Barotropic Phase Transitions of Dilauroylphosphatidylcholine Bilayer Membrane

Size: px
Start display at page:

Download "Barotropic Phase Transitions of Dilauroylphosphatidylcholine Bilayer Membrane"

Transcription

1 High Pressure Bioscience and Biotechnology 68 Proceedings of the 4 th International Conference on High Pressure Bioscience and Biotechnology, Vol. 1, 68 72, 2007 Barotropic Phase Transitions of Dilauroylphosphatidylcholine Bilayer Membrane Kaori Tada 1, Masaki Goto 1, Masataka Kusube 2, Nobutake Tamai 1, Hitoshi Matsuki 1 and Shoji Kaneshina* 1 1 Department of Biological Science and Technology, Graduate School of Advanced Technology and Science, and Department of Life System, Institute of Technology and Science, The University of Tokushima, Minamijosanjima, Tokushima , Japan 2 Wakayama National College of Techology, 77, Noshima, Nada, Gobo, Wakayama , Japan * kanesina@bio.tokushima-u.ac.jp Received 8 December 2006/Accepted 15 December 2006 Abstract The effect of pressure on the bilayer phase behavior of dilauroylphosphatidylcholine (DLPC), containing two linear saturated acyl chains with 12 carbon atoms, was studied by the high-pressure light transmittance measurements. The DLPC bilayer under high pressure underwent three kinds of transitions in aqueous 50 wt % ethylene glycol solution, whereas only one transition was observed in water. The middle temperature transition corresponds probably to the main transition because the middle transition is consistent with that in water. The lower temperature transition is probably assigned to the transition from the lamellar crystalline (L c ) phase to the ripple gel (P β ') phase. The higher temperature transition refers to the transition from the intermediate liquid crystalline (L x ) phase to the liquid crystalline (L α ) phase judging from previous data. Keywords: bilayer, dilauroylphosphatidylcholine, lipid, phase transition, pressure 1. Introduction The effect of pressure on biological membranes is of particular interest to the studies of pressure adaptation of the deep sea organisms [1], high pressure sterilization in food processing [2-5], and pressure reversal of anesthesia [6]. Lipid bilayer membranes composed of phosphatidylcholines containing two identical linear saturated acyl chain have been most thoroughly studied. Especially, dipalmitoylphosphatidylcholine (DPPC) containing two linear saturated acyl chains with 16 carbon atoms is one of the most extensively studied phospholipids, but there are few studies on the bilayer phase transition of dilauroylphosphatidylcholine (DLPC) containing acyl chains with 12 carbon atoms [7-14]. It has been known that the phase behavior of DLPC bilayer membrane is different from that of DPPC bilayer. There exists an intermediate liquid crystalline (L x ) phase between the ripple gel (P β ') and the liquid crystalline (L α ) phase. The L x phase would be a nontilted, partially disordered liquid crystalline phase [10]. However, there is no consistency in understanding of experimental results [7-14]. In addition, since the phase transition of DLPC bilayer membrane at ambient pressure have been observed at a temperature below 0 C, the information on the phase behavior has been difficult to obtain by conventional techniques, but such information is readily accessible from high-pressure experiments. So far there have been few studies on the phase behavior of DLPC bilayer membrane under high pressure [13, 14].

2 69 The present study demonstrates the pressure effect on the phase behavior of DLPC bilayer membranes. 2. Materials & methods Synthetic phospholipid DLPC (1,2-dilauroyl-sn-glycero-3-phosphocholine) was purchased from Sigma, and used without further purification. The sample solutions of multilamellar vesicles were prepared by suspending DLPC in water or in aqueous 50 wt% ethylene glycol solution at 5.0 m mol kg -1. Aqueous ethylene glycol solution was used as an antifreeze solvent. Samples were kept in a freezer (at 30 C) for duration of about 1 ~ 2 weeks and in high pressure apparatus for 1 hr before measurement starts. The phase transitions of DLPC bilayer membrane under high pressure were observed by the method of isobaric thermotropic measurements, which were described in our previous papers [14, 15]. We observed the abrupt change in transmittance accompanying the phase transition which was followed at 560 nm. The heating rate at a given pressure was 0.3 K min Results & discussion Since the phase transition temperature of DLPC bilayer membrane at ambient pressure has been reported to be low temperature below 0 C [7], we used 50 wt% aqueous ethylene glycol solution as an antifreeze solvent as well as water solvent. An example of the thermotropic phase transition measurements for DLPC bilayer membrane in 50 wt% aqueous ethylene glycol solution and in water is depicted in Fig.1. The transmittance temperature profiles under high pressure of 100 MPa show the existence of three kinds of transitions in 50 wt% aqueous ethylene glycol solution (curve 1), whereas there exists only one transition in water (curve 2). This transition in water was reported as the main transition from the P β ' phase to the L α phase. As is seen from Fig. 1, the middle transition temperature in 50 wt% aqueous ethylene glycol solution was consistent with the main transition temperature in water. The middle transition temperature in 50 wt% (1) in 50 wt% aqueous ethylene glycol solution (2) in water Transmittance / a.u. (1) (2) P β ' L α Fig. 1 Isobaric thermotropic phase transitions of DLPC bilayer observed by light transmittance method at 100 MPa. (1) Three kinds of phase transitions in 50 wt% aqueous ethylene glycol solution. (2) The main transition in water. at 100 MPa

3 70 aqueous ethylene glycol solution and the main transition in water are shown in Fig. 2 as a function of pressure. Two kinds of temperature pressure lines could be superimposable each other although two lines give a much less overlap at lower pressure regions. Therefore, the middle transition temperature shown in Fig. 1 can be regarded as the main transition from the gel to the liquid crystalline phase compared with the transition temperature in water. As is seen from Fig. 2, the main transition temperature was almost unaffected by the addition of ethylene glycol. Tem p erature / C Fig. 2 Effect of pressure on the main transition temperature of the DLPC bilayer in water ( ) and that in 50 wt% aqueous ethylene glycol solution ( ) The temperature (T) pressure (p) phase diagram of DLPC bilayer membrane in 50 wt% aqueous ethylene glycol solution is shown in Fig. 3. Lower temperature transition shown in Fig. 1, which shows the most obvious change in transmittance, was plotted as a function of pressure in Fig. 3-A. Broken line in Fig. 3-A represents the main transition shown in Fig. 2. This transition was observed by keeping in a freezer (at 30 C) for duration of about 1 ~ 2 weeks. Addition of ethylene glycol is known to facilitate to reach the most stable state of the lamellar crystalline (L c ) state, so-called subgel phase [16, 17]. Therefore, the lower temperature transition may be regarded as the transition from the L c phase to the P β ' phase judging from the following conditions : (1) presence of ethylene glycol added, (2) low temperature conservation for a long time, (3) under high pressure. All of these conditions seem to facilitate to reach the stable L c phase. Higher-temperature transition shown in Fig. 1, which shows the slight change in transmittance, was plotted as a function of pressure in Fig. 3-B. Broken lines in this figure represent the transitions shown in Fig. 3-A. Extrapolation of this T p line to ambient pressure suggests the temperature of the phase transition to be 4.7 C. This transition temperature was in good agreement with the transition from the L x phase to the L α phase, which has been published previously [9]. Therefore, the higher temperature transition in 50 wt% aqueous ethylene glycol solution can be decided as the transition from the L x phase to the L α phase. The L x phase disappeared at about 160 MPa. This L x phase was reported previously to be intermediate partially disordered liquid crystalline phase [9-10], but the phase state is not defined precisely.

4 71 (A) (B) Fig. 3 Temperature-pressure phase diagram of DLPC bilayer. (A) The phase transition from the L c phase to the P β ' (or L x ) phase. Broken line refers to the main (chain-melting) transition. (B) The phase transition from the L x phase to the L α phase. Broken lines represent two kinds of transitions shown in Fig.3-A. As is seen from Fig. 3, two phase boundaries, namely L c / P β ' and P β ' / L x curves, crossed each other at about 40 MPa. In the region of low pressure below 40 MPa, three kinds of transitions were observed. A lower temperature transition refers to the transition from the P β ' phase to L α phase, which is a transition between metastable phases. Other two transitions refer to the transition from the L c phase to L x phase and subsequently from the L x phase to the L α phase, which are transitions between stable phases. In the region of high pressure above 40 MPa, the DLPC bilayer undergoes phase transitions in turn from the L c phase to the P β ' phase, from the P β ' phase to the L x phase and finally from the L x phase to the L α phase. All phases of L c, P β ', L x and L α are able to exist as the stable phase at pressures above 40 MPa. 4. Conclusion In 50 wt% aqueous ethylene glycol solution, three kinds of phase transitions of DLPC bilayer were observed under ambient pressure and high pressure. The middle-temperature transition under high pressure corresponds probably to the main transition. The lowertemperature transition may correspond to the transition from the L c phase to the P β ' phase. The higher-temperature transition was decided as the transition from the L x phase to the L α phase judging from the previous results. Two phase boundary curves (namely, L c / P β ' and P β ' / L x ) crossed each other at about 40 MPa.

5 72 5. References [1] Cossins, A. R. and Macdonald, A. G. (1989) The adaptation of biological membranes to temperature and pressure : fish from the deep and cold, J. Bioenerg. Biomembranes 21, [2] Balny, C., Hayashi R., Heremans, K. and Masson, P. (eds.) (1992) High Pressure and Biotechnology, John Libbey Eurotext Ltd., France. [3] Hayashi, R. and Balny C. (eds.) (1996) High Pressure Bioscience and Biotechnology, Elsevier, Amsterdam. [4] Heremans, K. (ed.) (1997) High Pressure Research in the Biosciences and Biotechnology. Leuven University Press, Belgium. [5] Ludwig, H. (ed.) (1999) Advances in High Pressure Biosience and Biotechnology, Springer, Heidelberg. [6] Wann, K. T. and Macdonald, A. G., (1988) Actions and interactions of high pressure and general anesthetics. Neurobiol, Prog. 30, [7] Lewis, R. N. A. H., Mak, N. and McElhaney, R. N. (1987) A differential scanning calorimetric study of the thermotropic phase behavior of model membranes composed of phosphatidylcholines containing linear saturated fatty acyl chains. Biochemistry 26, [8] Morrow, M. R. and Davis, J. H. (1987) Calorimetric and unclear magnetic resonance study of the phase behavior of dilauroylphosphatidylcholine / water. Biochim.Biophys.Acta 904, [9] Finegold, L., Shaw, Walter A. and Singer, Michael A. (1990) Unusual phase properties of dilauryl phosphatidylcholine. Chem. Phys. Lipids 53, [10] Hatta, I., Matuoka, S., Singer, Michael A., Finegold, L. (1994) A new liquid crystalline phase in phosphatidylcholine bilayers as studied by X-ray diffraction. Chem. Phys. Lipids 69, [11] Bonev, B. B. and Morrow, M. R. (1996) Effect of hydrostatic pressure on bilayer phase behavior and dynamics of dilauroylphosphatidylcholine. Biophys. J. 70, [12] Dahbi, L., Bourgaux, C., Ollivon, M. (2004) Phase transition of dilauroylphosphatidylcholine in excess water: a coupled small-angle X-ray scattering wide angle X-ray scattering study. Progr. Colloid. Polym Sci. 126, [13] Harroum, T.A., Nieh, M. P., Watson, M. J., Raghunathan, V. A., Pabst, G., Morrow, M. R. and Katsaras. (2004) Relationship between the unbinding and transition temperatures of phospholipids bilayers under pressure. Phys. Rev. E 69, [14] Ichimori, H., Hata, T., Yoshioka, T. Matsuki, H. and Kaneshina, S. (1997) Thermotropic and barotropic phase transition on bilayer membranes of phospholids with varying acyl chain-lengths. Chem. Phys. Lipids 89, [15] Kusube, M., Matsuki, H. and Kaneshina, S. (2005) Thermotropic and barotropic phase transitions of N- methylated dipalmitoylphosphatidylethanolamine bilayers. Biochem. Biophys. Acta 1668, [16] Lewis, R. N. A. H. Sykes, B. D. and McElhaney, R. N. (1988) Thermotropic phase behavior of model membranes composed of phosphatidylcholines containing cis-monounsaturated acyl chain hemologues of oleic acid. Differential scanning calorimetric and 31 P-NMR spectroscopic studies. Biochemistry 27, [17] Kaneshina, S., Ichimori, H., Hata, T. and Matsuki, H. (1998) Barotropic phase transition of dioleoylphosphatidylcholine and stearoyl-oleoylphosphatidylcholine bilayer membranes. Biochim. Biophys. Acta 1374, 1 8.

Thermotropic and Barotropic Phase Behavior of Phosphatidylcholine Bilayers

Thermotropic and Barotropic Phase Behavior of Phosphatidylcholine Bilayers Int. J. Mol. Sci. 2013, 14, 2282-2302; doi:10.3390/ijms14022282 Review OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Thermotropic and Barotropic Phase

More information

Thermotropic and barotropic phase transitions on diacylphosphatidylethanolamine bilayer membranes

Thermotropic and barotropic phase transitions on diacylphosphatidylethanolamine bilayer membranes Thermotropic and barotropic phase transitions on diacylphosphatidylethanolamine bilayer membranes Hitoshi Matsuki 1, *, Shigeru Endo 2, Ryosuke Sueyoshi 2, Masaki Goto 1, Nobutake Tamai 1 and Shoji Kaneshina

More information

Demonstration of liquid crystal for barocaloric cooling application

Demonstration of liquid crystal for barocaloric cooling application Demonstration of liquid crystal for barocaloric cooling application Zhongjian Xie 1, Yao Zhu Abstract Current vapor-compression technology is based on the gas-liquid transition of hazardous gas. The alternative

More information

X-ray diffraction study on interdigitated structure of phosphatidylcholines in glycerol

X-ray diffraction study on interdigitated structure of phosphatidylcholines in glycerol X-ray diffraction study on interdigitated structure of phosphatidylcholines in glycerol Hiroshi Takahashi 1,*, Noboru Ohta 2 and Ichiro Hatta 2 1 Department of Physics, Gunma University, 4-2 Aramaki, Maebashi

More information

Relationship between the unbinding and main transition temperatures of phospholipid bilayers under pressure

Relationship between the unbinding and main transition temperatures of phospholipid bilayers under pressure Relationship between the unbinding and main transition temperatures of phospholipid bilayers under pressure T. A. Harroun, 1 M.-P. Nieh, 1 M. J. Watson, 1 V. A. Raghunathan, 2 G. Pabst, 3 M. R. Morrow,

More information

Chemistry and Physics of Lipids 127 (2004)

Chemistry and Physics of Lipids 127 (2004) Chemistry and Physics of Lipids 127 (2004) 153 159 The kinetics and mechanism of the formation of crystalline phase of dipalmitoylphosphatidylethanolamine dispersed in aqueous dimethyl sulfoxide solutions

More information

Methods and Materials

Methods and Materials a division of Halcyonics GmbH Anna-Vandenhoeck-Ring 5 37081 Göttingen, Germany Application Note Micostructured lipid bilayers ANDREAS JANSHOFF 1), MAJA GEDIG, AND SIMON FAISS Fig.1: Thickness map of microstructured

More information

Biology 5357: Membranes

Biology 5357: Membranes s 5357 Biology 5357: s Assembly and Thermodynamics of Soft Matter Paul H. MD, PhD Department of Cell Biology and Physiology pschlesinger@.wustl.edu 362-2223 Characteristics s 5357 s are polymorphic s 5357

More information

Hishida, M.; Seto, H.; Kaewsaiha, P Yoshikawa, K. Citation Colloids and Surfaces (2006),

Hishida, M.; Seto, H.; Kaewsaiha, P Yoshikawa, K. Citation Colloids and Surfaces (2006), Title Stacking structures of dry phosphol substrate Author(s) Hishida, M.; Seto, H.; Kaewsaiha, P Yoshikawa, K. Citation Colloids and Surfaces (2006), 284-2 Issue Date 2006-08 URL http://hdl.handle.net/2433/49169

More information

Supplementary Information: Liquid-liquid phase coexistence in lipid membranes observed by natural abundance 1 H 13 C solid-state NMR

Supplementary Information: Liquid-liquid phase coexistence in lipid membranes observed by natural abundance 1 H 13 C solid-state NMR Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the wner Societies 28 Supplementary Information: Liquid-liquid phase coexistence in lipid membranes observed

More information

TUTORIAL IN SMALL ANGLE X-RAY SCATTERING ANALYSIS

TUTORIAL IN SMALL ANGLE X-RAY SCATTERING ANALYSIS TUTORIAL IN SMALL ANGLE X-RAY SCATTERING ANALYSIS at the Abdus Salam International Center of Theoretical Physics (ICTP) Heinz Amenitsch Sigrid Bernstorff Michael Rappolt Trieste, 15. May 2006 (14:30-17:15)

More information

Protein directed assembly of lipids

Protein directed assembly of lipids Protein directed assembly of lipids D. Nordin, O. Yarkoni, L. Donlon, N. Savinykh, and D.J. Frankel SUPPLEMENTARY MATERIAL Materials and Methods Supported bilayer preparation 1,2-dioleoyl-sn-glycero-3-phosphocholine

More information

Photochemical Applications to the Study of Complexity Phospholipid Bilayer Environments

Photochemical Applications to the Study of Complexity Phospholipid Bilayer Environments Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2006 Photochemical Applications to the Study of Complexity Phospholipid Bilayer Environments Christopher John

More information

Effects of DNA Adsorption on the Phase Cycling of a Supported Mixed Phospholipid Bilayer

Effects of DNA Adsorption on the Phase Cycling of a Supported Mixed Phospholipid Bilayer Effects of DNA Adsorption on the Phase Cycling of a Supported Mixed Phospholipid Bilayer NANO LETTERS 2002 Vol. 2, No. 4 305-309 Zoya Leonenko and David Cramb* Department of Chemistry, UniVersity of Calgary,

More information

Structure and Phase Behaviour of Binary Mixtures of Cholesterol with DPPC and DMPC

Structure and Phase Behaviour of Binary Mixtures of Cholesterol with DPPC and DMPC Chapter 3 Structure and Phase Behaviour of Binary Mixtures of Cholesterol with DPPC and DMPC 3.1 Introduction As discussed in chapter 1, phospholipids and cholesterol are important constituents of plasma

More information

Model for measurement of water layer thickness under lipid bilayers by surface plasmon resonance

Model for measurement of water layer thickness under lipid bilayers by surface plasmon resonance Model for measurement of water layer thickness under lipid bilayers by surface plasmon resonance Koyo Watanabe Unit of Measurement Technology, CEMIS-OULU, University of Oulu, PO Box 51, 87101 Kajaani,

More information

Phase Behavior of Model Lipid Bilayers

Phase Behavior of Model Lipid Bilayers J. Phys. Chem. B 2005, 109, 6553-6563 6553 Phase Behavior of Model Lipid Bilayers Marieke Kranenburg and Berend Smit*,, The Van t Hoff Institute for Molecular Sciences, UniVersity of Amsterdam, Nieuwe

More information

CHAPTER 4. Tryptophan fluorescence quenching by brominated lipids

CHAPTER 4. Tryptophan fluorescence quenching by brominated lipids CHAPTER 4 Tryptophan fluorescence quenching by brominated lipids 102 4.1 INTRODUCTION The structure and dynamics of biological macromolecules have been widely studied with fluorescence quenching. The accessibility

More information

and controllable behavior - Supplementary Information

and controllable behavior - Supplementary Information Metastability in lipid based particles exhibits temporally deterministic and controllable behavior - Supplementary Information Guy Jacoby, Keren Cohen, Kobi Barkan, Yeshayahu Talmon, Dan Peer, Roy Beck

More information

8 Influence of permeation modulators on the behaviour of a SC lipid model mixture

8 Influence of permeation modulators on the behaviour of a SC lipid model mixture 8 Influence of permeation modulators on the behaviour of a SC lipid model mixture 8.1 Introduction In the foregoing parts of this thesis, a model membrane system of SC lipids has been developed and characterized.

More information

Phase behavior of freeze-dried phospholipid cholesterol mixtures stabilized with trehalose

Phase behavior of freeze-dried phospholipid cholesterol mixtures stabilized with trehalose Biochimica et Biophysica Acta 1713 (2005) 57 64 http://www.elsevier.com/locate/bba Phase behavior of freeze-dried phospholipid cholesterol mixtures stabilized with trehalose Satoshi Ohtake a, *, Carolina

More information

Chapter 1 Membrane Structure and Function

Chapter 1 Membrane Structure and Function Chapter 1 Membrane Structure and Function Architecture of Membranes Subcellular fractionation techniques can partially separate and purify several important biological membranes, including the plasma and

More information

AFM In Liquid: A High Sensitivity Study On Biological Membranes

AFM In Liquid: A High Sensitivity Study On Biological Membranes University of Wollongong Research Online Faculty of Science - Papers (Archive) Faculty of Science, Medicine and Health 2006 AFM In Liquid: A High Sensitivity Study On Biological Membranes Michael J. Higgins

More information

In this article we address a seemingly simple thermodynamic

In this article we address a seemingly simple thermodynamic Effect of cholesterol on the structure of a phospholipid bilayer Frédérick de Meyer a,b and Berend Smit b,1 a Centre Européen de Calcul Atomique et Moléculaire, Ecole Polytechnique Fédérale de Lausanne,

More information

Effects of Oxidized Phospholipids and Heavy Water on the Structure of Phospholipid Bilayer Membranes

Effects of Oxidized Phospholipids and Heavy Water on the Structure of Phospholipid Bilayer Membranes Effects of Oxidized Phospholipids and Heavy Water on the Structure of Phospholipid Bilayer Membranes Quoc Dat Pham Degree Thesis in Chemistry 30 ECTS Master s Level Report passed: 18 th August 2011 Supervisor:

More information

RECENT PUBLICATION LIST

RECENT PUBLICATION LIST RECENT PUBLICATION LIST 9 September 2005 148. O. Edholm and J. F. NAGLE, Areas of Molecules in Membranes Consisting of Mixtures. Biophysical Journal 89, 1827-1832 (2005). 147. N. Kucerka, Y. Liu, N. Chu,

More information

EFFECTS OF CHOLESTEROL ON THE PROPERTIES OF EQUIMOLAR MIXTURES OF SYNTHETIC PHOSPHATIDYLETHANOLAMINE AND PHOSPHATIDYLCHOLINE

EFFECTS OF CHOLESTEROL ON THE PROPERTIES OF EQUIMOLAR MIXTURES OF SYNTHETIC PHOSPHATIDYLETHANOLAMINE AND PHOSPHATIDYLCHOLINE 21 Biochimica et Biophysica Acta, 513 (1978) 21--30 Elsevier/North-Holland Biomedical Press BBA 78160 EFFECTS OF CHOLESTEROL ON THE PROPERTIES OF EQUIMOLAR MIXTURES OF SYNTHETIC PHOSPHATIDYLETHANOLAMINE

More information

Homopolymers as Structure-Driving Agents in Semicrystalline Block Copolymer Micelles

Homopolymers as Structure-Driving Agents in Semicrystalline Block Copolymer Micelles Supporting information for: Homopolymers as Structure-Driving Agents in Semicrystalline Block Copolymer Micelles Georgios Rizis, Theo G. M. van de Ven*, Adi Eisenberg* Department of Chemistry, McGill University,

More information

Protection of DPPC phospholipid liposomal membrane against radiation oxidative damage by antioxidants

Protection of DPPC phospholipid liposomal membrane against radiation oxidative damage by antioxidants Protection of DPPC phospholipid liposomal membrane against radiation oxidative damage by antioxidants D. L. Marathe, B. N. Pandey and K. P. Mishra Radiation Biology Division, Bhabha Atomic Research Centre,

More information

RETINOID-PHOSPHOLIPID INTERACTIONS AS STUDIED BY MAGNETIC RESONANCE. Stephen R. Wassail* and William Stillwellt

RETINOID-PHOSPHOLIPID INTERACTIONS AS STUDIED BY MAGNETIC RESONANCE. Stephen R. Wassail* and William Stillwellt Vol.''% No. 3 85 RETINOID-PHOSPHOLIPID INTERACTIONS AS STUDIED BY MAGNETIC RESONANCE Stephen R. Wassail* and William Stillwellt Departments of Physics* and Biology+ Indiana University-Purdue University

More information

OXIDATIVE STRESS STUDIES ON LIPID MODEL MEMBRANES

OXIDATIVE STRESS STUDIES ON LIPID MODEL MEMBRANES OXIDATIVE STRESS STUDIES ON LIPID MODEL MEMBRANES MARCELA ELISABETA BARBINTA-PATRASCU *, LAURA TUGULEA * * Faculty of Physics, University of Bucharest, Romania Received December 21, 2004 The liposomes

More information

Differential Scanning Calorimetry Studies of Phospholipid Membranes: The Interdigitated Gel Phase

Differential Scanning Calorimetry Studies of Phospholipid Membranes: The Interdigitated Gel Phase Chapter 18 Differential Scanning Calorimetry Studies of Phospholipid Membranes: The Interdigitated Gel Phase Eric A. Smith and Phoebe K. Dea Additional information is available at the end of the chapter

More information

Supporting Information: Revisiting partition in. hydrated bilayer systems

Supporting Information: Revisiting partition in. hydrated bilayer systems Supporting Information: Revisiting partition in hydrated bilayer systems João T. S. Coimbra, Pedro A. Fernandes, Maria J. Ramos* UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências,

More information

Molecular Structure and Permeability at the Interface between Phase-Separated Membrane Domains

Molecular Structure and Permeability at the Interface between Phase-Separated Membrane Domains SUPPORTING INFORMATION Molecular Structure and Permeability at the Interface between Phase-Separated Membrane Domains Rodrigo M. Cordeiro Universidade Federal do ABC, Avenida dos Estados 5001, CEP 09210-580,

More information

Condensed Complexes and the Calorimetry of Cholesterol-Phospholipid Bilayers

Condensed Complexes and the Calorimetry of Cholesterol-Phospholipid Bilayers 2774 Biophysical Journal Volume 81 November 2001 2774 2785 Condensed Complexes and the Calorimetry of Cholesterol-Phospholipid Bilayers Thomas G. Anderson and Harden M. McConnell Department of Chemistry,

More information

The Role of Group Structure in the Action of Some Morpholinium Chloride Derivatives on Model Systems

The Role of Group Structure in the Action of Some Morpholinium Chloride Derivatives on Model Systems Gen. Physiol Biophys (1987), 6, 149 153 149 The Role of Group Structure in the Action of Some Morpholinium Chloride Derivatives on Model Systems A. HENDRICH 1, J. SARAPUK' and S. WITEK. 2 1 Department

More information

Supplementary information for Effects of Stretching Speed on. Mechanical Rupture of Phospholipid/Cholesterol Bilayers: Molecular

Supplementary information for Effects of Stretching Speed on. Mechanical Rupture of Phospholipid/Cholesterol Bilayers: Molecular Supplementary information for Effects of Stretching Speed on Mechanical Rupture of Phospholipid/Cholesterol Bilayers: Molecular Dynamics Simulation Taiki Shigematsu, Kenichiro Koshiyama*, and Shigeo Wada

More information

Complementary molecular shapes and additivity of the packing

Complementary molecular shapes and additivity of the packing Proc. Natl. Acad. Sci. USA VO1. 88, pp. 444-448, January 1991 Biophysics Complementary molecular shapes and additivity of the packing parameter of lipids (chain length/phase preference/theory) V. V. KUMAR

More information

Packing Characteristics of Two-Component Bilayers Composed of Esterand Ether-Linked Phospholipids

Packing Characteristics of Two-Component Bilayers Composed of Esterand Ether-Linked Phospholipids Biophysical Journal Volume 72 April 1997 1695-17 1 695 Packing Characteristics of Two-Component Bilayers Composed of Esterand Ether-Linked Phospholipids Michael M. Batenjany,* Timothy J. O'Leary,* ra W.

More information

Basic Compounds in Biomolecules: Lipids

Basic Compounds in Biomolecules: Lipids BI-RGANI HEMISTRY (rganic hemistry for Biology Students) (SQBS 1603) Basic ompounds in Biomolecules: Lipids Dr Nik Ahmad Nizam Bin Nik Malek, BSc (Ind. hem.)(utm), MSc (hem)(utm), PhD (hem)(utm), A.M.I.

More information

Phospholipid Component Volumes: Determination and Application to Bilayer Structure Calculations

Phospholipid Component Volumes: Determination and Application to Bilayer Structure Calculations 734 Biophysical Journal Volume 75 August 1998 734 744 Phospholipid Component Volumes: Determination and Application to Bilayer Structure Calculations Roger S. Armen, Olivia D. Uitto, and Scott E. Feller

More information

Role of Ethanol in the Modulation of Miscibility Transition in Model Lipid Bilayers

Role of Ethanol in the Modulation of Miscibility Transition in Model Lipid Bilayers Role of Ethanol in the Modulation of Miscibility Transition in Model Lipid Bilayers Jialing Li 1 Advisor: Dr. Sarah L. Keller 2 Department of Chemistry, University of Washington, Seattle, WA 1,2 Department

More information

The distribution of K-tocopherol in mixed aqueous dispersions of phosphatidylcholine and phosphatidylethanolamine

The distribution of K-tocopherol in mixed aqueous dispersions of phosphatidylcholine and phosphatidylethanolamine Biochimica et Biophysica Acta 1509 (2000) 361^372 www.elsevier.com/locate/bba The distribution of K-tocopherol in mixed aqueous dispersions of phosphatidylcholine and phosphatidylethanolamine Xiaoyuan

More information

AUTOOXIDATION OF UNSATURATED FATTY ACIDS AND THEIR ESTERS

AUTOOXIDATION OF UNSATURATED FATTY ACIDS AND THEIR ESTERS Journal of Thermal Analysis and Calorimetry, Vol. 65 (2001) 639 646 AUTOOXIDATION OF UNSATURATED FATTY ACIDS AND THEIR ESTERS G. Litwinienko * Warsaw University, Department of Chemistry, Pasteura 1, 02-093

More information

Reduction of p-benzoquinone on lipid-modified electrodes: effect of the alkyl chain length of lipids on the electron transfer reactions

Reduction of p-benzoquinone on lipid-modified electrodes: effect of the alkyl chain length of lipids on the electron transfer reactions www.elsevier.nl/locate/jelechem Journal of Electroanalytical Chemistry 484 (2000) 131 136 Reduction of p-benzoquinone on lipid-modified electrodes: effect of the alkyl chain length of lipids on the electron

More information

Series of Concentration-Induced Phase Transitions in Cholesterol/ Phosphatidylcholine Mixtures

Series of Concentration-Induced Phase Transitions in Cholesterol/ Phosphatidylcholine Mixtures 2448 Biophysical Journal Volume 104 June 2013 2448 2455 Series of Concentration-Induced Phase Transitions in Cholesterol/ Phosphatidylcholine Mixtures István P. Sugár, * István Simon, and Parkson L.-G.

More information

Pressure Modulation of the Enzymatic Activity of. Phospholipase A2, a Putative Membraneassociated

Pressure Modulation of the Enzymatic Activity of. Phospholipase A2, a Putative Membraneassociated SUPPORTING INFORMATION Pressure Modulation of the Enzymatic Activity of Phospholipase A2, a Putative Membraneassociated Pressure Sensor Saba Suladze, Suleyman Cinar, Benjamin Sperlich, and Roland Winter*

More information

The effect of hydrostatic pressure on membrane-bound proteins

The effect of hydrostatic pressure on membrane-bound proteins Brazilian Journal of Medical and Biological Research (2005) 38: 1203-1208 High pressure studies on membrane-associated proteins ISSN 0100-879X Review 1203 The effect of hydrostatic pressure on membrane-bound

More information

Phase Transition Behaviours of the Supported DPPC Bilayer. Investigated by Sum Frequency Generation (SFG) and Atomic Force

Phase Transition Behaviours of the Supported DPPC Bilayer. Investigated by Sum Frequency Generation (SFG) and Atomic Force Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 Supporting Information for Phase Transition Behaviours of the Supported DPPC Bilayer

More information

Effect of Unsaturated Acyl Chains on Structural Transformations in Triacylglycerols. Oleksandr Mykhaylyk. Chris Martin

Effect of Unsaturated Acyl Chains on Structural Transformations in Triacylglycerols. Oleksandr Mykhaylyk. Chris Martin Effect of Unsaturated Acyl hains on Structural Transformations in Triacylglycerols leksandr Mykhaylyk Department of hemistry, University of Sheffield, Sheffield, S3 7HF, UK hris Martin STF Daresbury Laboratory,

More information

Chain Length Dependence

Chain Length Dependence Biophysical Journal Volume 71 August 1996 885-891 885 Structure of Gel Phase Saturated Lecithin Bilayers:. Temperature and Chain Length Dependence W.-J. Sun,* S. Tristram-Nagle,# R. M. Suter,* and J. F.

More information

Phosphatidylcholines are a class of glycerophospholipids which along with other phospholipids

Phosphatidylcholines are a class of glycerophospholipids which along with other phospholipids Phosphatidylcholine Phosphatidylcholines are a class of glycerophospholipids which along with other phospholipids account for more than half of the lipids in most membranes. Phosphatidylcholines can further

More information

MARTINI Coarse-Grained Model of Triton TX-100 in Pure DPPC. Monolayer and Bilayer Interfaces. Supporting Information

MARTINI Coarse-Grained Model of Triton TX-100 in Pure DPPC. Monolayer and Bilayer Interfaces. Supporting Information MARTINI Coarse-Grained Model of Triton TX-100 in Pure DPPC Monolayer and Bilayer Interfaces. Antonio Pizzirusso a, Antonio De Nicola* a, Giuseppe Milano a a Dipartimento di Chimica e Biologia, Università

More information

MOLECULAR DYNAMICS SIMULATION OF MIXED LIPID BILAYER WITH DPPC AND MPPC: EFFECT OF CONFIGURATIONS IN GEL-PHASE

MOLECULAR DYNAMICS SIMULATION OF MIXED LIPID BILAYER WITH DPPC AND MPPC: EFFECT OF CONFIGURATIONS IN GEL-PHASE MOLECULAR DYNAMICS SIMULATION OF MIXED LIPID BILAYER WITH DPPC AND MPPC: EFFECT OF CONFIGURATIONS IN GEL-PHASE A Thesis Presented to The Academic Faculty by Young Kyoung Kim In Partial Fulfillment of the

More information

Definition of Lipid Membrane Structural Parameters from Neutronographic Experiments with the Help of the Strip Function Model

Definition of Lipid Membrane Structural Parameters from Neutronographic Experiments with the Help of the Strip Function Model 1 424 Biophysical Journal Volume 69 October 1995 1424-1428 Definition of Lipid Membrane Structural Parameters from Neutronographic Experiments with the Help of the Strip Function Model V. 1. Gordeliy and

More information

THE INS AND OUTS OF YOUR SKIN. Emma Sparr Physical Chemistry Lund University

THE INS AND OUTS OF YOUR SKIN. Emma Sparr Physical Chemistry Lund University THE INS AND OUTS OF YOUR SKIN Emma Sparr Physical Chemistry Lund University The skin - A Responding Barrier Membrane stratum corneum (10 20 µm) Water CO 2 Temperature ph 5.5 O 2 Moisturizers, Drugs etc

More information

Shape Modification of Phospholipid Vesicles Induced by High Pressure: Influence of Bilayer Compressibility

Shape Modification of Phospholipid Vesicles Induced by High Pressure: Influence of Bilayer Compressibility 1 258 Biophysical Journal Volume 72 March 1997 1258-1263 Shape Modification of Phospholipid Vesicles Induced by High Pressure: Influence of Bilayer Compressibility Laurent Beney, Jean-Marie Perrier-Cornet,

More information

P NMR in lipid membranes. CSA recoupling.

P NMR in lipid membranes. CSA recoupling. 31 P NMR in lipid membranes. CSA recoupling. Ludovic BERTHELT, Dror E. WARSCHAWSKI & Philippe F. DEVAUX 1 1 Laboratoire de physico-chimie moléculaire des membranes biologiques UPR 9052 Alpine conference

More information

Hydrocarbon chain packing and the e ect of ethanol on the thermotropic phase behavior of mixed-chain phosphatidylglycerols

Hydrocarbon chain packing and the e ect of ethanol on the thermotropic phase behavior of mixed-chain phosphatidylglycerols Biochimica et Biophysica Acta 1417 (1999) 101^110 Hydrocarbon chain packing and the e ect of ethanol on the thermotropic phase behavior of mixed-chain phosphatidylglycerols Ramesh V. Durvasula, Ching-hsien

More information

Neutron reflectivity in biology and medicine. Jayne Lawrence

Neutron reflectivity in biology and medicine. Jayne Lawrence Neutron reflectivity in biology and medicine Jayne Lawrence Why neutron reflectivity studies? build up a detailed picture of the structure of a surface in the z direction n e u tro n s in n e u tro n s

More information

Clustering of Cholesterol in DMPC Bilayers as Indicated by Membrane Mechanical Properties

Clustering of Cholesterol in DMPC Bilayers as Indicated by Membrane Mechanical Properties Gen. Physiol. Biophys. (1993), 12, 283 291 283 Clustering of Cholesterol in DMPC Bilayers as Indicated by Membrane Mechanical Properties T. HIANIK 1 and M. HABURČÁK 2 1 Department of Biophysics and Chemical

More information

Experimental phase diagrams of binary fatty acid mixtures containing oleic acid

Experimental phase diagrams of binary fatty acid mixtures containing oleic acid Experimental phase diagrams of binary fatty acid mixtures containing Mariana C. Costa a, Marlus P. Rolemberg b, Natália D. D. Carareto a, Cecilia Y. C. S. Kimura a, Maria A. Krahenbühl c, Antonio J. A.

More information

Phase Diagram Determination for Phospholipid/Sterol Membranes Using Deuterium NMR

Phase Diagram Determination for Phospholipid/Sterol Membranes Using Deuterium NMR Phase Diagram Determination for Phospholipid/Sterol Membranes Using Deuterium NMR YA-WEI HSUEH, 1 MARTIN ZUCKERMANN, 2 JENIFER THEWALT 2,3 1 Department of Physics, National Central University, Chung-li

More information

Changes in Dipalmitoyl Lecithin Multilayers (gel-liquid crystral transition/noncooperative/transition temperature)

Changes in Dipalmitoyl Lecithin Multilayers (gel-liquid crystral transition/noncooperative/transition temperature) Proc. Nat. Acad. Sci. USA Vol. 68, No. 7, pp. 1572-1576, July 1971 Laser Raman Investigation of the Effect of Cholesterol on Conformational Changes in Dipalmitoyl Lecithin Multilayers (gel-liquid crystral

More information

Rene Peschar Jan B. van Mechelen, Henk Schenk

Rene Peschar Jan B. van Mechelen, Henk Schenk Laboratory for Crystallography, van t Hoff Institute for Molecular Sciences, Faculty of Science, Universiteit van Amsterdam, The Netherlands Structure and polymorphism of trans mono-unsaturated triacylglycerols

More information

Effect of temperature on liposome structures studied using EPR spectroscopy

Effect of temperature on liposome structures studied using EPR spectroscopy Spectroscopy 19 (2005) 37 42 37 IOS Press Effect of temperature on liposome structures studied using EPR spectroscopy W.W. Sułkowski a,,d.pentak a, W. Korus a and A. Sułkowska b a Department of Environmental

More information

Unit 1, Section C.1. In which you will learn about: Solutions Electrolytes Saturation Solubility curves

Unit 1, Section C.1. In which you will learn about: Solutions Electrolytes Saturation Solubility curves Unit 1, Section C.1 In which you will learn about: Solutions Electrolytes Saturation Solubility curves Some Definitions A solution is a homogeneous mixture of 2 or more substances in a single phase. One

More information

Multiple mechanisms for critical behavior in the biologically relevant phase of lecithin bilayers

Multiple mechanisms for critical behavior in the biologically relevant phase of lecithin bilayers PHYSICAL REVIEW E VOLUME 58, NUMBER 6 DECEMBER 1998 Multiple mechanisms for critical behavior in the biologically relevant phase of lecithin bilayers John F. Nagle, 1,2, * Horia I. Petrache, 1 Nikolai

More information

Chem Lecture 8 Lipids and Cell Membranes

Chem Lecture 8 Lipids and Cell Membranes Chem 452 - Lecture 8 Lipids and Cell Membranes 111114 Like carbohydrates, lipids are one of the four major classes of biomolecules, which also include the proteins, carbohydrates and nucleic acids. Lipids

More information

Preparation of Liposome Containing Bacteriorhodopsin with Natural. Preferred Orientation of Its Transient Photoresponse

Preparation of Liposome Containing Bacteriorhodopsin with Natural. Preferred Orientation of Its Transient Photoresponse ISSN 0582-9879 ACTA BIOCHIMICA et BIOPHYSICA SINICA 2003, 35(4): 391-395 CN 31-1300/Q Preparation of Liposome Containing Bacteriorhodopsin with Natural Preferred Orientation of Its Transient Photoresponse

More information

Relationships between lipid membrane area, hydrophobic thickness, and acyl-chain orientational order The effects of cholesterol

Relationships between lipid membrane area, hydrophobic thickness, and acyl-chain orientational order The effects of cholesterol Relationships between lipid membrane area, hydrophobic thickness, and acyl-chain orientational order The effects of cholesterol John Hjort lpsen,* Ole G. Mouritsen,* and Myer Bloom4 *Department of Structural

More information

Millicient A. Firestone, Amanda C. Wolf, and Sonke Seifert. Chris Bianchi 4/30/12

Millicient A. Firestone, Amanda C. Wolf, and Sonke Seifert. Chris Bianchi 4/30/12 Small-Angle X-ray Scattering of the Interaction of Poly(ethylene oxide)-b-poly(propylene oxide)-b- Poly(ethylene oxide)triblock Copolymers with Lipid Bilayers Millicient A. Firestone, Amanda C. Wolf, and

More information

Chapter 3. Table of Contents. Section 1 Carbon Compounds. Section 2 Molecules of Life. Biochemistry

Chapter 3. Table of Contents. Section 1 Carbon Compounds. Section 2 Molecules of Life. Biochemistry Biochemistry Table of Contents Section 1 Carbon Compounds Section 2 Molecules of Life Section 1 Carbon Compounds Objectives Distinguish between organic and inorganic compounds. Explain the importance of

More information

Polymorphism in Myristoylpalmitoylphosphatidylcholine

Polymorphism in Myristoylpalmitoylphosphatidylcholine Chemistry and Physics of Lipids 100 (1999) 101 113 www.elsevier.com/locate/chemphyslip Polymorphism in Myristoylpalmitoylphosphatidylcholine Stephanie Tristram-Nagle a, *, Yisrael Isaacson b, Yulia Lyatskaya

More information

Massive oxidation of phospholipid membranes. leads to pore creation and bilayer. disintegration

Massive oxidation of phospholipid membranes. leads to pore creation and bilayer. disintegration Massive oxidation of phospholipid membranes leads to pore creation and bilayer disintegration Lukasz Cwiklik and Pavel Jungwirth Institute of Organic Chemistry and Biochemistry, Academy of Sciences of

More information

PHOSPHOLIPID SURFACE BILAYERS AT THE AIR-WATER INTERFACE

PHOSPHOLIPID SURFACE BILAYERS AT THE AIR-WATER INTERFACE PHOSPHOLIPID SURFACE BILAYERS AT THE AIR-WATER INTERFACE III. Relation Between Surface Bilayer Formation and Lipid Bilayer Assembly in Cell Membranes NORMAN L. GERSHFELD Laboratory ofbiochemical Pharmacology,

More information

H-NMR in liquid crystals and membranes

H-NMR in liquid crystals and membranes Colloids and Surfaces A: Physicochemical and Engineering Aspects 158 (1999) 281 298 www.elsevier.nl/locate/colsurfa 2 H-NMR in liquid crystals and membranes Michael F. Brown *, Alexander A. Nevzorov 1

More information

Practice Questions for Biochemistry Test A. 1 B. 2 C. 3 D. 4

Practice Questions for Biochemistry Test A. 1 B. 2 C. 3 D. 4 Practice Questions for Biochemistry Test 1. The quaternary structure of a protein is determined by: A. interactions between distant amino acids of the same polypeptide. B.interactions between close amino

More information

Stability Conditions and Mechanism of Cream Soaps: Effect of Polyols

Stability Conditions and Mechanism of Cream Soaps: Effect of Polyols Journal of Oleo Science Copyright 2015 by Japan Oil Chemists Society doi : 10.5650/jos.ess14292 Stability Conditions and Mechanism of Cream Soaps: Effect of Polyols Hiromichi Sagitani and Masumi Komoriya

More information

Phase Diagram of Androsterol-Dipalmitoylphosphatidylcholine Mixtures Dispersed in Excess Water

Phase Diagram of Androsterol-Dipalmitoylphosphatidylcholine Mixtures Dispersed in Excess Water J. Phys. Chem. B 2008, 112, 8375 8382 8375 Phase Diagram of Androsterol-Dipalmitoylphosphatidylcholine Mixtures Dispersed in Excess Water Wenying Gao, Lin Chen, Ruiguang Wu, Zhiwu Yu,*, and Peter J. Quinn

More information

Possible Molecular Mechanism to Account for Wavelength Dependence of Equilibration Rates of Patman and Laurdan in Phosphatidylcholine Bilayers

Possible Molecular Mechanism to Account for Wavelength Dependence of Equilibration Rates of Patman and Laurdan in Phosphatidylcholine Bilayers Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2011-05-12 Possible Molecular Mechanism to Account for Wavelength Dependence of Equilibration Rates of Patman and Laurdan in Phosphatidylcholine

More information

Phase Behavior of a Phospholipid/Fatty Acid/Water Mixture Studied in Atomic Detail

Phase Behavior of a Phospholipid/Fatty Acid/Water Mixture Studied in Atomic Detail Published on Web 01/19/2006 Phase Behavior of a Phospholipid/Fatty Acid/Water Mixture Studied in Atomic Detail Volker Knecht,*, Alan E. Mark,, and Siewert-Jan Marrink Contribution from the Max Planck Institute

More information

Essential Lipidomics Experiments using the LTQ Orbitrap Hybrid Mass Spectrometer

Essential Lipidomics Experiments using the LTQ Orbitrap Hybrid Mass Spectrometer Application Note: 367 Essential Lipidomics Experiments using the LTQ rbitrap Hybrid Mass Spectrometer Thomas Moehring 1, Michaela Scigelova 2, Christer S. Ejsing 3, Dominik Schwudke 3, Andrej Shevchenko

More information

Unit #2: Biochemistry

Unit #2: Biochemistry Unit #2: Biochemistry STRUCTURE & FUNCTION OF FOUR MACROMOLECULES What are the four main biomolecules? How is each biomolecule structured? What are their roles in life? Where do we find them in our body?

More information

Ammonia chemical ionization mass spectrometry of intact diacyl phosphatidylcholine

Ammonia chemical ionization mass spectrometry of intact diacyl phosphatidylcholine Ammonia chemical ionization mass spectrometry of intact diacyl phosphatidylcholine C. G. Crawford and R. D. Plattner Northern Regional Research Center, Agricultural Research Service, United States Department

More information

Simulationen von Lipidmembranen

Simulationen von Lipidmembranen Simulationen von Lipidmembranen Thomas Stockner thomas.stockner@meduniwien.ac.at Molecular biology Molecular modelling Membranes environment Many cellular functions occur in or around membranes: energy

More information

Non-Conjugated Double Bonds

Non-Conjugated Double Bonds 1 H-NMR Spectroscopy of Fatty Acids and Their Derivatives Non-Conjugated Double Bonds The introduction of one double bond gives rise to several peaks in the NMR spectrum compared to the saturated chains

More information

KEEP THIS COPY FOR REPRODUCTION PURPOSES. 0 '1 Form Approved

KEEP THIS COPY FOR REPRODUCTION PURPOSES. 0 '1 Form Approved MASTER COP, KEEP THIS COPY FOR REPRODUCTION PURPOSES -7ITATION PAGE om NO. 07,,-01-0 '1 Form Approved i l. age 'our,. sv.eoe. nclujng te time for reviewing instructions. siarching existing o ewqmg tie

More information

New Ordered Metastable Phases between the Gel and Subgel Phases in Hydrated Phospholipids

New Ordered Metastable Phases between the Gel and Subgel Phases in Hydrated Phospholipids Biophysical Journal Volume 80 April 2001 1873 1890 1873 New Ordered Metastable Phases between the Gel and Subgel Phases in Hydrated Phospholipids Boris Tenchov,* Rumiana Koynova,* and Gert Rapp *Institute

More information

The Interaction between Lipid Bilayers and Biological Membranes. Chapter 18

The Interaction between Lipid Bilayers and Biological Membranes. Chapter 18 The Interaction between Lipid Bilayers and Biological Membranes Chapter 18 Introduction Membrane & Phospholipid Bilayer Structure Membrane Lipid bilayer 2 Introduction Forces Acting between Surfaces in

More information

Lecture-3. Water and Phospholipid

Lecture-3. Water and Phospholipid Lecture-3 Water and Phospholipid Life on earth began in water and evolved there for three billion years before spreading onto land. Although most of the water in liquid form, it is also in solid form and

More information

Chapter 12: Membranes. Voet & Voet: Pages

Chapter 12: Membranes. Voet & Voet: Pages Chapter 12: Membranes Voet & Voet: Pages 390-415 Slide 1 Membranes Essential components of all living cells (define boundry of cells) exclude toxic ions and compounds; accumulation of nutrients energy

More information

Lecture 15 The Lipid Bilayer: A Dynamic Self- Assembled Structure of Multiple Lipid Classes

Lecture 15 The Lipid Bilayer: A Dynamic Self- Assembled Structure of Multiple Lipid Classes Lecture 15 The Lipid Bilayer: A Dynamic Self- Assembled Structure of Multiple Lipid Classes LIPIDS-Biological molecules with low solubility in water and high solubility in non-polar solvents -Lipids form

More information

Gradual Change or Phase Transition: Characterizing Fluid Lipid-Cholesterol Membranes on the Basis of Thermal Volume Changes

Gradual Change or Phase Transition: Characterizing Fluid Lipid-Cholesterol Membranes on the Basis of Thermal Volume Changes 600 Biophysical Journal Volume 91 July 2006 600 607 Gradual Change or Phase Transition: Characterizing Fluid Lipid-Cholesterol Membranes on the Basis of Thermal Volume Changes Heiko Heerklotz and Alekos

More information

Membrane Structure. Membrane Structure. Membrane Structure. Membranes

Membrane Structure. Membrane Structure. Membrane Structure. Membranes Membrane Structure Membranes Chapter 5 The fluid mosaic model of membrane structure contends that membranes consist of: -phospholipids arranged in a bilayer -globular proteins inserted in the lipid bilayer

More information

General Biochemistry-1 BCH 202

General Biochemistry-1 BCH 202 General Biochemistry-1 BCH 202 1 I would like to acknowledge Dr. Farid Ataya for his valuable input & help in this course. 2 Outline Lipids Definition, function, fatty acids, classification: simple lipids:

More information

Supplementary Information: A Critical. Comparison of Biomembrane Force Fields: Structure and Dynamics of Model DMPC, POPC, and POPE Bilayers

Supplementary Information: A Critical. Comparison of Biomembrane Force Fields: Structure and Dynamics of Model DMPC, POPC, and POPE Bilayers Supplementary Information: A Critical Comparison of Biomembrane Force Fields: Structure and Dynamics of Model DMPC, POPC, and POPE Bilayers Kristyna Pluhackova,, Sonja A. Kirsch, Jing Han, Liping Sun,

More information

Magneto-orientation of lecithin crystals (lipid single crystal/diamagnetic susceptibility/polar head)

Magneto-orientation of lecithin crystals (lipid single crystal/diamagnetic susceptibility/polar head) Proc. Natl. Acad. Sci. USA Vol. 77, No. 12, pp. 7232-7236, December 1980 Biophysics Magneto-orientation of lecithin crystals (lipid single crystal/diamagnetic susceptibility/polar head) IKUKO SAKURAI*,

More information

Coarse-Grained Molecular Dynamics for Copolymer- Vesicle Self-Assembly. Case Study: Sterically Stabilized Liposomes.

Coarse-Grained Molecular Dynamics for Copolymer- Vesicle Self-Assembly. Case Study: Sterically Stabilized Liposomes. Coarse-Grained Molecular Dynamics for Copolymer- Vesicle Self-Assembly. Case Study: Sterically Stabilized Liposomes. Alexander Kantardjiev 1 and Pavletta Shestakova 1 1 Institute of Organic Chemistry with

More information