Molecular Cell Biology 5068 In class Exam 1 October 2, Please print your name: Instructions:

Size: px
Start display at page:

Download "Molecular Cell Biology 5068 In class Exam 1 October 2, Please print your name: Instructions:"

Transcription

1 Molecular Cell Biology 5068 In class Exam 1 October 2, 2012 Exam Number: Please print your name: Instructions: Please write only on these pages, in the spaces allotted and not on the back. Write your number on each page (not your name), so that we can split them up and grade them anonymously. There are a total of 6 pages including this cover page. You may not use any books or notes, and no electronic aids, including calculators. Answer only in the space provided; short, concise answers are preferred and will be rewarded. Please be as neat as possible. When you are finished, turn this in to the TA and pick up the take-home portion.

2

3 MCB 5068 Exam 1 October 2, 2012 Exam Number: In Class Questions for Dr. Cooper s lectures. 1. True or False (correct the statement if false): Enthalpy is the primary driving force for self-assembly of protein-based polymers. (2 pts) 2. True or False (correct the statement if false):a competitive inhibitor binds the enzyme and the enzymesubstrate complex. (2 pts) 3. With respect to actin filaments or microtubules, what does the term treadmilling mean? (3 pts) 4. List 3 mechanisms by which cytoskeleton polymer assembly is regulated. (3 pts) 5. Describe the steps involved in myosin movement along actin. (5 pts) -1-

4 6. a) State the names of the extensions found at the leading edge of a motile cell, b) Describe the nature of the actin filament network found in each of the extensions, and c) State the names of the actin binding proteins that are necessary for the formation of the networks in each case. (5 pts) 7. Name two cellular processes in which microtubule motors, kinesin and dynein, play important roles. Describe the role of each of the motors in each of the processes. Be as specific as possible. (4 pts) 8. How are intermediate filaments assembled? (3 pts) How can incorporation of a single mutant subunit weaken the entire filament network? (2 pts) -2-

5 In Class Questions for Dr. Mueckler s lectures. Exam Number: 1. List 2 functions of biological membranes. (2 points) - 2. What do we mean when we say that a molecule is amphipathic? (2 points) 3. True or False (correct the statement if false): All membrane helices present in multipass proteins are amphipathic. (2 points) 4. Name 2 energetically favorable structures that lipids can form in aqueous solution and draw them (2 points) 5. List the 4 types of phospholipid movements that occur within bilayers. Which type of movement is the least energetically favorable? (4 points) 6. True or False (correct the statement if false): Phosphoglyceride biosynthesis occurs in a sequential manner with individual steps occurring alternately at the luminal or cytoplasmic face of the ER. (2 points) -3-

6 7. Differentiate between the activity of scramblase and flippase enzymes. (2 points) 8. Name 2 intracellular signaling molecules produced upon activation of phospholipase C in a membrane containing phosphatidyl inositol triphosphate. (2 points) 9. With the aid of a diagram, outline the steps in the signal-mediated targeting of proteins to the ER. In the diagram, be sure to show the SRP, SRP receptor, and mechanism for closing and opening of the translocon. (4 points) 10. True or False (correct the statement if false): Secretory signal sequences are always located at the N- terminus and share sequence similarity among different preproteins. (2 points) -4-

7 Exam Number: 11. Membrane protein topologies are classified into how many basic types? Draw and name an example of a membrane protein with single-pass topology. Be sure to show the location of the N- and C-terminus of the protein with respect to the cytosolic and luminal (or extracellular) face of the membrane. (1 point for providing the number of types) (3 points for showing one example) 12. What is the function of protein disulfide isomerase (PDI) and where is it located in the cell? (2 points) 13. True or False (correct the statement if false): Most mitochondrial proteins are encoded in the nuclear DNA. (2 points) 14. Import into the mitochondrial matrix requires passage through 2 separate translocons named and. The proteins traverse in a (choose between folded or unfolded) state. (3 points) 15. Describe targeting of proteins to the outer mitochondrial membrane via the SAM protein complex. (4 points) -5-

8 -6-

9 Hanson Lecture 1 Endoplasmic Reticulum: quality control, processing, and exit Exam Number: 1. A terminally misfolded protein in the endoplasmic reticulum (ER) can be identified by which of the following features? (2 points) A. The presence of multiple ubiquitin molecules attached to the protein B. The presence of the protein in a complex with Calnexin/Calreticulin C. The absence of glucose molecules in the N-linked oligosaccharide D. The absence of mannose molecules in the N-linked oligosaccharide 2. Briefly explain how the Unfolded Protein Response (UPR) is regulated by the action of BiP, Ire1, and Hac1. (4 points) 3. True or False (correct the statement if false): Vesicle coat proteins are necessary to maintain vesicle structural integrity and allow fusion into the target membrane. (2 points) 4. Name two cellular strategies for dealing with ER stress induced by the Unfolded Protein Response (UPR)? (2 points) 5. You design an experiment in which you transfect cells with GFP-labeled temperature-sensitive VSVG protein. You are observing the cells at the non-permissive temperature and see diffuse reticular fluorescence throughout the cell. When the cell is then moved to the permissive temperature, you see rapid accumulation of the GFP in the perinuclear region. Describe the cellular/molecular process underlying this observation. (4 points) -7-

10 Hanson Lecture 2 Secretory Pathway, Membrane Fusion 6. Endoglycosidase D can be used to determine if a protein is within the ER or cis-golgi due to which of the following modifications of secreted proteins as they pass through the Golgi apparatus? (2 points) 7. You identify a specific and highly efficacious inhibitor of NSF (NEM-sensitive factor). If you apply the inhibitor and simultaneously stimulate a neuron, what changes in neurotransmitter release would you expect in the short run and long run? Why? (4 points) 8. Botulinum toxin and tetanus toxin both act on the same molecular targets but produce drastically different symptoms. What is the class of proteins that is targeted by these toxins and why are the effects different? (3 points) Hanson Lecture 3 Lysosomes and Endocytic Pathways 9. True or False (correct statement if false): In both clathrin-mediated and caveolar endocytosis, dissociation of the coat proteins from the vesicle membrane is required for cargo release. (2 points) -8-

11 Exam Number: 10. You identify a novel mutation in the endosomal H + pump responsible for acidifying endosomal compartments that inactivates it. How would you expect this mutation to affect cellular levels of cholesterol derived from LDL breakdown? How might this affect LDL Receptor recycling? Why? (4 points) 11. Activating EGF-Receptor (EGFR) mutations are known to contribute to cancer development and progression. Why might mutations in ESCRT proteins mimic activating mutations in the EGFR? Explain. (4 points) 12. You are working with a cell line that requires Fe 3+ uptake via the transferrin receptor (Tf-R) for propagation. If you treat these cells with RNAi targeted to Rab11, which of the following changes in Tf-R localization would you expect? (2 points) A. Decreased concentration of the Tf-R in early endosomes B. Decreased concentration of Tf-R in late endosomes C. Decreased concentration of Tf-R in the mitochondrial membrane D. Decreased concentration of Tf-R in the plasma membrane E. Increased concentration of Tf-R in the nuclear membrane -9-

Molecular Cell Biology 5068 In Class Exam 1 October 3, 2013

Molecular Cell Biology 5068 In Class Exam 1 October 3, 2013 Molecular Cell Biology 5068 In Class Exam 1 October 3, 2013 Exam Number: Please print your name: Instructions: Please write only on these pages, in the spaces allotted and not on the back. Write your number

More information

Molecular Cell Biology 5068 In Class Exam 1 September 29, Please print your name:

Molecular Cell Biology 5068 In Class Exam 1 September 29, Please print your name: Molecular Cell Biology 5068 In Class Exam 1 September 29, 2015 Exam Number: Please print your name: Instructions: Please write only on these pages, in the spaces allotted and not on the back. Write your

More information

BIOL 4374/BCHS 4313 Cell Biology Exam #2 March 22, 2001

BIOL 4374/BCHS 4313 Cell Biology Exam #2 March 22, 2001 BIOL 4374/BCHS 4313 Cell Biology Exam #2 March 22, 2001 SS# Name This exam is worth a total of 100 points. The number of points each question is worth is shown in parentheses. Good luck! 1. (2) In the

More information

Practice Exam 2 MCBII

Practice Exam 2 MCBII 1. Which feature is true for signal sequences and for stop transfer transmembrane domains (4 pts)? A. They are both 20 hydrophobic amino acids long. B. They are both found at the N-terminus of the protein.

More information

endomembrane system internal membranes origins transport of proteins chapter 15 endomembrane system

endomembrane system internal membranes origins transport of proteins chapter 15 endomembrane system endo system chapter 15 internal s endo system functions as a coordinated unit divide cytoplasm into distinct compartments controls exocytosis and endocytosis movement of molecules which cannot pass through

More information

Protein Trafficking in the Secretory and Endocytic Pathways

Protein Trafficking in the Secretory and Endocytic Pathways Protein Trafficking in the Secretory and Endocytic Pathways The compartmentalization of eukaryotic cells has considerable functional advantages for the cell, but requires elaborate mechanisms to ensure

More information

Protein sorting (endoplasmic reticulum) Dr. Diala Abu-Hsasan School of Medicine

Protein sorting (endoplasmic reticulum) Dr. Diala Abu-Hsasan School of Medicine Protein sorting (endoplasmic reticulum) Dr. Diala Abu-Hsasan School of Medicine dr.abuhassand@gmail.com An overview of cellular components Endoplasmic reticulum (ER) It is a network of membrane-enclosed

More information

Molecular Cell Biology Problem Drill 16: Intracellular Compartment and Protein Sorting

Molecular Cell Biology Problem Drill 16: Intracellular Compartment and Protein Sorting Molecular Cell Biology Problem Drill 16: Intracellular Compartment and Protein Sorting Question No. 1 of 10 Question 1. Which of the following statements about the nucleus is correct? Question #01 A. The

More information

Molecular Trafficking

Molecular Trafficking SCBM 251 Molecular Trafficking Assoc. Prof. Rutaiwan Tohtong Department of Biochemistry Faculty of Science rutaiwan.toh@mahidol.ac.th Lecture outline 1. What is molecular trafficking? Why is it important?

More information

CELL BIOLOGY - CLUTCH CH INTRACELLULAR PROTEIN TRANSPORT.

CELL BIOLOGY - CLUTCH CH INTRACELLULAR PROTEIN TRANSPORT. !! www.clutchprep.com CONCEPT: MEMBRANE ENCLOSED ORGANELLES Table of eukaryotic organelles and their functions Organelle Function % volume of cell Cytosol Aqueous fluid where metabolic pathways and chemical

More information

2013 John Wiley & Sons, Inc. All rights reserved. PROTEIN SORTING. Lecture 10 BIOL 266/ Biology Department Concordia University. Dr. S.

2013 John Wiley & Sons, Inc. All rights reserved. PROTEIN SORTING. Lecture 10 BIOL 266/ Biology Department Concordia University. Dr. S. PROTEIN SORTING Lecture 10 BIOL 266/4 2014-15 Dr. S. Azam Biology Department Concordia University Introduction Membranes divide the cytoplasm of eukaryotic cells into distinct compartments. The endomembrane

More information

The Cell Organelles. Eukaryotic cell. The plasma membrane separates the cell from the environment. Plasma membrane: a cell s boundary

The Cell Organelles. Eukaryotic cell. The plasma membrane separates the cell from the environment. Plasma membrane: a cell s boundary Eukaryotic cell The Cell Organelles Enclosed by plasma membrane Subdivided into membrane bound compartments - organelles One of the organelles is membrane bound nucleus Cytoplasm contains supporting matrix

More information

Intracellular vesicular traffic. B. Balen

Intracellular vesicular traffic. B. Balen Intracellular vesicular traffic B. Balen Three types of transport in eukaryotic cells Figure 12-6 Molecular Biology of the Cell ( Garland Science 2008) Endoplasmic reticulum in all eucaryotic cells Endoplasmic

More information

Advanced Cell Biology. Lecture 33

Advanced Cell Biology. Lecture 33 Advanced Cell Biology. Lecture 33 Alexey Shipunov Minot State University April 22, 2013 Shipunov (MSU) Advanced Cell Biology. Lecture 33 April 22, 2013 1 / 38 Outline Questions and answers Intracellular

More information

Intracellular Compartments and Protein Sorting

Intracellular Compartments and Protein Sorting Intracellular Compartments and Protein Sorting Intracellular Compartments A eukaryotic cell is elaborately subdivided into functionally distinct, membrane-enclosed compartments. Each compartment, or organelle,

More information

Chapt. 10 Cell Biology and Biochemistry. The cell: Student Learning Outcomes: Describe basic features of typical human cell

Chapt. 10 Cell Biology and Biochemistry. The cell: Student Learning Outcomes: Describe basic features of typical human cell Chapt. 10 Cell Biology and Biochemistry Cell Chapt. 10 Cell Biology and Biochemistry The cell: Lipid bilayer membrane Student Learning Outcomes: Describe basic features of typical human cell Integral transport

More information

1. endoplasmic reticulum This is the location where N-linked oligosaccharide is initially synthesized and attached to glycoproteins.

1. endoplasmic reticulum This is the location where N-linked oligosaccharide is initially synthesized and attached to glycoproteins. Biology 4410 Name Spring 2006 Exam 2 A. Multiple Choice, 2 pt each Pick the best choice from the list of choices, and write it in the space provided. Some choices may be used more than once, and other

More information

TRANSPORT PROCESSES. 1b. moving proteins into membranes and organelles

TRANSPORT PROCESSES. 1b. moving proteins into membranes and organelles 1b. moving proteins into membranes and organelles SLIDE 1 A typical mammalian cell contains up to 10,000 different kinds of proteins. The vast majority of these proteins are synthesized by cytosolic ribosomes,

More information

Lysosomes and endocytic pathways 9/27/2012 Phyllis Hanson

Lysosomes and endocytic pathways 9/27/2012 Phyllis Hanson Lysosomes and endocytic pathways 9/27/2012 Phyllis Hanson General principles Properties of lysosomes Delivery of enzymes to lysosomes Endocytic uptake clathrin, others Endocytic pathways recycling vs.

More information

CELLS. Cells. Basic unit of life (except virus)

CELLS. Cells. Basic unit of life (except virus) Basic unit of life (except virus) CELLS Prokaryotic, w/o nucleus, bacteria Eukaryotic, w/ nucleus Various cell types specialized for particular function. Differentiation. Over 200 human cell types 56%

More information

Molecular Cell Biology - Problem Drill 17: Intracellular Vesicular Traffic

Molecular Cell Biology - Problem Drill 17: Intracellular Vesicular Traffic Molecular Cell Biology - Problem Drill 17: Intracellular Vesicular Traffic Question No. 1 of 10 1. Which of the following statements about clathrin-coated vesicles is correct? Question #1 (A) There are

More information

Vesicle Transport. Vesicle pathway: many compartments, interconnected by trafficking routes 3/17/14

Vesicle Transport. Vesicle pathway: many compartments, interconnected by trafficking routes 3/17/14 Vesicle Transport Vesicle Formation Curvature (Self Assembly of Coat complex) Sorting (Sorting Complex formation) Regulation (Sar1/Arf1 GTPases) Fission () Membrane Fusion SNARE combinations Tethers Regulation

More information

Homework Hanson section MCB Course, Fall 2014

Homework Hanson section MCB Course, Fall 2014 Homework Hanson section MCB Course, Fall 2014 (1) Antitrypsin, which inhibits certain proteases, is normally secreted into the bloodstream by liver cells. Antitrypsin is absent from the bloodstream of

More information

A. Major parts 1. Nucleus 2. Cytoplasm a. Contain organelles (see below) 3. Plasma membrane (To be discussed in Cellular Transport Lecture)

A. Major parts 1. Nucleus 2. Cytoplasm a. Contain organelles (see below) 3. Plasma membrane (To be discussed in Cellular Transport Lecture) Lecture 5: Cellular Biology I. Cell Theory Concepts: 1. Cells are the functional and structural units of living organisms 2. The activity of an organism is dependent on both the individual and collective

More information

Renáta Schipp Gergely Berta Department of Medical Biology

Renáta Schipp Gergely Berta Department of Medical Biology The cell III. Renáta Schipp Gergely Berta Department of Medical Biology Size and Biology Biology is a visually rich subject many of the biological events and structures are smaller than the unaided human

More information

Endoplasmic Reticulum

Endoplasmic Reticulum Endoplasmic Reticulum What s ER? How is ER? Why is ER? definition description functions Nissl s bodies neurons Berg s bodies hepatocytes Organelle structure histocytochemical evidences Ergastoplasm pancreatic

More information

The Study of Cells The diversity of the cells of the body The following figure shows the proportion of cell size of the variety of cells in the body

The Study of Cells The diversity of the cells of the body The following figure shows the proportion of cell size of the variety of cells in the body Adapted from Martini Human Anatomy 7th ed. Chapter 2 Foundations: The Cell Introduction There are trillions of cells in the body Cells are the structural building blocks of all plants and animals Cells

More information

(d) are made mainly of lipids and of proteins that lie like thin sheets on the membrane surface

(d) are made mainly of lipids and of proteins that lie like thin sheets on the membrane surface Which of the following statements is no true? Biological membranes (a) are composed partly of amphipathic lipids (b) have hydrophobic and hydrophilic regions (c) are typically in a fluid state (d) are

More information

1. This is the location where N-linked oligosaccharide is initially synthesized and attached to glycoproteins.

1. This is the location where N-linked oligosaccharide is initially synthesized and attached to glycoproteins. Biology 4410 Name Spring 2006 Exam 2 A. Multiple Choice, 2 pt each Pick the best choice from the list of choices, and write it in the space provided. Some choices may be used more than once, and other

More information

PROTEIN TRAFFICKING. Dr. SARRAY Sameh, Ph.D

PROTEIN TRAFFICKING. Dr. SARRAY Sameh, Ph.D PROTEIN TRAFFICKING Dr. SARRAY Sameh, Ph.D Overview Proteins are synthesized either on free ribosomes or on ribosomes bound to endoplasmic reticulum (RER). The synthesis of nuclear, mitochondrial and peroxisomal

More information

Cytosol the fluid Cytoplasm cell interior, everything outside the nucleus but within the cell membrane, includes the organelles, cytosol, and

Cytosol the fluid Cytoplasm cell interior, everything outside the nucleus but within the cell membrane, includes the organelles, cytosol, and Cell Organelles Plasma Membrane comprised of a phospholipid bilayer and embedded proteins Outer surface has oligosaccharides separates the cells s contents from its surroundings Cytosol the fluid Cytoplasm

More information

7.06 Cell Biology EXAM #3 April 24, 2003

7.06 Cell Biology EXAM #3 April 24, 2003 7.06 Spring 2003 Exam 3 Name 1 of 8 7.06 Cell Biology EXAM #3 April 24, 2003 This is an open book exam, and you are allowed access to books and notes. Please write your answers to the questions in the

More information

C) You find that the Raf kinase is not constitutively active. What was necessary in the previous assay to show any Raf kinase activity?

C) You find that the Raf kinase is not constitutively active. What was necessary in the previous assay to show any Raf kinase activity? PROBLEM SET 3 1. You have obtained immortalized liver cells from a patient who died of Wilson s disease, an inherited disorder of copper metabolism marked by neuronal degeneration and hepatic cirrhosis.

More information

Plasma Membrane. comprised of a phospholipid bilayer and embedded proteins separates the cells s contents from its surroundings

Plasma Membrane. comprised of a phospholipid bilayer and embedded proteins separates the cells s contents from its surroundings Cell Organelles Plasma Membrane comprised of a phospholipid bilayer and embedded proteins separates the cells s contents from its surroundings Cytosol the fluid Cytoplasm cell interior, everything outside

More information

Introduction and protein sorting

Introduction and protein sorting Introduction and protein sorting Membrane proteins Major components of cells Nucleic acids Carbohydrates Proteins Lipids (50% of mass of plasma membranes, 30% of mitochondrial membranes, 80% of myelin

More information

Structure & Function of Cells

Structure & Function of Cells Anatomy & Physiology 101-805 Unit 4 Structure & Function of Cells Paul Anderson 2011 Anatomy of a Generalised Cell Attached or bound ribosomes Cilia Cytosol Centriole Mitochondrion Rough endoplasmic reticulum

More information

Anatomy Chapter 2 - Cells

Anatomy Chapter 2 - Cells Cells Cells are the basic living structural, functional unit of the body Cytology is the branch of science that studies cells The human body has 100 trillion cells 200 different cell types with a variety

More information

BIO 5099: Molecular Biology for Computer Scientists (et al)

BIO 5099: Molecular Biology for Computer Scientists (et al) BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 15: Being a Eukaryote: From DNA to Protein, A Tour of the Eukaryotic Cell. Christiaan van Woudenberg Being A Eukaryote Basic eukaryotes

More information

Structure and Function of Cells

Structure and Function of Cells Structure and Function of Cells Learning Outcomes Explain the cell theory Explain why cell size is usually very small Describe the Fluid Mosaic Model of membranes Describe similarities and differences

More information

Structures in Cells. Cytoplasm. Lecture 5, EH1008: Biology for Public Health, Biomolecules

Structures in Cells. Cytoplasm. Lecture 5, EH1008: Biology for Public Health, Biomolecules Structures in Cells Lecture 5, EH1008: Biology for Public Health, Biomolecules Limian.zheng@ucc.ie 1 Cytoplasm Nucleus Centrioles Cytoskeleton Cilia Microvilli 2 Cytoplasm Cellular material outside nucleus

More information

Summary of Endomembrane-system

Summary of Endomembrane-system Summary of Endomembrane-system 1. Endomembrane System: The structural and functional relationship organelles including ER,Golgi complex, lysosome, endosomes, secretory vesicles. 2. Membrane-bound structures

More information

Structures in Cells. Lecture 5, EH1008: Biology for Public Health, Biomolecules.

Structures in Cells. Lecture 5, EH1008: Biology for Public Health, Biomolecules. Structures in Cells Lecture 5, EH1008: Biology for Public Health, Biomolecules Limian.zheng@ucc.ie 1 Cytoplasm Nucleus Centrioles Cytoskeleton Cilia Microvilli 2 Cytoplasm Cellular material outside nucleus

More information

Essential Cell Biology

Essential Cell Biology Alberts Bray Hopkin Johnson Lewis Raff Roberts Walter Essential Cell Biology FOURTH EDITION Chapter 15 Intracellular Compartments and Protein Transport Copyright Garland Science 2014 CHAPTER CONTENTS MEMBRANE-ENCLOSED

More information

Nucleic acids. Nucleic acids are information-rich polymers of nucleotides

Nucleic acids. Nucleic acids are information-rich polymers of nucleotides Nucleic acids Nucleic acids are information-rich polymers of nucleotides DNA and RNA Serve as the blueprints for proteins and thus control the life of a cell RNA and DNA are made up of very similar nucleotides.

More information

Lecture 6 - Intracellular compartments and transport I

Lecture 6 - Intracellular compartments and transport I 01.25.10 Lecture 6 - Intracellular compartments and transport I Intracellular transport and compartments 1. Protein sorting: How proteins get to their appropriate destinations within the cell 2. Vesicular

More information

MCB Test 1 Mueckler Review

MCB Test 1 Mueckler Review MCB Test 1 Mueckler Review 9-30-17 Func%ons of Cellular Membranes 1. Plasma membrane acts as a selec%vely permeable barrier to the environment Uptake of nutrients Waste disposal Maintains intracellular

More information

10/13/11. Cell Theory. Cell Structure

10/13/11. Cell Theory. Cell Structure Cell Structure Grade 12 Biology Cell Theory All organisms are composed of one or more cells. Cells are the smallest living units of all living organisms. Cells arise only by division of a previously existing

More information

Module 3 Lecture 7 Endocytosis and Exocytosis

Module 3 Lecture 7 Endocytosis and Exocytosis Module 3 Lecture 7 Endocytosis and Exocytosis Endocytosis: Endocytosis is the process by which cells absorb larger molecules and particles from the surrounding by engulfing them. It is used by most of

More information

Lecture 6 9/17 Dr. Hirsh Organization of Cells, continued

Lecture 6 9/17 Dr. Hirsh Organization of Cells, continued Cell structure of Eukaryotic cells Lecture 6 9/17 Dr. Hirsh Organization of Cells, continued Lots of double-membraned organelles Existence of an Endo-membrane system separation of areas of cell, transport

More information

BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 15: Being A Eukaryote. Eukaryotic Cells. Basic eukaryotes have:

BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 15: Being A Eukaryote. Eukaryotic Cells. Basic eukaryotes have: BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 15: Being a Eukaryote: From DNA to Protein, A Tour of the Eukaryotic Cell. Christiaan van Woudenberg Being A Eukaryote Basic eukaryotes

More information

AP Biology

AP Biology Tour of the Cell (1) 2007-2008 Types of cells Prokaryote bacteria cells - no organelles - organelles Eukaryote animal cells Eukaryote plant cells Cell Size Why organelles? Specialized structures - specialized

More information

4/12/17. Cells. Cell Structure. Ch. 2 Cell Structure and Func.on. Range of Cell Sizes BIOL 100

4/12/17. Cells. Cell Structure. Ch. 2 Cell Structure and Func.on. Range of Cell Sizes BIOL 100 Ch. 2 Cell Structure and Func.on BIOL 100 Cells Fundamental units of life Cell theory All living things are composed of one or more cells. The cell is the most basic unit of life. All cells come from pre-existing

More information

Organelles of the Cell & How They Work Together. Packet #5

Organelles of the Cell & How They Work Together. Packet #5 Organelles of the Cell & How They Work Together Packet #5 Developed by Mr. Barrow 2018 1 Introduction Organization of cells is basically similar in all cells. Additionally, most cells are tiny Ranging

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Figure 2.1 Using Figure 2.1, match the following: 1) Rough endoplasmic reticulum 1) 2) Nucleolus 2) 3)

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) All of the following are synthesized along various sites of the endoplasmic reticulum

More information

Cell Structure and Function. Biology 12 Unit 1 Cell Structure and Function Inquiry into Life pages and 68-69

Cell Structure and Function. Biology 12 Unit 1 Cell Structure and Function Inquiry into Life pages and 68-69 Cell Structure and Function Biology 12 Unit 1 Cell Structure and Function Inquiry into Life pages 45 59 and 68-69 Assignments for this Unit Pick up the notes/worksheet for this unit and the project There

More information

Lecture Readings. Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell

Lecture Readings. Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell October 26, 2006 1 Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell 1. Secretory pathway a. Formation of coated vesicles b. SNAREs and vesicle targeting 2. Membrane fusion a. SNAREs

More information

Organelles of the Cell & How They Work Together. Packet #7

Organelles of the Cell & How They Work Together. Packet #7 Organelles of the Cell & How They Work Together Packet #7 Introduction Introduction Organization of cells is basically similar in all cells. Additionally, most cells are tiny Ranging from 1 1000 cubic

More information

Early scientists who observed cells made detailed sketches of what they saw.

Early scientists who observed cells made detailed sketches of what they saw. Early scientists who observed cells made detailed sketches of what they saw. Early scientists who observed cells made detailed sketches of what they saw. CORK Early scientists who observed cells made detailed

More information

Chapter 3 Part 2! Pages (10 th and 11 th eds.)! The Cellular Level of Organization! Cellular Organelles and Protein Synthesis!

Chapter 3 Part 2! Pages (10 th and 11 th eds.)! The Cellular Level of Organization! Cellular Organelles and Protein Synthesis! Chapter 3 Part 2! Pages 65 89 (10 th and 11 th eds.)! The Cellular Level of Organization! Cellular Organelles and Protein Synthesis! The Cell Theory! Living organisms are composed of one or more cells.!

More information

Renata Schipp Medical Biology Department

Renata Schipp Medical Biology Department Renata Schipp Medical Biology Department Deffinition of cell The cell is the smallest structural and functional unit of all known living organisms The cell was discovered by Robert Hooke in 1665 and also

More information

Human height. Length of some nerve and muscle cells. Chicken egg. Frog egg. Most plant and animal cells Nucleus Most bacteria Mitochondrion

Human height. Length of some nerve and muscle cells. Chicken egg. Frog egg. Most plant and animal cells Nucleus Most bacteria Mitochondrion 10 m 1 m 0.1 m 1 cm Human height Length of some nerve and muscle cells Chicken egg Unaided eye 1 mm Frog egg 100 µm 10 µm 1 µm 100 nm 10 nm Most plant and animal cells Nucleus Most bacteria Mitochondrion

More information

The Cell. Biology 105 Lecture 4 Reading: Chapter 3 (pages 47 62)

The Cell. Biology 105 Lecture 4 Reading: Chapter 3 (pages 47 62) The Cell Biology 105 Lecture 4 Reading: Chapter 3 (pages 47 62) Outline I. Prokaryotic vs. Eukaryotic II. Eukaryotic A. Plasma membrane transport across B. Main features of animal cells and their functions

More information

Organelles of the Cell & How They Work Together. Packet #5

Organelles of the Cell & How They Work Together. Packet #5 Organelles of the Cell & How They Work Together Packet #5 Developed by Mr. Barrow 2018 1 Introduction Organization of cells is basically similar in all cells. Additionally, most cells are tiny Ranging

More information

Zool 3200: Cell Biology Exam 4 Part I 2/3/15

Zool 3200: Cell Biology Exam 4 Part I 2/3/15 Name: Key Trask Zool 3200: Cell Biology Exam 4 Part I 2/3/15 Answer each of the following questions in the space provided, explaining your answers when asked to do so; circle the correct answer or answers

More information

AP Biology Cells: Chapters 4 & 5

AP Biology Cells: Chapters 4 & 5 AP Biology Cells: Chapters 4 & 5 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The was the first unifying principle of biology. a. spontaneous generation

More information

Chapter 3 Cell Structures & Functions

Chapter 3 Cell Structures & Functions Biology 12 Name: Cell Biology Per: Date: Chapter 3 Cell Structures & Functions Complete using BC Biology 12, pages 62-107 Diagnostic Questions (mark using the answer key on page 527) 1. 2. 3. 4. 9. What

More information

Cell Overview. Hanan Jafar BDS.MSc.PhD

Cell Overview. Hanan Jafar BDS.MSc.PhD Cell Overview Hanan Jafar BDS.MSc.PhD THE CELL is made of: 1- Nucleus 2- Cell Membrane 3- Cytoplasm THE CELL Formed of: 1. Nuclear envelope 2. Chromatin 3. Nucleolus 4. Nucleoplasm (nuclear matrix) NUCLEUS

More information

Bio10 Cell Structure SRJC

Bio10 Cell Structure SRJC 3.) Cell Structure and Function Structure of Cell Membranes Fluid mosaic model Mixed composition: Phospholipid bilayer Glycolipids Sterols Proteins Fluid Mosaic Model Phospholipids are not packed tightly

More information

Unit 2: More on Matter & Energy in Ecosystems. Macromolecules to Organelles to Cells

Unit 2: More on Matter & Energy in Ecosystems. Macromolecules to Organelles to Cells IN: Unit 2: More on Matter & Energy in Ecosystems Macromolecules to Organelles to Cells Where are cells on the biological scale? Sub-Atomic Particles Atoms Molecules Macromolecules (proteins, lipids, nucleic

More information

5/12/2015. Cell Size. Relative Rate of Reaction

5/12/2015. Cell Size. Relative Rate of Reaction Cell Makeup Chapter 4 The Cell: The Fundamental Unit of Life We previously talked about the cell membrane The cytoplasm is everything inside the membrane, except the nucleus Includes Cytosol = liquid portion

More information

The endoplasmic reticulum is a network of folded membranes that form channels through the cytoplasm and sacs called cisternae.

The endoplasmic reticulum is a network of folded membranes that form channels through the cytoplasm and sacs called cisternae. Endoplasmic reticulum (ER) The endoplasmic reticulum is a network of folded membranes that form channels through the cytoplasm and sacs called cisternae. Cisternae serve as channels for the transport of

More information

Eukaryotic Cell Structure

Eukaryotic Cell Structure 5 Eukaryotic Cell Structure 1 5.1 A typical eukaryotic cell 1. Compare and contrast eukaryotic, bacterial, and archaeal cells in terms of their use of membranes, size, morphological diversity, and organelles.

More information

Ch. 3 CELLS AND TISSUES. Copyright 2010 Pearson Education, Inc.

Ch. 3 CELLS AND TISSUES. Copyright 2010 Pearson Education, Inc. Ch. 3 CELLS AND TISSUES Generalized Cell All cells: Human cells have three basic parts: Plasma membrane flexible outer boundary Cytoplasm intracellular fluid containing organelles Nucleus control center

More information

What Are Cell Membranes?

What Are Cell Membranes? What Are Cell Membranes? Chapter 5, Lesson 1 24 Directions Match each term in Column A with its meaning in Column B. Write the letter on the line. Column A 1. cytoplasm 2. cytosol 3. extracellular matrix

More information

October 26, Lecture Readings. Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell

October 26, Lecture Readings. Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell October 26, 2006 Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell 1. Secretory pathway a. Formation of coated vesicles b. SNAREs and vesicle targeting 2. Membrane fusion a. SNAREs

More information

Cell Physiology Final Exam Fall 2009

Cell Physiology Final Exam Fall 2009 Cell Physiology Final Exam Fall 2009 1. I am sure that most of you are stressing now. Your heart rate is higher than normal, your breathing faster and your senses more acute. What phase of stress response

More information

CELL PART OF THE DAY. Chapter 7: Cell Structure and Function

CELL PART OF THE DAY. Chapter 7: Cell Structure and Function CELL PART OF THE DAY Chapter 7: Cell Structure and Function Cell Membrane Cell membranes are composed of two phospholipid layers. Cell membrane is flexible, not rigid The cell membrane has two major functions.

More information

I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins

I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins Lecture 6: Membranes and Cell Transport Biological Membranes I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins 1. Characteristics a. Phospholipids form bilayers

More information

Name: Multiple choice questions. Pick the BEST answer (2 pts ea)

Name: Multiple choice questions. Pick the BEST answer (2 pts ea) Exam 1 202 Oct. 5, 1999 Multiple choice questions. Pick the BEST answer (2 pts ea) 1. The lipids of a red blood cell membrane are all a. phospholipids b. amphipathic c. glycolipids d. unsaturated 2. The

More information

Chapter 1: Vesicular traffic. Biochimica cellulare parte B 2017/18

Chapter 1: Vesicular traffic. Biochimica cellulare parte B 2017/18 Chapter 1: Vesicular traffic Biochimica cellulare parte B 2017/18 Major Protein-sorting pathways in eukaryotic cells Secretory and endocytic pathways Unifying principle governs all protein trafficking

More information

17/01/2017. Protein trafficking between cell compartments. Lecture 3: The cytosol. The mitochondrion - the power plant of the cell

17/01/2017. Protein trafficking between cell compartments. Lecture 3: The cytosol. The mitochondrion - the power plant of the cell ell biology 2017 version 13/1 2017 ote endosome vs lysosome handout Lecture 3: Text book Alberts et al.: hapter 12-14 (Topics covered by the lecture) A lot of reading! Focus on principles ell Biology interactive

More information

Chapter 2: Exocytosis and endocytosis. Biochimica cellulare parte B 2016/17

Chapter 2: Exocytosis and endocytosis. Biochimica cellulare parte B 2016/17 Chapter 2: Exocytosis and endocytosis Biochimica cellulare parte B 2016/17 Exocytosis and endocytosis Transport from the trans-golgi network to the cell exterior: exocytosis. All eukaryotic cells continuously

More information

(a) TEM of a plasma. Fimbriae. Nucleoid. Ribosomes. Plasma membrane. Cell wall Capsule. Bacterial chromosome

(a) TEM of a plasma. Fimbriae. Nucleoid. Ribosomes. Plasma membrane. Cell wall Capsule. Bacterial chromosome 0 m m 0. m cm mm 00 µm 0 µm 00 nm 0 nm Human height Length of some nerve and muscle cells Chicken egg Frog egg Most plant and animal cells Most bacteria Smallest bacteria Viruses Proteins Unaided eye Light

More information

Human Epithelial Cells

Human Epithelial Cells The Cell Human Epithelial Cells Plant Cells Cells have an internal structure Eukaryotic cells are organized Protective membrane around them that communicates with other cells Organelles have specific jobs

More information

Chapter 3: Cytology. Cytology is the study of cells. Cells are the basic units of life. We are made up of trillions of cells.

Chapter 3: Cytology. Cytology is the study of cells. Cells are the basic units of life. We are made up of trillions of cells. PLEASE NOTE THAT THE ITEMS IN THE TEXT THAT ARE HIGHLIGHTED IN YELLOW ARE THOSE THAT ARE TOUCHED ON IN THE READING ASSIGNMENT (PAGES 90-99) AND IN THE LECTURE. ESPECIALLY KNOW THIS MATERIAL FOR THE FIRST

More information

Subcellular biochemistry

Subcellular biochemistry Department of Medical Biochemistry Semmelweis University Subcellular biochemistry February-March 2017 Subcellular biochemistry (biochemical aspects of cell biology) Miklós Csala Semmelweis University Dept.

More information

Mechanism of Vesicular Transport

Mechanism of Vesicular Transport Mechanism of Vesicular Transport Transport vesicles play a central role in the traffic of molecules between different membrane-enclosed enclosed compartments. The selectivity of such transport is therefore

More information

Cellular compartments

Cellular compartments Cellular compartments 1. Cellular compartments and their function 2. Evolution of cellular compartments 3. How to make a 3D model of cellular compartment 4. Cell organelles in the fluorescent microscope

More information

3UNIT. Photosynthesis and. Cellular Respiration. Unit PreQuiz? General Outcomes. Unit 3 Contents. Focussing Questions

3UNIT. Photosynthesis and. Cellular Respiration. Unit PreQuiz?   General Outcomes. Unit 3 Contents. Focussing Questions 3UNIT Photosynthesis and Cellular Respiration General Outcomes In this unit, you will relate photosynthesis to the storage of energy in organic compounds explain the role of cellular respiration in releasing

More information

Ch. 6: A Tour of the Cell

Ch. 6: A Tour of the Cell Ch. 6: A Tour of the Cell 1. Compare the 2 Types of Cells PROKARYOTES BOTH EUKARYOTES Domain: Domain: Relative Size & Complexity: Relative Size & Complexity: No DNA in No Examples: Has Has Examples: 2.

More information

Intracellular Vesicular Traffic Chapter 13, Alberts et al.

Intracellular Vesicular Traffic Chapter 13, Alberts et al. Intracellular Vesicular Traffic Chapter 13, Alberts et al. The endocytic and biosynthetic-secretory pathways The intracellular compartments of the eucaryotic ell involved in the biosynthetic-secretory

More information

A Tour of the Cell. Chapter 6. Slide 1. Slide 2. Slide 3. Overview: The Fundamental Units of Life

A Tour of the Cell. Chapter 6. Slide 1. Slide 2. Slide 3. Overview: The Fundamental Units of Life Slide 1 Chapter 6 A Tour of the Cell PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan

More information

Endomembrane system 11/1/2018. Endomembrane System. Direct physical continuity. Transfer of membrane segments as vesicles. Outer Nuclear envelope

Endomembrane system 11/1/2018. Endomembrane System. Direct physical continuity. Transfer of membrane segments as vesicles. Outer Nuclear envelope Endomembrane system Endomembrane System Outer Nuclear envelope Direct physical continuity Transfer of membrane segments as vesicles Endoplasmic reticulum BUT membranes are not identical in structure and

More information

Cells. Variation and Function of Cells

Cells. Variation and Function of Cells Cells Variation and Function of Cells Cell Theory states that: 1. All living things are made of cells 2. Cells are the basic unit of structure and function in living things 3. New cells are produced from

More information

Cells. 1. Smallest living structures. 2. Basic structural and functional units of the body. 3. Derived from pre-existing cells. 4. Homeostasis.

Cells. 1. Smallest living structures. 2. Basic structural and functional units of the body. 3. Derived from pre-existing cells. 4. Homeostasis. Cells The Cell The human body has about 75 trillion cells All tissues and organs are made up of cells Smallest functional unit of life Cytology Histology Cytology Epithelial cells Fibroblasts Erythrocytes

More information

THE CELL Cells: Part 1

THE CELL Cells: Part 1 THE CELL Cells: Part 1 OBJECTIVES By the end of the lesson you should be able to: State the 2 types of cells Relate the structure to function for all the organelles TYPES OF CELLS There are two types of

More information

Chapter 13: Vesicular Traffic

Chapter 13: Vesicular Traffic Chapter 13: Vesicular Traffic Know the terminology: ER, Golgi, vesicle, clathrin, COP-I, COP-II, BiP, glycosylation, KDEL, microtubule, SNAREs, dynamin, mannose-6-phosphate, M6P receptor, endocytosis,

More information

AP Biology Book Notes Chapter 4: Cells v Cell theory implications Ø Studying cell biology is in some sense the same as studying life Ø Life is

AP Biology Book Notes Chapter 4: Cells v Cell theory implications Ø Studying cell biology is in some sense the same as studying life Ø Life is AP Biology Book Notes Chapter 4: Cells v Cell theory implications Ø Studying cell biology is in some sense the same as studying life Ø Life is continuous v Small cell size is becoming more necessary as

More information

Cell Category? Prokaryote

Cell Category? Prokaryote CELLS Cell Category? Prokaryote Prokaryote Eukaryote Cell Category? Cell Type? Cell Category? Cell Type? Endosymbiosis eukaryotic cells were formed from simpler prokaryotes Endo within Symbiosis together

More information