M itochondria are the intra-cellular organelles that produce most of the chemical energy consumed by a cell

Size: px
Start display at page:

Download "M itochondria are the intra-cellular organelles that produce most of the chemical energy consumed by a cell"

Transcription

1 SUBJECT AREAS: MOLECULAR MODELLING COMPUTATIONAL CHEMISTRY BIOPHYSICAL CHEMISTRY COMPUTATIONAL BIOPHYSICS Received 20 November 2012 Accepted 7 January 2013 Published 12 February 2013 Correspondence and requests for materials should be addressed to X.P. (x.periole@rug.nl) Identification of cardiolipin binding sites on cytochrome c oxidase at the entrance of proton channels C. Arnarez, S. J. Marrink & X. Periole Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands. The respiratory chain or oxidative phosphorylation system (OxPhos) generates most of the chemical energy (ATP) used by our cells. The cytochrome c oxidase (CcO) is one of three protein complexes of OxPhos building up a proton gradient across the inner mitochondrial membrane, which is ultimately used by the ATP synthase to produce ATP. We present molecular dynamic simulations of CcO in a mimic of the mitochondrial membrane, and identify precise binding sites of cardiolipin (CL, signature phospholipid of mitochondria) on the protein surface. Two of these CL binding sites reveal pathways linking CLs to the entrance of the D and H proton channels across CcO. CLs being able to carry protons our results strongly support an involvement of CLs in the proton delivery machinery to CcO. The ubiquitous nature of CL interactions with the components of the OxPhos suggests that this delivery mechanism might extend to the other respiratory complexes. M itochondria are the intra-cellular organelles that produce most of the chemical energy consumed by a cell and are therefore often refered to as the power plant of the cell. The energy is produced through the oxidative phosphorylation (OxPhos) system. The OxPhos system is embedded in the mitochondrial inner-membrane and consists of four large membrane protein assemblies, the so-called respiratory chain complexes (i.e.: NADH quinone oxidoreductase, complex I; cytochrome bc 1, complex III; cytochrome c oxidase, complex IV; ATP synthase, complex V) and by some small electron carriers (quinones and cytochrome c). Complexes I, III and IV operate a series of electron transfers whose tortuous paths through the respiratory chain system is coupled with the translocation of protons from the inside (matrix) to the mitochondrial intermembrane space (IMS), leading to an electro-chemical gradient ultimately utilized by the ATP synthase to transform ADP into ATP. Cardiolipin (CL), the signature phospholipid of mitochondrial membranes, has crucial implications in mitochondrial processes, and on the OxPhos in particular 1,2. CLs are formed by two phosphatidyl-glycerol molecules linked by an additional glycerol moiety and possess an anionic charge (22 e). They are found in several parts of the mitochondria and constitute about 10% of the phospholipids of, for instance, the bovine heart mitochondrial inner membrane 3,4. CL deficiency correlates with numerous diseases 5 including the Barth syndrome 6 and heart failure 7. Notably, the formation, stability, and function of individual respiratory chain complexes and of respiratory chain supercomplexes strongly relies on the presence of CLs in the membrane 812. CLs bound to individual complexes have been reported by several structural studies on various organisms 1315, leading to hypotheses on their possible involvement in a proton uptake pathway 16 and/or in assuring the structural integrity of individual complexes 1619 and supercomplexes 15. The focus of the present work is on bovine cytochrome c oxydase (CIV). It is a transmembrane protein complex that consists of 13 subunits labeled A to M as depicted in Fig. 1A (The subunit s nomenclature following a roman number code as defined by Kadenbach 20 is given in Supplementary Information). Primarily based on purification and delipidation by chromatography and binding affinity assays 13,17,18,21,22 two classes of CL binding sites have been defined: two sites with high-affinity and one to two additional sites with a lower affinity. The latter have been associated with the structural integrity of CIV and of its dimeric form because these CLs stabilize the subunits G and H (VIa and VIb according to Kadenbach nomenclature 20 ), which are mandatory for the formation of the dimer 17,18. The two CLs binding CIV with high affinity have been associated with the regulation of the electron activity of the enzyme 21,22. SCIENTIFIC REPORTS 3 : 1263 DOI: /srep

2 Figure 1 Structural characteristics of bovine heart cytochrome c oxidase (CIV). (A) Structure of CIV with its thirteen subunits (AM) shown in a cartoon representation with a chain-based color-code for one monomer. The subunit s nomenclature following a roman number code used in others studies 20 is given in Supplementary Information. We kept on the letter code to avoid confusion with the site names. In the bottom view of the dimer structure as found in the X-ray structure CLs are depicted 24. There are three CL binding sites per monomer (CL1a, CL1b and CL2), with one facing the matrix side (CL2) and two facing the intermembrane space (IMS; CL1a and CL1b). CL3 indicates the location of an additional binding site suggested by photolabeling experiments 19. (B) Simulation box for CIV system, with the protein shown in green, POPC molecules in gray/white, CLs in red/orange and the aqueous phase in blue. (C) Structure of a cardiolipin molecule in an atomistic (AA) and a coarse-grain (CG) representation. It is only with the most recent crystal structures of CIV 23,24 that CLs were found bound to the protein. In the dimeric form of CIV four CLs co-crystallize with the complex, defining three potential CL binding sites per complex (CL1a, b and CL2 in Fig. 1A) after consideration of the dimer s symmetry. The intuitive assignment of the CL binding sites based on their location on the complex was in overall agreement with the in-depth photolabeling study of Sedlak et al. 19. The low-affinity CL binding sites are located at the interface of the dimer and interact with subunits G (CL1a/b in Fig. 1), while a high affinity binding site was found on a more membrane exposed protein surface interacting with subunit J (CL2 in Fig. 1). There is however a CL binding site identified by Sedlak et al. 19 that is missing in the crystal structure (CL3 in Fig. 1). Here we explore the binding of CL to complex IV in a monomeric form by means of coarse-grain molecular dynamics (CGMD) simulations. MD simulations have been successfully used to explore the lipid/protein interplay 25,26 and more specifically lipid binding to a variety of membrane proteins 25,2732. The use of a CG model presents the advantage to investigate the lipid binding to proteins on much longer time scales than conventional atomistic models and thus allows exploring the processes involved from a more realistic dynamic perspective. We recently applied a similar approach to the study of CL binding sites on the cytochrome bc 1 15 in which case we have characterized some key dynamic features of known CL binding sites and revealed a set of new membrane-exposed binding sites potentially involved in the formation of supercomplexes. The set of CGMD simulations presented here clearly identified the precise positions of the two CLs with high-affinity binding sites on CIV 19. The lack of the low-affinity binding sites expected at the interface of the dimer are not observed in the simulations, which confirms that they are strongly associated with the dimer form of CIV and might only exist with the dimer. Five additional CL binding sites with low-affinity are found and may be easily rationalized in light of the position of other co-crystallized lipids 24 and their common features. Most remarkably two of the binding sites are found located at the matrix entrance of known proton uptake pathways (D and H). We show how the structure of the protein reveals extensions of these pathways that directly link the CLs in these binding sites to the entrance of the pathways. In the context of the ability of CL to trap protons our data strongly support that CL maximizes CIV electron transport activity by providing protons to the uptake pathways. Results Identification of seven CL binding sites on bovine heart cytochrome c oxidase. We characterized the CL density around the protein from a 100 ms CGMD simulation of this complex embedded in a POPC/CL (20/1 molar ratio) membrane. The average densities of CLs (Fig. 2A) demonstrate the existence of several preferential sites of interaction of CL with the protein. We define CL binding sites as the locations having a CL density more than five times the bulk value. Accordingly, seven binding sites are found on either leaflet of the membrane and are labeled I to VII (Fig. 2A). Sites IV are on the matrix side of the membrane and sites VI and VII on the side of the IMS. Sites V and VII may be occupied by two CLs and are therefore subdivided into Va/Vb and VIIa/VIIb. A hierarchy of binding strength was observed, starting with many CL binding/ unbinding events for some sites (e.g. 380 exchanges for site VIIb) but only few exchanges for others (e.g. few unbinding events for site I) during the same amount of simulation time. For all sites but site I, binding events by at least 4 CLs were observed (see Supplementary SCIENTIFIC REPORTS 3 : 1263 DOI: /srep

3 Figure 2 Cardiolipin (CL) binding sites on cytochrome c oxidase (CIV). Binding sites are extracted from a 100 ms of CGMD simulation of the complex embedded in a CL/POPC membrane bilayer. (A) From left to right: matrix, membrane (two orientations) and inter membrane space (IMS) views of CIV with the CL densities shown in yellow volume maps at an isovalue corresponding to at least 5 times the bulk density. The protein is shown as shaded grey cylinders with the CL densities projected onto them. (BH) Detailed description of the CL binding sites I to VII, respectively. The residues are numbered as follows: chain:residue sub-site. For each site, the subunits involved in the interactions with the CLs are depicted as colored cartoon as in Fig. 1. The rest of the protein is shown in a transparent gray cartoon. Table 1 Occupation (J) and residence time (h, ms) of cardiolipin binding sites on cytochrome c oxydase (CIV). The values are averaged over a 100 ms CGMD simulation. The accuracy of the occupation levels is at most and of the residence times within 60.1 ms. See the Extended Methods given as Supplementary Information for details. #CLs is the number of different CLs getting in contact with a site and #events the number of binding/unbinding events. The lipids described by Shinzawa-Itoh et al. 24 (see Fig. 4) at the locations corresponding to the CL binding sites found in the simulations are indicated in the bottom row. The CL binding site predicted by Sedlák et al. 19 at the site II is also indicated Site I II III IV Va Vb VI VIIa VIIb J h.50*.60* #CLs #events ref 19 2DYR 24 CL CL TGL2 PE3 PE1 * The strong binding of CLs in sites I and II led to poor binding/unbinding events statistics and prevented us from determining accurate residence time. Instead we indicate a rough estimate obtained from the binding behavior. See Figure S1 in Supplementary Information. TGL3 TGL3 TGL1 TGL1 SCIENTIFIC REPORTS 3 : 1263 DOI: /srep

4 Movie), allowing us to extract meaningful statistical averaged occupations and CL residence times listed in Table 1. The detailed structural characterization of the binding sites is presented in Figure 2B-H. Site I quickly bound a single CL that remained bound during the entire simulation although reorientation of the CL led to multiple short unbinding events (see Supplementary Figure S1). These events complicated the computation of the lifetime estimated at more than 50 ms (Table 1). In this site the CL mainly interacts with the subunit C and with a couple of residues of subunit J (Fig. 2B). Sites II and III are adjacent to site I and located at the junction of subunits A and L and subunits C and G, respectively (Fig. 2CD). They both bind one CL at a time and have slightly lower occupancies (60%) than site I. Although it is difficult to precisely determine the time scale of CLs binding to site II (see Supplementary Fig. S1; estimate,60 ms) it is significantly longer than in site III in which CLs exchange on a time scale of,1 ms. Site IV is located on the face of CIV that corresponds to the dimer interface in the crystal structure. This site, involving subunits A and C, is occupied only 36% of the time and CLs bind on a sub-microsecond timescale. Site V is located at the other extremity of CIV as compared to site I. CLs in site Va and Vb interact with subunits B, E and I, and A and B, respectively. They have similar occupancies,,70%, and similar residence times,,0.5 ms. Site VI is located on the IMS side of CIV. It involves the C-termini of subunits L and M, has a low CL occupancy, 50%, and a small CL residence time,,0.4 ms. Site VII is located on the same protein surface as site V, but on the opposite leaflet (IMS). CLs in site VIIa and VIIb primarily interact with subunits A, B, D and I on the IMS side of the protein. Site VIIa is significantly more occupied (88%) than site VIIb (50%) and has a relatively long residence time of,10 ms. The difference between sites VIIa and VIIb might reflect that site VIIa is buried deeper in a cavity formed by helices of subunits B and I, whereas site VIIb is more exposed to the membrane. We further characterized the binding strength of CL to CIV by determining the potentials of mean force (PMFs) of CL s binding to a selection of the sites (Fig. 3). The data clearly indicates that CL s binding to site I and II is stronger than to the other sites. Site III was taken as a reference site because it is relatively well occupied, accessible to the membrane and explored by many CLs so that the statistics obtainedisreliable(table1).thedataalsoindicatethatclbinds similarly to site II than to site I. The comparison of the PMFs of a CL binding to site II with or without the 22 e charge of its headgroup indicates that although the charge of the headgroup bears the most significant contribution to the binding, the tails also contribute to CL s binding strength. The contribution from the CL s bulky tail is by itself larger than the binding strength of a POPC molecule. Residue content of the binding sites. Interesting features emerged from the analysis of the residues in contact with CLs during the 100 ms simulation (Fig. 4). First, all the residues that made at least one contact with a CL molecule virtually span the entire transmembrane region of the protein, indicating that the CLs explored the complete transmembrane protein surface. As expected, the distribution of contacts as a function of the residue type (grey bars in Fig. 4) is in general agreement with the amino acid distribution in integral membrane proteins 33 keeping in mind that a residue would need to be exposed to the membrane to be in contact with a CL. Furthermore, focusing on the composition of the CL binding sites (black bars in Fig. 4), the positively charged amino acids (lysine and arginine) were found to account for,25% of the CL ligands. The large contribution from positively charged residues might be expected since CL carries a 22 e charge and is illustrated by the strong correlation between the locations of the CL s binding sites with the positive regions of electrostatic potential on the protein s Figure 3 Potential of mean force for binding of various lipids to sites I, II and III. (A) Comparison of CL s binding strength to site I (cyan), II (blue) and III (green). (B) Comparison of binding strength of TGL (yellow), POPC (orange) and CL to site II. Two CLs were tested; double charged (22 e) and neutral, blue and green curves, respectively. In both panel the relative free energy of the system is expressed as a function of the distance, d COM, between the center of masse of the lipid headgroup and of the binding site as defined in Fig. 2. The error on the measure (estimated using the Bayesian bootstrapping method) is shown by the shaded area behind the curves. Figure 4 Residue content of the CL binding sites of cytochrome c oxidase (CIV). The gray sticks indicate the percentage of each residue type at least once in contact with a CL; e.g. present in the section of the CIV accessible to CLs. The black sticks give for each residue type the percentage of its participation to the CL binding sites. SCIENTIFIC REPORTS 3 : 1263 DOI: /srep

5 surface (Fig. S2). Lysine is slightly favored over arginine (14 vs 11%), which contrasts with the results obtained previously for CIII 15.In that case arginine was significantly more represented in the binding sites than lysine, which then represented only,5% of the CL s ligands against 18% for arginine. Phenylalanine and leucine were found to be a relatively important contribution to the CL binding sites (. 10%) in both CIII and CIV. Discussion A thorough analysis of the lipids bound to CIV was presented by Shinzawa-Itoh et al. 24 combining a crystal structure of the complex with mass spectroscopy. They discussed up to seven species of lipids per monomer of CIV among which three CLs, three phosphatidylethanolamines (PEs), four phosphatidylglycerols (PGs) and three triglycerides (TGLs). These lipid types are found in the native mitochondrial inner membrane 3 (TGL only recently 24 ) and their presence in the crystal is therefore not expected to be an artifact of the crystallization process. Their positions are depicted in Figure 5 together with the CL binding sites found in the simulations. The comparison of the two sets of molecules allows to unambiguously identifying the two CL binding sites with high-affinity and involved in CIV s proton transport activity, and suggesting the most likely candidates for the low-affinity binding sites that have been linked to CIV s structural integrity. Our interpretation is in complete agreement with earlier predictions of Robinson and co-workers 13,19,22. Among the three CL binding sites per monomer found in the dimer structure of CIV 23,24 (CL1a, b and CL2 in Fig. 5), only CL2 is observed in the simulations. It is located at the site I. This site is filled early in our simulation and remains occupied during the entire simulation (Table 1 and Supplementary Fig. S1), which gives it one of the highest binding affinities observed in the simulations. This result is in agreement with its presence in the crystal structure and Figure 5 Location of the co-crystallized phospholipid positions and densities computed with our CGMD simulation. The experimental positions (upper part) were extracted from the PBD entry 2dyr 24. The densities (lower part) are extracted from the 100 ms CGMD simulation. Views from the matrix (left) and the IMS (right) sides of CIV are shown. CL: cardiolipin; PC: phosphatidylcholine; PE: phosphatidylethanolamine; PG: phosphatidylglycerol; TGL: triglyceride. the PMFs described above, and confirms that it corresponds to one of the high-affinity sites as predicted by Sedlák et al. 19. CL1a/b, located at the dimer interface in the crystal structures 23,24, are not stable in our simulations of CIV as a monomer. These two CLs have been suggested to be the ones loosely bound to CIV and strongly connected to the existence of the dimeric form of CIV by their stabilization of subunits G and H 18,19. Our simulations indicate that the tight association of CIVs in the dimer is a determinant factor for the stability of CL1a and CL1b. To test this hypothesis, additional simulation of the dimeric structure of CIV including the experimental CL1a/CL1b were performed. Both sites were found stable on the ms time scale. The site II defined by the simulations (Fig. 2 and 5) confirms the location of the second high-affinity CL binding site predicted by Sedlák et al. 19 using photolabeling and missing in the crystal structures (CL3 in Fig. 1). The relatively low occupancy and residence time (Table 1) might be surprising at first but reflect that it took,40 ms for a CL to enter the protein cavity forming the binding site (see Supplementary Fig. S1). Once the CL made the proper contacts the site is fully occupied and therefore corresponds to a high-affinity binding site. This result is corroborated by the PMF of CL binding to site II, which shows a similar bonding strength to site I (Fig. 3A). It is interesting to note that a TGL (TGL2 in Fig. 5) occupies the site II in the crystal structure 24. From our understanding of the system it is extremely unlikely that both CL and TGL molecules occupy site II. The PMFs of the binding of a CL vs. a TGL (Fig. 3B) demonstrate not only that CL binds much stronger but also that TGL is no stable in site II. Unrestrained simulations confirm this observation: a TGL placed in site II left it quickly and went to mix with the bulk after exploring the surrounding of the protein surface around the site. The PMFs showed that an important part of the CL s binding strength is due to coulombic interactions, which might rationalize the weak binding of TGL; it is a neutral molecule. It is not clear at this point why a TGL molecule is present in the crystal although it was argued not to be an artifact of the purification 24. One might speculate that the TGL molecule had the capability to replace the CL using the similarity of their bulky tails. This scenario implies however that the CL was first destabilized, which might occur by disruption of the interaction of its headgroup during the crystallization process. Note the PMFs showed a neutral CL still binds site II stronger than TGL suggesting that TGL s bulky tails are not sufficient to stabilize it. See the Supplementary Information for additional discussion on the presence of TGL molecules in CL s binding sites. The remaining CL binding sites (IIIVII) found in the simulations are relatively weak binders and unless they are buried within a large protein cavity (sites Va and VIIa) they have a low occupancy. They all correspond to the location of binding of another lipid type in the crystal, which is in line with previous studies showing the conservation of binding sites by different lipid types 14. We review the several cases observed in CIV and show that it is quite straightforward to rationalize the discrepancies from the similarities of CLs with PGs and TGLs (CL and PG share a negatively charged headgroup, while CL and TGL bulky tails), see Supplementary Information for more detailed discussion. The high degree of conservation of lipid binding sites on CIV from various organisms 14 suggests an important functional role of these bound lipids. CLs have been shown to affect CIV in two ways. First, there is extensive data demonstrating that the presence of two CLs with high-affinity binding to CIV, which we have shown are bound in site I and II, is mandatory for a fully functional CIV 22. It is however unknown by which mechanism they operate. CIV enzymatic activity is often summarized by its electron transport activity (up take from cytochrome c) but CIV uses as many protons as electrons to transform a dioxygen molecule into two water molecules. CLs have the ability to trap protons 34 and thereby can facilitate proton translocation along the membrane surface 35. This particular feature of CL has SCIENTIFIC REPORTS 3 : 1263 DOI: /srep

6 been suggested to be an important aspect of CIII mechanism for proton transfer 16,36,37 and might extend to CIV by providing proton sources to either of the D-, K- or H-pathways The proximity of CL3 to the D-pathway entrance has suggested that CL might be acting as a proton antenna to this pathway 19 although only limited structural insight is available since this site is not occupied in the crystal structures 23,24. Our data confirm that this ability of CL to carry protons is indeed relevant to site II but might also be to site Vb. Both sites are located on the matrix side of the IM where the protons are taken up. Site II corresponds to CL3 (Fig. 1, 5) and is very close to the D-pathway entrance (,1.1 nm; Fig. 6), while site Vb is close to the entrance of the H-pathway (,0.8 nm; Fig. 6). Up to now residues A:D91 (A:D132 in Rodobacter sphaeroides) and A:D407 define the matrix side entrances to the D- and H-pathways, respectively. Only little is known on the proton path before these residues. A close inspection of the protein structure revealed in both cases the existence of a strong H-bond network starting at the CL binding sites II and Vb and leading to the entrances of the D- and H-pathways, respectively (Fig. 6). These networks form clear extensions of the D- and H- pathways towards the exterior of the protein on the matrix side. They directly connect the CL binding sites to A:D91 (A:D132 in Rodobacter sphaeroides) and A:D407, respectively, and thereby strongly support the idea that CLs provide a source of protons at the surface of the membrane facilitating CIV electron transport activity. It is also notable that up to four CLs occupy the protein cavity close to the H-pathway; two lipids in sites Va/b and VIIa/b on the matrix and IMS side of the membrane, respectively. This aggregation of CLs might be relevant to the dielectric channel activity of CIV proposed by Rich 42. The second way by which CLs affect CIV is by providing structural integrity. Two additional CLs, which we propose being CL1a and CL1b in the crystal structures (Fig. 1, 5), serve the structural integrity of CIV by stabilizing subunits G and H, and thereby its dimeric form 17. These two CLs have been shown to bind CIV with a lowaffinity 19 and are not observed in the simulation of the monomeric form of CIV (Fig. 2) but are stable in the dimeric structure. This ability of CLs to stabilize CIV dimers can be extended to high-order oligomers of the respiratory chain complexes as it was reported in the context of the formation of supercomplexes. This behavior is most notable for the formation of supercomplexes CIII 2 -CIV and CIII 2 - CIV 2 9,12. Our recent CGMD simulations of the CIII 15 suggested that CL binding sites on the surface of the complex might define the location of protein-protein contact with CIV. The CL binding sites found on CIV might share a similar function. In summary, the CGMD simulations used in this study to investigate the CL binding sites on the respiratory chain complex IV, cytochrome c oxidase, provide new and valuable insights on the way CLs participate to the function of proteins. The locations of the CL binding sites that most likely correspond to both the high and low-affinity CL binding to CIV are identified with high level of confidence. They agree with and reconcile all known experimental data. CL binding sites on the surface of the protein are found at the proximity of two of the three known proton-uptake pathways, the D- and H-pathways. Two clear interaction networks connecting the CL binding sites to the entrances of these two pathways are uncovered. To our knowledge they provide the first complete proton pathway between the membrane surface (CL binding sites) and the D- and H- pathways in cytochrome c oxidase. This data strongly supports that CLs take active part in the proton delivery mechanism. Given the wide impact of CL in the respiratory chain machinery the role Figure 6 H-bond networks leading from the cardiolipin (CL) binding sites to the entrance of D- and H-pathways, A:D91 and A:D407, respectively. The CL binding sites are shown in stick representation. The yellow surface maps depict the CL densities shown in Fig. 2. A:D91 and A:D407 are shown in large sticks. The residues and water molecules (red spheres) participating to the networks are shown in a ball-and-stick representation and numbered as in Fig. 2. The bottom row shows side and top views of CIV with the CL densities, the residues involved in the sites in blue, the residues involved in the transmembrane section of the proton pathways (red arrows) in orange spheres and the heme molecules in green. The large red spheres position the entrances (A:D91 and A:D407) of the pathways. SCIENTIFIC REPORTS 3 : 1263 DOI: /srep

7 suggested by our data should extend to other components of the respiratory chain. Methods Molecular models. The Protein Data Bank (PDB) entries 1occ and 2occ 38 were used to built a complete atomistic model of CIV, which was simulated as a monomer, its functional form. In the experimental dimeric structure of CIV 24 four CLs cocrystallize with the protein (Fig. 1A). In a monomeric configuration, the experimental CL positions are all exposed to the membrane bulk and were not included in the initial conformation. In the simulations, the complex lipid composition of the mitochondrial membrane was modeled by a two components mixture of CL:POPC with a molecular ratio of 1:20 (5% of CL, 10% of total phosphorus content). This value is close to the experimental molecular ratio observed for bovine heart mitochondria (15 to 20% of the phosphorus content 3 ). The systems were described with the Martini CG force field for biomolecules (version ) and its extension to proteins (version ) together with the ElNeDyn approach 45. The Martini force field defines chemical groups as CG beads (or superatoms) parameterized to reproduce known thermodynamical observables associated to these groups. Molecules are constructed from these super-atoms using conventional bond, angle and dihedral potentials such that they reproduce the structure and flexibility of atomistic models 43,44. ElNeDyn maintains the secondary and tertiary structures of CG proteins through an elastic network. In our model, each subunit is maintained independently, so that domain motions (reorientation of subunits) are possible. CG parameters for CLs and TGLs were taken from the works of Dahlberg et al. 46 and Vuorela et al. 47. Simulation details. All CG simulations were performed using the GROMACS simulation package version Conventional simulation setups associated with the use of Martini and ElNeDyn were used. The protein, membrane bilayer (POPC and CL) and aqueous phase (water and Na 1 ions) were coupled independently to an external temperature bath 49 at 300 K and the pressure was weakly coupled to an external bath 49 at 1 bar using a semi-isotropic pressure scheme. Further details of the models, simulation protocols and limitations, as well as the methods used for analysis, are published as Supplementary Information. The CG protein structure was inserted into a pre-equilibrated CL:POPC membrane patch. The system was energy minimized and simulated for 10 ns with position restraints on the backbone beads of the protein to relax the solvent and side-chains before starting production runs. The system shown in Fig. 1B contains the protein (1780 residues; 4117 beads), a POPC bilayer (966 lipids; 12,558 beads) including CLs (48 CLs; 1296 beads) and the aqueous phase (51,549 water beads and 103 sodium ions). The potentials of mean force (PMF) of lipid molecules binding to CIV binding sites were computed using an umbrella sampling approach with the distance to the protein surface as reaction coordinate. Details are given as Supplementary Information. 1. Claypool, S. M. & Koehler, C. M. The complexity of cardiolipin in health and disease. Trends Biochem. Sci. 37, 3241 (2012). 2. Osman, C., Voelker, D. R. & Langer, T. Making heads or tails of phospholipids in mitochondria. J. Cell Biol. 192, 716 (2011). 3. Daum, G. Lipids of mitochondria. Biochim. Biophys. Acta 822, 142 (1985). 4. van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell. Biol. 9, (2008). 5. Chicco, A. J. & Sparagna, G. C. Role of cardiolipin alterations in mitochondrial dysfunction and disease. Am. J. Physiol. - Cell Physiol. 292, 3344 (2007). 6. Schlame, M. & Ren, M. Barth syndrome, a human disorder of cardiolipin metabolism. FEBS Lett. 580, (2006). 7. Saini-Chohan, H. K. et al. Cardiolipin biosynthesis and remodeling enzymes are altered during development of heart failure. J. Lipid. Res. 50, (2009). 8. Schägger, H. & Pfeiffer, K. Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J. 19, (2000). 9. Zhang, M., Mileykovskaya, E. & Dowhan, W. Gluing the respiratory chain together. J. Biol. Chem. 277, (2002). 10. Pfeiffer, K. et al. Cardiolipin stabilizes respiratory chain supercomplexes. J. Biol. Chem. 278, (2003). 11. Gohil, V. et al. Cardiolipin biosynthesis and mitochondrial respiratory chain function are interdependent. J. Biol. Chem. 279, (2004). 12. Zhang, M., Mileykovskaya, E. & Dowhan, W. Cardiolipin is essential for organization of complexes III and IV into a supercomplex in intact yeast mitochondria. J. Biol. Chem. 280, (2005). 13. Robinson, N. C., Zborowski, J. & Talbert, L. H. Cardiolipin-depleted bovine heart cytochrome-c-oxidase - binding stoichiometry and affinity for cardiolipin derivatives. Biochemistry 29, (1990). 14. Qin, L., Hiser, C., Mulichak, A., Garavito, R. M. & Ferguson-Miller, S. Identification of conserved lipid/detergent-binding sites in a high-resolution structure of the membrane protein cytochrome c oxidase. Proc. Natl. Acad. Sci. U.S.A. 103, (2006). 15. Arnarez, C., Mazat, J.-P., Elezgaray, J., Marrink, S.-J. & Periole, X. Evidence for cardiolipin binding sites on the membrane-exposed surface of the respiratory chain complex III. J. Am. Chem. Soc., accepted (DOI: /ja310577u). 16. Lange, C., Nett, J. H., Trumpower, B. L. & Hunte, C. Specific roles of proteinphospholipid interactions in the yeast cytochrome bc 1 complex structure. EMBO J. 20, (2001). 17. Sedlák, E. & Robinson, N. C. Phospholipase A 2 digestion of cardiolipin bound to bovine cytochrome c oxidase alters both activity and quaternary structure. Biochemistry 38, (1999). 18. Musatov, A. & Robinson, N. C. Cholate-induced dimerization of detergent- or phospholipid-solubilized bovine cytochrome c oxidase. Biochemistry 41, (2002). 19. Sedlák, E., Panda, M., Dale, M. P., Weintraub, S. T. & Robinson, N. C. Photolabeling of cardiolipin binding subunits within bovine heart cytochrome c oxidase. Biochemistry 45, (2006). 20. Kadenbach, B., Jarausch, J., Hartmann, R. & Merle, P. Separation of mammalian cytochrome c oxidase into 13 polypeptides by a sodium dodecyl sulfate-gel electrophoretic procedure. Anal Biochem 129, (1983). 21. Robinson, N. C., Strey, F. & Talbert, L. H. Investigation of the essential boundary layer phospholipids of cytochrome c oxidase using Triton X-100 delipidation. Biochemistry (1980). 22. Robinson, N. C. Functional binding of cardiolipin to cytochrome c oxidase. J. Bioenerg. Biomembr. 25, (1993). 23. Tsukihara, T. et al. The low-spin heme of cytochrome c oxidase as the driving element of the proton-pumping process. Proc. Natl. Acad. Sci. U.S.A. 100, (2003). 24. Shinzawa-Itoh, K. et al. Structures and physiological roles of 13 integral lipids of bovine heart cytochrome c oxidase. EMBO J. 26, (2007). 25. Periole, X., Huber, T., Marrink, S.-J. & Sakmar, T. P. G protein-coupled receptors self-assemble in dynamics simulations of model bilayers. J. Am. Chem. Soc. 129, (2007). 26. Louhivuori, M., Risselada, H. J., van der Giessen, E. & Marrink, S.-J. Release of content through mechano-sensitive gates in pressurized liposomes. 107, (2010). 27. Grossfield, A., Feller, S. E. & Pitman, M. C. A role for direct interactions in the modulation of rhodopsin by omega-3 polyunsaturated lipids. Proc. Natl. Acad. Sci. U.S.A. 103, (2006). 28. Stansfeld, P. J., Hopkinson, R., Ashcroft, F. M. & Sansom, M. S. P. PIP 2 -binding site in Kir channels: definition by multiscale biomolecular simulations. Biochemistry 48, (2009). 29. Aponte-Santamaria, C., Briones, R., Schenk, A. D., Walz, T. & de Groot, B. L. Molecular driving forces defining lipid positions around aquaporin-0. Proc. Natl. Acad. Sci. U.S.A. 109, (2012). 30. Schäfer, L. V. et al. Lipid packing drives the segregation of transmembrane helices into disordered lipid domains in model membranes. Proc. Natl. Acad. Sci. U.S.A. 108, (2011). 31. Domański, J., Marrink, S.-J. & Schäfer, L. V. Transmembrane helices can induce domain formation in crowded model membranes. BBA - Biomembranes 1818, (2012). 32. Koivuniemi, A., Vuorela, T., Kovanen, P. T., Vattulainen, I. & Hyvönen, M. T. Lipid exchange mechanism of the cholesteryl ester transfer protein clarified by atomistic and coarse-grained simulations. PLoS Comput. Biol. 8, e (2012). 33. Ulmschneider, M. & Sansom, M. S. P. Amino acid distributions in integral membrane protein structures. Biochim. Biophys. Acta 1512, 114 (2001). 34. Kates, M., Syz, J. Y., Gosser, D. & Haines, T. H. ph-dissociation characteristics of cardiolipin and its 2 -deoxy analogue. Lipids 28, (1993). 35. Haines, T. H. Anionic lipid headgroups as a proton-conducting pathway along the surface of membranes: a hypothesis. Proc. Natl. Acad. Sci. U.S.A. 80, (1983). 36. Haines, T. H. & Dencher, N. A. Cardiolipin: a proton trap for oxidative phosphorylation. FEBS Lett. 528, 3539 (2002). 37. Haines, T. H. A new look at cardiolipin. Biochim. Biophys. Acta 1788, (2009). 38. Tsukihara, T. et al. The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science 272, (1996). 39. Gennis, R. B. Multiple proton-conducting pathways in cytochrome c oxidase and a proposed role for the active-site tyrosine. BBA - Bioenergetics (1998). 40. Namslauer, A. & Brzezinski, P. Structural elements involved in electron-coupled proton transfer in cytochrome c oxidase. FEBS Lett. 567, (2004). 41. Brändén, G., Gennis, R. B. & Brzezinski, P. Transmembrane proton translocation by cytochrome c oxidase. Biochim. Biophys. Acta 1757, (2006). 42. Rich, P. R. Protein Electron Transfer (BIOS Scientific Publishers Ltd., 1996). 43. Marrink, S.-J., Risselada, H. J., Yefimov, S., Tieleman, D. P. & de Vries, A. H. The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111, (2007). 44. Monticelli, L. et al. The MARTINI coarse-grained force field: extension to proteins. J. Chem. Theory Comput. 4, (2008). 45. Periole, X., Cavalli, M., Marrink, S.-J. & Ceruso, M. A. Combining an elastic network with a coarse-grained molecular force field: structure, dynamics, and intermolecular recognition. J. Chem. Theory Comput. 5, (2009). 46. Dahlberg, M. Polymorphic phase behavior of cardiolipin derivatives studied by coarse-grained molecular dynamics. J. Phys. Chem. B 111, (2007). SCIENTIFIC REPORTS 3 : 1263 DOI: /srep

8 47. Vuorela, T. et al. Role of lipids in spheroidal high density lipoproteins. PLoS Comput. Biol. 6, e (2010). 48. Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, (2008). 49. Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, (1984). Acknowledgements The authors would like to thank Peter Rich, Jean-Pierre Mazat and Juan Elezgaray for insightful discussions, and Jaakko Uusitalo for helping performing the PMFs. This work was supported by the Netherlands Organisation for Scientific Research (NWO) (to X.P. and S.J.M., ECHO.08.BM.041). Author contributions C.A. conducted the simulations. X.P. and C.A. built the models and analysed the trajectories. X.P., C.A. and S.J.M. designed the models and simulations. X.P., C.A. and S.J.M. interpreted the data and wrote the paper. Additional information Supplementary information accompanies this paper at scientificreports Competing financial interests: The authors declare no competing financial interests. License: This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit How to cite this article: Arnarez, C., Marrink, S.J. & Periole, X. Identification of cardiolipin binding sites on cytochrome c oxidase at the entrance of proton channels. Sci. Rep. 3,1263; DOI: /srep01263 (2013). SCIENTIFIC REPORTS 3 : 1263 DOI: /srep

9 DOI: /srep01343 SUBJECT AREAS: MOLECULAR MODELLING COMPUTATIONAL CHEMISTRY BIOPHYSICAL CHEMISTRY COMPUTATIONAL BIOPHYSICS SCIENTIFIC REPORTS: 3 : 1263 DOI: /srep01263 (2013) ERRATUM: Identification of cardiolipin binding sites on cytochrome c oxidase at the entrance of proton channels C. Arnarez, S. J. Marrink & X. Periole The original version of this Article contained a typographical error in the DOI, /srep01263, which was incorrectly given as /srep This has now been corrected in both the PDF and HTML versions of the Article. Furthermore, the supplementary movie was omitted from the original version of this Article. This has now been added as online supplementary material. Published: 12 February 2013 Updated: 22 February 2013 SCIENTIFIC REPORTS 3 : 1343 DOI: /srep

Supplementary Information

Supplementary Information Coarse-Grained Molecular Dynamics Simulations of Photoswitchable Assembly and Disassembly Xiaoyan Zheng, Dong Wang,* Zhigang Shuai,* MOE Key Laboratory of Organic Optoelectronics and Molecular Engineering,

More information

Interaction of Functionalized C 60 Nanoparticles with Lipid Membranes

Interaction of Functionalized C 60 Nanoparticles with Lipid Membranes Interaction of Functionalized C 60 Nanoparticles with Lipid Membranes Kevin Gasperich Advisor: Dmitry Kopelevich ABSTRACT The recent rapid development of applications for fullerenes has led to an increase

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/ncb2837 Figure S1 Additional characterization of Rot and STS-induced mitophagy. Primary rat cortical neuron cultures were treated with rotenone at 7-9 days in vitro (DIV) using the indicated

More information

We parameterized a coarse-grained fullerene consistent with the MARTINI coarse-grained force field

We parameterized a coarse-grained fullerene consistent with the MARTINI coarse-grained force field Parameterization of the fullerene coarse-grained model We parameterized a coarse-grained fullerene consistent with the MARTINI coarse-grained force field for lipids 1 and proteins 2. In the MARTINI force

More information

Physicochemical Properties of Nanoparticles Regulate Translocation across Pulmonary. Surfactant Monolayer and Formation of Lipoprotein Corona

Physicochemical Properties of Nanoparticles Regulate Translocation across Pulmonary. Surfactant Monolayer and Formation of Lipoprotein Corona Physicochemical Properties of Nanoparticles Regulate Translocation across Pulmonary Surfactant Monolayer and Formation of Lipoprotein Corona Supplementary Information Guoqing Hu 1 *, Bao Jiao 1, Xinghua

More information

Chapter 14 - Electron Transport and Oxidative Phosphorylation

Chapter 14 - Electron Transport and Oxidative Phosphorylation Chapter 14 - Electron Transport and Oxidative Phosphorylation The cheetah, whose capacity for aerobic metabolism makes it one of the fastest animals Prentice Hall c2002 Chapter 14 1 14.4 Oxidative Phosphorylation

More information

RELEASE OF CONTENT THROUGH MECHANO- SENSITIVE GATES IN PRESSURISED LIPOSOMES. Martti Louhivuori University of Groningen

RELEASE OF CONTENT THROUGH MECHANO- SENSITIVE GATES IN PRESSURISED LIPOSOMES. Martti Louhivuori University of Groningen RELEASE OF CONTENT THROUGH MECHANO- SENSITIVE GATES IN PRESSURISED LIPOSOMES Martti Louhivuori University of Groningen www.cgmartini.nl MARTINI coarse-grained model water P4 butane Qo Na DPPC cholesterol

More information

BIOLOGY 103 Spring 2001 MIDTERM LAB SECTION

BIOLOGY 103 Spring 2001 MIDTERM LAB SECTION BIOLOGY 103 Spring 2001 MIDTERM NAME KEY LAB SECTION ID# (last four digits of SS#) STUDENT PLEASE READ. Do not put yourself at a disadvantage by revealing the content of this exam to your classmates. Your

More information

Lecture 15. Membrane Proteins I

Lecture 15. Membrane Proteins I Lecture 15 Membrane Proteins I Introduction What are membrane proteins and where do they exist? Proteins consist of three main classes which are classified as globular, fibrous and membrane proteins. A

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/4/3/eaaq0762/dc1 Supplementary Materials for Structures of monomeric and oligomeric forms of the Toxoplasma gondii perforin-like protein 1 Tao Ni, Sophie I. Williams,

More information

Biological Membranes. Lipid Membranes. Bilayer Permeability. Common Features of Biological Membranes. A highly selective permeability barrier

Biological Membranes. Lipid Membranes. Bilayer Permeability. Common Features of Biological Membranes. A highly selective permeability barrier Biological Membranes Structure Function Composition Physicochemical properties Self-assembly Molecular models Lipid Membranes Receptors, detecting the signals from outside: Light Odorant Taste Chemicals

More information

SDS-Assisted Protein Transport Through Solid-State Nanopores

SDS-Assisted Protein Transport Through Solid-State Nanopores Supplementary Information for: SDS-Assisted Protein Transport Through Solid-State Nanopores Laura Restrepo-Pérez 1, Shalini John 2, Aleksei Aksimentiev 2 *, Chirlmin Joo 1 *, Cees Dekker 1 * 1 Department

More information

A proposed mechanism for tear film breakup: a molecular level view by employing in-silico approach

A proposed mechanism for tear film breakup: a molecular level view by employing in-silico approach Journal for Modeling in Ophthalmology 2018; 1:19-23 Meeting highlights article: ARVO 2017 A proposed mechanism for tear film breakup: a molecular level view by employing in-silico approach Lukasz Cwiklik

More information

obtained for the simulations of the E2 conformation of SERCA in a pure POPC lipid bilayer (blue) and in a

obtained for the simulations of the E2 conformation of SERCA in a pure POPC lipid bilayer (blue) and in a Supplementary Figure S1. Distribution of atoms along the bilayer normal. Normalized density profiles obtained for the simulations of the E2 conformation of SERCA in a pure POPC lipid bilayer (blue) and

More information

Chapter 7: Membranes

Chapter 7: Membranes Chapter 7: Membranes Roles of Biological Membranes The Lipid Bilayer and the Fluid Mosaic Model Transport and Transfer Across Cell Membranes Specialized contacts (junctions) between cells What are the

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION High-speed atomic force microscopy shows that annexin V stabilizes membranes on the second timescale Atsushi Miyagi, Chris Chipot, Martina Rangl & Simon Scheuring Supplementary Movies: Supplementary Movie

More information

Oxidative Phosphorylation

Oxidative Phosphorylation Oxidative Phosphorylation Energy from Reduced Fuels Is Used to Synthesize ATP in Animals Carbohydrates, lipids, and amino acids are the main reduced fuels for the cell. Electrons from reduced fuels are

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1. (a) Uncropped version of Fig. 2a. RM indicates that the translation was done in the absence of rough mcirosomes. (b) LepB construct containing the GGPG-L6RL6-

More information

Oxidative phosphorylation & Photophosphorylation

Oxidative phosphorylation & Photophosphorylation Oxidative phosphorylation & Photophosphorylation Oxidative phosphorylation is the last step in the formation of energy-yielding metabolism in aerobic organisms. All oxidative steps in the degradation of

More information

Vocabulary. Chapter 20: Electron Transport and Oxidative Phosphorylation

Vocabulary. Chapter 20: Electron Transport and Oxidative Phosphorylation Vocabulary ATP Synthase: the enzyme responsible for production of ATP in mitochondria Chemiosmotic Coupling: the mechanism for coupling electron transport to oxidative phosphorylation; it requires a proton

More information

19 Oxidative Phosphorylation and Photophosphorylation W. H. Freeman and Company

19 Oxidative Phosphorylation and Photophosphorylation W. H. Freeman and Company 19 Oxidative Phosphorylation and Photophosphorylation 2013 W. H. Freeman and Company CHAPTER 19 Oxidative Phosphorylation and Photophosphorylation Key topics: Electron transport chain in mitochondria Capture

More information

Membranes. Chapter 5

Membranes. Chapter 5 Membranes Chapter 5 Membrane Structure The fluid mosaic model of membrane structure contends that membranes consist of: -phospholipids arranged in a bilayer -globular proteins inserted in the lipid bilayer

More information

Penetration of Gold Nanoparticle through Human Skin: Unraveling Its Mechanisms at the Molecular Scale

Penetration of Gold Nanoparticle through Human Skin: Unraveling Its Mechanisms at the Molecular Scale Penetration of Gold Nanoparticle through Human Skin: Unraveling Its Mechanisms at the Molecular Scale Rakesh Gupta and Beena Rai* TATA Research Development & Design Centre, TCS Innovation labs, Pune India,

More information

Membrane Structure. Membrane Structure. Membrane Structure. Membranes

Membrane Structure. Membrane Structure. Membrane Structure. Membranes Membrane Structure Membranes Chapter 5 The fluid mosaic model of membrane structure contends that membranes consist of: -phospholipids arranged in a bilayer -globular proteins inserted in the lipid bilayer

More information

Fall Name Student ID

Fall Name Student ID Name Student ID PART 1: Matching. Match the organelle to its function (11 points) 1.Proton motive force 2. Fluid Mosiac 3. Oxidative Phosphorylation 4. Pyruvate dehydrogenase 5. Electrochemical Force 6.

More information

Cellular Neurophysiology I Membranes and Ion Channels

Cellular Neurophysiology I Membranes and Ion Channels Cellular Neurophysiology I Membranes and Ion Channels Reading: BCP Chapter 3 www.bioelectriclab All living cells maintain an electrical potential (voltage) across their membranes (V m ). Resting Potential

More information

Interactions of Polyethylenimines with Zwitterionic and. Anionic Lipid Membranes

Interactions of Polyethylenimines with Zwitterionic and. Anionic Lipid Membranes Interactions of Polyethylenimines with Zwitterionic and Anionic Lipid Membranes Urszula Kwolek, Dorota Jamróz, Małgorzata Janiczek, Maria Nowakowska, Paweł Wydro, Mariusz Kepczynski Faculty of Chemistry,

More information

BIOPHYSICS II. By Prof. Xiang Yang Liu Department of Physics,

BIOPHYSICS II. By Prof. Xiang Yang Liu Department of Physics, BIOPHYSICS II By Prof. Xiang Yang Liu Department of Physics, NUS 1 Hydrogen bond and the stability of macromolecular structure Membrane Model Amphiphilic molecule self-assembly at the surface and din the

More information

Supporting material. Membrane permeation induced by aggregates of human islet amyloid polypeptides

Supporting material. Membrane permeation induced by aggregates of human islet amyloid polypeptides Supporting material Membrane permeation induced by aggregates of human islet amyloid polypeptides Chetan Poojari Forschungszentrum Jülich GmbH, Institute of Complex Systems: Structural Biochemistry (ICS-6),

More information

Chapter 1 Membrane Structure and Function

Chapter 1 Membrane Structure and Function Chapter 1 Membrane Structure and Function Architecture of Membranes Subcellular fractionation techniques can partially separate and purify several important biological membranes, including the plasma and

More information

Life Sciences 1a. Practice Problems 4

Life Sciences 1a. Practice Problems 4 Life Sciences 1a Practice Problems 4 1. KcsA, a channel that allows K + ions to pass through the membrane, is a protein with four identical subunits that form a channel through the center of the tetramer.

More information

Coarse grained simulations of Lipid Bilayer Membranes

Coarse grained simulations of Lipid Bilayer Membranes Coarse grained simulations of Lipid Bilayer Membranes P. B. Sunil Kumar Department of Physics IIT Madras, Chennai 600036 sunil@iitm.ac.in Atomistic MD: time scales ~ 10 ns length scales ~100 nm 2 To study

More information

Table S1: Kinetic parameters of drug and substrate binding to wild type and HIV-1 protease variants. Data adapted from Ref. 6 in main text.

Table S1: Kinetic parameters of drug and substrate binding to wild type and HIV-1 protease variants. Data adapted from Ref. 6 in main text. Dynamical Network of HIV-1 Protease Mutants Reveals the Mechanism of Drug Resistance and Unhindered Activity Rajeswari Appadurai and Sanjib Senapati* BJM School of Biosciences and Department of Biotechnology,

More information

Detergent solubilised 5 TMD binds pregnanolone at the Q245 neurosteroid potentiation site.

Detergent solubilised 5 TMD binds pregnanolone at the Q245 neurosteroid potentiation site. Supplementary Figure 1 Detergent solubilised 5 TMD binds pregnanolone at the Q245 neurosteroid potentiation site. (a) Gel filtration profiles of purified 5 TMD samples at 100 nm, heated beforehand for

More information

Membranes. Chapter 5. Membrane Structure

Membranes. Chapter 5. Membrane Structure Membranes Chapter 5 Membrane Structure Lipid Bilayer model: - double phospholipid layer - Gorter & Grendel: 1925 Fluid Mosaic model: consist of -phospholipids arranged in a bilayer -globular proteins inserted

More information

Supplementary Figure 1 (previous page). EM analysis of full-length GCGR. (a) Exemplary tilt pair images of the GCGR mab23 complex acquired for Random

Supplementary Figure 1 (previous page). EM analysis of full-length GCGR. (a) Exemplary tilt pair images of the GCGR mab23 complex acquired for Random S1 Supplementary Figure 1 (previous page). EM analysis of full-length GCGR. (a) Exemplary tilt pair images of the GCGR mab23 complex acquired for Random Conical Tilt (RCT) reconstruction (left: -50,right:

More information

Phase Behavior of a Phospholipid/Fatty Acid/Water Mixture Studied in Atomic Detail

Phase Behavior of a Phospholipid/Fatty Acid/Water Mixture Studied in Atomic Detail Published on Web 01/19/2006 Phase Behavior of a Phospholipid/Fatty Acid/Water Mixture Studied in Atomic Detail Volker Knecht,*, Alan E. Mark,, and Siewert-Jan Marrink Contribution from the Max Planck Institute

More information

Lipids are macromolecules, but NOT polymers. They are amphipathic composed of a phosphate head and two fatty acid tails attached to a glycerol

Lipids are macromolecules, but NOT polymers. They are amphipathic composed of a phosphate head and two fatty acid tails attached to a glycerol d 1 2 Lipids are macromolecules, but NOT polymers. They are amphipathic composed of a phosphate head and two fatty acid tails attached to a glycerol backbone. The phosphate head group is hydrophilic water

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 018 Supporting Information Modulating Interactions between Ligand-Coated Nanoparticles and Phase-Separated

More information

The effect of orientation dynamics in melittin as antimicrobial peptide in lipid bilayer calculated by free energy method

The effect of orientation dynamics in melittin as antimicrobial peptide in lipid bilayer calculated by free energy method Journal of Physics: Conference Series PAPER OPEN ACCESS The effect of orientation dynamics in melittin as antimicrobial peptide in lipid bilayer calculated by free energy method To cite this article: Sri

More information

SUPPORTING INFORMATION. Lysine Carbonylation is a Previously Unrecognized Contributor. to Peroxidase Activation of Cytochrome c by Chloramine-T

SUPPORTING INFORMATION. Lysine Carbonylation is a Previously Unrecognized Contributor. to Peroxidase Activation of Cytochrome c by Chloramine-T Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2019 SUPPORTING INFORMATION Lysine Carbonylation is a Previously Unrecognized Contributor to

More information

Supporting Information: Revisiting partition in. hydrated bilayer systems

Supporting Information: Revisiting partition in. hydrated bilayer systems Supporting Information: Revisiting partition in hydrated bilayer systems João T. S. Coimbra, Pedro A. Fernandes, Maria J. Ramos* UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências,

More information

Electron Transfer Chain

Electron Transfer Chain Molecular Biochemistry I Electron Transfer Chain Contents of this page: Electron transfer reactions Electron carriers Respiratory chain Electron Transfer is discussed on p. 555-556, 571-574 and 802-820

More information

Molecular Cell Biology Problem Drill 16: Intracellular Compartment and Protein Sorting

Molecular Cell Biology Problem Drill 16: Intracellular Compartment and Protein Sorting Molecular Cell Biology Problem Drill 16: Intracellular Compartment and Protein Sorting Question No. 1 of 10 Question 1. Which of the following statements about the nucleus is correct? Question #01 A. The

More information

Lecture 36: Review of membrane function

Lecture 36: Review of membrane function Chem*3560 Lecture 36: Review of membrane function Membrane: Lipid bilayer with embedded or associated proteins. Bilayers: 40-70% neutral phospholipid 10-20% negative phospholipid 10-30% cholesterol 10-30%

More information

Simulationen von Lipidmembranen

Simulationen von Lipidmembranen Simulationen von Lipidmembranen Thomas Stockner thomas.stockner@meduniwien.ac.at Molecular biology Molecular modelling Membranes environment Many cellular functions occur in or around membranes: energy

More information

Molecular Cell Biology. Prof. D. Karunagaran. Department of Biotechnology. Indian Institute of Technology Madras

Molecular Cell Biology. Prof. D. Karunagaran. Department of Biotechnology. Indian Institute of Technology Madras Molecular Cell Biology Prof. D. Karunagaran Department of Biotechnology Indian Institute of Technology Madras Module 4 Membrane Organization and Transport Across Membranes Lecture 1 Cell Membrane and Transport

More information

Supplementary information for Effects of Stretching Speed on. Mechanical Rupture of Phospholipid/Cholesterol Bilayers: Molecular

Supplementary information for Effects of Stretching Speed on. Mechanical Rupture of Phospholipid/Cholesterol Bilayers: Molecular Supplementary information for Effects of Stretching Speed on Mechanical Rupture of Phospholipid/Cholesterol Bilayers: Molecular Dynamics Simulation Taiki Shigematsu, Kenichiro Koshiyama*, and Shigeo Wada

More information

Adaptable Lipid Matrix Promotes Protein Protein Association in Membranes

Adaptable Lipid Matrix Promotes Protein Protein Association in Membranes Supporting information Adaptable Lipid Matrix Promotes Protein Protein Association in Membranes Andrey S. Kuznetsov, Anton A. Polyansky,, Markus Fleck, Pavel E. Volynsky, and Roman G. Efremov *,, M. M.

More information

Supporting information for: Quantifying. lateral inhomogeneity of. cholesterol-containing membranes

Supporting information for: Quantifying. lateral inhomogeneity of. cholesterol-containing membranes Supporting information for: Quantifying lateral inhomogeneity of cholesterol-containing membranes Celsa Díaz-Tejada, Igor Ariz-Extreme, Neha Awasthi, and Jochen S. Hub Georg-August-University Göttingen,

More information

Interaction Between Amyloid-b (1 42) Peptide and Phospholipid Bilayers: A Molecular Dynamics Study

Interaction Between Amyloid-b (1 42) Peptide and Phospholipid Bilayers: A Molecular Dynamics Study Biophysical Journal Volume 96 February 2009 785 797 785 Interaction Between Amyloid-b (1 42) Peptide and Phospholipid Bilayers: A Molecular Dynamics Study Charles H. Davis and Max L. Berkowitz * Department

More information

Comprehensive and Easy Course Notes for BIOL1040 Exams and Assessment

Comprehensive and Easy Course Notes for BIOL1040 Exams and Assessment Comprehensive and Easy Course Notes for BIOL1040 Exams and Assessment MODULE 1: PRINCIPLES OF CELL FUNCTION Membrane Structure & Function Cellular membranes are fluid mosaics of lipids and proteins Phospholipids

More information

CELL BIOLOGY - CLUTCH CH AEROBIC RESPIRATION.

CELL BIOLOGY - CLUTCH CH AEROBIC RESPIRATION. !! www.clutchprep.com CONCEPT: OVERVIEW OF AEROBIC RESPIRATION Cellular respiration is a series of reactions involving electron transfers to breakdown molecules for (ATP) 1. Glycolytic pathway: Glycolysis

More information

Chapter VI. Increased affinity in the complex of yeast cytochrome c and cytochrome c peroxidase

Chapter VI. Increased affinity in the complex of yeast cytochrome c and cytochrome c peroxidase Chapter VI Increased affinity in the complex of yeast cytochrome c and cytochrome c peroxidase Chapter VI Abstract We report the study of T12A Cyt c CcP complex using isothermal titration calorimetry (ITC),

More information

Chapter 2 Transport Systems

Chapter 2 Transport Systems Chapter 2 Transport Systems The plasma membrane is a selectively permeable barrier between the cell and the extracellular environment. It permeability properties ensure that essential molecules such as

More information

Lipids and Membranes

Lipids and Membranes Lipids and Membranes Presented by Dr. Mohammad Saadeh The requirements for the Pharmaceutical Biochemistry I Philadelphia University Faculty of pharmacy Biological membranes are composed of lipid bilayers

More information

Conformational Flexibility of the Peptide Hormone Ghrelin in Solution and Lipid Membrane Bound: A Molecular Dynamics Study

Conformational Flexibility of the Peptide Hormone Ghrelin in Solution and Lipid Membrane Bound: A Molecular Dynamics Study Open Access Article The authors, the publisher, and the right holders grant the right to use, reproduce, and disseminate the work in digital form to all users. Journal of Biomolecular Structure & Dynamics,

More information

Electron Transport and Oxidative. Phosphorylation

Electron Transport and Oxidative. Phosphorylation Electron Transport and Oxidative Phosphorylation Electron-transport chain electron- Definition: The set of proteins and small molecules involved in the orderly sequence of transfer to oxygen within the

More information

Coarse-Grained Molecular Dynamics for Copolymer- Vesicle Self-Assembly. Case Study: Sterically Stabilized Liposomes.

Coarse-Grained Molecular Dynamics for Copolymer- Vesicle Self-Assembly. Case Study: Sterically Stabilized Liposomes. Coarse-Grained Molecular Dynamics for Copolymer- Vesicle Self-Assembly. Case Study: Sterically Stabilized Liposomes. Alexander Kantardjiev 1 and Pavletta Shestakova 1 1 Institute of Organic Chemistry with

More information

Arginine side chain interactions and the role of arginine as a mobile charge carrier in voltage sensitive ion channels. Supplementary Information

Arginine side chain interactions and the role of arginine as a mobile charge carrier in voltage sensitive ion channels. Supplementary Information Arginine side chain interactions and the role of arginine as a mobile charge carrier in voltage sensitive ion channels Craig T. Armstrong, Philip E. Mason, J. L. Ross Anderson and Christopher E. Dempsey

More information

Nafith Abu Tarboush DDS, MSc, PhD

Nafith Abu Tarboush DDS, MSc, PhD Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush OMM: permeable to small molecules (MW

More information

Supplementary Figure 1 Preparation, crystallization and structure determination of EpEX. (a), Purified EpEX and EpEX analyzed on homogenous 12.

Supplementary Figure 1 Preparation, crystallization and structure determination of EpEX. (a), Purified EpEX and EpEX analyzed on homogenous 12. Supplementary Figure 1 Preparation, crystallization and structure determination of EpEX. (a), Purified EpEX and EpEX analyzed on homogenous 12.5 % SDS-PAGE gel under reducing and non-reducing conditions.

More information

OVERVIEW OF RESPIRATION AND LOOSE ENDS. What agents? What war?

OVERVIEW OF RESPIRATION AND LOOSE ENDS. What agents? What war? 5.19.06 OVERVIEW OF RESPIRATION AND LOOSE ENDS What agents? What war? 1 Ubiquinone or Coenzyme Q: small hydrophobic molecule that can pick up or donate electrons The respiratory chain contains 3 large

More information

Electron Transport Chain and Oxidative Phosphorylation 20-1

Electron Transport Chain and Oxidative Phosphorylation 20-1 Electron Transport Chain and Oxidative Phosphorylation 20-1 Learning Objectives 1. What Role Does Electron Transport Play in Met.? 2. What Are the Reduction Potentials for the Electron Transport Chain?

More information

Simulationen von Lipidmembranen

Simulationen von Lipidmembranen Simulationen von Lipidmembranen Thomas Stockner Thomas.stockner@meduniwien.ac.at Summary Methods Force Field MD simulations Membrane simulations Application Oxidized lipids Anesthetics Molecular biology

More information

number Done by Corrected by Doctor Nafeth Abu Tarboush

number Done by Corrected by Doctor Nafeth Abu Tarboush number 8 Done by Ali Yaghi Corrected by Mamoon Mohamad Alqtamin Doctor Nafeth Abu Tarboush 0 P a g e Oxidative phosphorylation Oxidative phosphorylation has 3 major aspects: 1. It involves flow of electrons

More information

Boundary Lipid bilayer Selectively Permeable Fluid mosaic of lipids and proteins Contains embedded proteins

Boundary Lipid bilayer Selectively Permeable Fluid mosaic of lipids and proteins Contains embedded proteins 1 Boundary Lipid bilayer Selectively Permeable Fluid mosaic of lipids and proteins Contains embedded proteins 2 Phosphate head hydrophilic Fatty acid tails hydrophobic Amphipathic Phosphate attracted to

More information

Main Functions maintain homeostasis

Main Functions maintain homeostasis The Cell Membrane Main Functions The main goal is to maintain homeostasis. Regulates materials moving in and out of the cell. Provides a large surface area on which specific chemical reactions can occur.

More information

Membrane Structure and Function - 1

Membrane Structure and Function - 1 Membrane Structure and Function - 1 The Cell Membrane and Interactions with the Environment Cells interact with their environment in a number of ways. Each cell needs to obtain oxygen and other nutrients

More information

MARTINI Coarse-Grained Model of Triton TX-100 in Pure DPPC. Monolayer and Bilayer Interfaces. Supporting Information

MARTINI Coarse-Grained Model of Triton TX-100 in Pure DPPC. Monolayer and Bilayer Interfaces. Supporting Information MARTINI Coarse-Grained Model of Triton TX-100 in Pure DPPC Monolayer and Bilayer Interfaces. Antonio Pizzirusso a, Antonio De Nicola* a, Giuseppe Milano a a Dipartimento di Chimica e Biologia, Università

More information

These are example problems, which are similar to those you may see on the final exam.

These are example problems, which are similar to those you may see on the final exam. MCB102 / Metabolism Problem Set #3 Spring 2008 These are example problems, which are similar to those you may see on the final exam. QUESTION 1: /. Circle the correct answer, but if the answer is provide

More information

Reading Assignment: Start reading Chapter 14: Energy Generation in Mitochondria and Cholorplasts See animation 14.

Reading Assignment: Start reading Chapter 14: Energy Generation in Mitochondria and Cholorplasts See animation 14. 5.19.06 Electron Transport and Oxidative Phosphorylation Reading Assignment: Start reading Chapter 14: Energy Generation in Mitochondria and Cholorplasts See animation 14.3 on your text CD ATPsynthase

More information

MEMBRANE-BOUND ELECTRON TRANSFER AND ATP SYNTHESIS (taken from Chapter 18 of Stryer)

MEMBRANE-BOUND ELECTRON TRANSFER AND ATP SYNTHESIS (taken from Chapter 18 of Stryer) MEMBRANE-BOUND ELECTRON TRANSFER AND ATP SYNTHESIS (taken from Chapter 18 of Stryer) FREE ENERGY MOST USEFUL THERMODYNAMIC CONCEPT IN BIOCHEMISTRY Living things require an input of free energy for 3 major

More information

Supplementary Information A Hydrophobic Barrier Deep Within the Inner Pore of the TWIK-1 K2P Potassium Channel Aryal et al.

Supplementary Information A Hydrophobic Barrier Deep Within the Inner Pore of the TWIK-1 K2P Potassium Channel Aryal et al. Supplementary Information A Hydrophobic Barrier Deep Within the Inner Pore of the TWIK-1 K2P Potassium Channel Aryal et al. Supplementary Figure 1 TWIK-1 stability during MD simulations in a phospholipid

More information

BIOLOGICAL CHEMISTRY Prof. J.H.P. Bayley, Dr. R.M. Adlington and Dr. L. Smith Trinity Term First Year. Lecture 2 Hagan Bayley

BIOLOGICAL CHEMISTRY Prof. J.H.P. Bayley, Dr. R.M. Adlington and Dr. L. Smith Trinity Term First Year. Lecture 2 Hagan Bayley BIOLOGICAL CHEMISTRY Prof. J.H.P. Bayley, Dr. R.M. Adlington and Dr. L. Smith Trinity Term 2007 - First Year Lecture 2 Hagan Bayley Introduction to the macromolecules of life and cell structures. Introduction

More information

Zool 3200: Cell Biology Exam 4 Part I 2/3/15

Zool 3200: Cell Biology Exam 4 Part I 2/3/15 Name: Key Trask Zool 3200: Cell Biology Exam 4 Part I 2/3/15 Answer each of the following questions in the space provided, explaining your answers when asked to do so; circle the correct answer or answers

More information

MITOCW watch?v=h20edxcopey

MITOCW watch?v=h20edxcopey MITOCW watch?v=h20edxcopey The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

More information

BioChem Course Outline

BioChem Course Outline BioChem 330 - Course Outline Metabolism and Bioenergetics (II) ENZYME CATALYSIS: kinetic constants k cat, K m Catalytic strategies, the serine proteases CATABOLISM (breakdown) Carbohydrates Glycolysis

More information

Massive oxidation of phospholipid membranes. leads to pore creation and bilayer. disintegration

Massive oxidation of phospholipid membranes. leads to pore creation and bilayer. disintegration Massive oxidation of phospholipid membranes leads to pore creation and bilayer disintegration Lukasz Cwiklik and Pavel Jungwirth Institute of Organic Chemistry and Biochemistry, Academy of Sciences of

More information

Supplementary Information: A Critical. Comparison of Biomembrane Force Fields: Structure and Dynamics of Model DMPC, POPC, and POPE Bilayers

Supplementary Information: A Critical. Comparison of Biomembrane Force Fields: Structure and Dynamics of Model DMPC, POPC, and POPE Bilayers Supplementary Information: A Critical Comparison of Biomembrane Force Fields: Structure and Dynamics of Model DMPC, POPC, and POPE Bilayers Kristyna Pluhackova,, Sonja A. Kirsch, Jing Han, Liping Sun,

More information

The main biological functions of the many varied types of lipids include: energy storage protection insulation regulation of physiological processes

The main biological functions of the many varied types of lipids include: energy storage protection insulation regulation of physiological processes Big Idea In the biological sciences, a dehydration synthesis (condensation reaction) is typically defined as a chemical reaction that involves the loss of water from the reacting molecules. This reaction

More information

PHAR3316 Pharmacy biochemistry Exam #2 Fall 2010 KEY

PHAR3316 Pharmacy biochemistry Exam #2 Fall 2010 KEY 1. How many protons is(are) lost when the amino acid Asparagine is titrated from its fully protonated state to a fully deprotonated state? A. 0 B. 1 * C. 2 D. 3 E. none Correct Answer: C (this question

More information

Gold nanocrystals at DPPC bilayer. Bo Song, Huajun Yuan, Cynthia J. Jameson, Sohail Murad

Gold nanocrystals at DPPC bilayer. Bo Song, Huajun Yuan, Cynthia J. Jameson, Sohail Murad Gold nanocrystals at DPPC bilayer Bo Song, Huajun Yuan, Cynthia J. Jameson, Sohail Murad Coarse-grained mapping strategy of a DPPC lipid molecule. The structure of gold nanocrystals (bare gold nanoparticles)

More information

1. Which of the following statements about passive and primary active transport proteins is FALSE?

1. Which of the following statements about passive and primary active transport proteins is FALSE? Biological Membranes 1. Which of the following statements about passive and primary active transport proteins is FALSE? A. They are both integral membrane proteins. B. They both show a high degree of selectivity.

More information

MCB II MCDB 3451 Exam 1 Spring, minutes, close everything and be concise!

MCB II MCDB 3451 Exam 1 Spring, minutes, close everything and be concise! MCB II MCDB 3451 Exam 1 Spring, 2016 50 minutes, close everything and be concise! Name ID NOTE: QUESTIONS ARE NOT ALL WORTH THE SAME POINTS Total (100) Grade EXAM 1, 2016 MCBII Name 1. Which is UNIQUE

More information

(B D) Three views of the final refined 2Fo-Fc electron density map of the Vpr (red)-ung2 (green) interacting region, contoured at 1.4σ.

(B D) Three views of the final refined 2Fo-Fc electron density map of the Vpr (red)-ung2 (green) interacting region, contoured at 1.4σ. Supplementary Figure 1 Overall structure of the DDB1 DCAF1 Vpr UNG2 complex. (A) The final refined 2Fo-Fc electron density map, contoured at 1.4σ of Vpr, illustrating well-defined side chains. (B D) Three

More information

Lecture Series 4 Cellular Membranes. Reading Assignments. Selective and Semi-permeable Barriers

Lecture Series 4 Cellular Membranes. Reading Assignments. Selective and Semi-permeable Barriers Lecture Series 4 Cellular Membranes Reading Assignments Read Chapter 11 Membrane Structure Review Chapter 12 Membrane Transport Review Chapter 15 regarding Endocytosis and Exocytosis Read Chapter 20 (Cell

More information

Chapter 11: Enzyme Catalysis

Chapter 11: Enzyme Catalysis Chapter 11: Enzyme Catalysis Matching A) high B) deprotonated C) protonated D) least resistance E) motion F) rate-determining G) leaving group H) short peptides I) amino acid J) low K) coenzymes L) concerted

More information

BIOL 158: BIOLOGICAL CHEMISTRY II

BIOL 158: BIOLOGICAL CHEMISTRY II BIOL 158: BIOLOGICAL CHEMISTRY II Lecture 1: Membranes Lecturer: Christopher Larbie, PhD Introduction Introduction Cells and Organelles have membranes Membranes contain lipids, proteins and polysaccharides

More information

Introduction to proteins and protein structure

Introduction to proteins and protein structure Introduction to proteins and protein structure The questions and answers below constitute an introduction to the fundamental principles of protein structure. They are all available at [link]. What are

More information

Membrane effects on proton transfer in cytochrome c oxidase. Linda Näsvik Öjemyr

Membrane effects on proton transfer in cytochrome c oxidase. Linda Näsvik Öjemyr Membrane effects on proton transfer in cytochrome c oxidase Linda Näsvik Öjemyr Linda Näsvik Öjemyr, Stockholm 2012 ISBN 978-91-7447-482-4 (pp 1-57) Printed in Sweden by Universitetsservice US-AB, Stockholm

More information

Lecture 10 More about proteins

Lecture 10 More about proteins Lecture 10 More about proteins Today we're going to extend our discussion of protein structure. This may seem far-removed from gene cloning, but it is the path to understanding the genes that we are cloning.

More information

Chemical Energy. Valencia College

Chemical Energy. Valencia College 9 Pathways that Harvest Chemical Energy Valencia College 9 Pathways that Harvest Chemical Energy Chapter objectives: How Does Glucose Oxidation Release Chemical Energy? What Are the Aerobic Pathways of

More information

Membrane Biochemistry. Lectures by. John F. Allen. School of Biological and Chemical Sciences, Queen Mary, University of London. jfallen.

Membrane Biochemistry. Lectures by. John F. Allen. School of Biological and Chemical Sciences, Queen Mary, University of London. jfallen. Membrane Biochemistry Lectures by John F. Allen School of Biological and Chemical Sciences, Queen Mary, University of London jfallen.org/lectures 1 Membrane Biochemistry Bioenergetics jfallen.org/lectures

More information

Electron Transport Chain and Oxidative phosphorylation

Electron Transport Chain and Oxidative phosphorylation Electron Transport Chain and Oxidative phosphorylation So far we have discussed the catabolism involving oxidation of 6 carbons of glucose to CO 2 via glycolysis and CAC without any oxygen molecule directly

More information

Synthesis of ATP, the energy currency in metabolism

Synthesis of ATP, the energy currency in metabolism Synthesis of ATP, the energy currency in metabolism Note that these are simplified summaries to support lecture material Either Substrate-level phosphorylation (SLP) Or Electron transport phosphorylation

More information

ANSWERS Problem Set 8

ANSWERS Problem Set 8 ANSWERS Problem Set 8 Problem 1. All oxidation steps in the pathway from glucose to CO 2 result in the production of NADH, except the succinate dehydrogenase (SDH) step in the TCA cycle, which yields FADH2.

More information

) one consumes in breathing is converted to:, which of the following would be found in the oxidized state?

) one consumes in breathing is converted to:, which of the following would be found in the oxidized state? MCB 102: Pantea s Sxn Chapter 19 Problem Set Answer Key 1) Page: 690 Ans: E Almost all of the oxygen (O 2 ) one consumes in breathing is converted to: A) acetyl-coa. B) carbon dioxide (CO 2 ). C) carbon

More information

Cellular Respiration- -conversion of stored energy in glucose to usable energy for the cell -energy in cells is stored in the form of ATP

Cellular Respiration- -conversion of stored energy in glucose to usable energy for the cell -energy in cells is stored in the form of ATP Cellular Respiration Notes Chapter 7 How Cells Make ATP Energy Releasing Pathways Cellular Respiration- -conversion of stored energy in glucose to usable energy for the cell -energy in cells is stored

More information

7/11/17. Cell Function & Chemistry. Molecular and Cellular Biology. 2. Bio-Chemical Foundations & Key Molecules of a Cell

7/11/17. Cell Function & Chemistry. Molecular and Cellular Biology. 2. Bio-Chemical Foundations & Key Molecules of a Cell Molecular and Cellular Biology Cell Function & Chemistry 2. Bio-Chemical Foundations & Key Molecules of a Cell Prof. Dr. Klaus Heese Interaction Molecular Bonds Define Cellular Functions Water H 2 O Interactions

More information