyed. E) Kinetic energy is stored energy that results from the specific arrangement of matter. 4

5 18) Which of the following statements is representative of the second law of thermodynamics? 18) A) Heat represents a form of energy that can be used by most organisms to do work. B) Cells require a constant input of energy to maintain their high level of organization. C) Every energy transformation by a cell decreases the entropy of the universe. D) Without an input of energy, organisms would tend toward decreasing entropy. E) Conversion of energy from one form to another is always accompanied by some gain of free energy. 19) Which of the following is an example of potential rather than kinetic energy? 19) A) the muscle contractions of a person mowing grass B) water rushing over Niagara Falls C) the flight of an insect foraging for food D) light flashes emitted by a firefly E) a molecule of glucose 20) Which of the following is the smallest closed system? 20) A) a cell B) an ecosystem C) Earth D) an organism E) the universe 21) Which of the following is true for all exergonic reactions? 21) A) The products have more total energy than the reactants. B) A net input of energy from the surroundings is required for the reactions to proceed. C) The reaction proceeds with a net release of free energy. D) The reactions are rapid. 22) A chemical reaction that has a positive G is correctly described as 22) A) endergonic. B) enthalpic. C) spontaneous. D) endothermic. E) exothermic. 23) Why is ATP an important molecule in metabolism? 23) A) Its hydrolysis provides an input of free energy for exergonic reactions. B) Its terminal phosphate bond has higher energy than the other two. C) It is one of the four building blocks for DNA synthesis. D) It provides energy coupling between exergonic and endergonic reactions. E) Its terminal phosphate group contains a strong covalent bond that, when hydrolyzed, releases free energy. 24) When chemical, transport, or mechanical work is done by an organism, what happens to the heat generated? A) It is used to power yet more cellular work. B) It is lost to the environment. C) It is transported to specific organs such as the brain. D) It is used to generate ADP from nucleotide precursors. E) It is used to store energy as more ATP. 24) 5

6 25) Which of the following statements regarding enzymes is true? 25) A) Enzymes change the equilibrium point of the reactions they catalyze. B) Enzymes make the rate of a reaction independent of substrate concentrations. C) Enzymes increase the rate of a reaction by lowering the activation energy barrier. D) Enzymes increase the rate of a reaction by reducing the rate of reverse reactions. E) Enzymes increase the rate of a reaction by making the reaction more exergonic. 26) The active site of an enzyme is the region that 26) A) binds noncompetitive inhibitors of the enzyme. B) is inhibited by the presence of a coenzyme or a cofactor. C) binds allosteric regulators of the enzyme. D) is involved in the catalytic reaction of the enzyme. 27) Mutations that result in single amino acid substitutions in an enzyme 27) A) may, in rare cases, cause the enzyme to run reactions in reverse. B) will almost always destroy the activity of the enzyme. C) may affect the physicochemical properties of the enzyme such as its optimal temperature and ph. D) will often cause a change in the substrate specificity of the enzyme. E) can have no effect on the activity or properties of the enzyme. 28) Increasing the substrate concentration in an enzymatic reaction could overcome which of the following? A) insufficient cofactors B) denaturization of the enzyme C) allosteric inhibition D) saturation of the enzyme activity E) competitive inhibition 29) The mechanism in which the end product of a metabolic pathway inhibits an earlier step in the pathway is most precisely described as A) feedback inhibition. B) reversible inhibition. C) metabolic inhibition. D) noncooperative inhibition. E) allosteric inhibition. 28) 29) 30) Some bacteria are metabolically active in hot springs because 30) A) they are able to maintain a lower internal temperature. B) their enzymes have high optimal temperatures. C) their enzymes are completely insensitive to temperature. D) high temperatures make catalysis unnecessary. E) they use molecules other than proteins or RNAs as their main catalysts. 6

7 31) How do cells use the ATP cycle shown in the figure? 31) A) Cells use the cycle to recycle ADP, phosphate, and the energy released by ATP hydrolysis. B) Cells use the cycle to recycle ADP and phosphate. C) Cells use the cycle primarily to generate heat. D) Cells use the cycle to generate or consume water molecules as needed. E) Cells use the cycle to recycle energy released by ATP hydrolysis. 32) What is the term for metabolic pathways that release stored energy by breaking down complex molecules? A) catabolic pathways B) fermentation pathways C) bioenergetic pathways D) thermodynamic pathways E) anabolic pathways 33) The molecule that functions as the reducing agent (electron donor) in a redox or oxidation-reduction reaction A) gains electrons and gains potential energy. B) neither gains nor loses electrons, but gains or loses potential energy. C) gains electrons and loses potential energy. D) loses electrons and gains potential energy. E) loses electrons and loses potential energy. 32) 33) 34) When a molecule of NAD+ (nicotinamide adenine dinucleotide) gains a hydrogen atom (not a proton), the molecule becomes A) oxidized. B) dehydrogenated. C) hydrolyzed. D) reduced. E) redoxed. 34) 35) Where does glycolysis take place in eukaryotic cells? 35) A) mitochondrial inner membrane B) mitochondrial intermembrane space C) cytosol D) mitochondrial matrix 36) The oxygen consumed during cellular respiration is involved directly in which process or event? 36) A) the citric acid cycle B) the phosphorylation of ADP to form ATP C) accepting electrons at the end of the electron transport chain D) glycolysis 7

8 37) Which step of the citric acid cycle requires both NAD+ and ADP as reactants? 37) A) step 1 B) step 2 C) step 3 D) step 4 38) Which process in eukaryotic cells will proceed normally whether oxygen (O2) is present or absent? 38) A) the citric acid cycle B) chemiosmosis C) electron transport D) glycolysis E) oxidative phosphorylation 39) The processes of photosynthesis and cellular respiration are complementary. During these energy conversions, some energy is A) lost in the form of heat. B) used to create light. C) saved in the chemical bonds of water, CO2 and O2. D) destroyed when the chemical bonds of glucose are made. 39) 8

9 40) Which H+ ion has just passed through the inner mitochondrial membrane by diffusion? 40) A) hydrogen ion A B) hydrogen ion B C) hydrogen ion C D) hydrogen ion D 41) During glycolysis, when each molecule of glucose is catabolized to two molecules of pyruvate, most of the potential energy contained in glucose is A) transferred to ADP, forming ATP. B) used to phosphorylate fructose to form fructose 6-phosphate. C) stored in the NADH produced. D) retained in the two pyruvates. E) transferred directly to ATP. 42) Which of the following intermediary metabolites enters the citric acid cycle and is formed, in part, by the removal of a carbon (CO2) from one molecule of pyruvate? A) oxaloacetate B) citrate C) glyceraldehydes-3-phosphate D) acetyl CoA E) lactate 41) 42) 43) During aerobic respiration, electrons travel downhill in which sequence? 43) A) glucose ATP electron transport chain NADH B) glucose pyruvate ATP oxygen C) food citric acid cycle ATP NAD+ D) food NADH electron transport chain oxygen E) food glycolysis citric acid cycle NADH ATP 44) Where are the proteins of the electron transport chain located? 44) A) mitochondrial intermembrane space B) mitochondrial outer membrane C) cytosol D) mitochondrial inner membrane 9

10 45) In cellular respiration, the energy for most ATP synthesis is supplied by 45) A) transferring electrons from organic molecules to pyruvate. B) generating carbon dioxide and oxygen in the electron transport chain. C) a proton gradient across a membrane. D) converting oxygen to ATP. E) high energy phosphate bonds in organic molecules. 46) Where is ATP synthase located in the mitochondrion? 46) A) electron transport chain B) outer membrane C) inner membrane D) mitochondrial matrix E) cytosol 47) Which statement best supports the hypothesis that glycolysis is an ancient metabolic pathway that originated before the last universal common ancestor of life on Earth? A) Ancient prokaryotic cells, the most primitive of cells, made extensive use of glycolysis long before oxygen was present in Earth's atmosphere. B) Glycolysis is widespread and is found in the domains Bacteria, Archaea, and Eukarya. C) Glycolysis is found in all eukaryotic cells. D) Glycolysis neither uses nor needs O2. E) The enzymes of glycolysis are found in the cytosol rather than in a membrane-enclosed organelle. 48) Which kind of metabolic poison would most directly interfere with chemiosmosis and ATP synthesis? A) an agent that reacts with NADH and oxidizes it to NAD+ B) an agent that binds to pyruvate and inactivates it C) an agent that closely mimics the structure of glucose but is not metabolized D) an agent that blocks the passage of electrons along the electron transport chain 49) The final electron acceptor of the electron transport chain that functions in aerobic oxidative phosphorylation is A) oxygen. B) pyruvate. C) NAD+. D) ADP. E) water. 47) 48) 49) 50) If ATP accumulates in a cell 50) A) the rate of cellular respiration does not change. B) feedback inhibition speeds up cellular respiration. C) feedback inhibition slows down cellular respiration. D) the cell receives a signal that there is a need for more energy. 10

III. 6. Test. Respiració cel lular

III. 6. Test. Respiració cel lular III. 6. Test. Respiració cel lular Chapter Questions 1) What is the term for metabolic pathways that release stored energy by breaking down complex molecules? A) anabolic pathways B) catabolic pathways

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Respiration Practice Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following statements describes NAD+? A) NAD+ can donate

More information

2) The molecule that functions as the reducing agent (electron donor) in a redox or oxidationreduction

2) The molecule that functions as the reducing agent (electron donor) in a redox or oxidationreduction Campbell Biology in Focus (Urry) Chapter 7 Cellular Respiration and Fermentation 7.1 Multiple-Choice Questions 1) What is the term for metabolic pathways that release stored energy by breaking down complex

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) What is the term for metabolic pathways that release stored energy by breaking down complex

More information

1- Which of the following statements is TRUE in regards to eukaryotic and prokaryotic cells?

1- Which of the following statements is TRUE in regards to eukaryotic and prokaryotic cells? Name: NetID: Exam 3 - Version 1 October 23, 2017 Dr. A. Pimentel Each question has a value of 4 points and there are a total of 160 points in the exam. However, the maximum score of this exam will be capped

More information

Bio 103 Section A02 Summer 2003 Exam #2 Study Guide Dr. Largen

Bio 103 Section A02 Summer 2003 Exam #2 Study Guide Dr. Largen Chapter 4 - Cell Structure Bio 103 Section A02 Summer 2003 Exam #2 Study Guide Dr. Largen Microscopes provide windows to the world of the cell compare light versus electron microscopes illumination type

More information

Chemical Energy. Valencia College

Chemical Energy. Valencia College 9 Pathways that Harvest Chemical Energy Valencia College 9 Pathways that Harvest Chemical Energy Chapter objectives: How Does Glucose Oxidation Release Chemical Energy? What Are the Aerobic Pathways of

More information

Reading Assignments. A. Energy and Energy Conversions. Lecture Series 9 Cellular Pathways That Harvest Chemical Energy. gasoline) or elevated mass.

Reading Assignments. A. Energy and Energy Conversions. Lecture Series 9 Cellular Pathways That Harvest Chemical Energy. gasoline) or elevated mass. Lecture Series 9 Cellular Pathways That Harvest Chemical Energy Reading Assignments Review Chapter 3 Energy, Catalysis, & Biosynthesis Read Chapter 13 How Cells obtain Energy from Food Read Chapter 14

More information

Cellular Respiration

Cellular Respiration Cellular Respiration 1. To perform cell work, cells require energy. a. A cell does three main kinds of work: i. Mechanical work, such as the beating of cilia, contraction of muscle cells, and movement

More information

What s the point? The point is to make ATP! ATP

What s the point? The point is to make ATP! ATP ATP Chapter 8 What s the point? The point is to make ATP! ATP Flows into an ecosystem as sunlight and leaves as heat Energy is stored in organic compounds Carbohydrates, lipids, proteins Heterotrophs eat

More information

Ch. 9 Cell Respiration. Title: Oct 15 3:24 PM (1 of 53)

Ch. 9 Cell Respiration. Title: Oct 15 3:24 PM (1 of 53) Ch. 9 Cell Respiration Title: Oct 15 3:24 PM (1 of 53) Essential question: How do cells use stored chemical energy in organic molecules and to generate ATP? Title: Oct 15 3:28 PM (2 of 53) Title: Oct 19

More information

Cellular Respiration. 3. In the figure, which step of the citric acid cycle requires both NAD+ and ADP as reactants? a. Step 1. c. Step 3 b.

Cellular Respiration. 3. In the figure, which step of the citric acid cycle requires both NAD+ and ADP as reactants? a. Step 1. c. Step 3 b. Cellular Respiration 1. Enzymes are organic catalysts. How do they increase the rate of chemical reactions? a. By decreasing the free-energy change of the reaction b. By increasing the free-energy change

More information

Chapter 9: Cellular Respiration

Chapter 9: Cellular Respiration Chapter 9: Cellular Respiration To perform their many tasks, living cells require energy from outside sources. Energy stored in food utimately comes from the sun. Photosynthesis makes the raw materials

More information

CELLULAR RESPIRATION. Chapter 7

CELLULAR RESPIRATION. Chapter 7 CELLULAR RESPIRATION Chapter 7 7.1 GLYCOLYSIS AND FERMENTATION If I have a $10.00 bill and a $10.00 check, which is better? ATP is like cash in the cell Glucose, NADH, FADH2 are like checks in a cell.

More information

Chapter 7 Cellular Respiration and Fermentation*

Chapter 7 Cellular Respiration and Fermentation* Chapter 7 Cellular Respiration and Fermentation* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. Life Is Work

More information

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5 1. Which of the following statements about NAD + is false? a. NAD + is reduced to NADH during both glycolysis and the citric acid cycle. b. NAD + has more chemical energy than NADH. c. NAD + is reduced

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 2004 BCOR 11 Exam 2 Name: Section: Please note that the chapters covered in this exam 2 (2004) are not the same chapters we are covering this year (2005). That means that you won't be getting more questions

More information

Structure of the Mitochondrion. Cell Respiration. Cellular Respiration. Catabolic Pathways. Photosynthesis vs. Cell Respiration ATP 10/14/2014

Structure of the Mitochondrion. Cell Respiration. Cellular Respiration. Catabolic Pathways. Photosynthesis vs. Cell Respiration ATP 10/14/2014 Structure of the Mitochondrion Cellular Respiration Chapter 9 Pgs. 163 183 Enclosed by a double membrane Outer membrane is smooth Inner, or cristae, membrane is folded - this divides the mitochondrion

More information

3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP]

3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP] 3.7 Cell respiration ( Chapter 9 in Campbell's book) 3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP] Organic compounds store

More information

How Cells Harvest Energy. Chapter 7. Respiration

How Cells Harvest Energy. Chapter 7. Respiration How Cells Harvest Energy Chapter 7 Respiration Organisms classified on how they obtain energy: autotrophs: produce their own organic molecules through photosynthesis heterotrophs: live on organic compounds

More information

Chapter 5. Microbial Metabolism

Chapter 5. Microbial Metabolism Chapter 5 Microbial Metabolism Metabolism Collection of controlled biochemical reactions that take place within a microbe Ultimate function of metabolism is to reproduce the organism Metabolic Processes

More information

Cellular Respiration. Biochemistry Part II 4/28/2014 1

Cellular Respiration. Biochemistry Part II 4/28/2014 1 Cellular Respiration Biochemistry Part II 4/28/2014 1 4/28/2014 2 The Mitochondria The mitochondria is a double membrane organelle Two membranes Outer membrane Inter membrane space Inner membrane Location

More information

Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels Several processes are central to cellular respiration and related pathways

Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels Several processes are central to cellular respiration and related pathways Overview: Life Is Work Living cells require energy from outside sources Some animals, such as the chimpanzee, obtain energy by eating plants, and some animals feed on other organisms that eat plants Energy

More information

RESPIRATION Worksheet

RESPIRATION Worksheet A.P. Bio L.C. RESPIRATION Worksheet 1. In the conversion of glucose and oxygen to carbon dioxide and water a) which molecule becomes reduced? b) which molecule becomes oxidized? c) what happens to the

More information

7 Pathways That Harvest Chemical Energy

7 Pathways That Harvest Chemical Energy 7 Pathways That Harvest Chemical Energy Pathways That Harvest Chemical Energy How Does Glucose Oxidation Release Chemical Energy? What Are the Aerobic Pathways of Glucose Metabolism? How Is Energy Harvested

More information

ATP. Principles of Energy Harvest. Chapter 9~ The point is to make ATP! Cellular Respiration: Harvesting Chemical Energy. What s the point?

ATP. Principles of Energy Harvest. Chapter 9~ The point is to make ATP! Cellular Respiration: Harvesting Chemical Energy. What s the point? Chapter 9~ Cellular Respiration: Harvesting Chemical Energy What s the point? The point is to make! 2006-2007 Principles of Energy Harvest Catabolic pathway Fermentation Cellular Respiration C6H126 + 62

More information

10/25/2010 CHAPTER 9 CELLULAR RESPIRATION. Life is Work. Types of cellular respiration. Catabolic pathways = oxidizing fuels

10/25/2010 CHAPTER 9 CELLULAR RESPIRATION. Life is Work. Types of cellular respiration. Catabolic pathways = oxidizing fuels CHAPTER 9 CELLULAR RESPIRATION Life is Work Living cells require transfusions of energy from outside sources to perform their many tasks: Chemical work Transport work Mechanical work Energy stored in the

More information

7 Cellular Respiration and Fermentation

7 Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

AP Biology Review Session 2

AP Biology Review Session 2 AP Biology Review Session 2 The cell is sometimes described as a protein factory. Using the cell-as-factory analogy, which of the following accurately describes the functions of the endomembrane system?

More information

Cellular Respiration Harvesting Chemical Energy ATP

Cellular Respiration Harvesting Chemical Energy ATP Cellular Respiration Harvesting Chemical Energy ATP 2006-2007 What s the point? The point is to make ATP! ATP 2006-2007 Harvesting stored energy Energy is stored in organic molecules carbohydrates, fats,

More information

Chapter 9 Notes. Cellular Respiration and Fermentation

Chapter 9 Notes. Cellular Respiration and Fermentation Chapter 9 Notes Cellular Respiration and Fermentation Objectives Distinguish between fermentation and anaerobic respiration. Name the three stages of cellular respiration and state the region of the cell

More information

AP Bio Photosynthesis & Respiration

AP Bio Photosynthesis & Respiration AP Bio Photosynthesis & Respiration Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. What is the term used for the metabolic pathway in which

More information

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General Cellular Pathways That Harvest Chemical Energy A. Obtaining Energy and Electrons from Glucose Lecture Series 12 Cellular Pathways That Harvest Chemical Energy B. An Overview: Releasing Energy from Glucose

More information

Respiration. Respiration. Respiration. How Cells Harvest Energy. Chapter 7

Respiration. Respiration. Respiration. How Cells Harvest Energy. Chapter 7 How Cells Harvest Energy Chapter 7 Organisms can be classified based on how they obtain energy: autotrophs: are able to produce their own organic molecules through photosynthesis heterotrophs: live on

More information

Cellular Respiration Harvesting Chemical Energy ATP

Cellular Respiration Harvesting Chemical Energy ATP Cellular Respiration Harvesting Chemical Energy ATP 2006-2007 What s the point? The point is to make ATP! ATP 2006-2007 Harvesting stored energy Energy is stored in organic molecules carbohydrates, fats,

More information

Introduction. Living is work. To perform their many tasks, cells must bring in energy from outside sources.

Introduction. Living is work. To perform their many tasks, cells must bring in energy from outside sources. Introduction Living is work. To perform their many tasks, cells must bring in energy from outside sources. In most ecosystems, energy enters as sunlight. Light energy trapped in organic molecules is available

More information

Cellular Respiration

Cellular Respiration Cellular Respiration C 6 H 12 O 6 + 6O 2 -----> 6CO 2 + 6H 2 0 + energy (heat and ATP) 1. Energy Capacity to move or change matter Forms of energy are important to life include Chemical, radiant (heat

More information

WHY IS THIS IMPORTANT?

WHY IS THIS IMPORTANT? CHAPTER 3 ESSENTIALS OF METABOLISM WHY IS THIS IMPORTANT? It is important to have a basic understanding of metabolism because it governs the survival and growth of microorganisms The growth of microorganisms

More information

2/9/15 CONCEPTS OF BIOLOGY BIOSC 10 ANNOUNCEMENTS 2/9 CHAPTER 3 REVIEW. Review Q3 (chapter 3- notes allowed!)

2/9/15 CONCEPTS OF BIOLOGY BIOSC 10 ANNOUNCEMENTS 2/9 CHAPTER 3 REVIEW. Review Q3 (chapter 3- notes allowed!) BIOSC 10 ANNOUNCEMENTS /9 Review Q3 (chapter 3- notes allowed!) Lecture: chapter 4 Wed: Quiz covering chapters 3-4 Next Wed (/18)- Exam 1 (chapters 1-4) Extra Credit: answer all study guide Q s (guide

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy You should be able to: 1. Explain how redox reactions are involved in energy exchanges. Name and describe the three stages of cellular respiration;

More information

Cellular Respiration. Overview of Cellular Respiration. Lecture 8 Fall Overview of Cellular Respiration. Overview of Cellular Respiration

Cellular Respiration. Overview of Cellular Respiration. Lecture 8 Fall Overview of Cellular Respiration. Overview of Cellular Respiration Overview of Cellular Respiration 1 Cellular Respiration Lecture 8 Fall 2008 All organisms need ATP to do cellular work Cellular Respiration: The conversion of chemical energy of carbon compounds into another

More information

Chapter 9: Cellular Respiration Overview: Life Is Work. Living cells. Require transfusions of energy from outside sources to perform their many tasks

Chapter 9: Cellular Respiration Overview: Life Is Work. Living cells. Require transfusions of energy from outside sources to perform their many tasks Chapter 9: Cellular Respiration Overview: Life Is Work Living cells Require transfusions of energy from outside sources to perform their many tasks Biology, 7 th Edition Neil Campbell and Jane Reece The

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation

More information

Biological Science 101 General Biology

Biological Science 101 General Biology Lecture Seven: Cellular Respiration Ch. 9, Pgs. 163-181 Figs. 9.2-9.20 Biological Science 101 General Biology Cellular Respiration: - A series of processes that is involved in converting food to energy

More information

BIOLOGY 311C - Brand Spring 2010

BIOLOGY 311C - Brand Spring 2010 BIOLOGY 311C - Brand Spring 2010 NAME (printed very legibly) KEY UT-EID EXAMINATION III Before beginning, check to be sure that this exam contains 8 pages (including front and back) numbered consecutively,

More information

BIOLOGY 101. CHAPTER 9: Cellular Respiration - Fermentation: Life is Work

BIOLOGY 101. CHAPTER 9: Cellular Respiration - Fermentation: Life is Work BIOLOGY 101 CHAPTER 9: Cellular Respiration - Fermentation: Life is Work An Introduction to Metabolism: Energy of Life 8.3 ATP powers cellular work by coupling exergonic reactions to endergonic reactions

More information

Aerobic vs Anaerobic Respiration. 1. Glycolysis 2. Oxidation of Pyruvate and Krebs Cycle

Aerobic vs Anaerobic Respiration. 1. Glycolysis 2. Oxidation of Pyruvate and Krebs Cycle CELLULAR RESPIRATION Student Packet SUMMARY ALL LIVING SYSTEMS REQUIRE CONSTANT INPUT OF FREE ENERGY Cellular respiration is a catabolic pathway in which glucose and other organic fuels (such as starch,

More information

CH 7: Cell Respiration and Fermentation Overview. Concept 7.1: Catabolic pathways yield energy by oxidizing organic fuels

CH 7: Cell Respiration and Fermentation Overview. Concept 7.1: Catabolic pathways yield energy by oxidizing organic fuels CH 7: Cell Respiration and Fermentation Overview Living cells require energy from outside sources Some animals obtain energy by eating plants, and some animals feed on other organisms Energy flows into

More information

Cell Respiration. Anaerobic & Aerobic Respiration

Cell Respiration. Anaerobic & Aerobic Respiration Cell Respiration Anaerobic & Aerobic Respiration Understandings/Objectives 2.8.U1: Cell respiration is the controlled release of energy from organic compounds to produce ATP. Define cell respiration State

More information

1 Which pathway for aerobic cellular respiration is located in the cytoplasm of the cell?

1 Which pathway for aerobic cellular respiration is located in the cytoplasm of the cell? 1 Which pathway for aerobic cellular respiration is located in the cytoplasm of the cell? glycolysis citric cycle 2 Which of the following statements is NOT correct regarding aerobic cellular respiration?

More information

Cellular Respiration: Harvesting Chemical Energy CHAPTER 9

Cellular Respiration: Harvesting Chemical Energy CHAPTER 9 Cellular Respiration: Harvesting Chemical Energy CHAPTER 9 9.1 Metabolic pathways that release energy are exergonic and considered catabolic pathways. Fermentation: partial degradation of sugars that occurs

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

How Cells Release Chemical Energy. Chapter 7

How Cells Release Chemical Energy. Chapter 7 How Cells Release Chemical Energy Chapter 7 7.1 Overview of Carbohydrate Breakdown Pathways All organisms (including photoautotrophs) convert chemical energy of organic compounds to chemical energy of

More information

7/5/2014. Microbial. Metabolism. Basic Chemical Reactions Underlying. Metabolism. Metabolism: Overview

7/5/2014. Microbial. Metabolism. Basic Chemical Reactions Underlying. Metabolism. Metabolism: Overview PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University Basic Chemical Reactions Underlying Metabolism Metabolism C H A P T E R 5 Microbial Metabolism Collection

More information

How Cells Harvest Chemical Energy. Chapter 9

How Cells Harvest Chemical Energy. Chapter 9 How Cells Harvest Chemical Energy Chapter 9 Cellular Respiration Releasing energy (ATP) from glucose (chemical energy) in the presence of O 2 Energy flows Matter cycles True or False Plants only perform

More information

Citric Acid Cycle and Oxidative Phosphorylation

Citric Acid Cycle and Oxidative Phosphorylation Citric Acid Cycle and Oxidative Phosphorylation Page by: OpenStax Summary The Citric Acid Cycle In eukaryotic cells, the pyruvate molecules produced at the end of glycolysis are transported into mitochondria,

More information

The Cell and Cellular transport

The Cell and Cellular transport Cell theory (1838): The Cell 1. All organisms are composed of one or more cells, and the life processes of metabolism and heredity occur within these cells. 2. Cells are the smallest living things, the

More information

Energy Production In A Cell (Chapter 25 Metabolism)

Energy Production In A Cell (Chapter 25 Metabolism) Energy Production In A Cell (Chapter 25 Metabolism) Large food molecules contain a lot of potential energy in the form of chemical bonds but it requires a lot of work to liberate the energy. Cells need

More information

3.1: All living systems require constant input of free energy. 1. BIOENERGETIC THEORY

3.1: All living systems require constant input of free energy. 1. BIOENERGETIC THEORY Domain 3: Energy 3.1: All living systems require constant input of free energy. 1. BIOENERGETIC THEORY The First Law of Thermodynamics Energy cannot be created or destroyed, only transformed. Living systems

More information

Harvesting energy: photosynthesis & cellular respiration

Harvesting energy: photosynthesis & cellular respiration Harvesting energy: photosynthesis & cellular respiration Learning Objectives Know the relationship between photosynthesis & cellular respiration Know the formulae of the chemical reactions for photosynthesis

More information

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 9 Cellular Respiration and Fermentation Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Figure 9.2 Light energy

More information

Chapter 5 Microbial Metabolism: The Chemical Crossroads of Life

Chapter 5 Microbial Metabolism: The Chemical Crossroads of Life Chapter 5 Microbial Metabolism: The Chemical Crossroads of Life Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. The Metabolism of Microbes metabolism all chemical

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

Campbell Biology 9. Chapter 9 Cellular Respiration and Fermentation. Chul-Su Yang, Ph.D., Lecture on General Biology 1

Campbell Biology 9. Chapter 9 Cellular Respiration and Fermentation. Chul-Su Yang, Ph.D., Lecture on General Biology 1 Lecture on General Biology 1 Campbell Biology 9 th edition Chapter 9 Cellular Respiration and Fermentation Chul-Su Yang, Ph.D., chulsuyang@hanyang.ac.kr Infection Biology Lab., Dept. of Molecular & Life

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS MULTIPLE CHOICE QUESTIONS 1. Which of the following statements concerning anabolic reactions is FALSE? A. They are generally endergonic. B. They usually require ATP. C. They are part of metabolism. D.

More information

Ch 9: Cellular Respiration

Ch 9: Cellular Respiration Ch 9: Cellular Respiration Cellular Respiration An overview Exergonic reactions and catabolic pathway Energy stored in bonds of food molecules is transferred to ATP Cellular respiration provides the energy

More information

CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY. The Principles of Energy Harvest

CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY. The Principles of Energy Harvest CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY The Principles of Energy Harvest 1. Cellular respiration and fermentation are catabolic, energy-yielding pathways 2. Cells recycle the ATP they use for

More information

Section B: The Process of Cellular Respiration

Section B: The Process of Cellular Respiration CHAPTER 9 CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY Section B: The Process of Cellular Respiration 1. Respiration involves glycolysis, the Krebs cycle, and electron transport: an overview 2. Glycolysis

More information

Membranes: Membranes:

Membranes: Membranes: Membranes: organize the chemical activities of cells by organizing different metabolic processes Control the flow of substances into or out of the cell The plasma membrane of the cell is selectively permeable

More information

Chapter 9 Cellular Respiration Overview: Life Is Work Living cells require energy from outside sources

Chapter 9 Cellular Respiration Overview: Life Is Work Living cells require energy from outside sources Chapter 9 Cellular Respiration Overview: Life Is Work Living cells require energy from outside sources Some animals, such as the giant panda, obtain energy by eating plants, and some animals feed on other

More information

Lesson Overview. Cellular Respiration: An Overview. 9.2 process of cell respiration

Lesson Overview. Cellular Respiration: An Overview. 9.2 process of cell respiration 9.2 process of cell respiration Glycolysis During glycolysis, glucose is broken down into 2 molecules of the 3-carbon molecule pyruvic acid. Pyruvic acid is a reactant in the Krebs cycle. ATP and NADH

More information

Cellular Respiration: Harvesting Chemical Energy Chapter 9

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy Chapter 9 Assemble polymers, pump substances across membranes, move and reproduce The giant panda Obtains energy for its cells by eating plants which get

More information

3. Distinguish between aerobic and anaerobic in terms of cell respiration. Outline the general process of both.

3. Distinguish between aerobic and anaerobic in terms of cell respiration. Outline the general process of both. 3.7 Cell Respiration 1. Define cell respiration. Cell respiration is the controlled release of energy from organic molecules in cells to form ATP. 2. State the equation for the process of cell respiration.

More information

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Photosynthesis in chloroplasts. Light energy ECOSYSTEM. Organic molecules CO 2 + H 2 O

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Photosynthesis in chloroplasts. Light energy ECOSYSTEM. Organic molecules CO 2 + H 2 O 9 Cellular Respiration and Fermentation CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Figure 9.1 Figure 9.2

More information

How Cells Harvest Chemical Energy

How Cells Harvest Chemical Energy How Cells Harvest Chemical Energy Chapter 6 Introduction: How Is a Marathoner Different from a Sprinter? Individuals inherit various percentages of the two main types of muscle fibers, slow and fast The

More information

BIOL 1103 AT. Facilitators do not bring copies of the mock exam to the session. Please print out and complete the exam before you attend.

BIOL 1103 AT. Facilitators do not bring copies of the mock exam to the session. Please print out and complete the exam before you attend. It is most beneficial to you to write this mock midterm UNDER EXAM CONDITIONS. This means: Complete the midterm in 1.5 hour(s). Work on your own. Keep your notes and textbook closed. Attempt every question.

More information

Unit 2 Cellular Respiration

Unit 2 Cellular Respiration Metabolism Unit 2 Cellular Respiration Living organisms must continually to carry out the functions of life. Without energy, comes to an end. The breakdown of complex substances are the result of. The

More information

Cell Respiration Ch 7. Both autotrophs and heterotrophs use cellular respiration to make CO2 and water from

Cell Respiration Ch 7. Both autotrophs and heterotrophs use cellular respiration to make CO2 and water from Cell Respiration Ch 7 Objectives: Identify the 2 major steps of cellular respiration Describe the major events in glycolysis Compare lactic acid fermentation with alcoholic fermentation Calculate the efficiency

More information

Chapter Seven (Cellular Respiration)

Chapter Seven (Cellular Respiration) Chapter Seven (Cellular Respiration) 1 SECTION ONE: GLYCOLYSIS AND FERMENTATION HARVESTING CHEMICAL ENERGY Cellular respiration is the process in which cells make adenosine triphosphate (ATP) by breaking

More information

Foundations in Microbiology Seventh Edition

Foundations in Microbiology Seventh Edition Lecture PowerPoint to accompany Foundations in Microbiology Seventh Edition Talaro Chapter 8 An Introduction to Microbial Metabolism Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

7 Cellular Respiration and Fermentation

7 Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

Chapter 9: Cellular Respiration: Harvesting Chemical Energy

Chapter 9: Cellular Respiration: Harvesting Chemical Energy AP Biology Reading Guide Name: Date: Period Chapter 9: Cellular Respiration: Harvesting Chemical Energy Overview: Before getting involved with the details of cellular respiration and photosynthesis, take

More information

Objective: You will be able to construct an explanation for how each phase of respiration captures and stores free energy.

Objective: You will be able to construct an explanation for how each phase of respiration captures and stores free energy. Objective: You will be able to construct an explanation for how each phase of respiration captures and stores free energy. Do Now: Compare and contrast the three black equations below ADP + P + Energy

More information

Campbell's Biology: Concepts and Connections, 7e (Reece et al.) Chapter 6 How Cells Harvest Chemical Energy. 6.1 Multiple-Choice Questions

Campbell's Biology: Concepts and Connections, 7e (Reece et al.) Chapter 6 How Cells Harvest Chemical Energy. 6.1 Multiple-Choice Questions Campbell's Biology: Concepts and Connections, 7e (Reece et al.) Chapter 6 How Cells Harvest Chemical Energy 6.1 Multiple-Choice Questions 1) Which of the following statements regarding photosynthesis and

More information

1. Membrane proteins have a variety of functions. State four membrane protein functions. A. B. C. D.

1. Membrane proteins have a variety of functions. State four membrane protein functions. A. B. C. D. Part I: Short answers 1. Membrane proteins have a variety of functions. State four membrane protein functions. A. B. C. D. Part II: Label the components 2. Label the components of a biological membrane

More information

Releasing Chemical Energy

Releasing Chemical Energy Releasing Chemical Energy Ø Energy From Carbohydrates Ø Aerobic Respiration/ Stages Ø Fermentation Ø Food as a Source of Energy How Do Cells Access the Chemical Energy in Carbohydrayes? Aerobic Respiration

More information

Chapter 9 Cellular Respiration: Harvesting Chemical Energy Lecture Outline

Chapter 9 Cellular Respiration: Harvesting Chemical Energy Lecture Outline Chapter 9 Cellular Respiration: Harvesting Chemical Energy Lecture Outline Overview: Life Is Work To perform their many tasks, living cells require energy from outside sources. Energy enters most ecosystems

More information

Citric Acid Cycle and Oxidative Phosphorylation

Citric Acid Cycle and Oxidative Phosphorylation Citric Acid Cycle and Oxidative Phosphorylation Bởi: OpenStaxCollege The Citric Acid Cycle In eukaryotic cells, the pyruvate molecules produced at the end of glycolysis are transported into mitochondria,

More information

OAT Biology - Problem Drill 03: Cell Processes - Metabolism and Cellular Respiration

OAT Biology - Problem Drill 03: Cell Processes - Metabolism and Cellular Respiration OAT Biology - Problem Drill 03: Cell Processes - Metabolism and Cellular Respiration Question No. 1 of 10 1. What is the final electron acceptor in aerobic respiration? Question #01 (A) NADH (B) Mitochondria

More information

ATP ATP. Cellular Respiration Harvesting Chemical Energy. The point is to make ATP!

ATP ATP. Cellular Respiration Harvesting Chemical Energy. The point is to make ATP! ellular Respiration Harvesting hemical Energy 1 The point is to make! 2 Harvesting stored energy Energy is stored in organic molecules carbohydrates, fats, proteins Heterotrophs eat these organic molecules

More information

What is Glycolysis? Breaking down glucose: glyco lysis (splitting sugar)

What is Glycolysis? Breaking down glucose: glyco lysis (splitting sugar) What is Glycolysis? Breaking down glucose: glyco lysis (splitting sugar) Most ancient form of energy capture. Starting point for all cellular respiration. Inefficient: generates only 2 ATP for every 1

More information

BIOLOGY. Cellular Respiration and Fermentation. Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels

BIOLOGY. Cellular Respiration and Fermentation. Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels 9 Cellular Respiration and Fermentation CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates

More information

Microbial Metabolism

Microbial Metabolism PowerPoint Lecture Slides for MICROBIOLOGY ROBERT W. BAUMAN Chapter 5 Microbial Metabolism Microbial Metabolism The sum total of chemical reactions that take place within cells (of an organism) Metabolic

More information

Respiration. Respiration. How Cells Harvest Energy. Chapter 7

Respiration. Respiration. How Cells Harvest Energy. Chapter 7 How Cells Harvest Energy Chapter 7 Respiration Organisms can be classified based on how they obtain energy: autotrophs: are able to produce their own organic molecules through photosynthesis heterotrophs:

More information

Microbial Metabolism. PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R

Microbial Metabolism. PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R 5 Microbial Metabolism Big Picture: Metabolism Metabolism is the buildup and breakdown of nutrients

More information

Cellular Respiration. Cellular Respiration. C 6 H 12 O 6 + 6O > 6CO 2 + 6H energy. Heat + ATP. You need to know this!

Cellular Respiration. Cellular Respiration. C 6 H 12 O 6 + 6O > 6CO 2 + 6H energy. Heat + ATP. You need to know this! Cellular Respiration LISA Biology Cellular Respiration C 6 H 12 O 6 + 6O 2 - - - - - > 6CO 2 + 6H 2 0 + energy You need to know this! Heat + ATP 1 Did that equation look familiar? * The equation for cellular

More information

Chapter 9. Cellular Respiration: Harvesting Chemical Energy

Chapter 9. Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy Living cells require energy from outside sources Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates O 2 and

More information

Cell Respiration - 1

Cell Respiration - 1 Cell Respiration - 1 All cells must do work to stay alive and maintain their cellular environment. The energy needed for cell work comes from the bonds of ATP. Cells obtain their ATP by oxidizing organic

More information

9.2 The Process of Cellular Respiration

9.2 The Process of Cellular Respiration 9.2 The Process of Cellular Respiration Oxygen Carbon 2 2 Dioxide 34 Water Glycolysis Glycolysis is the first stage of cellular respiration. During glycolysis, glucose is broken down into 2 molecules of

More information

General Biology I. BSC 1010 Fall 2011 Homework 2! Connect Due Date: 10/31/ :59PM. Multiple Choice Portion

General Biology I. BSC 1010 Fall 2011 Homework 2! Connect Due Date: 10/31/ :59PM. Multiple Choice Portion General Biology I BSC 1010 Fall 2011 Homework 2 Connect Due Date: 10/31/2011 11:59PM Instructions Complete this homework assignment as the material is covered in class. You may refer to any of the course

More information