Reproducibility of Nerve Fiber Layer Thickness Measurements by Use of Optical Coherence Tomography

Size: px
Start display at page:

Download "Reproducibility of Nerve Fiber Layer Thickness Measurements by Use of Optical Coherence Tomography"

Transcription

1 Reproducibility of Nerve Fiber Layer Thickness Measurements by Use of Optical Coherence Tomography Eytan Z. Blumenthal, MD, 1 Julia M. Williams, BS, 1 Robert N. Weinreb, MD, 1 Christopher A. Girkin, MD, 1 Charles C. Berry, PhD, 2 Linda M. Zangwill, PhD 1 Objective: To evaluate the reproducibility of optical coherence tomograph (OCT) retinal nerve fiber layer (RNFL) measurements in normal and glaucomatous eyes by means of the commercially available OCT 2000 instrument (Humphrey Systems, Dublin, CA). Design: Prospective instrument validation study. Participants: One eye each from 10 normal subjects and 10 glaucoma patients. Methods: Twenty subjects underwent a total of eight scanning sessions during two independent visits. In each session, five circular scans centered on the optic nerve head were performed. The first two sessions were performed by two experienced technicians. Followed by a 30-minute break, a third and a fourth session was completed by the same technicians. This sequence was duplicated on a second visit. Intrasession, intersession, intervisit, and interoperator reproducibility of quadrant and global RNFL measurements were calculated by use of a components of variance model. Main Outcome Measures: RNFL thickness. Results: The coefficient of variation for the mean RNFL thickness was significantly smaller (P 0.02) in normal eyes (6.9%) than in glaucoma eyes (11.8%). The estimated root mean squared error based on the statistical model using three scans per patient was 5.8 and 8.0 m for normal and glaucoma eyes, respectively. A components of variance model showed most of the variance (79%) to be due to differences between patients. Only a modest contribution to variability was found for session (1%), visit (5%), and operator (2%). Conclusion: With the commercially available OCT, our results indicate that the RNFL measurements are reproducible for both normal and glaucomatous eyes. Ophthalmology 2000;107: by the American Academy of Ophthalmology. By use of retinal nerve fiber layer (RNFL) photographs, glaucomatous damage to the RNFL has been shown to precede functional loss by as much as 5 years. 1,2 Although simple and inexpensive, RNFL photographs require a clear media, a dilated pupil, a darkly pigmented fundus, a trained photographer, and, most important, an experienced observer. More so, RNFL photograph assessment is highly Originally received: October 4, Accepted: May 19, Manuscript no Glaucoma Center and Diagnostic Imaging Laboratory, Department of Ophthalmology, University of California, San Diego, San Diego, California. 2 Department of Family and Preventive Medicine, University of California, San Diego, San Diego, California. Presented in part at the Association for Research in Vision and Ophthalmology meeting, Fort Lauderdale, Florida, May Supported in part by NIH grant EY11008 (LZ), Drown Foundation, Los Angeles (RNW), Foundation for Eye Research, Rancho Santa Fe (EZB) and the American Physicians Fellowship for Medicine in Israel (EZB). The authors have no financial interest in the Optical Coherence Tomography technology. Reprint requests to Linda Zangwill, PhD, Glaucoma Center (0946), 9500 Gilman Drive, La Jolla, CA subjective, and diffuse RNFL loss in some eyes with glaucoma is particularly difficult to assess. The optical coherence tomograph (OCT) 3 5 is one of several techniques for real-time quantitative and objective evaluation of the RNFL. OCT is a noninvasive, noncontact method that allows cross-sectional in vivo imaging of intraretinal layers. OCT was initially developed to assess tissue morphology and thickness in vivo. This technology was initially designed for fiberoptic use. 6 Early use of this technology involved imaging of eyes and coronary arteries. 7 OCT imaging can detect and measure changes in tissue thickness with micron-scale sensitivity. 7,8 The anatomic layers within the retina can be imaged, and quantitative assessment of retinal and RNFL thickness is possible. 9 With a prototype instrument, OCT data were reported to correlate well with known properties of the human retina. 9 This technology has been applied to the evaluation of several ophthalmic conditions including macular holes, 10 diabetic retinopathy, 11 epiretinal membranes, 12 and glaucoma. 3 5 OCT was able to detect induced RNFL lesions in macaque monkeys. 13 Visual field loss and RNFL thickness, as measured in vivo by an OCT prototype, were well correlated in glaucomatous eyes by the American Academy of Ophthalmology ISSN /00/$ see front matter Published by Elsevier Science Inc. PII S (00)

2 Blumenthal et al RNFL Reproducibility of OCT Previous studies have shown reproducibility of retinal thickness measurements in normal eyes 3,15 and glaucoma eyes 3 with an OCT prototype. In one study 15 a mean coefficient of variation in retinal thickness of less than 10% was found at locations 500 m or more from fixation. Schuman et al 3 demonstrated adequate reproducibility in normal and glaucoma eyes with this early, noncommercial, prototype of the OCT. The intersubject standard deviations found for a 3.4-mm diameter scan, using internal fixation, were 13 and 21 m, respectively, for normal and glaucoma eyes. Compared with the commercially available instrument, this earlier investigational prototype necessitated a much longer acquisition time (2.5 seconds as opposed to 1 second) and used a fiberoptic delivery system coupled to a slit lamp. The goal of this study is to determine the reproducibility of RNFL measurements obtained with the first commercially available OCT (Humphrey-Zeiss Systems, Dublin, CA). An automated algorithm for edge detection and computing RNFL thickness, as well as a shorter acquisition time, characterize this device. We evaluated the intrasession, intersession, intervisit, and interoperator reproducibility for eyes of normal subjects and glaucoma patients. Patients and Methods Subjects We examined one randomly selected eye from each of 20 subjects (10 glaucoma and 10 normal subjects). Mean age ( standard deviation) was years and years for the normal and glaucoma groups, respectively. All subjects (both normal and glaucoma) underwent a complete eye examination, including medical and family history; visual acuity testing with refraction; intraocular pressure measurement; Humphrey Field Analyzer (Humphrey-Zeiss Systems, Dublin, CA) 24-2 full threshold standard achromatic perimetry; a complete slit-lamp examination, including gonioscopy; indirect ophthalmoscopy; stereoscopic optic nerve head photography; and nerve fiber layer photography. Informed consent was obtained from all participants, and the study was approved by the University of California, San Diego, Human Subjects Committee. Inclusion criteria for normal subjects included a best-corrected visual acuity of 20/40 or better; a normal slit-lamp examination, including gonioscopy; normal Humphrey Field Analyzer visual field, as judged by the glaucoma hemifield test; intraocular pressure of 21 mmhg or less; normal appearing optic nerve heads; and no history of ocular surgery or laser treatment. Glaucoma patients were defined on the basis of having either: 1. An abnormal Humphrey Field Analyzer 24-2 visual field defined as a glaucoma hemifield test outside normal limits, or corrected pattern standard deviation less than 5% of normal limits. or 2. Discs were classified as glaucomatous on the basis of a masked examination of stereophotographs by two glaucomatologists trained in reading stereophotographs. Clinical judgment was based on thinning or notching of the neuroretinal rim, asymmetry of cup disc ratio 0.2, excavation of the cup, or an RNFL defect. Of the 10 glaucoma patients five met both the glaucomatous disc and field criteria, three met the disc but lacked the field criteria, whereas two met the field but lacked the disc criteria. Exclusion criteria for both groups included a best-corrected visual acuity worse than 20/40, angle abnormalities on gonioscopy, other intraocular eye diseases, other diseases affecting the visual fields (pituitary lesions, demyelinating diseases, diabetes, human immunodeficiency virus positive, or acquired immune deficiency syndrome), or secondary causes of intraocular pressure increase (corticosteroid use, iridocyclitis, trauma) and any pathologic condition (including retinal) that could affect visual fields. A history of intraocular surgery, with the exception of uncomplicated cataract surgery, was considered the basis for exclusion for the normal group. Intraocular pressure was not used as an inclusion/ exclusion criterion for the glaucoma group. Visual acuity in the normal group ranged from 20/20 to 20/25, and in the glaucoma group from 20/20 to 20/30. The OCT Instrument The OCT assesses retinal infrastructure by analyzing the temporal delay of back-scattered light, using low-coherence interferometry. The technology used by OCT is similar to ultrasonography, except that light rather than sound is used to perform the imaging. Low-coherence light is directed through a beam-splitter resulting in two beams, the signal beam directed at the tissue of interest and the reference beam directed at a reference mirror. Both amplitude and delay of light reflected from tissues are determined by an interferometer by adding the electromagnetic waves of the two reflected light beams. Because of the low coherence of the light source, interference of light reflected from the signal and reference beams occurs only when the delay of the reflections is nearly matched, resulting in high resolution. This instrument has a theoretical axial resolution of approximately 10 m. 14,16 In the commercially available OCT, RNFL is differentiated from other retinal layers using a thresholding algorithm. 16 The NFL is assumed to be correlated with the extent of the highly reflective layer at the vitreoretinal interface. Boundaries are located by searching for the first points on each scan where the reflectivities exceed a certain threshold (software version A4X1). Boundaries are thus identified when two thirds of the maximum reflectivity in each smoothed axial scan evaluated on a logarithmic scale is reached. NFL thickness is defined as the number of pixels between the anterior and posterior boundaries of the RNFL. 16 In circle scan mode, the instrument generates RNFL thickness measurements at 100 points along a 360 circular path, at a preset diameter, resulting in measurement points spread out 3.6 apart. This information is presented graphically on a continuous XY plot, where X is retinal position (i.e., temporal, superior, nasal, inferior) and Y is RNFL thickness in microns. In addition, RNFL thickness is presented on two circular charts, one with 12 equal sectors, each representing 1 hour around the clock face, and the other with measurements in each of four quadrants (Fig 1). These charts display RNFL thickness numerically, in microns, for each region. A single mean RNFL thickness for the entire 360 scan also is displayed. OCT Measurements Subjects underwent eight OCT scanning sessions. Five circular scans of 3.4-mm diameter centered on the optic disc, of good quality (as judged by an experienced observer), were obtained and stored for each session. The diameter of the circular scan was fixed at 3.4 mm (1.7 mm radius), on the basis of a previous study performed on the prototype instrument. 3 Schuman et al 3 arrived at this optimal diameter because it is large enough to avoid overlap with the optic nerve head in nearly all eyes and yet allow measurement in an area with thicker RNFL than expected with a 4.5-mm diameter circle. In addition, reproducibility was found to 2279

3 Ophthalmology Volume 107, Number 12, December 2000 Figure 1. Representative optical coherence tomography (OCT) retinal nerve fiber layer (RNFL) scan results from a normal subject (left) and a glaucoma patient (right). A, E: gray scale of OCT cross-sectional retinal image, arrows delineate the RNFL. B, F: graphical representation of RNFL thickness along the circular scan. C, G: RNFL thickness ( m) in each of 12 equal sectors, each representing 1 hour around the clock face. D, H: RNFL thickness ( m) in each of four quadrants. be significantly better at the 3.4-mm diameter than at the 2.9-mm diameter. Images were judged to be of sufficient quality on the basis of the subjective evaluation of an experienced operator. Within each session, the instrument alignment and controls were not changed, unless as part of the image acquisition process. However, at the end of each session the chin rest, joy-stick, focus, intensity, and contrast controls were randomly changed, so all alignment and fine-tuning adjustments had to be re-initiated at the start of the next session. For each subject, RNFL thickness was assessed in four retinal regions: temporal ( on unit circle), superior ( ), nasal ( ), and inferior ( ). Average RNFL thickness (0 359 ) was also assessed. Two experienced technicians performed two consecutive sessions. At the completion of the second session the patient rested for at least 30 minutes. The third and fourth sessions were performed in a similar fashion. Subjects were scanned on two visits, spaced 1 to 4 weeks apart (an average of 8 6 days apart). The examiners order during the first and second and again during the third and fourth sessions was determined by use of a random number generated table. Subjects received a maximum of 40 scans, in eight sessions, split between two visits. Of the 20 subjects, three subjects missed the second visit and five subjects missed half a visit (participated in six of the eight sessions). Image acquisition was as follows: pupils were dilated to 5 mm; a patch was placed over the nontested eye to improve fixation; artificial tears were used for the tested eye at the onset of the first and third sessions; and landmark and repeat scan features were used to facilitate placement of the scan circle in the same location. The scanned images consist of 100 A-scans of information along the 3.4-mm scan circle, obtained during 1 second. RNFL thickness is quantified by an automated computer algorithm that identifies the anterior and posterior borders of the RNFL, and the data are summarized by clock hours, quadrants, and overall. 16,17 Statistical Analysis A random effects analysis of variance model was used to estimate variance components for patient, operator, visit (nested under patient), session (nested under visit), patient by operator interaction, and residual (scan to scan) variation by means of restricted maximum likelihood. Splus version 3.4 (MathSoft, Inc., Seattle, WA) was used for these calculations and for testing the statistical significance of these effects. Estimated root mean squared errors and coefficient of variation (root mean squared errors divided by RNFL thickness) were both calculated using the components of variance model on the basis of three images for randomly chosen observer, session, and visit. This root mean squared error estimates the standard deviation of the RNFL thickness measurement as it would be obtained in a hypothetical reproducibility study in which each patient was seen in separate visits by a randomly chosen observer for one session using three images. 2280

4 Table 1. Components of Model for the Mean Retinal Nerve Fiber Layer Thickness Containing the Six Components Listed in the Left Column for the Glaucoma and Normal Groups Components of the Model Components ( m 2 ) Blumenthal et al RNFL Reproducibility of OCT Normal Eyes (n 10) P Value %of Components Glaucomatous Eyes (n 10) P Value %of Patient Operator Patient by operator Visit Session Residual (scan to scan) 42.4 NA NA 15 Total NA NA 100 NA not applicable. Results Figure 1 shows typical individual OCT printouts of one normal subject and one glaucoma patient. At the bottom of each scan, RNFL thickness, in micrometers, is presented in both quadrants and clock hours. components were estimated using the random effects analysis of variance (ANOVA). The components of the model included patient, operator, patient by operator, visit, session, and residuals. The model was tested for each group separately (Table 1). Seventy-nine percent of the variance in the model was attributed to differences between subjects. Five percent and 1% of the variance were attributed to intervisit and intersession variability, respectively. Glaucoma patients were found to be significantly more variable than normal subjects (P 0.03). The P values in Table 1 test whether the corresponding variance component differs from zero. Thus, P for the between session component for glaucomatous eyes informs us that the variance component represents statistically significant session-to-session variation, but the estimated value is small, accounting for 0.5% of the total variation. The estimated root mean squared error for overall RNFL thickness on the basis of the components of variance model, using three scans per patient, were 5.8 and 9.1 m for normal and glaucoma eyes, respectively (Table 2). The root mean squared error for Table 2. Estimated Root Mean Squared Errors and Coefficient of Variation Both Calculated Using the Mean of Three Images for Randomly Chosen Observer, Session, and Visit. Quadrant Normal Eyes n 10 RMS Error (microns) CV Glaucomatous Eyes n 10 RMS Error (microns) Temporal Superior Nasal Inferior Mean of four quadrants Data are presented for each quadrant separately and as the mean of four quadrants. CV coefficient of variation; RMS root mean squared. CV normal subjects in the superior and inferior quadrant was 8.9 and 8.6 m, respectively. The root mean squared error for glaucoma patients in the superior and inferior region was 11.6 and 10.8 m, respectively. The coefficient of variation for the mean RNFL thickness was significantly smaller (P 0.02) in normal eyes (7%) than glaucoma eyes (13%). The coefficient of variation was larger in the temporal and nasal quadrants than in the superior and inferior quadrants. Overall, reproducibility for the OCT in a clinical setting showed the root mean squared error of the estimate of mean RNFL thickness of three scans to be 5.8 and 9.1 m for normal and glaucoma eyes, respectively, and 7.0 m when both groups were combined. Discussion Reproducibility for the OCT showed the standard error of the components of variance model estimate of mean RNFL thickness of three scans to be 7.0 m. These data are comparable to the published report on the reproducibility of the prototype OCT, with standard deviations of 13 and 21 m for normal and glaucoma eyes, respectively. 3 Similarly, we found the glaucoma patients to be significantly more variable than the normal subjects. However, age differences between the groups preclude us from being able to attribute this difference solely to the different diagnosis. Regional reproducibility data (Table 2) show the nasal quadrant to be the least reproducible (highest root mean squared error) and the temporal to be the most in both normal and glaucoma subjects. When incorporating the RNFL thickness into a reproducibility calculation, the coefficient of variation for the superior and inferior quadrants is smaller than for the nasal and temporal quadrants. This is due to the smaller mean RNFL thickness values in the nasal and temporal quadrants. It is possible that some of the variability encountered may be attributed to the relatively small number of sampled points (100 A scans) in each OCT acquisition. This may be a greater source of variability in glaucoma patients than normal subjects because of the focal nature of some glaucomatous RNFL defects. Gurses-Ozden et al 18 recently demonstrated that increasing the number of A scans per 2281

5 Ophthalmology Volume 107, Number 12, December 2000 acquisition fourfold significantly reduced the coefficient of variation in those quadrants with corresponding visual field defects. A relatively small amount of variability was attributed to intersession (1%) and intervisit (5%) imaging. In addition, only 2% of the variability was attributed to interoperator variability. This is a reassuring finding for a diagnostic instrument, because comparisons of measurements taken for the same patient over a period of time may be compared even when measurements are obtained by different experienced operators. RNFL measurements obtained in this reproducibility study are consistent with known properties of the RNFL and with patterns observed in glaucoma patients. 4,5 They illustrate known properties of RNFL thickness (Fig 1), with thicker superior and inferior nerve fiber bundles in both normal and glaucomatous eyes. In summary, the OCT acquired data were in agreement with the known properties of the RNFL. A mixed effects model showed the only two significant components of variability to be patient and residuals, thus implying that intersession, intervisit and interoperator variability combined accounted for less than 10% of total variability. These results indicate that the reproducibility of OCT is adequate for assessing long-term follow-up of patients for progression of glaucomatous optic neuropathy or RNFL damage. Acknowledgment. We thank Barbara Brunet and Annette Chang for their assistance in the processing of the scans. References 1. Sommer A, Miller NR, Pollack I, et al. The nerve fiber layer in the diagnosis of glaucoma. Arch Ophthalmol 1977;95: Hitchings RA, Poinoosawmy D, Poplar N, Sheth GP. Retinal nerve fibre layer photography in glaucomatous patients. Eye 1987;1(Pt 5): Schuman JS, Pedut-Kloizman T, Hertzmark E, et al. Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology 1996;103: Bowd C, Weinreb RN, Williams JM, Zangwill LM. The retinal nerve fiber layer thickness in ocular hypertensive, normal and glaucomatous eyes with optical coherence tomography. Arch Ophthalmol 2000;118: Mistlberger A, Liebmann JM, Greenfield DS, et al. Heidelberg retina tomography and optical coherence tomography in normal, ocular-hypertensive, and glaucomatous eyes. Ophthalmology 1999;106: Takada K, Yokohama I, Chida K, Noda J. New measurement system for fault location in optical wavelength devices based on interferometric technique. Appl Optics 1987;26: Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science 1991;254: Fujimoto JG, Bouma B, Tearney GJ, et al. New technology for high-speed and high-resolution optical coherence tomography [review]. Ann N Y Acad Sci 1998;838: Hee MR, Izatt JA, Swanson EA, et al. Optical coherence tomography of the human retina. Arch Ophthalmol 1995;113: Hee MR, Puliafito CA, Wong C, et al. Optical coherence tomography of macular holes. Ophthalmology 1995;102: Hee MR, Puliafito CA, Duker JS, et al. Topography of diabetic macular edema with optical coherence tomography. Ophthalmology 1998;105: Wilkins JR, Puliafito CA, Hee MR, et al. Characterization of epiretinal membranes using optical coherence tomography. Ophthalmology 1996;103: Toth CA, Narayan DG, Boppart SA, et al. A comparison of retinal morphology viewed by optical coherence tomography and by light microscopy [published erratum appears in Arch Ophthalmol 1998;116:77]. Arch Ophthalmol 1997;115: Schuman JS, Hee MR, Puliafito CA, et al. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch Ophthalmol 1995; 113: Baumann M, Gentile RC, Liebmann JM, Ritch R. Reproducibility of retinal thickness measurements in normal eyes using optical coherence tomography. Ophthalmic Surg Lasers 1998; 29: Schuman JS. Optical coherence tomography for imaging and quantification of the nerve fiber layer thickness. In: Schuman JS, ed. Imaging in Glaucoma. Thorofare, NJ: SLACK, 1996; chap Puliafito CA, Hee MR, Schuman JS, Fujimoto JG. Optical Coherence Tomography of Ocular Diseases. Thorofare, NJ: Slack, 1996; Gurses-Ozden R, Ishikawa H, Hoh ST, et al. Increasing sampling density improves reproducibility of optical coherence tomography measurements. J Glaucoma 1999;8:

Comparative evaluation of time domain and spectral domain optical coherence tomography in retinal nerve fiber layer thickness measurements

Comparative evaluation of time domain and spectral domain optical coherence tomography in retinal nerve fiber layer thickness measurements Original article Comparative evaluation of time domain and spectral domain optical coherence tomography in retinal nerve fiber layer thickness measurements Dewang Angmo, 1 Shibal Bhartiya, 1 Sanjay K Mishra,

More information

The Effect of Pupil Dilation on Scanning Laser Polarimetry With Variable Corneal Compensation

The Effect of Pupil Dilation on Scanning Laser Polarimetry With Variable Corneal Compensation C L I N I C A L S C I E N C E The Effect of Pupil Dilation on Scanning Laser Polarimetry With Variable Corneal Compensation Amjad Horani, MD; Shahar Frenkel, MD, PhD; Eytan Z. Blumenthal, MD BACKGROUND

More information

Retinal nerve fiber layer thickness in Indian eyes with optical coherence tomography

Retinal nerve fiber layer thickness in Indian eyes with optical coherence tomography Original articles in Indian eyes with optical coherence tomography Malik A, Singh M, Arya SK, Sood S, Ichhpujani P Department of Ophthalmology Government Medical College and Hospital, Sector 32, Chandigarh,

More information

Relationship Between Structure

Relationship Between Structure Original Article Relationship Between Structure and Function of the Optic Nerve Head-Glaucoma versus Normal Dr Savita Bhat, Dr Anna Elias, Dr Siddharth Pawar, Dr S.J. Saikumar, Dr Alpesh Rajput, superior,

More information

CLINICAL SCIENCES. Repeatability and Reproducibility of Fast Macular Thickness Mapping With Stratus Optical Coherence Tomography

CLINICAL SCIENCES. Repeatability and Reproducibility of Fast Macular Thickness Mapping With Stratus Optical Coherence Tomography CLINICAL SCIENCES Repeatability and Reproducibility of Fast Macular Thickness Mapping With Stratus Optical Coherence Tomography Antonio Polito, MD; Michele Del Borrello, MD; Miriam Isola, MHS; Nicola Zemella,

More information

RETINAL NERVE FIBER LAYER

RETINAL NERVE FIBER LAYER CLINICAL SCIENCES The Effect of Scan Diameter on Retinal Nerve Fiber Layer Thickness Measurement Using Stratus Optic Coherence Tomography Giacomo Savini, MD; Piero Barboni, MD; Michele Carbonelli, MD;

More information

Translating data and measurements from stratus to cirrus OCT in glaucoma patients and healthy subjects

Translating data and measurements from stratus to cirrus OCT in glaucoma patients and healthy subjects Romanian Journal of Ophthalmology, Volume 60, Issue 3, July-September 2016. pp:158-164 GENERAL ARTICLE Translating data and measurements from stratus to cirrus OCT in glaucoma patients and healthy subjects

More information

Study of Retinal Nerve Fiber Layer Thickness Within Normal Hemivisual Field in Primary Open-Angle Glaucoma and Normal-Tension Glaucoma

Study of Retinal Nerve Fiber Layer Thickness Within Normal Hemivisual Field in Primary Open-Angle Glaucoma and Normal-Tension Glaucoma Study of Retinal Nerve Fiber Layer Thickness Within Normal Hemivisual Field in Primary Open-Angle Glaucoma and Normal-Tension Glaucoma Chiharu Matsumoto, Shiroaki Shirato, Mai Haneda, Hiroko Yamashiro

More information

* Şükrü Bayraktar, MD, Zerrin Bayraktar, MD, and Ömer Faruk Yilmaz, MD

* Şükrü Bayraktar, MD, Zerrin Bayraktar, MD, and Ömer Faruk Yilmaz, MD Journal of Glaucoma 10:163 169 2001 Lippincott Williams & Wilkins, Inc. Influence of Scan Radius Correction for Ocular Magnification and Relationship Between Scan Radius With Retinal Nerve Fiber Layer

More information

STANDARD AUTOMATED PERIMETRY IS A GENERALLY

STANDARD AUTOMATED PERIMETRY IS A GENERALLY Comparison of Long-term Variability for Standard and Short-wavelength Automated Perimetry in Stable Glaucoma Patients EYTAN Z. BLUMENTHAL, MD, PAMELA A. SAMPLE, PHD, LINDA ZANGWILL, PHD, ALEXANDER C. LEE,

More information

Key words: Glaucoma, Imaging, Ophthalmoscopy, Optic neuropathy, Topography

Key words: Glaucoma, Imaging, Ophthalmoscopy, Optic neuropathy, Topography 194 Review Article Evaluating the Optic Nerve and Retinal Nerve Fibre Layer: The Roles of Heidelberg Retina Tomography, Scanning Laser Polarimetry and Optical Coherence Tomography Sek-Tien Hoh, 1 MBBS,

More information

Method for comparing visual field defects to local RNFL and RGC damage seen on frequency domain OCT in patients with glaucoma.

Method for comparing visual field defects to local RNFL and RGC damage seen on frequency domain OCT in patients with glaucoma. Method for comparing visual field defects to local RNFL and RGC damage seen on frequency domain OCT in patients with glaucoma. Donald C. Hood 1,2,* and Ali S. Raza 1 1 Department of Psychology, Columbia

More information

Relationship between the GDx VCC and Stratus OCT in Primary Open Angle Glaucoma

Relationship between the GDx VCC and Stratus OCT in Primary Open Angle Glaucoma Relationship between the GDx VCC and Stratus OCT in Primary Open Angle Glaucoma Reza Zarei, MD 1 Mohammad Soleimani, MD 2 Sasan Moghimi, MD 3 Mohammad Yaser Kiarudi, MD 2 Mahmoud Jabbarvand, MD 1 Yadollah

More information

Optical Coherence Tomography-Measured Nerve Fiber Layer and Macular Thickness in Emmetropic, High-Myopic and High-Hyperopic Eyes

Optical Coherence Tomography-Measured Nerve Fiber Layer and Macular Thickness in Emmetropic, High-Myopic and High-Hyperopic Eyes Optical Coherence Tomography-Measured Nerve Fiber Layer and Macular Thickness in Emmetropic, High-Myopic and High-Hyperopic Eyes Mohammad-Mehdi Parvaresh, MD 1 Marjan Imani, MD 2 Mohsen Bahmani-Kashkouli,

More information

Noel de Jesus Atienza, MD, MSc and Joseph Anthony Tumbocon, MD

Noel de Jesus Atienza, MD, MSc and Joseph Anthony Tumbocon, MD Original Article Philippine Journal of OPHTHALMOLOGY Diagnostic Accuracy of the Optical Coherence Tomography in Assessing Glaucoma Among Filipinos. Part 1: Categorical Outcomes Based on a Normative Database

More information

NIH Public Access Author Manuscript Br J Ophthalmol. Author manuscript; available in PMC 2010 April 29.

NIH Public Access Author Manuscript Br J Ophthalmol. Author manuscript; available in PMC 2010 April 29. NIH Public Access Author Manuscript Published in final edited form as: Br J Ophthalmol. 2009 August ; 93(8): 1057 1063. doi:10.1136/bjo.2009.157875. Retinal nerve fibre layer thickness measurement reproducibility

More information

Comparison of Retinal Nerve Fiber Layer Thickness between Stratus and Spectralis OCT

Comparison of Retinal Nerve Fiber Layer Thickness between Stratus and Spectralis OCT pissn: 1011-8942 eissn: 2092-9382 Korean J Ophthalmol 2011;25(3):166-173 DOI: 10.3341/kjo.2011.25.3.166 Original Article Comparison of Retinal Nerve Fiber Layer Thickness between Stratus and Spectralis

More information

Reproducibility of Retinal Nerve Fiber Layer Thickness Measurements Using Spectral Domain Optical Coherence Tomography

Reproducibility of Retinal Nerve Fiber Layer Thickness Measurements Using Spectral Domain Optical Coherence Tomography ORIGINAL STUDY Reproducibility of Retinal Nerve Fiber Layer Thickness Measurements Using Spectral Domain Optical Coherence Tomography Huijuan Wu, MD, PhD,*w Johannes F. de Boer, PhD,z and Teresa C. Chen,

More information

Optical coherence tomography (OCT) is a noninvasive,

Optical coherence tomography (OCT) is a noninvasive, Ability of Stratus OCT to Detect Progressive Retinal Nerve Fiber Layer Atrophy in Glaucoma Eun Ji Lee, 1,2 Tae-Woo Kim, 1,2 Ki Ho Park, 2 Mincheol Seong, 3 Hyunjoong Kim, 4 and Dong Myung Kim 2 PURPOSE.

More information

Imaging of the optic disc and retinal nerve fiber layer: the effects of age, optic disc area, refractive error, and gender

Imaging of the optic disc and retinal nerve fiber layer: the effects of age, optic disc area, refractive error, and gender Bowd et al. Vol. 19, No. 1/January 2002/J. Opt. Soc. Am. A 197 Imaging of the optic disc and retinal nerve fiber layer: the effects of age, optic disc area, refractive error, and gender Christopher Bowd,

More information

Diagnostic Accuracy of OCT with a Normative Database to Detect Diffuse Retinal Nerve Fiber Layer Atrophy: Diffuse Atrophy Imaging Study METHODS

Diagnostic Accuracy of OCT with a Normative Database to Detect Diffuse Retinal Nerve Fiber Layer Atrophy: Diffuse Atrophy Imaging Study METHODS Glaucoma Diagnostic Accuracy of OCT with a Normative Database to Detect Diffuse Retinal Nerve Fiber Layer Atrophy: Diffuse Atrophy Imaging Study Jin Wook Jeoung, 1,2 Seok Hwan Kim, 1,3 Ki Ho Park, 1,2

More information

Correlating Structure With Function in End-Stage Glaucoma

Correlating Structure With Function in End-Stage Glaucoma C L I N I C A L S C I E N C E Correlating Structure With Function in End-Stage Glaucoma Eytan Z. Blumenthal, MD; Amjad Horani, MD; Rajesh Sasikumar, MD; Chandrasekhar Garudadri, MD; Addepalli Udaykumar,

More information

Ganglion cell complex scan in the early prediction of glaucoma

Ganglion cell complex scan in the early prediction of glaucoma Original article in the early prediction of glaucoma Ganekal S Nayana Super Specialty Eye Hospital and Research Center, Davangere, Karnataka, India Abstract Objective: To compare the macular ganglion cell

More information

In some patients with glaucoma, standard (achromatic) automated

In some patients with glaucoma, standard (achromatic) automated Detecting Early Glaucoma by Assessment of Retinal Nerve Fiber Layer Thickness and Visual Function Christopher Bowd, 1 Linda M. Zangwill, 1 Charles C. Berry, 2 Eytan Z. Blumenthal, 1 Cristiana Vasile, 1

More information

Retinal Nerve Fiber Layer Measurement Variability with Spectral Domain Optical Coherence Tomography

Retinal Nerve Fiber Layer Measurement Variability with Spectral Domain Optical Coherence Tomography pissn: 1011-8942 eissn: 2092-9382 Korean J Ophthalmol 2012;26(1):32-38 http://dx.doi.org/10.3341/kjo.2012.26.1.32 Retinal Nerve Fiber Layer Measurement Variability with Spectral Domain Optical Coherence

More information

Retinal Nerve Fiber Layer Measurements in Myopia Using Optical Coherence Tomography

Retinal Nerve Fiber Layer Measurements in Myopia Using Optical Coherence Tomography Original Article Philippine Journal of OPHTHALMOLOGY Retinal Nerve Fiber Layer Measurements in Myopia Using Optical Coherence Tomography Dennis L. del Rosario, MD and Mario M. Yatco, MD University of Santo

More information

OtticaFisiopatologica

OtticaFisiopatologica Anno quindicesimo dicembre 2010 How to assess the retinal nerve fiber layer thickness Antonio Ferreras Miguel Servet University Hospital, Zaragoza. Aragón Health Sciences Institute University of Zaragoza

More information

Reproducibility of measurements and variability of the classification algorithm of Stratus OCT in normal, hypertensive, and glaucomatous patients

Reproducibility of measurements and variability of the classification algorithm of Stratus OCT in normal, hypertensive, and glaucomatous patients ORIGINAL RESEARCH Reproducibility of measurements and variability of the classification algorithm of Stratus OCT in normal, hypertensive, and glaucomatous patients Alfonso Antón 1,2,3 Marta Castany 1,2

More information

THE BASIC PATHOLOGIC CHANGE IN GLAUCOMA IS

THE BASIC PATHOLOGIC CHANGE IN GLAUCOMA IS Quantitative Assessment of Atypical Birefringence Images Using Scanning Laser Polarimetry With Variable Corneal Compensation HARMOHINA BAGGA, MD, DAVID S. GREENFIELD, MD, AND WILLIAM J. FEUER, MS PURPOSE:

More information

Ophthalmology Department, Lozano Blesa University Hospital, c/ San Juan Bosco 15, Zaragoza, Spain 2

Ophthalmology Department, Lozano Blesa University Hospital, c/ San Juan Bosco 15, Zaragoza, Spain 2 Ophthalmology Volume 2012, Article ID 107053, 6 pages doi:10.1155/2012/107053 Clinical Study Comparison of Retinal Nerve Fiber Layer Thickness Measurements in Healthy Subjects Using Fourier and Time Domain

More information

A comparison of HRT II and GDx imaging for glaucoma detection in a primary care eye clinic setting

A comparison of HRT II and GDx imaging for glaucoma detection in a primary care eye clinic setting (2007) 21, 1050 1055 & 2007 Nature Publishing Group All rights reserved 0950-222X/07 $30.00 www.nature.com/eye CLINICAL STUDY A comparison of HRT II and GDx imaging for glaucoma detection in a primary

More information

Macular Ganglion Cell Complex Measurement Using Spectral Domain Optical Coherence Tomography in Glaucoma

Macular Ganglion Cell Complex Measurement Using Spectral Domain Optical Coherence Tomography in Glaucoma Med. J. Cairo Univ., Vol. 83, No. 2, September: 67-72, 2015 www.medicaljournalofcairouniversity.net Macular Ganglion Cell Complex Measurement Using Spectral Domain Optical Coherence Tomography in Glaucoma

More information

Optical coherence tomography of the retinal nerve fibre layer in mild papilloedema and pseudopapilloedema

Optical coherence tomography of the retinal nerve fibre layer in mild papilloedema and pseudopapilloedema 294 SCIENTIFIC REPORT Optical coherence tomography of the retinal nerve fibre layer in mild papilloedema and pseudopapilloedema E Z Karam, T R Hedges... Aims: To determine the degree to which optical coherence

More information

Scanning Laser Polarimetry and Optical Coherence Tomography for Detection of Retinal Nerve Fiber Layer Defects

Scanning Laser Polarimetry and Optical Coherence Tomography for Detection of Retinal Nerve Fiber Layer Defects 접수번호 : 2008-105 Korean Journal of Ophthalmology 2009;23:169-175 ISSN : 1011-8942 DOI : 10.3341/kjo.2009.23.3.169 Scanning Laser Polarimetry and Optical Coherence Tomography for Detection of Retinal Nerve

More information

CLINICAL SCIENCES. Felipe A. Medeiros, MD; Linda M. Zangwill, PhD; Christopher Bowd, PhD; Robert N. Weinreb, MD

CLINICAL SCIENCES. Felipe A. Medeiros, MD; Linda M. Zangwill, PhD; Christopher Bowd, PhD; Robert N. Weinreb, MD CLINICAL SCIENCES Comparison of the GDx VCC Scanning Laser Polarimeter, HRT II Confocal Scanning Laser Ophthalmoscope, and Stratus OCT Optical Coherence Tomograph for the Detection of Glaucoma Felipe A.

More information

Seiji T. Takagi, Yoshiyuki Kita, Asuka Takeyama, and Goji Tomita. 1. Introduction. 2. Subjects and Methods

Seiji T. Takagi, Yoshiyuki Kita, Asuka Takeyama, and Goji Tomita. 1. Introduction. 2. Subjects and Methods Ophthalmology Volume 2011, Article ID 914250, 5 pages doi:10.1155/2011/914250 Clinical Study Macular Retinal Ganglion Cell Complex Thickness and Its Relationship to the Optic Nerve Head Topography in Glaucomatous

More information

Investigation of the relationship between central corneal thickness and retinal nerve fiber layer thickness in ocular hypertension

Investigation of the relationship between central corneal thickness and retinal nerve fiber layer thickness in ocular hypertension Acta Medica Anatolia Volume 2 Issue 1 2014 Investigation of the relationship between central corneal thickness and retinal nerve fiber layer thickness in ocular hypertension Remzi Mısır 1, Sinan Sarıcaoğlu

More information

A Formula to Predict Spectral Domain Optical Coherence Tomography (OCT) Retinal Nerve Fiber Layer Measurements Based on Time Domain OCT Measurements

A Formula to Predict Spectral Domain Optical Coherence Tomography (OCT) Retinal Nerve Fiber Layer Measurements Based on Time Domain OCT Measurements pissn: 1011-8942 eissn: 2092-9382 Korean J Ophthalmol 2012;26(5):369-377 http://dx.doi.org/10.3341/kjo.2012.26.5.369 Original Article A Formula to Predict Spectral Domain Optical Coherence Tomography (OCT)

More information

Relationship between GDx VCC and Stratus OCT in juvenile glaucoma

Relationship between GDx VCC and Stratus OCT in juvenile glaucoma (2009) 23, 2182 2186 & 2009 Macmillan Publishers Limited All rights reserved 09-222X/09 $32.00 www.nature.com/eye CLINICAL STUDY Relationship between GDx VCC and Stratus OCT in juvenile glaucoma R Zareii,

More information

STRUCTURE & FUNCTION An Integrated Approach for the Detection and Follow-up of Glaucoma. Module 3a GDx

STRUCTURE & FUNCTION An Integrated Approach for the Detection and Follow-up of Glaucoma. Module 3a GDx STRUCTURE & FUNCTION An Integrated Approach for the Detection and Follow-up of Glaucoma Module 3a GDx Educational Slide Deck Carl Zeiss Meditec, Inc. November 2005 1 Structure & Function Modules Module

More information

OCT in the Diagnosis and Follow-up of Glaucoma

OCT in the Diagnosis and Follow-up of Glaucoma OCT in the Diagnosis and Follow-up of Glaucoma Karim A Raafat MD. Professor Of Ophthalmology Cairo University Hmmmm! Do I have Glaucoma or not?! 1 Visual Function 100% - N Gl Structure : - 5000 axon /

More information

53 year old woman attends your practice for routine exam. She has no past medical history or family history of note.

53 year old woman attends your practice for routine exam. She has no past medical history or family history of note. Case 1 Normal Tension Glaucoma 53 year old woman attends your practice for routine exam. She has no past medical history or family history of note. Table 1. Right Eye Left Eye Visual acuity 6/6 6/6 Ishihara

More information

Parafoveal Scanning Laser Polarimetry for Early Glaucoma Detection

Parafoveal Scanning Laser Polarimetry for Early Glaucoma Detection Yamanashi Med. J. 18(1), 15~ 20, 2003 Original Article Parafoveal Scanning Laser Polarimetry for Early Glaucoma Detection Satoshi KOGURE, Yoshiki TODA, Hiroyuki IIJIMA and Shigeo TSUKAHARA Department of

More information

Clinical decision making based on data from GDx: One year observations

Clinical decision making based on data from GDx: One year observations Washington University School of Medicine Digital Commons@Becker Open Access Publications 2002 Clinical decision making based on data from GDx: One year observations James C. Bobrow Washington University

More information

Reliability analyses of the GDx nerve-fiber analyzer

Reliability analyses of the GDx nerve-fiber analyzer VOL. 29 NO. 2 PHILIPPINE JOURNAL OF Ophthalmology APRIL ORIGINAL ARTICLE - JUNE 2004 1, 2, 3 Patricia M. Khu, MD, MS Edgardo U. Dorotheo, MD 1 Lawrence Tinio, MD 2 Cynthia P. Cordero, MS 4 1, 2, 3 Manuel

More information

EXPERIMENTAL AND THERAPEUTIC MEDICINE 6: , 2013

EXPERIMENTAL AND THERAPEUTIC MEDICINE 6: , 2013 268 Comparison of optic nerve morphology in eyes with glaucoma and eyes with non-arteritic anterior ischemic optic neuropathy by Fourier domain optical coherence tomography YUXIN YANG 1, HAITAO ZHANG 1,

More information

Sensitivity and specificity of new GDx parameters Colen TP, Tang NEML, Mulder PGH and Lemij HG Submitted for publication CHAPTER 7

Sensitivity and specificity of new GDx parameters Colen TP, Tang NEML, Mulder PGH and Lemij HG Submitted for publication CHAPTER 7 Sensitivity and specificity of new GDx parameters Colen TP, Tang NEML, Mulder PGH and Lemij HG Submitted for publication CHAPTER 7 61 Abstract Purpose The GDx is a scanning laser polarimeter that assesses

More information

Moving forward with a different perspective

Moving forward with a different perspective Moving forward with a different perspective The Leader In Vision Diagnostics Offers A New Perspective Marco has served the eyecare community by offering exceptional lane products and automated high tech

More information

CLINICAL SCIENCES. optic neuropathy characterized

CLINICAL SCIENCES. optic neuropathy characterized CLINICAL SCIENCES Spectral-Domain Optical Coherence Tomography for Detection of Localized Retinal Nerve Fiber Layer Defects in Patients With Open-Angle Glaucoma Na Rae Kim, MD; Eun Suk Lee, MD, PhD; Gong

More information

Ability of Scanning Laser Polarimetry (GDx) to Discriminate among Early Glaucomatous, Ocular Hypertensive and Normal Eyes in the Korean Population

Ability of Scanning Laser Polarimetry (GDx) to Discriminate among Early Glaucomatous, Ocular Hypertensive and Normal Eyes in the Korean Population Korean J Ophthalmol Vol. 18:1-8, 2004 Ability of Scanning Laser Polarimetry (GDx) to Discriminate among Early Glaucomatous, Ocular Hypertensive and Normal Eyes in the Korean Population Sun Young Lee, MD,

More information

Andrew J. Barkmeier, MD; Benjamin P. Nicholson, MA; Levent Akduman, MD

Andrew J. Barkmeier, MD; Benjamin P. Nicholson, MA; Levent Akduman, MD c l i n i c a l s c i e n c e Effectiveness of Laser Photocoagulation in Clinically Significant Macular Edema With Focal Versus Diffuse Parafoveal Thickening on Optical Coherence Tomography Andrew J. Barkmeier,

More information

The Role of the RNFL in the Diagnosis of Glaucoma

The Role of the RNFL in the Diagnosis of Glaucoma Chapter 1. The Role of the RNFL in the Diagnosis of Glaucoma Introduction Glaucoma is an optic neuropathy characterized by a loss of of retinal ganglion cells and their axons, the Retinal Nerve Fiber Layer

More information

Optical Coherence Tomography of the Retina. New Technology - New Insights

Optical Coherence Tomography of the Retina. New Technology - New Insights Bahrain Medical Bulletin, Vol. 27, No. 3, September 2005 Optical Coherence Tomography of the Retina. New Technology - New Insights Mohinder Singh, FRCS,FRCOphth* Optical imaging is an emerging new technology,

More information

The Measure of Confidence

The Measure of Confidence Heidelberg_936357.qxd:Layout 1 5/9/08 12:01 PM 12:02 Page 1 (Cyan (Magenta (Yellow (Black (UV Five Powerful Solutions to Fit Your Practice PowerCheck Glaucoma FastCheck+ GPS Software and Retina Edema Index

More information

Available online at Pelagia Research Library. Advances in Applied Science Research, 2013, 4(6):

Available online at   Pelagia Research Library. Advances in Applied Science Research, 2013, 4(6): Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 2013, 4(6):201-206 ISSN: 0976-8610 CODEN (USA): AASRFC Comparison of glaucoma diagnostic ability of retinal nerve

More information

tracking progression we can better manage our patients. Like any tool, any instrument you ve got to

tracking progression we can better manage our patients. Like any tool, any instrument you ve got to EIYESS ALBEINUTI, MD 1 As we know OCT has become very instrumental in taking care of glaucoma patients whether we have the ability to objectively image the RNFL and therefore pickup earlier signs of damage

More information

To assess the glaucoma diagnostic ability of Fourier Domain Optical Coherence Tomography

To assess the glaucoma diagnostic ability of Fourier Domain Optical Coherence Tomography American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-02, Issue-11, pp-104-110 www.ajer.org Research Paper Open Access To assess the glaucoma diagnostic ability of

More information

Study of clinical significance of optical coherence tomography in diagnosis & management of diabetic macular edema

Study of clinical significance of optical coherence tomography in diagnosis & management of diabetic macular edema Original Research Article Study of clinical significance of optical coherence tomography in diagnosis & management of diabetic macular edema Neha Kantilal Desai 1,*, Somesh Vedprakash Aggarwal 2, Sonali

More information

Peripapillary Retinal Thickness. Maps in the Evaluation of Glaucoma Patients: A Novel Concept.

Peripapillary Retinal Thickness. Maps in the Evaluation of Glaucoma Patients: A Novel Concept. Peripapillary Retinal Thickness Maps in the Evaluation of Glaucoma Patients: A Novel Concept The Harvard community has made this article openly available. Please share how this access benefits you. Your

More information

CLINICAL SCIENCES. Comparison of Glaucoma Diagnostic Capabilities of Cirrus HD and Stratus Optical Coherence Tomography

CLINICAL SCIENCES. Comparison of Glaucoma Diagnostic Capabilities of Cirrus HD and Stratus Optical Coherence Tomography CLINICAL SCIENCES Comparison of Glaucoma Diagnostic Capabilities of Cirrus HD and Stratus Optical Coherence Tomography Seong Bae Park, MD; Kyung Rim Sung, MD, PhD; Sung Yong Kang, MD; Kyung Ri Kim, BS;

More information

OPTOMETRY RESEARCH PAPER

OPTOMETRY RESEARCH PAPER C L I N I C A L A N D E X P E R I M E N T A L OPTOMETRY RESEARCH PAPER Interocular symmetry of retinal nerve fibre layer thickness in healthy eyes: a spectral-domain optical coherence tomographic study

More information

Comparison of Optic Disc Topography Measured by Retinal Thickness Analyzer with Measurement by Heidelberg Retina Tomograph II

Comparison of Optic Disc Topography Measured by Retinal Thickness Analyzer with Measurement by Heidelberg Retina Tomograph II Comparison of Optic Disc Topography Measured by Retinal Analyzer with Measurement by Heidelberg Retina Tomograph II Noriko Itai*, Masaki Tanito*, and Etsuo Chihara* *Senshokai Eye Institute, Uji, Kyoto,

More information

The evaluation of retinal nerve fiber layer in pigment dispersion syndrome and pigmentary glaucoma using scanning laser polarimetry

The evaluation of retinal nerve fiber layer in pigment dispersion syndrome and pigmentary glaucoma using scanning laser polarimetry European Journal of Ophthalmology / Vol. 13 no. 4, 2003 / pp. 377-382 The evaluation of retinal nerve fiber layer in pigment dispersion syndrome and pigmentary glaucoma using scanning laser polarimetry

More information

Retinal nerve fibre layer thickness profile in normal eyes using third-generation optical coherence tomography

Retinal nerve fibre layer thickness profile in normal eyes using third-generation optical coherence tomography (2006) 20, 431 439 & 2006 Nature Publishing Group All rights reserved 0950-222X/06 $30.00 www.nature.com/eye Retinal nerve fibre layer thickness profile in normal eyes using third-generation optical coherence

More information

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED FINAL 01 May 93 TO 30 Apr 95. mwwin i ii ^.. IIM«-»- "«'» ' ' i» 1

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED FINAL 01 May 93 TO 30 Apr 95. mwwin i ii ^.. IIM«-»- «'» ' ' i» 1 REPORT DOCUMENTATION PAGI AFOSR-TR- OiOl Public reoortma burden for this colleaion of information is estimated to average i nour per respor aathenna and maintaining the data needed, and completing and

More information

Scanning laser polarimetry (SLP) provides real-time, objective

Scanning laser polarimetry (SLP) provides real-time, objective The Effect of Atypical Birefringence Patterns on Glaucoma Detection Using Scanning Laser Polarimetry with Variable Corneal Compensation Christopher Bowd, Felipe A. Medeiros, Robert N. Weinreb, and Linda

More information

CLINICAL SCIENCES. Steven L. Mansberger, MD; Pamela A. Sample, PhD; Linda Zangwill, PhD; Robert N. Weinreb, MD

CLINICAL SCIENCES. Steven L. Mansberger, MD; Pamela A. Sample, PhD; Linda Zangwill, PhD; Robert N. Weinreb, MD CLINICAL SCIENCES Achromatic and Short-Wavelength Automated Perimetry in Patients With Glaucomatous Large Cups Steven L. Mansberger, MD; Pamela A. Sample, PhD; Linda Zangwill, PhD; Robert N. Weinreb, MD

More information

Although measurements of the optic disc and retinal nerve

Although measurements of the optic disc and retinal nerve Longitudinal Variability of Optic Disc and Retinal Nerve Fiber Layer Measurements Christopher Kai-shun Leung, 1,2 Carol Yim-lui Cheung, 1 Dusheng Lin, 1,3 Chi Pui Pang, 1 Dennis S. C. Lam, 1 and Robert

More information

Glaucoma: Diagnostic Modalities

Glaucoma: Diagnostic Modalities Glaucoma: Diagnostic Modalities - Dr. Barun Kumar Nayak, Dr. Sarika Ramugade Glaucoma is a leading cause of blindness in the world, especially in older people. Early detection and treatment by ophthalmologist

More information

Patterns of Subsequent Progression of Localized Retinal Nerve Fiber Layer Defects on Red-free Fundus Photographs in Normal-tension Glaucoma

Patterns of Subsequent Progression of Localized Retinal Nerve Fiber Layer Defects on Red-free Fundus Photographs in Normal-tension Glaucoma pissn: 1011-8942 eissn: 2092-9382 Korean J Ophthalmol 2014;28(4):330-336 http://dx.doi.org/10.3341/kjo.2014.28.4.330 Original Article Patterns of Subsequent Progression of Localized Retinal Nerve Fiber

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 12, December ISSN

International Journal of Scientific & Engineering Research, Volume 4, Issue 12, December ISSN International Journal of Scientific & Engineering Research, Volume 4, Issue 12, December-2013 108 Name of Chief and Corresponding Author : Dr Chandrima Paul TITLE : Comparison of glaucoma diagnostic ability

More information

Optical coherence tomography (OCT) is a relatively new noninvasive. The Use of Optical Coherence Tomography in Neurology DIAGNOSTIC UPDATE

Optical coherence tomography (OCT) is a relatively new noninvasive. The Use of Optical Coherence Tomography in Neurology DIAGNOSTIC UPDATE DIAGNOSTIC UPDATE The Use of Optical Coherence Tomography in Neurology Cédric Lamirel, MD,* Nancy Newman, MD,* Valérie Biousse, MD* Departments of *Ophthalmology, Neurology, and Neurological Surgery, Emory

More information

Il contributo dell'angio-oct: valutazione integrata della componente nervosa e vascolare della malattia glaucomatosa

Il contributo dell'angio-oct: valutazione integrata della componente nervosa e vascolare della malattia glaucomatosa SIMPOSIO G.O.A.L. - LE NUOVE FRONTIERE DIAGNOSTICHE E LE LINEE DI INDIRIZZO AMBULATORIALI DEL GLAUCOMA Coordinatore e moderatore: D. Mazzacane Presidente: L. Rossetti Il contributo dell'angio-oct: valutazione

More information

G laucoma is a progressive optic neuropathy in which

G laucoma is a progressive optic neuropathy in which 1135 EXTENDED REPORT The correlation between optic nerve head topographic measurements, peripapillary nerve fibre layer thickness, and visual field indices in glaucoma Y-W Lan, D B Henson, A J Kwartz...

More information

Repeatability and Reproducibility of Macular Thickness Measurements Using Fourier Domain Optical Coherence Tomography

Repeatability and Reproducibility of Macular Thickness Measurements Using Fourier Domain Optical Coherence Tomography 10 The Open Ophthalmology Journal, 009, 3, 10-14 Open Access Repeatability and Reproducibility of Macular Thickness Measurements Using Fourier Domain Optical Coherence Tomography Alison Bruce 1, Ian E.

More information

Optical coherence tomography (OCT) is a new noninvasive

Optical coherence tomography (OCT) is a new noninvasive Use of Optical Coherence Tomography to Assess Variations in Macular Retinal Thickness in Myopia Marcus C. C. Lim, 1 Sek-Tien Hoh, 1 Paul J. Foster, 1,2 Tock-Han Lim, 3,4 Sek-Jin Chew, 1 Steve K. L. Seah,

More information

Advances in OCT Murray Fingeret, OD

Advances in OCT Murray Fingeret, OD Disclosures Advances in OCT Murray Fingeret, OD Consultant Alcon, Allergan, Bausch & Lomb, Carl Zeiss Meditec, Diopsys, Heidelberg Engineering, Reichert, Topcon Currently Approved OCT Devices OCT Devices

More information

Introduction. Hemma Resch, Gabor Deak, Ivania Pereira and Clemens Vass. e225. Acta Ophthalmologica 2012

Introduction. Hemma Resch, Gabor Deak, Ivania Pereira and Clemens Vass. e225. Acta Ophthalmologica 2012 Comparison of optic disc parameters using spectral domain cirrus high-definition optical coherence tomography and confocal scanning laser ophthalmoscopy in normal eyes Hemma Resch, Gabor Deak, Ivania Pereira

More information

Differences between Non-arteritic Anterior Ischemic Optic Neuropathy and Open Angle Glaucoma with Altitudinal Visual Field Defect

Differences between Non-arteritic Anterior Ischemic Optic Neuropathy and Open Angle Glaucoma with Altitudinal Visual Field Defect pissn: 1011-8942 eissn: 2092-9382 Korean J Ophthalmol 2015;29(6):418-423 http://dx.doi.org/10.3341/kjo.2015.29.6.418 Original Article Differences between Non-arteritic Anterior Ischemic Optic Neuropathy

More information

Scanning Laser Tomography to Evaluate Optic Discs of Normal Eyes

Scanning Laser Tomography to Evaluate Optic Discs of Normal Eyes Scanning Laser Tomography to Evaluate Optic Discs of Normal Eyes Hiroshi Nakamura,* Toshine Maeda,* Yasuyuki Suzuki and Yoichi Inoue* *Eye Division of Olympia Medical Clinic, Tokyo, Japan; Department of

More information

CLINICAL SCIENCES. Effect of Partial Posterior Vitreous Detachment on Retinal Nerve Fiber Layer Thickness as Measured by Optical Coherence Tomography

CLINICAL SCIENCES. Effect of Partial Posterior Vitreous Detachment on Retinal Nerve Fiber Layer Thickness as Measured by Optical Coherence Tomography CLNCAL CENCE Effect of Partial Posterior Vitreous Detachment on Retinal Nerve Fiber Layer Thickness as Measured by Optical Coherence Tomography Priti Batta, MD; Harry M. Engel, MD; Anurag hrivastava, MD;

More information

GLAUCOMA SUMMARY BENCHMARKS FOR PREFERRED PRACTICE PATTERN GUIDELINES

GLAUCOMA SUMMARY BENCHMARKS FOR PREFERRED PRACTICE PATTERN GUIDELINES SUMMARY BENCHMARKS FOR PREFERRED PRACTICE PATTERN GUIDELINES Introduction These are summary benchmarks for the Academy s Preferred Practice Pattern (PPP) guidelines. The Preferred Practice Pattern series

More information

Diabetic retinopathy accounts for much of the visual impairment

Diabetic retinopathy accounts for much of the visual impairment Diabetic Macular Edema Assessed with Optical Coherence Tomography and Stereo Fundus Photography Charlotte Strøm, 1 Birgit Sander, 1 Nicolai Larsen, 1,2 Michael Larsen, 1 and Henrik Lund-Andersen 1 PURPOSE.

More information

Detection of Progressive Retinal Nerve Fiber Layer Loss in Glaucoma Using Scanning Laser Polarimetry with Variable Corneal Compensation

Detection of Progressive Retinal Nerve Fiber Layer Loss in Glaucoma Using Scanning Laser Polarimetry with Variable Corneal Compensation Detection of Progressive Retinal Nerve Fiber Layer Loss in Glaucoma Using Scanning Laser Polarimetry with Variable Corneal Compensation Felipe A. Medeiros, Luciana M. Alencar, Linda M. Zangwill, Christopher

More information

Scanning Laser Polarimetry in Patients with Acute Attack of Primary Angle Closure

Scanning Laser Polarimetry in Patients with Acute Attack of Primary Angle Closure Scanning Laser Polarimetry in Patients with Acute Attack of Primary Angle Closure Jimmy S. M. Lai*, Clement C. Y. Tham, Jonathan C. H. Chan*, Nelson K. F. Yip, Wilson W. T. Tang, Patrick S. H. Li*, Jane

More information

S Morishita, T Tanabe, S Yu, M Hangai, T Ojima, H Aikawa, N Yoshimura. Clinical science

S Morishita, T Tanabe, S Yu, M Hangai, T Ojima, H Aikawa, N Yoshimura. Clinical science Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan Correspondence to: Dr T Tanabe, Department of Ophthalmology, The Tazuke Kofukai Medical Institute,

More information

Changes in Peripapillary Retinal Nerve Fiber Layer Thickness after Pattern Scanning Laser Photocoagulation in Patients with Diabetic Retinopathy

Changes in Peripapillary Retinal Nerve Fiber Layer Thickness after Pattern Scanning Laser Photocoagulation in Patients with Diabetic Retinopathy pissn: 1011-8942 eissn: 2092-9382 Korean J Ophthalmol 2014;28(3):220-225 http://dx.doi.org/10.3341/kjo.2014.28.3.220 Original Article Changes in Peripapillary Retinal Nerve Fiber Layer Thickness after

More information

Confocal Adaptive Optics Imaging of Peripapillary Nerve Fiber Bundles: Implications for Glaucomatous Damage Seen on Circumpapillary OCT Scans

Confocal Adaptive Optics Imaging of Peripapillary Nerve Fiber Bundles: Implications for Glaucomatous Damage Seen on Circumpapillary OCT Scans Article DOI: 10.1167/tvst.4.2.12 Confocal Adaptive Optics Imaging of Peripapillary Nerve Fiber Bundles: Implications for Glaucomatous Damage Seen on Circumpapillary OCT Scans Donald C. Hood 1, Monica F.

More information

Scanning laser polarimetry (SLP) incorporates a confocal

Scanning laser polarimetry (SLP) incorporates a confocal Scanning Laser Polarimetry with Enhanced Corneal Compensation and Optical Coherence Tomography in Normal and Glaucomatous Eyes Mitra Sehi, 1 Stephen Ume, 1 David S. Greenfield, 1 and Advanced Imaging in

More information

Evaluation of retinal nerve fiber layer thickness parameters in myopic population using scanning laser polarimetry (GDxVCC)

Evaluation of retinal nerve fiber layer thickness parameters in myopic population using scanning laser polarimetry (GDxVCC) Dada T et al Original article Evaluation of retinal nerve fiber layer thickness parameters in myopic population using scanning laser polarimetry (GDxVCC) Dada T1, Aggarwal A1, Bali SJ2, Sharma A1, Shah

More information

Detection of Glaucoma Using Scanning Laser Polarimetry with Enhanced Corneal Compensation

Detection of Glaucoma Using Scanning Laser Polarimetry with Enhanced Corneal Compensation Detection of Glaucoma Using Scanning Laser Polarimetry with Enhanced Corneal Compensation Felipe A. Medeiros, Christopher Bowd, Linda M. Zangwill, Chirag Patel, and Robert N. Weinreb From the Hamilton

More information

Characterization of Peripapillary Atrophy Using Spectral Domain Optical Coherence Tomography

Characterization of Peripapillary Atrophy Using Spectral Domain Optical Coherence Tomography pissn: 1011-8942 eissn: 2092-9382 Korean J Ophthalmol 2010;24(6):353-359 DOI: 10.3341/kjo.2010.24.6.353 Characterization of Peripapillary trophy Using Spectral Domain Optical Coherence Tomography Original

More information

Do You See What I See!!! Shane R. Kannarr, OD

Do You See What I See!!! Shane R. Kannarr, OD Do You See What I See!!! Shane R. Kannarr, OD skannarr@kannarreyecare.com Define Specialty Testing Additional Test to: Prove/Disprove Diagnosis To monitor progression of a condition To document a condition

More information

Correlation of Blue Chromatic Macular Sensitivity with Optic Disc Change in Early Glaucoma Patients

Correlation of Blue Chromatic Macular Sensitivity with Optic Disc Change in Early Glaucoma Patients Correlation of Blue Chromatic Macular Sensitivity with Optic Disc Change in Early Glaucoma Patients Yoshio Yamazaki, Kenji Mizuki, Fukuko Hayamizu and Chizuru Tanaka Department of Ophthalmology, Nihon

More information

Sequential non-arteritic anterior ischemic optic neuropathy (NAION) Jonathan A. Micieli, MD Valérie Biousse, MD

Sequential non-arteritic anterior ischemic optic neuropathy (NAION) Jonathan A. Micieli, MD Valérie Biousse, MD Sequential non-arteritic anterior ischemic optic neuropathy (NAION) Jonathan A. Micieli, MD Valérie Biousse, MD A 68 year old white woman had a new onset of floaters in her right eye and was found to have

More information

Structural examina.on: Imaging

Structural examina.on: Imaging ManaMa: Glaucoma Structural examina.on: Imaging Luís Abegão Pinto, MD, PhD Department of Ophthalmology CHLC Lisbon Faculty of Medicine, Lisbon University 1 11-10- 2013 Structural changes Qualitative changes

More information

Clinical Use of OCT in Assessing Glaucoma Progression

Clinical Use of OCT in Assessing Glaucoma Progression r e v i e w Clinical Use of OCT in Assessing Glaucoma Progression Jacek Kotowski, MD; Gadi Wollstein, MD; Lindsey S. Folio, BS; Hiroshi Ishikawa, MD; Joel S. Schuman, MD ABSTRACT Detection of disease progression

More information

Analysis of Peripapillary Atrophy Using Spectral Domain Optical Coherence Tomography

Analysis of Peripapillary Atrophy Using Spectral Domain Optical Coherence Tomography Analysis of Peripapillary Atrophy Using Spectral Domain Optical Coherence Tomography The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

More information

Effect of Media Opacity on Retinal Nerve Fiber Layer Thickness Measurements by Optical Coherence Tomography

Effect of Media Opacity on Retinal Nerve Fiber Layer Thickness Measurements by Optical Coherence Tomography Original Article Effect of Media Opacity on Retinal Nerve Fiber Layer Thickness Measurements by Optical Coherence Tomography Dae Woong Lee 1, MD; Joon Mo Kim 1, MD; Ki Ho Park 2, MD Chul Young Choi 1,

More information

NIH Public Access Author Manuscript Arch Ophthalmol. Author manuscript; available in PMC 2010 November 18.

NIH Public Access Author Manuscript Arch Ophthalmol. Author manuscript; available in PMC 2010 November 18. NIH Public Access Author Manuscript Published in final edited form as: Arch Ophthalmol. 2009 July ; 127(7): 875 881. doi:10.1001/archophthalmol.2009.145. Measurement of Local Retinal Ganglion Cell Layer

More information