Fluid Mozaic Model of Membranes

Size: px
Start display at page:

Download "Fluid Mozaic Model of Membranes"

Transcription

1 Replacement for the 1935 Davson Danielli model Provided explanation for Gortner-Grendel lack of lipid and permitted the unit membrane model. Trans membrane protein by labelling Fry & Edidin showed that proteins diffused in the membrane. Not until 1978 was the sequence of glycophorin determined and modeled to span the membrane with a-helices. Generally a-helix internally satisfies the hydrogen bonding of a peptide and the trans-membrane segments of proteins are almost all a-helical physical measurements including x-ray neutron diffraction and simulation confirm this Fluid Mozaic Model of Membranes Fluid Mozaic Model of Membranes Fluid Mozaic Model S nger & Nicolson Sc ence (1972) Understanding has resu ted from an ncreas ngly detailed analysis of movement in memb anes using many methods

2 Membrane dynamics ncludes many time domains Fluidity is defined as the inverse of viscosity (kg/(m-sec)) Therefore it represents the viscous drag in membranes but the link between viscous drag and physical measurements like lateral diffusion and membrane permability was not always clear and the experiments lacked predictibility. To these authors it seems that compatison should be to order parameters and correlation times The assembly of multiple parameters may be required to generate predicitive data for membranes.

3 From Concepts and Methods of Solid-State NMR Spectroscopy Applied to Biomembranes Fig. 11 [13] introduction At NIST they have observed a number of membrane movement modes that have more predictable relationships to structure using neutron spin echo methods.

4 P π P P π P Effect of Melittin on the Bending Elasticity and Thickness Fluctuation of the Lipid Bilayer Influence of peptide incorporation on lipid bilayer dynamics

5 Motion and Order Within Lipid Atoms Lipid structures that could influence fluctuations Chapter 4 Gawrisch in Yeagle 2nd edition [12] This has been extensively studied by NMR snc 1 -C 2 bond stays in gauche isomers which aligns the hydrocarbon chains The C 2 C 3 bond is parallel to membrane normal and has significant rotational mobility. Lipid structures that could influence fluctuations Glycerol backbone This would seem to promote the gel phase L o version of lamellar lipids with the chains approximating the crystalline state but the membrane remaining in a more liquid state Speculate on the asymmetry at the C 2 position

6 Motion and Order Within Lipid Atoms Alignment with Membrane Normal Chapter 4 Gawrisch in Yeagle 2nd edition [12] In gel phase PE and PC the P N dipole aligns perpendicular to the membrane normal. This resembles the crystal structure but it is dependent upon hydration and surface electrostatic potentials. In L d states this is highly variable while in the L 0 state this perpendicular alignment is more dominant and influences the membrane structure.

7 Motion and Order Within Lipid Atoms Alkane Chain Conformation Chapter 4 Gawrisch in Yeagle 2nd edition [12] Inference from crystal packing The saturated chain is usually at the C1 position. sn-1 chain has high order to middle of chain length which decays to the terminal methylene sn-2 less ordered at all positions and is at an angle to the bilayer normal This results from anchoring of the glycerol headgroup Relaxation times increase parallel to order

8 Motion and Order Within Lipid Atoms POPC Chains Chapter 4 Gawrisch in Yeagle 2nd edition [12] sn-1 Palmitate chain has high order to middle of chain length which decays to the terminal methylene sn-2 Oleate less ordered at all positions and is at an angle to the bilayer normal This results from anchoring of the glycerol headgroup Relaxation times increase in the unsaturated parallel to order parameter decrease Lower order parameters do not correlate directly with increased motional order

9 Summary of Bilayer Structure Bilayer Structure Bilayer Structure Chain Order Summary cyan phospholipid, blue +cholesterol Carbon movement in the bilayer is dramatically affected by unsaturations There is also a positional distinction since there is reduced order in chains at sn-2 position The length of the chain seems decreased

10 Summary of Bilayer Structure Distribution of Membrane Components Describe the distribution of the components These have been constructed from scattering data Especially neutron scattering which can detect the densities.

11 Diffusion in the Membrane Lateral Anisotropy in Membranes Originally a concept, annular lipids Detergent resistant membranes (DRMs) Enriched in sphingolipids and cholesterol Atomistic to continuum model Diffusion in Membranes Lateral Anisotropy in Membranes Membrane Microdomains PG Sa fman and M De br k 197 ) B own an mo on in b o og cal memb anes P oc Nat Acad Sci USA

12 Diffusion in the Membrane Saffman-Delbruk D ffusion in the membrane plane I Einstein Smoluchowski Equation D = kt (2) x I Stoke s Law x = 6pha (3) I Stoke s Einstein Law D = kt (4) 6pha Einstein established that this is a relationship between diffusion and friction x frictional coefficient [14] [15]

13 Diffusion in the Membrane Saffman-Delbruk D T = k BT 4pµh og µmh µwa g, Consider both water and membrane viscosity Viscosity µ 1/fluidity a - particle radius µ - viscosity h - membrane thickness g constant

14 Diffusion in the Membrane Saffman-Delbruk D T = k BT 4pµh og µmh µwa This model has been validated experimenta ly and has been used to charaterize many aspects of d ffusion in membranes g, microphotolysis [16] single and continuous Optical Tweezers [17]. GPI-anchored tether behave as though they weretethered to a 26 nm membrane particle.

15 Diffusion in the Membrane FCS Measurement of Movement in Membranes Fluorescent Correlation Fluorescent Correlation Spectroscopy diffusion coefficients hydrodynamic radii average concentrations kinetic chemical reaction rates singlet-triplet dynamics

16 Diffusion in the Membrane FCS Measurement of Movement in Membranes The data reflects diffusion into the measuring volume Average number of molecules is between 0.1 and 1000 per volume to provide sufficient signal differentiation This is to 10 6 [18, 19]

17 Diffusion in the Membrane FCS Measurement of Movement in Membranes G(t)= hf(t) F (t + t)i hf(t)vi The continuous fluctuations of the signal can be quantitated by Temporal Autocorrelation The lateral diffusion time, t D, can be expressed in terms of the diffusion coefficient D. It is also possible to relate D to the hydrodynamic radius and estimate the size of the particle. The dependence on R b,i µ p MW which can limit accuracy However the amplitude of the autocorrelation curve is an accurate measure of the particle

Biological Membranes. Lipid Membranes. Bilayer Permeability. Common Features of Biological Membranes. A highly selective permeability barrier

Biological Membranes. Lipid Membranes. Bilayer Permeability. Common Features of Biological Membranes. A highly selective permeability barrier Biological Membranes Structure Function Composition Physicochemical properties Self-assembly Molecular models Lipid Membranes Receptors, detecting the signals from outside: Light Odorant Taste Chemicals

More information

Lecture 15. Membrane Proteins I

Lecture 15. Membrane Proteins I Lecture 15 Membrane Proteins I Introduction What are membrane proteins and where do they exist? Proteins consist of three main classes which are classified as globular, fibrous and membrane proteins. A

More information

Measures of Membrane Fluidity: Melting Temperature

Measures of Membrane Fluidity: Melting Temperature Measures of Membrane Fluidity: Melting Temperature T m (melting temperature) is a phase transition, a change from a more rigid solid-like state to a fluid-like state The fluidity - ease with which lipids

More information

40s 50s. 70s. Membrane Rafts

40s 50s. 70s. Membrane Rafts 40s 50s 70s Membrane Rafts Membrane Microdomains Raft is a specific type of microdomain sphingolipid/cholesterol rich region Separation of discrete liquid-ordered and liquid-disordered phase domains occurring

More information

Chapter 7: Membranes

Chapter 7: Membranes Chapter 7: Membranes Roles of Biological Membranes The Lipid Bilayer and the Fluid Mosaic Model Transport and Transfer Across Cell Membranes Specialized contacts (junctions) between cells What are the

More information

MEMBRANE STRUCTURE. Lecture 8. Biology Department Concordia University. Dr. S. Azam BIOL 266/

MEMBRANE STRUCTURE. Lecture 8. Biology Department Concordia University. Dr. S. Azam BIOL 266/ 1 MEMBRANE STRUCTURE Lecture 8 BIOL 266/4 2014-15 Dr. S. Azam Biology Department Concordia University Plasma Membrane 2 Plasma membrane: The outer boundary of the cell that separates it from the world

More information

2

2 1 2 What defines all living systems is the ability to generate a chemical environment inside the cell that is different from the extracellular one. The plasma membrane separates the inside of the cell

More information

Membranes & Membrane Proteins

Membranes & Membrane Proteins School on Biomolecular Simulations Membranes & Membrane Proteins Vani Vemparala The Institute of Mathematical Sciences Chennai November 13 2007 JNCASR, Bangalore Cellular Environment Plasma membrane extracellular

More information

Plasma membrane structure and dynamics explored via a combined AFM/FCS approach

Plasma membrane structure and dynamics explored via a combined AFM/FCS approach Plasma membrane structure and dynamics explored via a combined AFM/FCS approach Salvatore Chiantia Molekulare Biophysik, Dept. Of Biology Humboldt-Universität zu Berlin Dresden nanoseminar, May 2013 Outline

More information

The Carbon Atom (cont.)

The Carbon Atom (cont.) Organic Molecules Organic Chemistry The chemistry of the living world. Organic Molecule a molecule containing carbon and hydrogen Carbon has 4 electrons in its outer shell and can share electrons with

More information

Chapter 1 Membrane Structure and Function

Chapter 1 Membrane Structure and Function Chapter 1 Membrane Structure and Function Architecture of Membranes Subcellular fractionation techniques can partially separate and purify several important biological membranes, including the plasma and

More information

0.5 nm nm acyl tail region (hydrophobic) 1.5 nm. Hydrophobic repulsion organizes amphiphilic molecules: These scales are 5 10xk B T:

0.5 nm nm acyl tail region (hydrophobic) 1.5 nm. Hydrophobic repulsion organizes amphiphilic molecules: These scales are 5 10xk B T: Lecture 31: Biomembranes: The hydrophobic energy scale and membrane behavior 31.1 Reading for Lectures 30-32: PKT Chapter 11 (skip Ch. 10) Upshot of last lecture: Generic membrane lipid: Can be cylindrical

More information

Membranes 5357 Review Membrane Binding. Protein Binding Domains

Membranes 5357 Review Membrane Binding. Protein Binding Domains Review Membrane Binding Protein Binding Domains Protein Binding Domains C1, C2 and FYVE are seen in 100s of proteins and bind to polyphosporylated inositol and are used to regulate protein activity and

More information

Lipids and Membranes

Lipids and Membranes Lipids and Membranes Presented by Dr. Mohammad Saadeh The requirements for the Pharmaceutical Biochemistry I Philadelphia University Faculty of pharmacy Biological membranes are composed of lipid bilayers

More information

Lipids and Membranes

Lipids and Membranes Lipids Lipids are hydrophobic or amphiphilic insoluble in water soluble in organic solvents soluble in lipids Lipids are used as energy storage molecules structural components of membranes protective molecules

More information

Interactions of Polyethylenimines with Zwitterionic and. Anionic Lipid Membranes

Interactions of Polyethylenimines with Zwitterionic and. Anionic Lipid Membranes Interactions of Polyethylenimines with Zwitterionic and Anionic Lipid Membranes Urszula Kwolek, Dorota Jamróz, Małgorzata Janiczek, Maria Nowakowska, Paweł Wydro, Mariusz Kepczynski Faculty of Chemistry,

More information

Flip-Flop Induced Relaxation Of Bending Energy: Implications For Membrane Remodeling

Flip-Flop Induced Relaxation Of Bending Energy: Implications For Membrane Remodeling Biophysical Journal, Volume 97 Supporting Material Flip-Flop Induced Relaxation Of Bending Energy: Implications For Membrane Remodeling Raphael Jeremy Bruckner, Sheref S. Mansy, Alonso Ricardo, L. Mahadevan,

More information

Simulationen von Lipidmembranen

Simulationen von Lipidmembranen Simulationen von Lipidmembranen Thomas Stockner Thomas.stockner@meduniwien.ac.at Summary Methods Force Field MD simulations Membrane simulations Application Oxidized lipids Anesthetics Molecular biology

More information

Effects of Cholesterol on Membranes: Physical Properties

Effects of Cholesterol on Membranes: Physical Properties Effects of Cholesterol on Membranes: Physical Properties Removes gel to liquid crystal phase transition New intermediate phase called liquid ordered - ordering of the membrane lipids due to condensation

More information

Lipids: Membranes Testing Fluid Mosaic Model of Membrane Structure: Cellular Fusion

Lipids: Membranes Testing Fluid Mosaic Model of Membrane Structure: Cellular Fusion Models for Membrane Structure NEW MODEL (1972) Fluid Mosaic Model proposed by Singer & Nicholson Lipids form a viscous, twodimensional solvent into which proteins are inserted and integrated more or less

More information

Chapter 12: Membranes. Voet & Voet: Pages

Chapter 12: Membranes. Voet & Voet: Pages Chapter 12: Membranes Voet & Voet: Pages 390-415 Slide 1 Membranes Essential components of all living cells (define boundry of cells) exclude toxic ions and compounds; accumulation of nutrients energy

More information

Life Sciences 1a. Practice Problems 4

Life Sciences 1a. Practice Problems 4 Life Sciences 1a Practice Problems 4 1. KcsA, a channel that allows K + ions to pass through the membrane, is a protein with four identical subunits that form a channel through the center of the tetramer.

More information

Biology 5357: Membranes

Biology 5357: Membranes s 5357 Biology 5357: s Assembly and Thermodynamics of Soft Matter Paul H. MD, PhD Department of Cell Biology and Physiology pschlesinger@.wustl.edu 362-2223 Characteristics s 5357 s are polymorphic s 5357

More information

Chapter 9 - Biological Membranes. Membranes form a semi-permeable boundary between a cell and its environment.

Chapter 9 - Biological Membranes. Membranes form a semi-permeable boundary between a cell and its environment. Chapter 9 - Biological Membranes www.gsbs.utmb.edu/ microbook/ch037.htmmycoplasma Membranes form a semi-permeable boundary between a cell and its environment. Membranes also permit subcellular organization

More information

Chem 431A-L25-F 07 admin: Last time: : soaps, DG s and phospholipids, sphingolipids and cholesterol.

Chem 431A-L25-F 07 admin: Last time: : soaps, DG s and phospholipids, sphingolipids and cholesterol. Chem 431A-L25-F'07 page 1 of 5 Chem 431A-L25-F 07 admin: Last time: : soaps, DG s and phospholipids, sphingolipids and cholesterol. Today: distinguish between various lipids specific lipids and their structures.

More information

Permeation of Organometallic Compounds through Phospholipid Membranes

Permeation of Organometallic Compounds through Phospholipid Membranes Permeation of Organometallic Compounds through Phospholipid Membranes Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften des Fachbereichs Chemie der Universität-GH Essen vorgelegt

More information

8 Influence of permeation modulators on the behaviour of a SC lipid model mixture

8 Influence of permeation modulators on the behaviour of a SC lipid model mixture 8 Influence of permeation modulators on the behaviour of a SC lipid model mixture 8.1 Introduction In the foregoing parts of this thesis, a model membrane system of SC lipids has been developed and characterized.

More information

AFM In Liquid: A High Sensitivity Study On Biological Membranes

AFM In Liquid: A High Sensitivity Study On Biological Membranes University of Wollongong Research Online Faculty of Science - Papers (Archive) Faculty of Science, Medicine and Health 2006 AFM In Liquid: A High Sensitivity Study On Biological Membranes Michael J. Higgins

More information

I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins

I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins Lecture 6: Membranes and Cell Transport Biological Membranes I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins 1. Characteristics a. Phospholipids form bilayers

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1. (a) Uncropped version of Fig. 2a. RM indicates that the translation was done in the absence of rough mcirosomes. (b) LepB construct containing the GGPG-L6RL6-

More information

What is the intermolecular force present in these molecules? A) London B) dipole-dipole C) hydrogen bonding D) ion-dipole E) None. D.

What is the intermolecular force present in these molecules? A) London B) dipole-dipole C) hydrogen bonding D) ion-dipole E) None. D. REVIEW SHEET CHP 7, FRST AND DEAL 1. (7.1) Types of Attractive Forces (Intermolecular forces (IMF)). IMF s are attractive forces between molecules due to electrostatic attraction. Therefore a molecule

More information

Coarse grained simulations of Lipid Bilayer Membranes

Coarse grained simulations of Lipid Bilayer Membranes Coarse grained simulations of Lipid Bilayer Membranes P. B. Sunil Kumar Department of Physics IIT Madras, Chennai 600036 sunil@iitm.ac.in Atomistic MD: time scales ~ 10 ns length scales ~100 nm 2 To study

More information

Models of the plasma membrane - from the fluid mosaic to the picket fence model. Mario Schelhaas Institute of Cellular Virology

Models of the plasma membrane - from the fluid mosaic to the picket fence model. Mario Schelhaas Institute of Cellular Virology Models of the plasma membrane - from the fluid mosaic to the picket fence model Mario Schelhaas Institute of Cellular Virology Today s lecture Central Question: How does the plasma membrane fulfil its

More information

We parameterized a coarse-grained fullerene consistent with the MARTINI coarse-grained force field

We parameterized a coarse-grained fullerene consistent with the MARTINI coarse-grained force field Parameterization of the fullerene coarse-grained model We parameterized a coarse-grained fullerene consistent with the MARTINI coarse-grained force field for lipids 1 and proteins 2. In the MARTINI force

More information

Reading for lecture 6

Reading for lecture 6 Reading for lecture 6 1. Lipids and Lipid Bilayers 2. Membrane Proteins Voet and Voet, Chapter 11 Alberts et al Chapter 6 Jones, R.A.L, Soft Condensed Matter 195pp Oxford University Press, ISBN 0-19-850590-6

More information

Cell Membrane Study Guide

Cell Membrane Study Guide Cell Membrane Study Guide U1.3.1: Phospholipids form bilayers in water due to the amphipathic properties of phospholipid molecules (Oxford Biology Course Companion page 26). 1. Explain why phospholipids

More information

Chapter 2 The Chemistry of Life Part 2

Chapter 2 The Chemistry of Life Part 2 Chapter 2 The Chemistry of Life Part 2 Carbohydrates are Polymers of Monosaccharides Three different ways to represent a monosaccharide Carbohydrates Carbohydrates are sugars and starches and provide

More information

Membranes. Chapter 5. Membrane Structure

Membranes. Chapter 5. Membrane Structure Membranes Chapter 5 Membrane Structure Lipid Bilayer model: - double phospholipid layer - Gorter & Grendel: 1925 Fluid Mosaic model: consist of -phospholipids arranged in a bilayer -globular proteins inserted

More information

CHAPTER 4. Tryptophan fluorescence quenching by brominated lipids

CHAPTER 4. Tryptophan fluorescence quenching by brominated lipids CHAPTER 4 Tryptophan fluorescence quenching by brominated lipids 102 4.1 INTRODUCTION The structure and dynamics of biological macromolecules have been widely studied with fluorescence quenching. The accessibility

More information

Week 5 Section. Junaid Malek, M.D.

Week 5 Section. Junaid Malek, M.D. Week 5 Section Junaid Malek, M.D. HIV: Anatomy Membrane (partiallystolen from host cell) 2 Glycoproteins (proteins modified by added sugar) 2 copies of RNA Capsid HIV Genome Encodes: Structural Proteins

More information

Physical Cell Biology Lecture 10: membranes elasticity and geometry. Hydrophobicity as an entropic effect

Physical Cell Biology Lecture 10: membranes elasticity and geometry. Hydrophobicity as an entropic effect Physical Cell Biology Lecture 10: membranes elasticity and geometry Phillips: Chapter 5, Chapter 11 and Pollard Chapter 13 Hydrophobicity as an entropic effect 1 Self-Assembly of Lipid Structures Lipid

More information

membranes membrane functions basic structure membrane functions chapter 11-12

membranes membrane functions basic structure membrane functions chapter 11-12 membranes chapter - membrane functions Ca + hormone IP H + HO compartmentalization intracellular compartments scaffold for biochemical activities organize enzymes selectively permeable membrane allows

More information

A: All atom molecular simulation systems

A: All atom molecular simulation systems Cholesterol level affects surface charge of lipid membranes in physiological environment Aniket Magarkar a, Vivek Dhawan b, Paraskevi Kallinteri a, Tapani Viitala c, Mohammed Elmowafy c, Tomasz Róg d,

More information

2.3 Carbon-Based Molecules CARBON BASED MOLECULES

2.3 Carbon-Based Molecules CARBON BASED MOLECULES CARBON BASED MOLECULES KEY CONCEPTS Carbon-based molecules are the foundation of life. Lipids are one class of organic molecules. This group includes fats, oils, waxes, and steroids. Lipids are made of

More information

Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes

Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes A. K. Rønnest, G. H. Peters, F. Y. Hansen, H. Taub, and A. Miskowiec Citation: The Journal of Chemical

More information

Fats & Fatty Acids. Answer part 2: 810 Cal 9 Cal/g = 90 g of fat (see above: each gram of fat provies 9 Cal)

Fats & Fatty Acids. Answer part 2: 810 Cal 9 Cal/g = 90 g of fat (see above: each gram of fat provies 9 Cal) Fats & Fatty Acids Function of Fats Store energy (typically stored in the form of triglyceride fat molecules, shown on next page) Burn for energy (energy content is 9 Cal/g) Fatty acids are components

More information

NANO 243/CENG 207 Course Use Only

NANO 243/CENG 207 Course Use Only L9. Drug Permeation Through Biological Barriers May 3, 2018 Lipids Lipid Self-Assemblies 1. Lipid and Lipid Membrane Phospholipid: an amphiphilic molecule with a hydrophilic head and 1~2 hydrophobic tails.

More information

Structure of Dipalmitoylphosphatidylcholine/Cholesterol Bilayer at Low and High Cholesterol Concentrations: Molecular Dynamics Simulation

Structure of Dipalmitoylphosphatidylcholine/Cholesterol Bilayer at Low and High Cholesterol Concentrations: Molecular Dynamics Simulation Biophysical Journal Volume 77 October 1999 2075 2089 2075 Structure of Dipalmitoylphosphatidylcholine/Cholesterol Bilayer at Low and High Cholesterol Concentrations: Molecular Dynamics Simulation Alexander

More information

Structure and Phase Behaviour of Binary Mixtures of Cholesterol with DPPC and DMPC

Structure and Phase Behaviour of Binary Mixtures of Cholesterol with DPPC and DMPC Chapter 3 Structure and Phase Behaviour of Binary Mixtures of Cholesterol with DPPC and DMPC 3.1 Introduction As discussed in chapter 1, phospholipids and cholesterol are important constituents of plasma

More information

Experiment 12 Lipids. Structures of Common Fatty Acids Name Number of carbons

Experiment 12 Lipids. Structures of Common Fatty Acids Name Number of carbons Experiment 12 Lipids Lipids are a class of biological molecules that are insoluble in water and soluble in nonpolar solvents. There are many different categories of lipids and each category has different

More information

Membrane Structure and Function

Membrane Structure and Function Chapter 7 Membrane Structure and Function PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

The Chemical Building Blocks of Life. Chapter 3

The Chemical Building Blocks of Life. Chapter 3 The Chemical Building Blocks of Life Chapter 3 Biological Molecules Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent

More information

Biological Molecules

Biological Molecules The Chemical Building Blocks of Life Chapter 3 Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent bonds. Carbon may

More information

I. Membrane Structure Figure 1: Phospholipid. Figure 1.1: Plasma Membrane. Plasma Membrane:

I. Membrane Structure Figure 1: Phospholipid. Figure 1.1: Plasma Membrane. Plasma Membrane: I. Membrane Structure Figure 1: Phospholipid Figure 1.1: Plasma Membrane Plasma Membrane: 1 II. Early Plasma Membrane Models Figure 2: Davson-Danielli Sandwich Model In the 1960 s new evidence suggested

More information

Molecular Dynamics Simulations of the Anchoring and Tilting of the Lung-Surfactant Peptide SP-B 1-25 in Palmitic Acid Monolayers

Molecular Dynamics Simulations of the Anchoring and Tilting of the Lung-Surfactant Peptide SP-B 1-25 in Palmitic Acid Monolayers Biophysical Journal Volume 89 December 2005 3807 3821 3807 Molecular Dynamics Simulations of the Anchoring and Tilting of the Lung-Surfactant Peptide SP-B 1-25 in Palmitic Acid Monolayers Hwankyu Lee,*

More information

Revision Sheet Final Exam Term

Revision Sheet Final Exam Term Revision Sheet Final Exam Term-1 2018-2019 Name: Subject: Chemistry Grade: 12 A, B, C Required Materials: Chapter: 22 Section: 1,2,3,4 (Textbook pg. 669-697) Chapter: 23 Section: 1,2 (Textbook pg. 707-715)

More information

Phospholipid Component Volumes: Determination and Application to Bilayer Structure Calculations

Phospholipid Component Volumes: Determination and Application to Bilayer Structure Calculations 734 Biophysical Journal Volume 75 August 1998 734 744 Phospholipid Component Volumes: Determination and Application to Bilayer Structure Calculations Roger S. Armen, Olivia D. Uitto, and Scott E. Feller

More information

TUTORIAL IN SMALL ANGLE X-RAY SCATTERING ANALYSIS

TUTORIAL IN SMALL ANGLE X-RAY SCATTERING ANALYSIS TUTORIAL IN SMALL ANGLE X-RAY SCATTERING ANALYSIS at the Abdus Salam International Center of Theoretical Physics (ICTP) Heinz Amenitsch Sigrid Bernstorff Michael Rappolt Trieste, 15. May 2006 (14:30-17:15)

More information

The Interaction between Lipid Bilayers and Biological Membranes. Chapter 18

The Interaction between Lipid Bilayers and Biological Membranes. Chapter 18 The Interaction between Lipid Bilayers and Biological Membranes Chapter 18 Introduction Membrane & Phospholipid Bilayer Structure Membrane Lipid bilayer 2 Introduction Forces Acting between Surfaces in

More information

SDS-Assisted Protein Transport Through Solid-State Nanopores

SDS-Assisted Protein Transport Through Solid-State Nanopores Supplementary Information for: SDS-Assisted Protein Transport Through Solid-State Nanopores Laura Restrepo-Pérez 1, Shalini John 2, Aleksei Aksimentiev 2 *, Chirlmin Joo 1 *, Cees Dekker 1 * 1 Department

More information

Membrane Structure and Membrane Transport of Small Molecules. Assist. Prof. Pinar Tulay Faculty of Medicine

Membrane Structure and Membrane Transport of Small Molecules. Assist. Prof. Pinar Tulay Faculty of Medicine Membrane Structure and Membrane Transport of Small Molecules Assist. Prof. Pinar Tulay Faculty of Medicine Introduction Cell membranes define compartments of different compositions. Membranes are composed

More information

Advanced Cell Biology. Lecture 28

Advanced Cell Biology. Lecture 28 Advanced Cell Biology. Lecture 28 Alexey Shipunov Minot State University April 8, 2013 Shipunov (MSU) Advanced Cell Biology. Lecture 28 April 8, 2013 1 / 41 Outline Questions and answers Shipunov (MSU)

More information

Supplementary Information: A Critical. Comparison of Biomembrane Force Fields: Structure and Dynamics of Model DMPC, POPC, and POPE Bilayers

Supplementary Information: A Critical. Comparison of Biomembrane Force Fields: Structure and Dynamics of Model DMPC, POPC, and POPE Bilayers Supplementary Information: A Critical Comparison of Biomembrane Force Fields: Structure and Dynamics of Model DMPC, POPC, and POPE Bilayers Kristyna Pluhackova,, Sonja A. Kirsch, Jing Han, Liping Sun,

More information

Methods of studying membrane structure

Methods of studying membrane structure King Saud University College of Science Department of Biochemistry Biomembranes and Cell Signaling (BCH 452) Chapter 2 Methods of studying membrane structure Prepared by Dr. Farid Ataya http://fac.ksu.edu.sa/fataya

More information

Advanced Cell Biology. Lecture 28

Advanced Cell Biology. Lecture 28 Alexey Shipunov Minot State University March 30, 2012 Outline Questions and answers Outline Questions and answers Questions and answers Previous final question: the answer How to make a transgenic organism

More information

Chapter 12. Part II. Biological Membrane

Chapter 12. Part II. Biological Membrane Chapter 12 Part II. Biological Membrane Single-tailed lipids tend to form micelles Critical micelle concentration (cmc): minimum concentration that forms micelles e.g.) cmc for SDS 1mM; cmc for phospholipids

More information

BIOL*1090 Introduction To Molecular and Cellular Biology Fall 2014

BIOL*1090 Introduction To Molecular and Cellular Biology Fall 2014 Last time... BIOL*1090 Introduction To Molecular and Cellular Biology Fall 2014 Lecture 3 - Sept. 15, 2014 Viruses Biological Membranes Karp 7th ed: Chpt. 4; sections 4-1, 4-3 to 4-7 1 2 VIRUS Non-cellular

More information

Biology Chapter 2 Review

Biology Chapter 2 Review Biology Chapter 2 Review Vocabulary: Define the following words on a separate piece of paper. Element Compound Ion Ionic Bond Covalent Bond Molecule Hydrogen Bon Cohesion Adhesion Solution Solute Solvent

More information

COR 011 Lecture 9: ell membrane structure ept 19, 2005

COR 011 Lecture 9: ell membrane structure ept 19, 2005 COR 011 Lecture 9: ell membrane structure ept 19, 2005 Cell membranes 1. What are the functions of cell membranes? 2. What is the current model of membrane structure? 3. Evidence supporting the fluid mosaic

More information

Polyoxometalate Macroion Induced Phase and Morphology

Polyoxometalate Macroion Induced Phase and Morphology Polyoxometalate Macroion Induced Phase and Morphology Instability of Lipid Membrane Benxin Jing a, Marie Hutin c, Erin Connor a, Leroy Cronin c,* and Yingxi Zhu a,b,* a Department of Chemical and Biomolecular

More information

Oriented Sample Solid-State NMR Spectroscopy Stanley J. Opella University of California, San Diego

Oriented Sample Solid-State NMR Spectroscopy Stanley J. Opella University of California, San Diego Winter School 2016 Oriented Sample Solid-State NMR Spectroscopy Stanley J. Opella University of California, San Diego Introduction. Contents of an Escherichia coli cell is enclosed by its plasma membrane,

More information

The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11

The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11 1 February 26, The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11 Introduction I 2 Biological membranes are phospholipid bilayers with associated proteins. Current data support a fluid

More information

Biological Molecules

Biological Molecules Chemical Building Blocks of Life Chapter 3 Biological Molecules Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent

More information

Molecular Organization of the Cell Membrane

Molecular Organization of the Cell Membrane Molecular Organization of the Cell Membrane A walk from molecules to a functional biostructure Cell Membrane Definition An ultrastructure separating connecting the cell to the environment 1 Coarse chemical

More information

Changes in Vesicular Membrane ESR Spin Label Parameters Upon Isotope Solvent Substitution

Changes in Vesicular Membrane ESR Spin Label Parameters Upon Isotope Solvent Substitution Gen. Physiol. Biophys. (1987). 6, 297 302 297 Short communication Changes in Vesicular Membrane ESR Spin Label Parameters Upon Isotope Solvent Substitution V. I. LOBYSHEV 1, T. HIANIK 2, M. MASAROVA 1

More information

Phase Behavior of Model Lipid Bilayers

Phase Behavior of Model Lipid Bilayers J. Phys. Chem. B 2005, 109, 6553-6563 6553 Phase Behavior of Model Lipid Bilayers Marieke Kranenburg and Berend Smit*,, The Van t Hoff Institute for Molecular Sciences, UniVersity of Amsterdam, Nieuwe

More information

Membranes. Chapter 5

Membranes. Chapter 5 Membranes Chapter 5 Membrane Structure The fluid mosaic model of membrane structure contends that membranes consist of: -phospholipids arranged in a bilayer -globular proteins inserted in the lipid bilayer

More information

WHAT IS A LIPID? OBJECTIVE The objective of this worksheet is to understand the structure and function of lipids

WHAT IS A LIPID? OBJECTIVE The objective of this worksheet is to understand the structure and function of lipids WHAT IS A LIPID? OBJECTIVE The objective of this worksheet is to understand the structure and function of lipids PART A: Understanding Lipids Lipids are more commonly known as fats and include triglycerides,

More information

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical and Mathematical Sciences 2018, 52(3), p. 217 221 P h y s i c s STUDY OF THE SWELLING OF THE PHOSPHOLIPID BILAYER, DEPENDING ON THE ANGLE BETWEEN THE

More information

Membrane Structure. Membrane Structure. Membrane Structure. Membranes

Membrane Structure. Membrane Structure. Membrane Structure. Membranes Membrane Structure Membranes Chapter 5 The fluid mosaic model of membrane structure contends that membranes consist of: -phospholipids arranged in a bilayer -globular proteins inserted in the lipid bilayer

More information

Visualizing Biopolymers and Their Building Blocks

Visualizing Biopolymers and Their Building Blocks Visualizing Biopolymers and Their Building Blocks By Sharlene Denos (UIUC) & Kathryn Hafner (Danville High) Living things are primarily composed of carbon-based (organic) polymers. These are made up many

More information

X-ray diffraction study on interdigitated structure of phosphatidylcholines in glycerol

X-ray diffraction study on interdigitated structure of phosphatidylcholines in glycerol X-ray diffraction study on interdigitated structure of phosphatidylcholines in glycerol Hiroshi Takahashi 1,*, Noboru Ohta 2 and Ichiro Hatta 2 1 Department of Physics, Gunma University, 4-2 Aramaki, Maebashi

More information

Chapt. 11, Membrane Structure. Chapt. 11, Membrane Structure. Chapt. 11, Membrane Structure. Functions of cell membrane. Functions of cell membrane

Chapt. 11, Membrane Structure. Chapt. 11, Membrane Structure. Chapt. 11, Membrane Structure. Functions of cell membrane. Functions of cell membrane Chapt. 11, Membrane Structure Functions of cell membrane 1 Chapt. 11, Membrane Structure Functions of cell membrane As a container/ barrier to movement of small molecules. Figure 11 2 Chapt. 11, Membrane

More information

Cell Membrane Structure (1.3) IB Diploma Biology

Cell Membrane Structure (1.3) IB Diploma Biology Cell Membrane Structure (1.3) IB Diploma Biology Essential idea: The structure of biological membranes makes them fluid and dynamic http://www.flickr.com/photos/edsweeney/6346198056/ 1.3.1 Phospholipids

More information

Chapter 3: Macromolecules. 1. Carbohydrates. Polysaccharides. Maltose is a disaccharide. Macromolecules (in general) Most macromolecules are polymers

Chapter 3: Macromolecules. 1. Carbohydrates. Polysaccharides. Maltose is a disaccharide. Macromolecules (in general) Most macromolecules are polymers Chapter 3: Macromolecules Macromolecules is just a fancy word for: Giant Molecules Made From Smaller Building Blocks Carbohydrates Lipids Proteins Nucleic acids Macromolecules (in general) Most macromolecules

More information

Physical effects underlying the transition from primitive to modern cell membranes

Physical effects underlying the transition from primitive to modern cell membranes Physical effects underlying the transition from primitive to modern cell membranes Itay Budin and Jack W. Szostak* *To whom correspondence should be addressed. Email: szostak@molbio.mgh.harvard.edu This

More information

Lipids are macromolecules, but NOT polymers. They are amphipathic composed of a phosphate head and two fatty acid tails attached to a glycerol

Lipids are macromolecules, but NOT polymers. They are amphipathic composed of a phosphate head and two fatty acid tails attached to a glycerol d 1 2 Lipids are macromolecules, but NOT polymers. They are amphipathic composed of a phosphate head and two fatty acid tails attached to a glycerol backbone. The phosphate head group is hydrophilic water

More information

This week s topic will be: Evidence for the Fluid Mosaic Model. Developing theories, testing hypotheses and techniques for visualizing cells

This week s topic will be: Evidence for the Fluid Mosaic Model. Developing theories, testing hypotheses and techniques for visualizing cells Tutorials, while not mandatory, will allow you to improve your final grade in this course. Thank you for your attendance to date. These notes are not a substitute for the discussions that we will have

More information

Membrane structure correlates to function of LLP2 on the cytoplasmic tail of HIV-1 gp41 protein

Membrane structure correlates to function of LLP2 on the cytoplasmic tail of HIV-1 gp41 protein Membrane structure correlates to function of LLP2 on the cytoplasmic tail of HIV-1 gp41 protein Alexander L. Boscia 1, Kiyotaka Akabori 1, Zachary Benamram 1, Jonathan A. Michel 1, Michael S. Jablin 1,

More information

Formation of multistranded β-lactoglobulin amyloid fibrils and their stimuli responsive magnetic behaviour in the lyotropic liquid crystals

Formation of multistranded β-lactoglobulin amyloid fibrils and their stimuli responsive magnetic behaviour in the lyotropic liquid crystals Formation of multistranded β-lactoglobulin amyloid fibrils and their stimuli responsive magnetic behaviour in the lyotropic liquid crystals Sreenath Bolisetty Prof. Raffaele Mezzenga Food & Soft Materials

More information

Translational diffusion of flexible lipid chains in a Langmuir monolayer: A dynamic Monte Carlo study

Translational diffusion of flexible lipid chains in a Langmuir monolayer: A dynamic Monte Carlo study PHYSICAL REVIEW E VOLUME 60, NUMBER 1 JULY 1999 Translational diffusion of flexible lipid chains in a Langmuir monolayer: A dynamic Monte Carlo study T. Sintes,* A. Baumgaertner, and Y. K. Levine Forum

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/4/3/eaaq0762/dc1 Supplementary Materials for Structures of monomeric and oligomeric forms of the Toxoplasma gondii perforin-like protein 1 Tao Ni, Sophie I. Williams,

More information

Chemical Surface Transformation 1

Chemical Surface Transformation 1 Chemical Surface Transformation 1 Chemical reactions at Si H surfaces (inorganic and organic) can generate very thin films (sub nm thickness up to µm): inorganic layer formation by: thermal conversion:

More information

Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes

Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes A. K. Rønnest, G.H. Peters and F.Y. Hansen Department of Chemistry, Technical University of Denmark,

More information

SAM Teachers Guide Lipids and Carbohydrates

SAM Teachers Guide Lipids and Carbohydrates SAM Teachers Guide Lipids and Carbohydrates Overview Students will explore the structure and function of two of the four major macromolecules, lipids and carbohydrates. They will look specifically at the

More information

1.4. Lipids - Advanced

1.4. Lipids - Advanced 1.4. Lipids - Advanced www.ck12.org In humans, triglycerides are a mechanism for storing unused calories, and their high concentration in blood correlates with the consumption of excess starches and other

More information

Order and Dynamics in Lipid Bilayers from 1,2-Dipalmitoyl-sn-glycerophospho-diglycerol

Order and Dynamics in Lipid Bilayers from 1,2-Dipalmitoyl-sn-glycerophospho-diglycerol Article Subscriber access provided by MPI FUR BIOPHYS CHEM Order and Dynamics in Lipid Bilayers from 1,2-Dipalmitoyl-sn-glycerophospho-diglycerol as Studied by NMR Spectroscopy Ren Lehnert, Hans-Jrg Eibl,

More information

H-NMR in liquid crystals and membranes

H-NMR in liquid crystals and membranes Colloids and Surfaces A: Physicochemical and Engineering Aspects 158 (1999) 281 298 www.elsevier.nl/locate/colsurfa 2 H-NMR in liquid crystals and membranes Michael F. Brown *, Alexander A. Nevzorov 1

More information

1.2 introduction to the cell. me239 mechanics of the cell. 1.2 introduction to the cell. 1.2 introduction to the cell.

1.2 introduction to the cell. me239 mechanics of the cell. 1.2 introduction to the cell. 1.2 introduction to the cell. 2. introduction to mechanics prokaryotic cells Figure 1.1 Prokaryotic cell. Cell without a nucleus. the inner life of a cell, viel & lue, harvard [2006] me239 mechanics of the cell 1 eukaryotic cells 1.2

More information