Subject Index. Budding of frog virus 3, study by immunological and cytochemical methods in electron microscopy 305

Size: px
Start display at page:

Download "Subject Index. Budding of frog virus 3, study by immunological and cytochemical methods in electron microscopy 305"

Transcription

1 Subject Index Adenovirus, simian adenovirus 7 infectious DNA-protein complex 54 Adenovirus type 12, transformation characteristics of temperature-sensitive mutants Antibody - hepatitis B subtypes in chimpanzees rubella IgG, detection and virus diagnosis rubella IgM, detection 353 Antigenic differences, herpesvirus type 2 isolates 1 Antigen (nuclear), Epstein-Barr virus-determined 232 Antiviral activity of interferon 369 Antiviral activity of rifamycin SV, inhibition of murine leukemia virus replication 84 Antiviral agents, inhibition of poliovirus RNA replication 281 Antiviral antibiotics, inhibition of focus formation by sarcoma-inducing oncornaviruses with rifamycins 63 A-type intracellular virus particles, endogenous oncornavirus in guinea pigs 319 Bacteriophage taxonomy 201 Bacteriophage T4 DNA, study of redundancy by renaturation kinetics 277 Bacteriophage T7 DNA, study of redundancy by renaturation kinetics 277 BAMMQ-2,3-bis-(acetylmercaptomethyl)- quinoxaline, inhibition of poliovirus RNA replication 281 Biophysical properties, hepatitis B antigen 129 Bluetongue virus, comparison of capsid polypeptides of various serotypes 47 Budding of frog virus 3, study by immunological and cytochemical methods in electron microscopy 305 Capsid polypeptides, bluetongue virus serotypes 47 Cell-growth inhibition by interferon 369 Central nervous system, street rabies virus infection of muscle 256 Classification, - International Committee on Taxonomy of Viruses Study Group report on Papovaviridae present state of phage taxonomy 201 Complementation test, SV40 temperaturesensitive mutants 245 Coxsackievirus B5, variation in isolates and relation to swine vesicular disease virus 125 Cross-protection and viral subtypes in hepatitis B virus infections 378 C-type extracellular virus particles, endogenous oncornavirus in guinea pigs 319 C-type oncornavirus, guinea pig 319 C-type RNA virus (avian): reticuloendotheliosis virus 342 C-type viral antigen expression, relationship to malignant properties of SV40-transformed mouse cells 269 Cytochemical and immunological methods in electron microscopic study of frog Defective reovirus particles 36 Detection of fluorescent stained IgM 353 Diagnosis of rubella, demonstration of IgG antibodies by sucrose gradient centri-

2 Subject Index 389 fugation and indirect fluorescent antibody staining 359 DNA, - bacteriophage T4 and T7, study of redundancy by renaturation kinetics 277 DNA polymerase activity of oncornaviruses, antiviral antibiotics 63 DNA polymerase interconversion, Rauscher leukemia virus DNA-protein complex, simian adenovirus 7 54 Electron microscopic study of influenza virus 121 Electron microscopy, immunological and cytochemical methods for study of frog Electrophoretic profiles of human interferon 369 Endogenous oncornavirus, prevalence in guinea pigs 319 Epstein-Barr virus genome, biological differences between EBV preparations 232 Epstein-Barr virus, nuclear antigen 232 Fluorescent staining, detection of rubella IgM 353 Fluorescent staining (indirect) and sucrose density gradient centrifugation, rubella diagnosis 359 Fractionation of hepatitis B antigen 129 Frog virus 3 budding, study by immunological and cytochemical methods in electron microscopy 305 Genome RNA segments, reovirus 36 Gross murine leukemia virus, - inhibition of replication by rifamycin SV 84 - virion and non-virion membrane antigens Hemagglutination inhibition rubella titers, clarification of ambiguous readings 359 Hepatitis B antigen, properties of morphological forms 129 Hepatitis B virus infection, viral subtypes and cross-protection 378 Herpes simplex virus, RNA polymerase activity and inhibition 147 Herpes simplex virus (HSV) type 2, growth of temperature-sensitive mutants at the nonpermissive temperature in cells transformed by HSV Herpesviruses isolated from non-human primates, a compendium 175 Herpesvirus type 2, antigenic differences of isolates 1 Human lymphoblastoid cell lines, infection with biologically different preparations of Epstein-Barr virus 232 Human papilloma virus protein 220 Immune responses in chimpanzees to hepatitis B virus subtypes 378 Immunofluorescence and sucrose density gradient centrifugation, rubella diagnosis 359 Immunological and cytochemical methods in electron microscopic study of frog Infectious DNA-protein complex, simian adenovirus 7 54 Influenza virus, - electron microscopic study of nuclear inclusions virion transcriptase activity 141 Inhibition of murine leukemia virus replication by rifamycin SV 84 Inhibition of poliovirus RNA replication 281 Inhibition of RNA synthesis, herpes simplex virus 147 Insect virus, Mosquito iridescent virus, comparison of proteins of R and T strains 97 Interconversion of molecular size of DNA polymerase from Rauscher leukemia virus Interferon (human) in heterologous cells, electrophoretic profiles and activities 369 International Committee on Nomenclature

3 390 Subject Index of Viruses (see International Committee on Taxonomy of Viruses) International Committee on the Taxonomy of Viruses announcements: Name change and schedule, International Committee on Taxonomy of Viruses Study Group report on Papovaviridae 106 International Committee on Taxonomy of Viruses,Vertebrate Virus Subcommittee: approved report on family and generic names for vertebrate viruses 193 Isoelectric points of hepatitis B antigen 129 Isoelectric points of papovaviruses 220 Kinetics (renaturation) of bacteriophage T4 and T7 DNA 277 Leukemia (murine) membrane antigens, virion and non-virion Lymphoblastoid cell lines, infection with biologically different preparations of Epstein-Barr virus 232 Malignant properties of SV40-transformed cells, relationship to C-type viral antigen expression 269 Membrane antigens, murine leukemia virus Molecular size, interconversion of DNA polymerase from Rauscher leukemia virus Morphology, bacteriophage taxonomy 201 Mosquito iridescent virus, comparison of proteins of R and T strains 97 Murine leukemia virus gs antigen and malignant properties of SV40-transformed cells 269 Murine leukemia virus, - inhibition of replication by rifamycin SV 84 - virion and non-virion membrane antigens Myotropic infection, street rabies virus 256 Neurotropic infection, street rabies virus 256 Nomenclature, - International Committee on Taxonomy of Viruses Study Group report on Papovaviridae 106 Non-human primate herpesviruses, a compendium 175 Non-virion and virion murine leukemia membrane antigens Nuclear antigen, Epstein-Barr virus-determined 232 Nucleic acids, bacteriophages 201 Oncogenicity in hamsters, herpesvirus type 2 isolates 1 Oncornavirus (endogenous), prevalence in guinea pigs 319 Oncornavirus polymerase, antiviral antibiotics 63 Orbivirus, comparison of capsid polypeptides of bluetongue virus serotypes 47 Papillomavirus, International Committee on Taxonomy of Viruses Study Group report on Papovaviridae 106 Papilloma virus proteins 220 Papovaviridae Study Group report, International Committee on Taxonomy of Viruses (formerly International Committee on Nomenclature of Viruses) 106 Papovavirus structural polypeptides, comparison of human and rabbit papilloma viruses with SV Phage taxonomy 201 Phosphate, effect on infection of tobacco protoplasts by tobacco rattle virus 382 Plant virus, Tobacco rattle virus, effect of phosphate on infected tobacco protoplasts 382 Poliovirus RNA replication, a new inhibitor 281 Polyomavirus, International Committee on Taxonomy of Viruses Study Group report on Papovaviridae 106 Polypeptides (capsid) of bluetongue virus serotypes 47

4 Subject Index 391 Polypeptides of hepatitis B antigen 129 Poxviridae, Primate (non-human) herpesviruses, a compendium 175 Protein analysis, mosquito iridescent virus strains 97 Protoplasts infected by tobacco rattle virus, effect of phosphate 382 Quinoxaline derivative (BAMMQ), inhibition of poliovirus RNA replication 281 Rabbit papilloma virus protein 220 Rabies, street virus infection in muscle 256 Rauscher leukemia virus, interconversion of molecular size of the DNA polymerase Renaturation kinetics of bacteriophage T4 and T7 DNA 277 Reoviridae, - comparison of capsid polypeptides of bluetongue virus serotypes 47 Reovirus, - genome segments 36 - temperature-sensitive mutants 36 - transcriptase activation 15 - uncoating 15 Reproduction and virulence of influenza virus, role of transcriptase activity 141 Reticuloendotheliosis virus, isolation and characterization of transformed bone marrow cells 342 Rifamycin antibiotics, inhibition of focus formation by sarcoma-inducing oncornaviruses with rifamycins 63 Rifamycin SV, inhibition of murine leukemia virus replication 84 RNA genome segments, reovirus 36 RNA, inhibition of poliovirus replication and synthesis in vitro 281 RNA polymerase activity and inhibition, herpesvirus-infected cells 147 Rubella diagnosis, demonstration of IgG antibodies by sucrose gradient centrifugation and indirect fluorescent antibody staining 359 Rubella IgM, detection by fluorescent staining and sucrose gradient centrifugation 353 Serological specificity, bluetongue virus 47 Simian adenovirus 7 infectious DNA-protein complex 54 Spot complementation test for temperaturesensitive mutants of SV Strain differences, herpesvirus type 2 1 Subtypes and cross-protection, hepatitis B virus infections 378 Sucrose density gradient centrifugation and fluorescent antibody staining, rubella diagnosis 359 Sucrose gradient centrifugation detection of fluorescent stained IgM 353 SV40, - comparison of structural polypeptides with those of human and rabbit papilloma virus relationship of acquisition of malignant properties of transformed cells to type C viral antigen expression spot complementation test for temperature-sensitive mutants 245 Swine vesicular disease virus, possible role of coxsackievirus B5 in its etiology 125 Taxonomy, - bacteriophage 201 Temperature-sensitive mutants of adenovirus type 12, transformation characteristics Temperature-sensitive mutants of herpes simplex virus (HSV) type 2, growth at the nonpermissive temperature in HSV- 2 transformed cells 162 Temperature-sensitive mutants of reovirus 36 Temperature-sensitive mutants of SV40, spot complementation test 245

5 392 Subject Index Third International Congress for Virology: Announcement 200 Tobacco rattle virus, effect of phosphate on infected tobacco protoplasts 382 Togaviridae, Transcriptase activation, reovirus 15 Transcriptase activity, influenza virus 141 Transformation characteristics of temperature-sensitive mutants of type 12 adenovirus Transformed bone marrow cells, reticuloendotheliosis virus 342 Vertebrate viruses, taxonomy 193 Viral pathogenesis, street rabies virus 256 Viral proteins, papilloma virus 220 Viral RNA, poliovirus, inhibition of replication and synthesis in vitro 281 Virion and non-virion murine leukemia membrane antigens Virus characterization, rcticuloendotheliosis virus transformed bone marrow cells 342 Virus-specific IgM antibodies, demonstration 353 Author Index Ackermann, H ans-w. and Eisenstark, Abraham: The present state of phage taxonomy Adam, Ervin, see Seth, Pradeep 1-14 Allison, Anthony C., see M elnick, Joseph L Anisimova, Ema; T uckova, E va, and Vonka, Vladimir: Penetration of nuclear inclusions into the cytoplasm in influenza-virus-infected cells Avery, Roger J. and Kelly, D avid C.: Bacteriophage T4 and T7 DNA: a study of their redundancy by renaturation kinetics Barahona, Horacio; M elendez, Luis V., and Melnick, Joseph L.: A compendium of herpesviruses isolated from nonhuman primates Bauer, Sally P., see M urphy, F rederick A Benyesh-M elnick, Matilda, see Kimura, Susumu Borecky, Ladislav; F uchsberger, Norbert, and H ajnicka, Valeria: Electrophoretic profiles and activities of human interferon in heterologous cells Borsa, Joseph; Long, D onald G.; Copps, T heodore P.; Sargent, M alcolm D., and Chapman, J. D onald: Reovirus transcriptase activation in vitro: further studies on the facilitation phenomenon Bose, H enry R., see F ranklin, Ray B Braunwald, Jacqueline, see T ripier, F rançoise Brown, Fred and Wild, F abian : Variation in the coxsackievirus type B5 and its possible role in the etiology of swine vesicular disease Bucchini, D anielle; F iszman, M arc, and Girard, Marc: On a new inhibitor of poliovirus RNA replication Butel, Janet S., see M elnick, Joseph L Butel, Janet S., see Spira, G ad Butel, Janet S., see T alas, Margarita 54-62

Intervirology 1974;3:

Intervirology 1974;3: Further Section Intervirology 1974;3:392-396 Ackermann, Hans-W. and Eisenstark, Abraham: The present state of phage taxonomy 201-219 Adam, Ervin, see Seth, Pradeep 1-14 Allison, Anthony C, see Melnick,

More information

VIRUSES. 1. Describe the structure of a virus by completing the following chart.

VIRUSES. 1. Describe the structure of a virus by completing the following chart. AP BIOLOGY MOLECULAR GENETICS ACTIVITY #3 NAME DATE HOUR VIRUSES 1. Describe the structure of a virus by completing the following chart. Viral Part Description of Part 2. Some viruses have an envelope

More information

How could the small size of viruses have helped researchers detect viruses before the invention of the electron microscope? 13-1

How could the small size of viruses have helped researchers detect viruses before the invention of the electron microscope? 13-1 3 4 5 6 7 8 9 0 3 4 5 6 Chapter 3 Viruses, Viroids, and Prions General Characteristics of Viruses General Characteristics of Viruses Obligatory intracellular parasites Contain DNA or RNA Contain a protein

More information

Virus. Landmarks in Virology. Introduction to Virology. Landmarks in Virology. Definitions. Definitions. Latin for slimy liquid or poison

Virus. Landmarks in Virology. Introduction to Virology. Landmarks in Virology. Definitions. Definitions. Latin for slimy liquid or poison Landmarks in Virology Introduction to Virology Scott M. Hammer, M.D. Introduction of concept of filterable agents for plant pathogens (Mayer, Ivanofsky, Beijerinck in late 1880 s) First filterable agent

More information

VIROLOGY PRINCIPLES AND APPLICATIONS WILEY. John B. Carter and Venetia A. Saunders

VIROLOGY PRINCIPLES AND APPLICATIONS WILEY. John B. Carter and Venetia A. Saunders VIROLOGY PRINCIPLES AND APPLICATIONS John B. Carter and Venetia A. Saunders WILEY -urief Contents Preface to Second Edition xix Preface to First Edition xxi Abbreviations Used in This Book xxiii Greek

More information

Viruses. Properties. Some viruses contain other ingredients (e.g., lipids, carbohydrates), but these are derived from their host cells.

Viruses. Properties. Some viruses contain other ingredients (e.g., lipids, carbohydrates), but these are derived from their host cells. Viruses Properties They are obligate intracellular parasites. Probably there are no cells in nature that escape infection by one or more kinds of viruses. (Viruses that infect bacteria are called bacteriophages.)

More information

Chair of Medical Biology, Microbiology, Virology, and Immunology STRUCTURE, CLASSIFICATION AND PHYSIOLOGY OF VIRUSES

Chair of Medical Biology, Microbiology, Virology, and Immunology STRUCTURE, CLASSIFICATION AND PHYSIOLOGY OF VIRUSES Chair of Medical Biology, Microbiology, Virology, and Immunology STRUCTURE, CLASSIFICATION AND PHYSIOLOGY OF VIRUSES Viruses are small obligate intracellular parasites, which by definition contain either

More information

Viruses. CLS 212: Medical Microbiology Miss Zeina Alkudmani

Viruses. CLS 212: Medical Microbiology Miss Zeina Alkudmani Viruses CLS 212: Medical Microbiology Miss Zeina Alkudmani History Through the 1800s, many scientists discovered that something smaller than bacteria could cause disease and they called it virion (Latin

More information

Introduction to Virology. Landmarks in Virology

Introduction to Virology. Landmarks in Virology Introduction to Virology Scott M. Hammer, M.D. Landmarks in Virology Introduction of concept of filterable agents for plant pathogens (Mayer, Ivanofsky, Beijerinck in late 1880 s) First filterable agent

More information

MONTGOMERY COUNTY COMMUNITY COLLEGE CHAPTER 13: VIRUSES. 1. Obligate intracellular parasites that multiply in living host cells

MONTGOMERY COUNTY COMMUNITY COLLEGE CHAPTER 13: VIRUSES. 1. Obligate intracellular parasites that multiply in living host cells MONTGOMERY COUNTY COMMUNITY COLLEGE CHAPTER 13: VIRUSES I. CHARACTERISTICS OF VIRUSES A. General Characteristics 1. Obligate intracellular parasites that multiply in living host cells 2. Contain a single

More information

Size nm m m

Size nm m m 1 Viral size and organization Size 20-250nm 0.000000002m-0.000000025m Virion structure Capsid Core Acellular obligate intracellular parasites Lack organelles, metabolic activities, and reproduction Replicated

More information

History of Virology. Russian Bacteriologist Dimitri Iwanowski TMD tobacco mosaic disease TMV isolated and purified

History of Virology. Russian Bacteriologist Dimitri Iwanowski TMD tobacco mosaic disease TMV isolated and purified Viruses & Prions Viruses Virus miniscule, acellular, infectious agent having one or several pieces of either DNA or RNA No cytoplasmic membrane, cytosol, organelles Cannot carry out any metabolic pathway

More information

virology MCQs 2- A virus commonly transmitted by use of contaminated surgical tools & needles produces a disease called serum hepatitis.

virology MCQs 2- A virus commonly transmitted by use of contaminated surgical tools & needles produces a disease called serum hepatitis. virology MCQs 1- A virus which causes AIDS is: a- Small pox virus. b- Coxsackie B virus. c- Mumps virus. d- Rubella virus. e- HIV-III virus. 2- A virus commonly transmitted by use of contaminated surgical

More information

Introduction to viruses. BIO 370 Ramos

Introduction to viruses. BIO 370 Ramos Introduction to viruses BIO 370 Ramos 1 2 General Structure of Viruses Size range most

More information

VIRUSES AND CANCER Michael Lea

VIRUSES AND CANCER Michael Lea VIRUSES AND CANCER 2010 Michael Lea VIRAL ONCOLOGY - LECTURE OUTLINE 1. Historical Review 2. Viruses Associated with Cancer 3. RNA Tumor Viruses 4. DNA Tumor Viruses HISTORICAL REVIEW Historical Review

More information

Viruses, Viroids, and Prions

Viruses, Viroids, and Prions PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R 13 Viruses, Viroids, and Prions General Characteristics of Viruses Obligatory intracellular parasites

More information

Viruses. Rotavirus (causes stomach flu) HIV virus

Viruses. Rotavirus (causes stomach flu) HIV virus Viruses Rotavirus (causes stomach flu) HIV virus What is a virus? A virus is a microscopic, infectious agent that may infect any type of living cell. Viruses must infect living cells in order to make more

More information

PHARMACEUTICAL MICROBIOLOGY JIGAR SHAH INSTITUTE OF PHARMACY NIRMA UNIVERSITY

PHARMACEUTICAL MICROBIOLOGY JIGAR SHAH INSTITUTE OF PHARMACY NIRMA UNIVERSITY PHARMACEUTICAL MICROBIOLOGY JIGAR SHAH INSTITUTE OF PHARMACY NIRMA UNIVERSITY VIRUS - HISTORY In 1886, the Dutch Chemist Adolf Mayer showed TMD In 1892, the Russian Bactriologist Dimtri Iwanowski isolate

More information

Chapter 25. 바이러스 (The Viruses)

Chapter 25. 바이러스 (The Viruses) Chapter 25 바이러스 (The Viruses) Generalized Structure of Viruses 2 2 Virus Classification Classification based on numerous characteristics Nucleic acid type Presence or absence of envelope Capsid symmetry

More information

Lecture 5 (Ch6) - Viruses. Virus Characteristics. Viral Host Range

Lecture 5 (Ch6) - Viruses. Virus Characteristics. Viral Host Range Lecture 5 (Ch6) - Viruses Topics Characteristics Structure/Classification Multiplication Cultivation and replication Non-viral infectious agents Treatment 1 Virus Characteristics obligate intracellular

More information

الحترمونا من خري الدعاء

الحترمونا من خري الدعاء الحترمونا من خري الدعاء Instructions for candidates The examination consists of 30 multiple choice questions, each divided into 5 different parts. Each part contains a statement which could be true or

More information

Transcription and RNA processing

Transcription and RNA processing Transcription and RNA processing Lecture 7 Biology W3310/4310 Virology Spring 2016 It is possible that Nature invented DNA for the purpose of achieving regulation at the transcriptional rather than at

More information

Basic Properties of Viruses and Virus Cell Interaction

Basic Properties of Viruses and Virus Cell Interaction WBV5 6/27/03 10:28 PM Page 49 Basic Properties of Viruses and Virus Cell Interaction II PART VIRUS STRUCTURE AND CLASSIFICATION CLASSIFICATION SCHEMES THE BEGINNING AND END OF THE VIRUS REPLICATION CYCLE

More information

Epstein-Barr Virus: Stimulation By 5 '-Iododeoxy uridine or 5 '-Brom odeoxy uridine in Human Lymphoblastoid Cells F ro m a Rhabdom yosarcom a*

Epstein-Barr Virus: Stimulation By 5 '-Iododeoxy uridine or 5 '-Brom odeoxy uridine in Human Lymphoblastoid Cells F ro m a Rhabdom yosarcom a* A n n a ls o f C l i n i c a l L a b o r a t o r y S c i e n c e, Vol. 3, No. 6 Copyright 1973, Institute for Clinical Science Epstein-Barr Virus: Stimulation By 5 '-Iododeoxy uridine or 5 '-Brom odeoxy

More information

Transcription and RNA processing

Transcription and RNA processing Transcription and RNA processing Lecture 7 Biology 3310/4310 Virology Spring 2018 It is possible that Nature invented DNA for the purpose of achieving regulation at the transcriptional rather than at the

More information

In Vitro and In Vivo Studies with Epstein-Barr

In Vitro and In Vivo Studies with Epstein-Barr A n n a l s o f C l i n i c a l L a b o r a t o r y S c i e n c e, Vol. 3, No. 6 Copyright 1973, Institute for Clinical Science In Vitro and In Vivo Studies with Epstein-Barr Virus (EBV)-------A Review

More information

General Properties of Viruses

General Properties of Viruses 1 I. Viruses as Agents of Disease. V. F. Righthand, Ph.D. August 15, 2001 General Properties of Viruses Viruses can infect every form of life. There are hundreds of different viruses that can produce diseases

More information

Viruses Tomasz Kordula, Ph.D.

Viruses Tomasz Kordula, Ph.D. Viruses Tomasz Kordula, Ph.D. Resources: Alberts et al., Molecular Biology of the Cell, pp. 295, 1330, 1431 1433; Lehninger CD Movie A0002201. Learning Objectives: 1. Understand parasitic life cycle of

More information

Nucleic acid Strands Family Example Accession Base pairs

Nucleic acid Strands Family Example Accession Base pairs Table 16.1 Classification of viruses based on nucleic acid composition. Note that NCBI BioProject accessions begin PRJNA and typically encompass several segments. Adapted from Schaechter et al. (1999)

More information

History electron microscopes

History electron microscopes Viruses History Through the 1800s, many scientists discovered that something smaller than bacteria could cause disease and they called it virion (Latin word- poison) In the 1930s, after the invention of

More information

Nucleic acid: singled stranded, double stranded, RNA, or DNA, linear or circular. Capsid: protein coat that is most of the mass of the virus.

Nucleic acid: singled stranded, double stranded, RNA, or DNA, linear or circular. Capsid: protein coat that is most of the mass of the virus. Viruses General Characteristics of Viruses 1. Depending on view may be regarded as exceptionally complex aggregates of nonliving chemicals or as exceptionally simple living microbes. 2. Contain a single

More information

Medical Virology. Herpesviruses, Orthomyxoviruses, and Retro virus. - Herpesviruses Structure & Composition: Herpesviruses

Medical Virology. Herpesviruses, Orthomyxoviruses, and Retro virus. - Herpesviruses Structure & Composition: Herpesviruses Medical Virology Lecture 2 Asst. Prof. Dr. Dalya Basil Herpesviruses, Orthomyxoviruses, and Retro virus - Herpesviruses Structure & Composition: Herpesviruses Enveloped DNA viruses. All herpesviruses have

More information

1) understand the structure and life cycle of viruses as well as viral evolution. 2) know the mechanisms of host immune responses to viral infections

1) understand the structure and life cycle of viruses as well as viral evolution. 2) know the mechanisms of host immune responses to viral infections VIROLOGY A The course aims to provide the student with the cognitive and methodological tools necessary to: 1) understand the structure and life cycle of viruses as well as viral evolution 2) know the

More information

Viruses. An Illustrated Guide to Viral Life Cycles to Accompany Lecture. By Noel Ways

Viruses. An Illustrated Guide to Viral Life Cycles to Accompany Lecture. By Noel Ways Viruses An Illustrated Guide to Viral Life Cycles to Accompany Lecture By Noel Ways Viral Life Cycle Step #1, Adhesion: During adhesion, specific receptors for specific molecules on potential host cell

More information

19/06/2013. Viruses are not organisms (do not belong to any kingdom). Viruses are not made of cells, have no cytoplasm, and no membranes.

19/06/2013. Viruses are not organisms (do not belong to any kingdom). Viruses are not made of cells, have no cytoplasm, and no membranes. VIRUSES Many diseases of plants and animals are caused by bacteria or viruses that invade the body. Bacteria and viruses are NOT similar kinds of micro-organisms. Bacteria are classified as living organisms,

More information

Overview: Chapter 19 Viruses: A Borrowed Life

Overview: Chapter 19 Viruses: A Borrowed Life Overview: Chapter 19 Viruses: A Borrowed Life Viruses called bacteriophages can infect and set in motion a genetic takeover of bacteria, such as Escherichia coli Viruses lead a kind of borrowed life between

More information

Dr. Ahmed K. Ali. Outcomes of the virus infection for the host

Dr. Ahmed K. Ali. Outcomes of the virus infection for the host Lec. 9 Dr. Ahmed K. Ali Outcomes of the virus infection for the host In the previous few chapters we have looked at aspects of the virus replication cycle that culminate in the exit of infective progeny

More information

Viruses. Poxviridae. DNA viruses: 6 families. Herpesviridae Adenoviridae. Hepadnaviridae Papovaviridae Parvoviridae

Viruses. Poxviridae. DNA viruses: 6 families. Herpesviridae Adenoviridae. Hepadnaviridae Papovaviridae Parvoviridae Viruses DNA viruses: 6 families Poxviridae Herpesviridae Adenoviridae Hepadnaviridae Papovaviridae Parvoviridae Human herpesviruses Three subfamilies (genome structure, tissue tropism, cytopathologic effect,

More information

Lecture Guide Viruses (CH13)

Lecture Guide Viruses (CH13) Lecture Guide Viruses (CH13) This chapter is on the general characteristics of viruses and focuses on both bacterial and animal viruses and their life cycles. Let s start with a quick look at the history

More information

D. J. Dargan,* C. B. Gait and J. H. Subak-Sharpe

D. J. Dargan,* C. B. Gait and J. H. Subak-Sharpe Journal of General Virology (1992), 73, 407-411. Printed in Great Britain 407 The effect of cicloxolone sodium on the replication in cultured cells of adenovirus type 5, reovirus type 3, poliovirus type

More information

Bacteriophage Reproduction

Bacteriophage Reproduction Bacteriophage Reproduction Lytic and Lysogenic Cycles The following information is taken from: http://student.ccbcmd.edu/courses/bio141/lecguide/unit3/index.html#charvir Bacteriophage Structure More complex

More information

2) What is the difference between a non-enveloped virion and an enveloped virion? (4 pts)

2) What is the difference between a non-enveloped virion and an enveloped virion? (4 pts) Micro 260 SFCC Spring 2010 Name: All diagrams and drawings shall be hand drawn (do not photo-copied from a publication then cut and pasted into work sheet). Do not copy other student s answers. Para phase

More information

VIRUSES. Biology Applications Control. David R. Harper. Garland Science Taylor & Francis Group NEW YORK AND LONDON

VIRUSES. Biology Applications Control. David R. Harper. Garland Science Taylor & Francis Group NEW YORK AND LONDON VIRUSES Biology Applications Control David R. Harper GS Garland Science Taylor & Francis Group NEW YORK AND LONDON vii Chapter 1 Virus Structure and 2.2 VIRUS MORPHOLOGY 26 Infection 1 2.3 VIRAL CLASSIFICATION

More information

Virology Introduction. Definitions. Introduction. Structure of virus. Virus transmission. Classification of virus. DNA Virus. RNA Virus. Treatment.

Virology Introduction. Definitions. Introduction. Structure of virus. Virus transmission. Classification of virus. DNA Virus. RNA Virus. Treatment. DEVH Virology Introduction Definitions. Introduction. Structure of virus. Virus transmission. Classification of virus. DNA Virus. RNA Virus. Treatment. Definitions Virology: The science which study the

More information

AP Biology. Viral diseases Polio. Chapter 18. Smallpox. Influenza: 1918 epidemic. Emerging viruses. A sense of size

AP Biology. Viral diseases Polio. Chapter 18. Smallpox. Influenza: 1918 epidemic. Emerging viruses. A sense of size Hepatitis Viral diseases Polio Chapter 18. Measles Viral Genetics Influenza: 1918 epidemic 30-40 million deaths world-wide Chicken pox Smallpox Eradicated in 1976 vaccinations ceased in 1980 at risk population?

More information

Chapter 18. Viral Genetics. AP Biology

Chapter 18. Viral Genetics. AP Biology Chapter 18. Viral Genetics 2003-2004 1 A sense of size Comparing eukaryote bacterium virus 2 What is a virus? Is it alive? DNA or RNA enclosed in a protein coat Viruses are not cells Extremely tiny electron

More information

Part I. Content: History of Viruses. General properties of viruses. Viral structure. Viral classifications. Virus-like agents.

Part I. Content: History of Viruses. General properties of viruses. Viral structure. Viral classifications. Virus-like agents. Viruses Part I Content: History of Viruses. General properties of viruses. Viral structure. Viral classifications. Virus-like agents. History Through the 1800s, many scientists discovered that something

More information

Introductory Virology. Ibrahim Jamfaru School of Medicine UHAS

Introductory Virology. Ibrahim Jamfaru School of Medicine UHAS Introductory Virology Ibrahim Jamfaru School of Medicine UHAS Lecture outline Definition of viruses and general characteristics Structure of virus (virion) Chemical composition of viruses Virus morphology

More information

Antiviral Drugs Lecture 5

Antiviral Drugs Lecture 5 Antiviral Drugs Lecture 5 Antimicrobial Chemotherapy (MLAB 366) 1 Dr. Mohamed A. El-Sakhawy 2 Introduction Viruses are microscopic organisms that can infect all living cells. They are parasitic and multiply

More information

Lesson 4. Molecular Virology

Lesson 4. Molecular Virology Lesson 4 Molecular Virology 1. Introduction 1.1. Virus Definition Genetic elements made of living matter molecules, that are capable of growth and multiplication only in living cells DIFFERENCE WITH RESPECT

More information

Chapter 6- An Introduction to Viruses*

Chapter 6- An Introduction to Viruses* Chapter 6- An Introduction to Viruses* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. 6.1 Overview of Viruses

More information

STRUCTURE, GENERAL CHARACTERISTICS AND REPRODUCTION OF VIRUSES

STRUCTURE, GENERAL CHARACTERISTICS AND REPRODUCTION OF VIRUSES STRUCTURE, GENERAL CHARACTERISTICS AND REPRODUCTION OF VIRUSES Introduction Viruses are noncellular genetic elements that use a living cell for their replication and have an extracellular state. Viruses

More information

Structure of viruses

Structure of viruses Antiviral Drugs o Viruses are obligate intracellular parasites. o lack both a cell wall and a cell membrane. o They do not carry out metabolic processes. o Viruses use much of the host s metabolic machinery.

More information

Section 1 Individual viruses. Introduction to virology. History of viruses. Viral taxonomy

Section 1 Individual viruses. Introduction to virology. History of viruses. Viral taxonomy Section 1 Individual viruses Introduction to virology History of viruses The existence of viruses was first suspected in the nineteenth century when it was shown that filtered extract of infective material

More information

General Virology I. Dr Esam Ibraheem Azhar (BSc, MSc, Ph.D Molecular Medical Virology) Asst. Prof. Medical Laboratory Technology Department

General Virology I. Dr Esam Ibraheem Azhar (BSc, MSc, Ph.D Molecular Medical Virology) Asst. Prof. Medical Laboratory Technology Department General Virology I Dr Esam Ibraheem Azhar (BSc, MSc, Ph.D Molecular Medical Virology) Asst. Prof. Medical Laboratory Technology Department ١ General Virology I Lecture Outline Introduction istory Definition

More information

NEUTRALIZATION OF REOVIRUS: THE GENE RESPONSIBLE FOR THE NEUTRALIZATION ANTIGEN* BY HOWARD L. WEINER~ AN~ BERNARD N. FIELDS

NEUTRALIZATION OF REOVIRUS: THE GENE RESPONSIBLE FOR THE NEUTRALIZATION ANTIGEN* BY HOWARD L. WEINER~ AN~ BERNARD N. FIELDS NEUTRALIZATION OF REOVIRUS: THE GENE RESPONSIBLE FOR THE NEUTRALIZATION ANTIGEN* BY HOWARD L. WEINER~ AN~ BERNARD N. FIELDS (From the Department of Microbiology and Molecular Genetics, Harvard Medical

More information

Reoviruses. Virion. Genome. Genes and proteins. Viruses and hosts. Diseases. Distinctive characteristics

Reoviruses. Virion. Genome. Genes and proteins. Viruses and hosts. Diseases. Distinctive characteristics Reoviruses Virion Genome Genes and proteins Viruses and hosts Diseases Distinctive characteristics Virion Naked icosahedral capsid (T=13), diameter 60-85 nm Capsid consists of two or three concentric protein

More information

Virus Basics. General Characteristics of Viruses. Chapter 13 & 14. Non-living entities. Can infect organisms of every domain

Virus Basics. General Characteristics of Viruses. Chapter 13 & 14. Non-living entities. Can infect organisms of every domain Virus Basics Chapter 13 & 14 General Characteristics of Viruses Non-living entities Not considered organisms Can infect organisms of every domain All life-forms Commonly referred to by organism they infect

More information

19 Viruses BIOLOGY. Outline. Structural Features and Characteristics. The Good the Bad and the Ugly. Structural Features and Characteristics

19 Viruses BIOLOGY. Outline. Structural Features and Characteristics. The Good the Bad and the Ugly. Structural Features and Characteristics 9 Viruses CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Outline I. Viruses A. Structure of viruses B. Common Characteristics of Viruses C. Viral replication D. HIV Lecture Presentation

More information

Identification of Microbes Lecture: 12

Identification of Microbes Lecture: 12 Diagnostic Microbiology Identification of Microbes Lecture: 12 Electron Microscopy 106 virus particles per ml required for visualization, 50,000-60,000 magnification normally used. Viruses may be detected

More information

Viral reproductive cycle

Viral reproductive cycle Lecture 29: Viruses Lecture outline 11/11/05 Types of viruses Bacteriophage Lytic and lysogenic life cycles viruses viruses Influenza Prions Mad cow disease 0.5 µm Figure 18.4 Viral structure of capsid

More information

Virus Basics. General Characteristics of Viruses 5/9/2011. General Characteristics of Viruses. Chapter 13 & 14. Non-living entities

Virus Basics. General Characteristics of Viruses 5/9/2011. General Characteristics of Viruses. Chapter 13 & 14. Non-living entities Virus Basics Chapter 13 & 14 General Characteristics of Viruses Non-living entities Not considered organisms Can infect organisms of every domain All life-formsf Commonly referred to by organism they infect

More information

Laboratory Diagnosis of Viral Infections. G. Jamjoom 2005

Laboratory Diagnosis of Viral Infections. G. Jamjoom 2005 Laboratory Diagnosis of Viral Infections G. Jamjoom 2005 Five Main Techniques: Virus Culture and Isolation Serology Rapid Detection of Viral Antigens Detection of Viral Nucleic Acid Electron Microscopy

More information

علم األحياء الدقيقة Microbiology Introduction to Virology & Immunology

علم األحياء الدقيقة Microbiology Introduction to Virology & Immunology علم األحياء الدقيقة Microbiology Introduction to Virology & Immunology What is a virus? Viruses may be defined as acellular organisms whose genomes consist of nucleic acid (DNA or RNA), and which obligatory

More information

Viruses. Non-cellular organisms. Premedical - Biology

Viruses. Non-cellular organisms. Premedical - Biology Viruses Non-cellular organisms Premedical - Biology Size the smallest 20 nm and more Non-cellular: viruses are infectious particles plant, animal, bacterial = bacteriophages virion = nucleic acid + protein

More information

Overview of virus life cycle

Overview of virus life cycle Overview of virus life cycle cell recognition and internalization release from cells progeny virus assembly membrane breaching nucleus capsid disassembly and genome release replication and translation

More information

Viruses and Prions (Chapter 13) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus

Viruses and Prions (Chapter 13) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus Viruses and Prions (Chapter 13) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus Primary Source for figures and content: Tortora, G.J. Microbiology An Introduction

More information

number Done by Corrected by Doctor Ashraf

number Done by Corrected by Doctor Ashraf number 4 Done by Nedaa Bani Ata Corrected by Rama Nada Doctor Ashraf Genome replication and gene expression Remember the steps of viral replication from the last lecture: Attachment, Adsorption, Penetration,

More information

LESSON 4.4 WORKBOOK. How viruses make us sick: Viral Replication

LESSON 4.4 WORKBOOK. How viruses make us sick: Viral Replication DEFINITIONS OF TERMS Eukaryotic: Non-bacterial cell type (bacteria are prokaryotes).. LESSON 4.4 WORKBOOK How viruses make us sick: Viral Replication This lesson extends the principles we learned in Unit

More information

Lecture 10 VIROLOGY Assistant prof.dr. Baheeja A. alkhalidi

Lecture 10 VIROLOGY Assistant prof.dr. Baheeja A. alkhalidi Lecture 10 VIROLOGY Assistant prof.dr. Baheeja A. alkhalidi Viruses are microbes that REQUIRE a host cell to replicate. By themselves they cannot replicate. They border on the edge of living and non-living.

More information

Chapters 21-26: Selected Viral Pathogens

Chapters 21-26: Selected Viral Pathogens Chapters 21-26: Selected Viral Pathogens 1. DNA Viral Pathogens 2. RNA Viral Pathogens 1. DNA Viral Pathogens Smallpox (pp. 623-4) Caused by variola virus (dsdna, enveloped): portal of entry is the respiratory

More information

Lab 3: Pathogenesis of Virus Infections & Pattern 450 MIC PRACTICAL PART SECTION (30397) MIC AMAL ALGHAMDI 1

Lab 3: Pathogenesis of Virus Infections & Pattern 450 MIC PRACTICAL PART SECTION (30397) MIC AMAL ALGHAMDI 1 Lab 3: Pathogenesis of Virus Infections & Pattern 450 MIC PRACTICAL PART SECTION (30397) 2018 450 MIC AMAL ALGHAMDI 1 Learning Outcomes The pathogenesis of viral infection The viral disease pattern Specific

More information

Herpesviruses. Virion. Genome. Genes and proteins. Viruses and hosts. Diseases. Distinctive characteristics

Herpesviruses. Virion. Genome. Genes and proteins. Viruses and hosts. Diseases. Distinctive characteristics Herpesviruses Virion Genome Genes and proteins Viruses and hosts Diseases Distinctive characteristics Virion Enveloped icosahedral capsid (T=16), diameter 125 nm Diameter of enveloped virion 200 nm Capsid

More information

Oncolytic virus strategy

Oncolytic virus strategy Oncolytic viruses Oncolytic virus strategy normal tumor NO replication replication survival lysis Oncolytic virus strategy Mechanisms of tumor selectivity of several, some of them naturally, oncolytic

More information

Code: ECTS Credits: 6. Degree Type Year Semester. A good knowledge of Microbiology, Biochemistry and Cell Biology and interest in Virology.

Code: ECTS Credits: 6. Degree Type Year Semester. A good knowledge of Microbiology, Biochemistry and Cell Biology and interest in Virology. 2017/2018 Virology Code: 100951 ECTS Credits: 6 Degree Type Year Semester 2500253 Biotechnology OB 3 2 Contact Name: Esther Vazquez Gomez Email: Esther.Vazquez@uab.cat Other comments on languages Use of

More information

BIOLOGICAL DIVERSITY: VIRUSES

BIOLOGICAL DIVERSITY: VIRUSES BIOLOGICAL DIVERSITY: VIRUSES Viruses: a Group of Intracellular Parasites In the 19th century, many rabies cases plagued Europe. In London, for example, 29 deaths by "hydrophobia" were enumerated in the

More information

Multiple Choice Questions - Paper 1

Multiple Choice Questions - Paper 1 Multiple Choice Questions - Paper 1 Instructions for candidates The examination consists of 30 multiple choice questions, each divided into 5 different parts. Each part contains a statement which could

More information

Wednesday, October 19, 16. Viruses

Wednesday, October 19, 16. Viruses Viruses Image of an animal cell More realistic size of a virus compared to an animal cell Cells can fulfill all characteristics of life Viruses on their own can be considered lifeless chemicals, unless?

More information

Chapter 19: Viruses. 1. Viral Structure & Reproduction. 2. Bacteriophages. 3. Animal Viruses. 4. Viroids & Prions

Chapter 19: Viruses. 1. Viral Structure & Reproduction. 2. Bacteriophages. 3. Animal Viruses. 4. Viroids & Prions Chapter 19: Viruses 1. Viral Structure & Reproduction 2. Bacteriophages 3. Animal Viruses 4. Viroids & Prions 1. Viral Structure & Reproduction Chapter Reading pp. 393-396 What exactly is a Virus? Viruses

More information

Intro II - Viral Replication. All living things survive in a sea of viruses

Intro II - Viral Replication. All living things survive in a sea of viruses Intro II - Viral Replication Prof. Vincent Racaniello Department of Microbiology Office: HHSC 1310B vrr1@columbia.edu All living things survive in a sea of viruses We eat and breathe billions of them regularly

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Molecular BioSystems. This journal is The Royal Society of Chemistry 2014 Supplementary Information Supplementary table S1- Hu-PPI and Hu-Vir PPI data before

More information

LEC 2, Medical biology, Theory, prepared by Dr. AYAT ALI

LEC 2, Medical biology, Theory, prepared by Dr. AYAT ALI General Characteristics, Structure and Taxonomy of Viruses Viruses A virus is non-cellular organisms made up of genetic material and protein that can invade living cells. They are considered both a living

More information

III. What are the requirements for taking and passing this course?

III. What are the requirements for taking and passing this course? 1 Molecular Virology Lecture # 1: Course Introduction I. Instructor and Background Dr. Richard Kuhn rjkuhn@bragg.bio.purdue.edu B-129 Lilly Hall 494-1164 Office Hours - Wednesday 10:30-11:30 II. Objective:

More information

Virology. *Viruses can be only observed by electron microscope never by light microscope. The size of the virus: nm in diameter.

Virology. *Viruses can be only observed by electron microscope never by light microscope. The size of the virus: nm in diameter. Virology We are going to start with general introduction about viruses, they are everywhere around us; in food; within the environment; in direct contact to etc.. They may cause viral infection by itself

More information

Lab 2: Diagnostic Tests in Clinical Virology Laboratories 450 MIC PRACTICAL PART SECTION (30397) 2018 (450 MIC) AMAL ALGHAMDI - HUDA ALKHTEEB 1

Lab 2: Diagnostic Tests in Clinical Virology Laboratories 450 MIC PRACTICAL PART SECTION (30397) 2018 (450 MIC) AMAL ALGHAMDI - HUDA ALKHTEEB 1 Lab 2: Diagnostic Tests in Clinical Virology Laboratories 450 MIC PRACTICAL PART SECTION (30397) 2018 (450 MIC) AMAL ALGHAMDI - HUDA ALKHTEEB 1 Diagnostic Virology Virus Isolation and Cultivation Viral

More information

Index. 2-(a-Hydroxybenzyl)-benzimidazole (HBB),143 Hypotonicity,

Index. 2-(a-Hydroxybenzyl)-benzimidazole (HBB),143 Hypotonicity, Index N-Acetyl-D-glucosamine,240 Actinomycin D, 39, 86, 116, 314 Adsorption of bacteriophage, 36-37 on F pili, 36 of picornavirus, 119 of reovirus, 281-282 Alfalfa mosaic virus, 66, 78, 90 top a, 73, 88

More information

Aseptic meningitis: inflammation of meninges with sterile CSF (without any causative organisms which can be grown on culture media).

Aseptic meningitis: inflammation of meninges with sterile CSF (without any causative organisms which can be grown on culture media). You have to refer to the slides, since I have included the extra information only. Slide #1: Both illnesses aseptic meningitis and encephalitis can be caused by the same viruses; that viruses which cause

More information

Large DNA viruses: Herpesviruses, Poxviruses, Baculoviruses and Giant viruses

Large DNA viruses: Herpesviruses, Poxviruses, Baculoviruses and Giant viruses Large DNA viruses: Herpesviruses, Poxviruses, Baculoviruses and Giant viruses Viruses are the only obstacles to the domination of the Earth by mankind. -Joshua Lederberg Recommended reading: Field s Virology

More information

BIOLOGICAL DIVERSITY: VIRUSES

BIOLOGICAL DIVERSITY: VIRUSES BIOLOGICAL DIVERSITY: VIRUSES Viruses: a Group of Intracellular Parasites In the 19th century, many rabies cases plagued Europe. In London, for example, 29 deaths by "hydrophobia" were enumerated in the

More information

Clinical Aspect and Application of Laboratory Test in Herpes Virus Infection. Masoud Mardani M.D,FIDSA

Clinical Aspect and Application of Laboratory Test in Herpes Virus Infection. Masoud Mardani M.D,FIDSA Clinical Aspect and Application of Laboratory Test in Herpes Virus Infection Masoud Mardani M.D,FIDSA Shahidhid Bh BeheshtiMdi Medical lui Universityit Cytomegalovirus (CMV), Epstein Barr Virus(EBV), Herpes

More information

Medical Virology Pathogenesis of viral infection

Medical Virology Pathogenesis of viral infection Medical Virology Pathogenesis of viral infection Dr. Sameer Naji, MB, BCh, PhD (UK) Head of Basic Medical Sciences Dept. Faculty of Medicine The Hashemite University Pathogenesis of viral infection Viral

More information

Chapter 19: Viruses. 1. Viral Structure & Reproduction. What exactly is a Virus? 11/7/ Viral Structure & Reproduction. 2.

Chapter 19: Viruses. 1. Viral Structure & Reproduction. What exactly is a Virus? 11/7/ Viral Structure & Reproduction. 2. Chapter 19: Viruses 1. Viral Structure & Reproduction 2. Bacteriophages 3. Animal Viruses 4. Viroids & Prions 1. Viral Structure & Reproduction Chapter Reading pp. 393-396 What exactly is a Virus? Viruses

More information

Viruses. Objectives At the end of this sub section students should be able to:

Viruses. Objectives At the end of this sub section students should be able to: Name: 3.5 Responses to Stimuli Objectives At the end of this sub section students should be able to: 3.5.4 Viruses 1. Explain the problem of defining what a virus is - living or non-living? 2. show you

More information

Viral vaccines. Lec. 3 أ.د.فائزة عبد هللا مخلص

Viral vaccines. Lec. 3 أ.د.فائزة عبد هللا مخلص Lec. 3 أ.د.فائزة عبد هللا مخلص Viral vaccines 0bjectives 1-Define active immunity. 2-Describe the methods used for the preparation of attenuated live & killed virus vaccines. 3- Comparison of Characteristics

More information

1. Virus 2. Capsid 3. Envelope

1. Virus 2. Capsid 3. Envelope VIRUSES BIOLOGY II VOCABULARY- VIRUSES (22 Words) 1. Virus 2. Capsid 3. Envelope 4. Provirus 5. Retrovirus 6. Reverse transcriptase 7. Bacteriophage 8. Lytic Cycle 9. Virulent 10. Lysis 11. Lysogenic Cycle

More information

Chapter13 Characterizing and Classifying Viruses, Viroids, and Prions

Chapter13 Characterizing and Classifying Viruses, Viroids, and Prions Chapter13 Characterizing and Classifying Viruses, Viroids, and Prions 11/20/2017 MDufilho 1 Characteristics of Viruses Viruses Minuscule, acellular, infectious agent having either DNA or RNA Cause infections

More information

Viral Pathogenesis. Pathogenesis: the process by which one organism causes disease in another Two components of viral disease:

Viral Pathogenesis. Pathogenesis: the process by which one organism causes disease in another Two components of viral disease: Viral Pathogenesis Pathogenesis: the process by which one organism causes disease in another Two components of viral disease: Effects of virus replication on the host Effects of host response on virus

More information

Genomes and Genetics

Genomes and Genetics Genomes and Genetics Lecture 3 Biology W3310/4310 Virology Spring 2016...everywhere an interplay between nucleic acids and proteins; a spinning wheel in which the thread makes the spindle and the spindle

More information

The Infectious Cycle. Lecture 2 Biology W3310/4310 Virology Spring You know my methods, Watson --SIR ARTHUR CONAN DOYLE

The Infectious Cycle. Lecture 2 Biology W3310/4310 Virology Spring You know my methods, Watson --SIR ARTHUR CONAN DOYLE The Infectious Cycle Lecture 2 Biology W3310/4310 Virology Spring 2016 You know my methods, Watson --SIR ARTHUR CONAN DOYLE The Infectious Cycle Virologists divide the infectious cycle into steps to facilitate

More information

Human Genome Complexity, Viruses & Genetic Variability

Human Genome Complexity, Viruses & Genetic Variability Human Genome Complexity, Viruses & Genetic Variability (Learning Objectives) Learn the types of DNA sequences present in the Human Genome other than genes coding for functional proteins. Review what you

More information