CLINICAL SCIENCES. Comparison of Glaucoma Diagnostic Capabilities of Cirrus HD and Stratus Optical Coherence Tomography

Size: px
Start display at page:

Download "CLINICAL SCIENCES. Comparison of Glaucoma Diagnostic Capabilities of Cirrus HD and Stratus Optical Coherence Tomography"

Transcription

1 CLINICAL SCIENCES Comparison of Glaucoma Diagnostic Capabilities of Cirrus HD and Stratus Optical Coherence Tomography Seong Bae Park, MD; Kyung Rim Sung, MD, PhD; Sung Yong Kang, MD; Kyung Ri Kim, BS; Michael S. Kook, MD Objective: To compare the glaucoma diagnostic capabilities offered by Stratus and Cirrus spectral-domain optical coherence tomography (OCT). Methods: One hundred subjects with glaucoma and 74 healthy subjects were tested by Stratus and Cirrus OCT. Areas under the receiver operating characteristic curves (AUCs) of average, 4-quadrant, and 12-sector retinal nerve fiber layer thicknesses and sensitivities at fixed specificities (80% and 90%) were compared when the 2 OCT modalities were used to evaluate patients with early or moderate to advanced glaucoma. Likelihood ratios using normative classifications were reported. Results: Overall, both OCT instruments showed similar glaucoma discrimination capability in average retinal nerve fiber layer thickness (AUC, [Cirrus] vs [Stratus]; P=.15). Cirrus OCT displayed significantly higher AUCs in the average, inferior, temporal, and superior quadrants and 7- measurements in early stages of glaucoma. The between OCT instrument AUCs did not differ significantly in moderate to advanced stages. Abnormal results for both OCT instruments, after comparison with their normative databases, were associated with high likelihood ratios. Conclusions: In our series, the Cirrus OCT showed better glaucoma discrimination capability than Stratus OCT in early stages of glaucoma. Our findings suggest that spectral-domain technology of OCT may offer an improved capability of early-stage glaucoma detection. Arch Ophthalmol. 2009;127(12): Author Affiliations: Department of Ophthalmology, College of Medicine, University of Ulsan, Asan Medical Center, Seoul, Korea. THE THIRD-GENERATION Stratus OCT (Carl Zeiss Meditec, Inc, Dublin, California) has shown good glaucoma diagnosis capabilities in many studies Glaucomatous structural damage may precede functional loss associated with glaucoma progression Thus, quantitative and objective assessment of structural damage by optical coherence tomography (OCT) might enable detection of anatomical changes before occurrence of irreversible functional impairment. The Cirrus HD-OCT (Carl Zeiss Meditec, Inc) uses spectral-domain technology and has recently become commercially available. This technology offers higher axial resolution and scan speed than the conventional time-domain Stratus OCT. The Cirrus HD-OCT has an axial resolution of 5 µm and a scan speed of A-scans per second, whereas the figures for the conventional time-domain Stratus OCT instrument are 8 to 10 µm and 400 A-scans per second. The enhanced axial resolution of Cirrus HD-OCT might thus provide more detailed segmentation of the retinal nerve fiber layer (RNFL), thus leading to better data acquisition. Furthermore, the higher sampling rate of the new OCT instrument allows more data to be collected in shorter scan times. Therefore, we hypothesized that the Cirrus HD- OCT might be better than or at least comparable with the Stratus OCT when used to diagnose glaucomatous changes. The purpose of this study was to test this hypothesis by comparing the diagnostic capabilities of the 2 technologies and to compare their abilities to differentiate between healthy eyes and eyes with both early and moderate to advanced glaucomatous visual field (VF) loss. METHODS SUBJECTS All study subjects were recruited prospectively, in a consecutive manner, from our glaucoma clinic and were examined between March 2008 and December 2008 at the Asan Medical Center, Seoul, Korea. At initial evaluation, all subjects underwent a complete ophthalmologic examination including medical, ocular, and family history; visual acuity testing; the Humphrey field analyzer (HFA) Swedish Interac- 1603

2 tive Threshold Algorithm 24-2 test (Carl Zeiss Meditec, Inc); multiple intraocular pressure (IOP) measurements using Goldmann applanation tonometry; stereoscopic optic nerve photography; and Stratus OCT and Cirrus HD-OCT. All patients with glaucoma had extensive experience with HFA testing. To minimize the learning effect, only the last 2 HFA test results were used for analysis. For inclusion in the study, all participants had to meet the following criteria: best-corrected visual acuity of 20/30 or better, with a spherical equivalent within ±5 diopters and a cylinder correction within 3 diopters; presence of a normal anterior chamber and open angle on slitlamp and gonioscopic examinations; and reliable HFA test results with a false-positive error less than 15%, a false-negative error less than 15%, and a fixation loss less than 20%. Subjects with any other ophthalmic disease that could result in HFA defects or with histories of diabetes mellitus were excluded. One eye was randomly selected if both eyes were found to be eligible. Age-matched, healthy eyes formed the control group. The control group consisted of staff, their family, spouses of patients, and volunteers from the eye clinic and hospital. The control group had no history of ocular symptoms or disease and no intraocular incisional or laser surgery. These control eyes had an IOP lower than 22 mm Hg, with no history of IOP elevation, and were normal by VF examination. Glaucomatous eyes were defined as those with glaucomatous VF defects confirmed by at least 2 reliable VF examination results and by the presence of a glaucomatous optic disc that showed increased cupping (vertical cup-disc ratio of 0.6), a difference in vertical cup-disc ratio of more than 0.2 between eyes, diffuse or focal neural rim thinning, hemorrhage, and nerve fiber layer defects. Eyes with glaucomatous VF defects were defined as those with a cluster of 3 points with probabilities of less than 5% on the pattern deviation map in at least 1 hemifield, including at least 1 point with a probability of less than 1%, or a cluster of 2 points with a probability of less than 1% and a glaucoma hemifield test result outside 99% of age-specific normal limits or a pattern standard deviation outside 95% of normal limits. All participants gave written informed consent before enrollment. All procedures conformed to the Declaration of Helsinki and the study was approved by the institutional review board of the Asan Medical Center at the University of Ulsan, Seoul. OPTICAL COHERENCE TOMOGRAPHY The basic principles and technical characteristics of the Stratus OCT have been described elsewhere. 15 We excluded all poorquality scans, defined as those with signal strength less than 7; overt misalignment of the surface detection algorithm on at least 15% of consecutive A-scans or 20% of cumulative A- scans; or overt displacement of the measurement circle, as assessed subjectively. With the Cirrus HD-OCT (software version ), an optic disc cube obtains a 3-dimensional data set composed of 200 A-scans, from each of 200 B-scans, that cover an area of 6 mm 2 centered on the optic disc. After creating an RNFL thickness map from this data set, the software automatically determines the disc center and then extracts a circumpapillary circle (1.73 mm in radius) from the cube data set for RNFL thickness measurement. We defined, and excluded, poor-quality scans, as described earlier. In addition, we excluded images where horizontal eye motion was observed within the measurement circle. Pharmacologic dilation was performed if the pupil was small. All images were acquired by a single well-trained operator (K.R.K.) during the same visit. Both OCT technologies provide RNFL thickness maps for 4 quadrants (superior, inferior, nasal, and temporal) and 12 clock hours and include classifications derived by use of an internal normative database. For both instruments, 4 normative classifications were used. The 95th to 100th percentiles were hypernormal (shown in white on thickness maps); the fifth to 95th percentiles were normal (green); the first to fifth percentiles were borderline (yellow); and the less than first percentile was abnormal (red). White and green were regarded as normal in our analyses. All OCT data were aligned according to the orientation of the right eye. Thus, clock hour 9 of the circumpapillary scan represented the temporal optic disc side for both eyes. STATISTICAL ANALYSIS The Shapiro-Wilk test was used to test the distribution of numerical data. Normally distributed data were compared between healthy subjects and patients with glaucoma using unpaired t tests. To compare categorical data, the 2 test was used. To test RNFL thickness discriminatory capability between healthy and glaucomatous eyes, the areas under the receiver operating characteristic curves (AUCs), including the overall average, the 4-quadrant, and average 12 clock hour RNFL thickness measurements, were calculated and compared. Sensitivities at fixed specificities of 80% and 90% were also calculated from the receiver operating characteristic curves. To compare betweeninstrument glaucoma discrimination capabilities at different stages of glaucoma, we divided subjects with glaucoma into 2 groups, an early group (group 1) and a moderate to advanced group (group 2), according to the Hodapp-Anderson-Parrish grading scale of VF severity. This staging system is described in detail elsewhere. 16,17 By Hodapp-Anderson-Parrish criteria, 52 eyes of 52 patients had early VF defects (group 1) whereas 48 eyes of 48 patients had moderate to advanced VF defects (group 2). Between-instrument AUCs were compared in each group. Finally, the DeLong method was used to evaluate statistical differences between AUCs yielded by the 2 OCT technologies. 18 Likelihood ratios (LRs) for glaucomatous change detection using a normative RNFL thickness classification were calculated. The use of LRs to predict posttest disease probability has been suggested by Jaeschke and colleagues. 19 In their scheme, LRs higher than 10 or lower than 0.1 are associated with large effects on posttest probabilities; LRs from 5 to 10 or from 0.1 to 0.2, with moderate effects; LRs from 2 to 5 or from 0.2 to 0.5, with small effects; and LRs closer to 1 are insignificant. Likelihood ratios for each category (fifth to 95th percentile, green [within normal limits]; first to fifth percentile, yellow [borderline]; and first percentile, red [abnormal classification]) were calculated separately. The 95% confidence intervals for LRs were also calculated. Statistical analysis was performed using SPSS version 15.0 (SPSS Inc, Chicago, Illinois) and MedCalc version 9.6 (MedCalc, Mariakerke, Belgium). RESULTS Of the 184 eyes that met our inclusion criteria, 8 eyes were excluded because of the unacceptable image quality provided by Cirrus HD-OCT. Six of these eyes had signal strengths less than 7, and 2 had horizontal eye motion within the measurement circle. Four eyes images with Stratus OCT were excluded owing to poor quality. Two eyes were excluded because of poor quality based on both Cirrus HD-OCT and Stratus OCT images. The final study sample included 174 eyes from 174 subjects (100 patients with glaucoma and 74 healthy control subjects). Ninety-three were women, 81 were men, and all were Asian. The baseline demographic characteristics of healthy subjects and subjects with glaucoma are shown in Table

3 RNFL THICKNESS COMPARISONS In both Stratus OCT and Cirrus HD-OCT RNFL thickness measurements, all sectors showed significant differences between healthy subjects and group 1 patients except the 9- and 3- sectors. When healthy subjects and group 2 patients were compared, Stratus OCT measurements showed significant differences in all sectors except the 9- sector, while Cirrus HD-OCT measurements showed significant differences in all sectors except the 9- and 3- sectors (Figure). AUC AND SENSITIVITY AT A FIXED SPECIFICITY FOR ALL GLAUCOMATOUS EYES Overall, average RNFL thickness measurement by both Stratus OCT and Cirrus HD-OCT demonstrated good glaucoma discrimination capability, and there was no significant between OCT instrument difference (AUCs, vs 0.953; P=.15). However, for both OCT modalities, inferior-quadrant RNFL thickness measurements showed the highest AUCs and Cirrus HD-OCT was significantly better than Stratus OCT (0.935 [Stratus] vs [Cirrus]; P=.04). Stratus OCT showed better glaucoma discrimination capability than Cirrus HD-OCT in the 3- RNFL thickness measurement (Table 2). Cirrus HD-OCT demonstrated higher sensitivities in more parametric measurements, at specificities of 90% or more, than did Stratus OCT (12 parameters vs 3 parameters, 2 parameters were measured with equal sensitivities by either OCT modality). At specificities of 80% or more, the number of parameters measured with higher sensitivity was similar for both OCT instruments (8 parameters vs 7 parameters, 2 parameters were measured with equal sensitivities by either OCT modality). AUCs AT DIFFERENT GLAUCOMA STAGES Cirrus HD-OCT demonstrated statistically better glaucoma discrimination capability in average, superior, inferior, and temporal quadrants and in the 7- sectors of group 1 patients as assessed by AUC calculations. In group 2 patients, the 2 OCT modalities showed no significant discrimination differences in most of the parameters while Cirrus HD-OCT showed statistically worse glaucoma discrimination capability than Stratus OCT in the nasal-quadrant and 3- measurements (Table 3). LIKELIHOOD RATIOS Table 4 shows the LRs after comparison with the instruments normative database. Results outside normal limits for both OCT instruments using average and 4-quadrant RNFL thicknesses were associated with large effects on the posttest probability of glaucoma (infinite LRs). However, within normal limits results were associated with small effects on the posttest probability of glaucoma for both OCT instruments (LRs, ). Table 1. Demographics of Healthy Subjects and Patients With Glaucoma Healthy (n=74) Age, y 51.3 (12.6) [20 to 73] Mean (SD) [Range] COMMENT Glaucoma (n=100) P Value 53.7 (10).14 [25 to 73] Male/female, No. 39/35 42/58.17 Spherical equivalent, diopters 0.67 (2.67) [ 4.75 to 3.25] 0.60 (1.99) [ 5.0 to 3.25].87 VF MD, db 0.51 (1.03) [1.27 to 3.13] VF PSD, db 0.97 (0.73) [1.13 to 2.08] 6.67 (5.80) [ 1.28 to 19.94] 6.00 (3.67) [1.8 to 15.7] Abbreviations: MD, mean deviation; PSD, pattern standard deviation; VF, visual field. OVERALL DISCRIMINATION CAPABILITY In this study (average mean deviation of 6.67 db), both Stratus OCT and Cirrus HD-OCT demonstrated good glaucoma discrimination capabilities. Parikh and coworkers 10 reported that the Stratus OCT AUC calculated using average RNFL thickness was 0.75 (95% confidence interval, ) in patients with early-stage glaucoma (average mean deviation of 3.57 db). Budenz and colleagues 20 reported a higher Stratus OCT AUC (0.966; 95% confidence interval, ), calculated with reference to mean RNFL thickness, in subjects with more advanced glaucoma (average mean deviation of 8.4 db). Although direct comparison of AUC values between different reports is problematic, our calculations of a Stratus OCT AUC of and a Cirrus HD-OCT AUC of 0.953, with reference to average RNFL thickness, showed that both OCT modalities offered good glaucoma diagnostic capabilities. Our results indicated that inferior-quadrant RNFL thickness measurements by either Stratus OCT or Cirrus HD- OCT yielded the highest AUCs, in agreement with previous reports on Stratus OCT performance. 10,20 This finding is also consistent with work using earlier OCT versions. 3,21 Our finding may be explained by the generally acknowledged fact that VF defects tend to occur more frequently in the superior hemifield at early stages of glaucoma. Overall, Cirrus HD-OCT showed better glaucoma discrimination ability in most of the parameters and a significant difference in the inferior quadrant. Stratus OCT showed a statistically better discrimination capability in the 3- sector, as assessed by AUC. The better overall glaucoma discrimination capability of Cirrus HD-OCT compared with Stratus OCT may be explained by differences in measurement techniques. Advances in technology incorporated in the Cirrus HD-OCT, and yielding both higher scan resolution and more accurate data registration, may contribute to improved glaucoma diagnostic capability. Cirrus HD-OCT measured more parameters at higher sensitivities with specificities of 90% or more than did Stra- 1605

4 RNFL Thickness, µm Healthy (Stratus) Healthy (Cirrus) Group 1 (Stratus) Group 1 (Cirrus) Group 2 (Stratus) Group 2 (Cirrus) 0 A T S N I Parameter Figure. Retinal nerve fiber layer (RNFL) thickness determined by both Stratus OCT (Carl Zeiss Meditec, Inc, Dublin, California) and Cirrus HD-OCT (Carl Zeiss Meditec, Inc) in healthy subjects and in patients at 2 different glaucoma stages (group 1, early; group 2, moderate to advanced). OCT indicates optical coherence tomography; A, average; T, temporal quadrant; S, superior quadrant; N, nasal quadrant; I, inferior quadrant. Table 2. AUCs of RNFL Thicknesses Measured by Stratus OCT and Cirrus HD-OCT and Sensitivities at Similar Specificity Levels (80%-90%) a Sensitivity (Specificity) AUC (95% CI) At Specificity 90% At Specificity 80% RNFL Thickness Stratus OCT Cirrus HD-OCT P Value Stratus OCT Cirrus HD-OCT Stratus OCT Cirrus HD-OCT Average ( ) ( ) (91) 80 (92) 92 (81) 90 (81) Quadrant Temporal ( ) ( ) (93) 42 (92) 52 (81) 52 (85) Superior ( ) ( ) (92) 72 (92) 85 (82) 85 (85) Nasal ( ) ( ) (92) 33 (92) 63 (81) 51 (82) Inferior ( ) ( ) (92) 85 (92) 90 (82) 96 (81) Sector ( ) ( ) (91) 26 (93) 39 (81) 29 (87) ( ) ( ) (92) 38 (93) 54 (81) 47 (81) ( ) ( ) (92) 54 (91) 66 (81) 68 (82) ( ) ( ) (91) 61 (91) 74 (81) 80 (82) ( ) ( ) (92) 54 (91) 71 (81) 68 (81) ( ) ( ) (93) 43 (91) 62 (82) 54 (81) ( ) ( ) (93) 24 (91) 43 (81) 39 (81) ( ) ( ) (91) 24 (91) 55 (82) 44 (81) ( ) ( ) (91) 64 (91) 78 (81) 77 (84) ( ) ( ) (91) 76 (93) 82 (84) 85 (81) ( ) ( ) (92) 81 (91) 82 (84) 86 (84) ( ) ( ) (91) 40 (91) 56 (82) 63 (81) Abbreviations: AUC, area under the receiver operating characteristic curve; CI, confidence interval; OCT, optical coherence tomography; RNFL, retinal nerve fiber layer. a Stratus OCT and Cirrus HD-OCT are manufactured by Carl Zeiss Meditec, Inc, Dublin, California. tus OCT, whereas both OCT modalities were similar in performance at specificities of 80% or more (Table 2). Because diagnostic criteria of high sensitivity with maximal specificity are desirable in clinical practice, our findings are encouraging and may suggest that Cirrus HD-OCT offers better glaucoma diagnostic potential than Stratus OCT in glaucomatous eyes with VF loss. Interpreting diagnostic capabilities, including AUC values, sensitivity, and specificity obtained in case-control studies, using newer techniques such as Cirrus HD- 1606

5 Table 3. Comparison of AUCs of RNFL Thicknesses Measured by Stratus OCT and Cirrus HD-OCT at Different Glaucoma Stages a Group 1 b (n=52) Group 2 c (n=48) RNFL Thickness Stratus OCT Cirrus HD-OCT P Value Stratus OCT Cirrus HD-OCT P Value Average ( ) ( ) ( ) ( ).67 Quadrant Temporal ( ) ( ) ( ) ( ).27 Superior ( ) ( ) ( ) ( ).41 Nasal ( ) ( ) ( ) ( ).02 Inferior ( ) ( ) ( ) ( ).14 Sector ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).60 Abbreviations: AUC, area under the receiver operating characteristic curve; CI, confidence interval; OCT, optical coherence tomography; RNFL, retinal nerve fiber layer. a Stratus OCT and Cirrus HD-OCT are manufactured by Carl Zeiss Meditec, Inc, Dublin, California. b Early glaucoma. c Moderate to advanced glaucoma. Table 4. LRs and 95% CIs Using Normative Classifications With Either OCT Modality LR (95% CI) Stratus OCT a Cirrus HD-OCT a RNFL Thickness Within Borderline Outside Within Borderline Outside Average 0.59 ( ) 6.66 ( ) I (NA-I) 0.41 ( ) I (NA-I) I (NA-I) Quadrant Temporal 0.92 ( ) 2.22 ( ) I (NA-I) 0.89 ( ) I (NA-I) I (NA-I) Superior 0.59 ( ) 13.3 ( ) I (NA-I) 0.47 ( ) I (NA-I) I (NA-I) Nasal 0.82 ( ) 12.6 ( ) I (NA-I) 0.79 ( ) 8.14 ( ) I (NA-I) Inferior 0.5 ( ) I (N-I) I (NA-I) 0.35 ( ) I (NA-I) I (NA-I) Sector ( ) 2.59 ( ) I (NA-I) 0.93 ( ) 3.7 ( ) I (NA-I) ( ) 2.96 ( ) I (NA-I) 0.77 ( ) 10.4 ( ) I (NA-I) ( ) 3.52 ( ) I (NA-I) 0.55 ( ) 5.00 ( ) I (NA-I) ( ) 13.3 ( ) I (NA-I) 0.71 ( ) I (NA-I) I (NA-I) ( ) 7.77 ( ) I (NA-I) 0.67 ( ) 8.51 ( ) I (NA-I) ( ) 2.76 ( ) I (NA-I) 0.85 ( ) 10.4 ( ) I (NA-I) ( ) 7.4 ( ) NA (NA-NA) 0.97 ( ) 1.11 ( ) I (NA-I) ( ) 5.92 ( ) I (NA-I) 0.93 ( ) 1.48 ( ) I (NA-I) ( ) I (NA-I) I (NA-I) 0.62 ( ) 5.18 ( ) I (NA-I) ( ) I (NA-I) I (NA-I) 0.48 ( ) I (NA-I) I (NA-I) ( ) I (NA-I) I (NA-I) 0.47 ( ) I (NA-I) I (NA-I) ( ) I (NA-I) I (NA-I) 0.90 ( ) I (NA-I) I (NA-I) Abbreviations: CI, confidence interval; I, infinite; LR, likelihood ratio; NA, not applicable; OCT, optical coherence tomography; RNFL, retinal nerve fiber layer. a Manufactured by Carl Zeiss Meditec, Inc, Dublin, California. OCT requires a careful consideration of the type of patient being studied. Currently, there is a lack of a gold standard for diagnosing glaucoma. Often, visualization of a change on optic disc photographs, which may take years to occur, or VF defects seen on achromatic automated perimetry, which may not show up until many retinal nerve fibers are already lost, are used to define glaucoma. The current study did not include so-called preperimetric glaucoma patients or glaucoma suspects, defined as patients who are suspected to have or have be- 1607

6 gun to lose nerve fibers in the absence of VF changes. This will require challenging studies to observe glaucoma suspects over a long period to determine if measurements on the Cirrus HD-OCT become abnormal before changes appear on achromatic perimetry or stereoscopic disc photographs. Therefore, it is important to keep in mind that our estimates of diagnostic capabilities associated with both technologies are unfairly increased and may not be directly applicable to the suspected patients evaluated in our clinical practice. AUCs AT DIFFERENT STAGES OF GLAUCOMA In a comparison of glaucoma discrimination capability at different disease stages, Cirrus HD-OCT showed significantly higher AUCs for patients with early-stage disease, in more sectors, compared with Stratus OCT. However, there were no significant measurement differences (including mean RNFL thicknesses) in most sectors in patients with moderate to advanced glaucoma. Because structural damage may precede functional decay in glaucoma, the diagnostic capabilities of structural tests in patients with later glaucoma stages may be of less clinical significance than early-stage detection in patients. Whether Cirrus HD- OCT may be valuable in early detection of structural glaucomatous damage remains to be explored in the future as this study was based on subjects with glaucoma with preexisting VF defects. LIKELIHOOD RATIOS In our study, in both superior and inferior sectors, LRs for outside normal limits and borderline results from both Cirrus HD-OCT and Stratus OCT data were generally associated with large effects on posttest glaucoma probabilities. However, LRs for within normal limits results were associated with insignificant changes with both instruments. In other words, such data are of limited use for exclusion of disease. Overall, LRs of within normal limits results ranged from 0.35 to 0.97 for Cirrus HD- OCT and 0.50 to 0.95 for Stratus OCT. In general, Cirrus HD-OCT showed higher LRs associated with outside normal limits results as well as lower LRs with within normal limits results in most sectors except for the nasal quadrant and 3-, 4-, and 5- sectors compared with Stratus OCT with borderline results. This may be because of the better sensitivity and specificity of Cirrus HD-OCT, as reviewed earlier. Another probable contributory factor is a difference between the internal normative databases of the 2 OCT instruments. In the Stratus OCT database, very few Asian individuals (3% of total) are included, 22 whereas in construction of the Cirrus HD-OCT normative database, more than 20% of subjects were Asian. 23 The substantially higher proportion of Asian ethnic data in the Cirrus HD-OCT database than in that of the Stratus OCT may contribute to glaucoma diagnostic accuracy as assessed by LR in Asian individuals. At the nasal quadrant and 3-, 4-, and 5- sectors, the Cirrus HD-OCT performed more poorly than Stratus OCT, as assessed by LR calculations with borderline results and also when AUCs were compared. This deficiency of Cirrus HD-OCT in nasalside clock-hour measurements may be explained by the data acquisition mode. For example, large vessels in the optic nerve head dominate on the nasal side. Thus, data from this side are generally of low precision and suffer from inaccuracies. Although the LRs provide an indication of how much the odds of disease change based on a positive or a negative result, they would be useful when obtained in a clinically more relevant population. In our study design, as well as many similar case-control studies, the normal control group may not be the ideal one in a real-life situation because it is a highly selected group of subjects with no suspicion for the disease. Furthermore, patients may have early glaucoma without achromatic perimetric abnormalities in real life. Our estimates of LRs, therefore, should be interpreted with caution. Limitations of the current study include the use of a homogeneous population. Normative databases derived from a mixture of races might not be optimal for statistical comparisons of RNFL thickness data, although more Asian control eyes are included in the Cirrus HD-OCT database than in that of Stratus OCT. Data from a single Asian population, and including a large number of normaltension glaucoma eyes, would be valuable to assist in sensitivity and specificity measurements. Also, we cannot exclude the possible effects of selection bias, in that most of our subjects with glaucoma had normal-tension glaucoma with an IOP lower than 22 mm Hg on multiple IOP measurements (82 of 100; 82%). Imaging comparisons of such glaucomatous eyes showing high IOPs might yield different outcomes in terms of RNFL thickness, sensitivity, and specificity. In conclusion, both Cirrus HD-OCT and Stratus OCT RNFL thickness measurements showed good glaucoma diagnostic capabilities. Cirrus HD-OCT showed the better overall glaucoma discrimination capability in patients with early-stage glaucoma. Whereas abnormal and borderline results (as detected by comparison with normative databases) were associated with high LRs and large effects on posttest probabilities of glaucoma, normal results from either instrument were associated with small to insignificant effects on posttest probabilities. Finally, these findings may apply to Asian eyes based on our study design and they may not be generalized to other races. Submitted for Publication: February 11, 2009; final revision received May 21, 2009; accepted June 19, Correspondence: Michael S. Kook, MD, Department of Ophthalmology, University of Ulsan, College of Medicine, Asan Medical Center, Pungnap-2-dong, Songpagu, Seoul , Korea (mskook@amc.seoul.kr). Financial Disclosure: None reported. REFERENCES 1. Burgansky-Eliash Z, Wollstein G, Chu T, et al. Optical coherence tomography machine learning classifiers for glaucoma detection: a preliminary study. Invest Ophthalmol Vis Sci. 2005;46(11): Huang ML, Chen HY. Development and comparison of automated classifiers for glaucoma diagnosis using Stratus optical coherence tomography. Invest Ophthalmol Vis Sci. 2005;46(11): Kanamori A, Nagai-Kusuhara A, Escano MF, Maeda H, Nakamura M, Negi A. Comparison of confocal scanning laser ophthalmoscopy, scanning laser polarimetry and optical coherence tomography to discriminate ocular hypertension 1608

7 and glaucoma at an early stage. Graefes Arch Clin Exp Ophthalmol. 2006;244 (1): Lalezary M, Medeiros FA, Weinreb RN, et al. Baseline optical coherence tomography predicts the development of glaucomatous change in glaucoma suspects. Am J Ophthalmol. 2006;142(4): Leung CK, Chan WM, Yung WH, et al. Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. Ophthalmology. 2005;112(3): Manassakorn A, Nouri-Mahdavi K, Caprioli J. Comparison of retinal nerve fiber layer thickness and optic disk algorithms with optical coherence tomography to detect glaucoma. Am J Ophthalmol. 2006;141(1): Medeiros FA, Zangwill LM, Bowd C, Vessani RM, Susanna R Jr, Weinreb RN. Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am J Ophthalmol. 2005;139(1): Naithani P, Sihota R, Sony P, et al. Evaluation of optical coherence tomography and heidelberg retinal tomography parameters in detecting early and moderate glaucoma. Invest Ophthalmol Vis Sci. 2007;48(7): Nouri-Mahdavi K, Nikkhou K, Hoffman DC, Law SK, Caprioli J. Detection of early glaucoma with optical coherence tomography (StratusOCT). J Glaucoma. 2008; 17(3): Parikh RS, Parikh S, Sekhar GC, et al. Diagnostic capability of optical coherence tomography (Stratus OCT 3) in early glaucoma. Ophthalmology. 2007;114 (12): Sihota R, Sony P, Gupta V, Dada T, Singh R. Comparing glaucomatous optic neuropathy in primary open angle and chronic primary angle closure glaucoma eyes by optical coherence tomography. Ophthalmic Physiol Opt. 2005;25(5): Quigley HA, Katz J, Derick RJ, Gilbert D, Sommer A. An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. Ophthalmology. 1992;99(1): Sommer A, Katz J, Quigley HA, et al. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol. 1991;109(1): Zeyen TG, Caprioli J. Progression of disc and field damage in early glaucoma. Arch Ophthalmol. 1993;111(1): Paunescu LA, Schuman JS, Price LL, et al. Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using StratusOCT. Invest Ophthalmol Vis Sci. 2004;45(6): Hodapp E, Parrish RK, Anderson DR. Clinical Decisions in Glaucoma. St Louis, MO: Mosby; 1993: Mills RP, Budenz DL, Lee PP, et al. Categorizing the stage of glaucoma from prediagnosis to end-stage disease. Am J Ophthalmol. 2006;141(1): DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3): Jaeschke R, Guyatt GH, Sackett DL. Users guides to the medical literature, III: how to use an article about a diagnostic test. B: what are the results and will they help me in caring for my patients? the Evidence-Based Medicine Working Group. JAMA. 1994;271(9): Budenz DL, Michael A, Chang RT, McSoley J, Katz J. Sensitivity and specificity of the Stratus OCT for perimetric glaucoma. Ophthalmology. 2005;112(1): Bowd C, Zangwill LM, Berry CC, et al. Detecting early glaucoma by assessment of retinal nerve fiber layer thickness and visual function. Invest Ophthalmol Vis Sci. 2001;42(9): Budenz DL, Anderson DR, Varma R, et al. Determinants of normal retinal nerve fiber layer thickness measured by Stratus OCT. Ophthalmology. 2007;114(6): Gurses-Ozden R, Durbin M, Callan T, et al. Distribution of retinal nerve fiber layer thickness using Cirrus HD-OCT spectral domain technology. Paper presented at: ARVO 2008 Annual Meeting; April 30, 2008; Fort Lauderdale, FL. E-abstract Correction Error in etable. In the Socioeconomics and Health Services article Use of Global Visual Acuity Data in a Time Trade-off Approach to Calculate the Cost Utility of Cataract Surgery by Lansingh and Carter, published in the September 2009 issue of the Archives (2009;127[9]: ), there was an error in etable 2. For the parameter cost utility, the equation should have been CU=C D /[U 2 (1 e rl )/r U 1 (1 e rl )/r]. 1609

Retinal Nerve Fiber Layer Measurement Variability with Spectral Domain Optical Coherence Tomography

Retinal Nerve Fiber Layer Measurement Variability with Spectral Domain Optical Coherence Tomography pissn: 1011-8942 eissn: 2092-9382 Korean J Ophthalmol 2012;26(1):32-38 http://dx.doi.org/10.3341/kjo.2012.26.1.32 Retinal Nerve Fiber Layer Measurement Variability with Spectral Domain Optical Coherence

More information

Retinal nerve fiber layer thickness in Indian eyes with optical coherence tomography

Retinal nerve fiber layer thickness in Indian eyes with optical coherence tomography Original articles in Indian eyes with optical coherence tomography Malik A, Singh M, Arya SK, Sood S, Ichhpujani P Department of Ophthalmology Government Medical College and Hospital, Sector 32, Chandigarh,

More information

Diagnostic Accuracy of OCT with a Normative Database to Detect Diffuse Retinal Nerve Fiber Layer Atrophy: Diffuse Atrophy Imaging Study METHODS

Diagnostic Accuracy of OCT with a Normative Database to Detect Diffuse Retinal Nerve Fiber Layer Atrophy: Diffuse Atrophy Imaging Study METHODS Glaucoma Diagnostic Accuracy of OCT with a Normative Database to Detect Diffuse Retinal Nerve Fiber Layer Atrophy: Diffuse Atrophy Imaging Study Jin Wook Jeoung, 1,2 Seok Hwan Kim, 1,3 Ki Ho Park, 1,2

More information

Comparative evaluation of time domain and spectral domain optical coherence tomography in retinal nerve fiber layer thickness measurements

Comparative evaluation of time domain and spectral domain optical coherence tomography in retinal nerve fiber layer thickness measurements Original article Comparative evaluation of time domain and spectral domain optical coherence tomography in retinal nerve fiber layer thickness measurements Dewang Angmo, 1 Shibal Bhartiya, 1 Sanjay K Mishra,

More information

Translating data and measurements from stratus to cirrus OCT in glaucoma patients and healthy subjects

Translating data and measurements from stratus to cirrus OCT in glaucoma patients and healthy subjects Romanian Journal of Ophthalmology, Volume 60, Issue 3, July-September 2016. pp:158-164 GENERAL ARTICLE Translating data and measurements from stratus to cirrus OCT in glaucoma patients and healthy subjects

More information

Retinal Nerve Fiber Layer Measurements in Myopia Using Optical Coherence Tomography

Retinal Nerve Fiber Layer Measurements in Myopia Using Optical Coherence Tomography Original Article Philippine Journal of OPHTHALMOLOGY Retinal Nerve Fiber Layer Measurements in Myopia Using Optical Coherence Tomography Dennis L. del Rosario, MD and Mario M. Yatco, MD University of Santo

More information

CLINICAL SCIENCES. optic neuropathy characterized

CLINICAL SCIENCES. optic neuropathy characterized CLINICAL SCIENCES Spectral-Domain Optical Coherence Tomography for Detection of Localized Retinal Nerve Fiber Layer Defects in Patients With Open-Angle Glaucoma Na Rae Kim, MD; Eun Suk Lee, MD, PhD; Gong

More information

Macular Ganglion Cell Complex Measurement Using Spectral Domain Optical Coherence Tomography in Glaucoma

Macular Ganglion Cell Complex Measurement Using Spectral Domain Optical Coherence Tomography in Glaucoma Med. J. Cairo Univ., Vol. 83, No. 2, September: 67-72, 2015 www.medicaljournalofcairouniversity.net Macular Ganglion Cell Complex Measurement Using Spectral Domain Optical Coherence Tomography in Glaucoma

More information

Diagnostic Accuracy of the Optical Coherence Tomography in Assessing Glaucoma Among Filipinos. Part 2: Optic Nerve Head and Retinal

Diagnostic Accuracy of the Optical Coherence Tomography in Assessing Glaucoma Among Filipinos. Part 2: Optic Nerve Head and Retinal Original Article Philippine Journal of OPHTHALMOLOGY Diagnostic Accuracy of the Optical Coherence Tomography in Assessing Glaucoma Among Filipinos. Part 2: Optic Nerve Head and Retinal Nerve Fiber Layer

More information

Ganglion cell complex scan in the early prediction of glaucoma

Ganglion cell complex scan in the early prediction of glaucoma Original article in the early prediction of glaucoma Ganekal S Nayana Super Specialty Eye Hospital and Research Center, Davangere, Karnataka, India Abstract Objective: To compare the macular ganglion cell

More information

Relationship between the GDx VCC and Stratus OCT in Primary Open Angle Glaucoma

Relationship between the GDx VCC and Stratus OCT in Primary Open Angle Glaucoma Relationship between the GDx VCC and Stratus OCT in Primary Open Angle Glaucoma Reza Zarei, MD 1 Mohammad Soleimani, MD 2 Sasan Moghimi, MD 3 Mohammad Yaser Kiarudi, MD 2 Mahmoud Jabbarvand, MD 1 Yadollah

More information

Noel de Jesus Atienza, MD, MSc and Joseph Anthony Tumbocon, MD

Noel de Jesus Atienza, MD, MSc and Joseph Anthony Tumbocon, MD Original Article Philippine Journal of OPHTHALMOLOGY Diagnostic Accuracy of the Optical Coherence Tomography in Assessing Glaucoma Among Filipinos. Part 1: Categorical Outcomes Based on a Normative Database

More information

Available online at Pelagia Research Library. Advances in Applied Science Research, 2013, 4(6):

Available online at   Pelagia Research Library. Advances in Applied Science Research, 2013, 4(6): Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 2013, 4(6):201-206 ISSN: 0976-8610 CODEN (USA): AASRFC Comparison of glaucoma diagnostic ability of retinal nerve

More information

To assess the glaucoma diagnostic ability of Fourier Domain Optical Coherence Tomography

To assess the glaucoma diagnostic ability of Fourier Domain Optical Coherence Tomography American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-02, Issue-11, pp-104-110 www.ajer.org Research Paper Open Access To assess the glaucoma diagnostic ability of

More information

Optical coherence tomography (OCT) is a noninvasive,

Optical coherence tomography (OCT) is a noninvasive, Ability of Stratus OCT to Detect Progressive Retinal Nerve Fiber Layer Atrophy in Glaucoma Eun Ji Lee, 1,2 Tae-Woo Kim, 1,2 Ki Ho Park, 2 Mincheol Seong, 3 Hyunjoong Kim, 4 and Dong Myung Kim 2 PURPOSE.

More information

Comparison of Retinal Nerve Fiber Layer Thickness between Stratus and Spectralis OCT

Comparison of Retinal Nerve Fiber Layer Thickness between Stratus and Spectralis OCT pissn: 1011-8942 eissn: 2092-9382 Korean J Ophthalmol 2011;25(3):166-173 DOI: 10.3341/kjo.2011.25.3.166 Original Article Comparison of Retinal Nerve Fiber Layer Thickness between Stratus and Spectralis

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 12, December ISSN

International Journal of Scientific & Engineering Research, Volume 4, Issue 12, December ISSN International Journal of Scientific & Engineering Research, Volume 4, Issue 12, December-2013 108 Name of Chief and Corresponding Author : Dr Chandrima Paul TITLE : Comparison of glaucoma diagnostic ability

More information

Factors Associated With Visual Field Progression in Cirrus Optical Coherence Tomography-guided Progression Analysis: A Topographic Approach

Factors Associated With Visual Field Progression in Cirrus Optical Coherence Tomography-guided Progression Analysis: A Topographic Approach ORIGINAL STUDY Factors Associated With Visual Field Progression in Cirrus Optical Coherence Tomography-guided Progression Analysis: A Topographic Approach Joong Won Shin, MD, Kyung Rim Sung, MD, PhD, Jiyun

More information

STRUCTURE & FUNCTION An Integrated Approach for the Detection and Follow-up of Glaucoma. Module 3a GDx

STRUCTURE & FUNCTION An Integrated Approach for the Detection and Follow-up of Glaucoma. Module 3a GDx STRUCTURE & FUNCTION An Integrated Approach for the Detection and Follow-up of Glaucoma Module 3a GDx Educational Slide Deck Carl Zeiss Meditec, Inc. November 2005 1 Structure & Function Modules Module

More information

Scanning Laser Polarimetry and Optical Coherence Tomography for Detection of Retinal Nerve Fiber Layer Defects

Scanning Laser Polarimetry and Optical Coherence Tomography for Detection of Retinal Nerve Fiber Layer Defects 접수번호 : 2008-105 Korean Journal of Ophthalmology 2009;23:169-175 ISSN : 1011-8942 DOI : 10.3341/kjo.2009.23.3.169 Scanning Laser Polarimetry and Optical Coherence Tomography for Detection of Retinal Nerve

More information

Clinical Use of OCT in Assessing Glaucoma Progression

Clinical Use of OCT in Assessing Glaucoma Progression r e v i e w Clinical Use of OCT in Assessing Glaucoma Progression Jacek Kotowski, MD; Gadi Wollstein, MD; Lindsey S. Folio, BS; Hiroshi Ishikawa, MD; Joel S. Schuman, MD ABSTRACT Detection of disease progression

More information

Research Article The Pattern of Retinal Nerve Fiber Layer and Macular Ganglion Cell-Inner Plexiform Layer Thickness Changes in Glaucoma

Research Article The Pattern of Retinal Nerve Fiber Layer and Macular Ganglion Cell-Inner Plexiform Layer Thickness Changes in Glaucoma Hindawi Ophthalmology Volume 2017, Article ID 78365, 8 pages https://doi.org/10.1155/2017/78365 Research Article The Pattern of Retinal Nerve Fiber Layer and Macular Ganglion Cell-Inner Plexiform Layer

More information

MATERIALS AND METHODS

MATERIALS AND METHODS Glaucoma Analysis of Peripapillary Retinal Nerve Fiber Distribution in Normal Young Adults Seung Woo Hong, 1,2 Myung Douk Ahn, 2 Shin Hee Kang, 1,3 and Seong Kyu Im 1,4 PURPOSE. To determine the anatomic

More information

EXPERIMENTAL AND THERAPEUTIC MEDICINE 6: , 2013

EXPERIMENTAL AND THERAPEUTIC MEDICINE 6: , 2013 268 Comparison of optic nerve morphology in eyes with glaucoma and eyes with non-arteritic anterior ischemic optic neuropathy by Fourier domain optical coherence tomography YUXIN YANG 1, HAITAO ZHANG 1,

More information

Study of Retinal Nerve Fiber Layer Thickness Within Normal Hemivisual Field in Primary Open-Angle Glaucoma and Normal-Tension Glaucoma

Study of Retinal Nerve Fiber Layer Thickness Within Normal Hemivisual Field in Primary Open-Angle Glaucoma and Normal-Tension Glaucoma Study of Retinal Nerve Fiber Layer Thickness Within Normal Hemivisual Field in Primary Open-Angle Glaucoma and Normal-Tension Glaucoma Chiharu Matsumoto, Shiroaki Shirato, Mai Haneda, Hiroko Yamashiro

More information

Relationship between GDx VCC and Stratus OCT in juvenile glaucoma

Relationship between GDx VCC and Stratus OCT in juvenile glaucoma (2009) 23, 2182 2186 & 2009 Macmillan Publishers Limited All rights reserved 09-222X/09 $32.00 www.nature.com/eye CLINICAL STUDY Relationship between GDx VCC and Stratus OCT in juvenile glaucoma R Zareii,

More information

CLINICAL SCIENCES. Felipe A. Medeiros, MD; Linda M. Zangwill, PhD; Christopher Bowd, PhD; Robert N. Weinreb, MD

CLINICAL SCIENCES. Felipe A. Medeiros, MD; Linda M. Zangwill, PhD; Christopher Bowd, PhD; Robert N. Weinreb, MD CLINICAL SCIENCES Comparison of the GDx VCC Scanning Laser Polarimeter, HRT II Confocal Scanning Laser Ophthalmoscope, and Stratus OCT Optical Coherence Tomograph for the Detection of Glaucoma Felipe A.

More information

A Formula to Predict Spectral Domain Optical Coherence Tomography (OCT) Retinal Nerve Fiber Layer Measurements Based on Time Domain OCT Measurements

A Formula to Predict Spectral Domain Optical Coherence Tomography (OCT) Retinal Nerve Fiber Layer Measurements Based on Time Domain OCT Measurements pissn: 1011-8942 eissn: 2092-9382 Korean J Ophthalmol 2012;26(5):369-377 http://dx.doi.org/10.3341/kjo.2012.26.5.369 Original Article A Formula to Predict Spectral Domain Optical Coherence Tomography (OCT)

More information

OtticaFisiopatologica

OtticaFisiopatologica Anno quindicesimo dicembre 2010 How to assess the retinal nerve fiber layer thickness Antonio Ferreras Miguel Servet University Hospital, Zaragoza. Aragón Health Sciences Institute University of Zaragoza

More information

Il contributo dell'angio-oct: valutazione integrata della componente nervosa e vascolare della malattia glaucomatosa

Il contributo dell'angio-oct: valutazione integrata della componente nervosa e vascolare della malattia glaucomatosa SIMPOSIO G.O.A.L. - LE NUOVE FRONTIERE DIAGNOSTICHE E LE LINEE DI INDIRIZZO AMBULATORIALI DEL GLAUCOMA Coordinatore e moderatore: D. Mazzacane Presidente: L. Rossetti Il contributo dell'angio-oct: valutazione

More information

Performance of time-domain and spectral-domain Optical Coherence Tomography for glaucoma screening

Performance of time-domain and spectral-domain Optical Coherence Tomography for glaucoma screening Performance of time-domain and spectral-domain Optical Coherence Tomography for glaucoma screening Boel Bengtsson, Sabina Andersson and Anders Heijl Department of Clinical Sciences, Ophthalmology in Malmo,

More information

Method for comparing visual field defects to local RNFL and RGC damage seen on frequency domain OCT in patients with glaucoma.

Method for comparing visual field defects to local RNFL and RGC damage seen on frequency domain OCT in patients with glaucoma. Method for comparing visual field defects to local RNFL and RGC damage seen on frequency domain OCT in patients with glaucoma. Donald C. Hood 1,2,* and Ali S. Raza 1 1 Department of Psychology, Columbia

More information

OPTOMETRY RESEARCH PAPER

OPTOMETRY RESEARCH PAPER C L I N I C A L A N D E X P E R I M E N T A L OPTOMETRY RESEARCH PAPER Interocular symmetry of retinal nerve fibre layer thickness in healthy eyes: a spectral-domain optical coherence tomographic study

More information

Relationship Between Structure

Relationship Between Structure Original Article Relationship Between Structure and Function of the Optic Nerve Head-Glaucoma versus Normal Dr Savita Bhat, Dr Anna Elias, Dr Siddharth Pawar, Dr S.J. Saikumar, Dr Alpesh Rajput, superior,

More information

RETINAL NERVE FIBER LAYER

RETINAL NERVE FIBER LAYER CLINICAL SCIENCES The Effect of Scan Diameter on Retinal Nerve Fiber Layer Thickness Measurement Using Stratus Optic Coherence Tomography Giacomo Savini, MD; Piero Barboni, MD; Michele Carbonelli, MD;

More information

Seiji T. Takagi, Yoshiyuki Kita, Asuka Takeyama, and Goji Tomita. 1. Introduction. 2. Subjects and Methods

Seiji T. Takagi, Yoshiyuki Kita, Asuka Takeyama, and Goji Tomita. 1. Introduction. 2. Subjects and Methods Ophthalmology Volume 2011, Article ID 914250, 5 pages doi:10.1155/2011/914250 Clinical Study Macular Retinal Ganglion Cell Complex Thickness and Its Relationship to the Optic Nerve Head Topography in Glaucomatous

More information

OCT in the Diagnosis and Follow-up of Glaucoma

OCT in the Diagnosis and Follow-up of Glaucoma OCT in the Diagnosis and Follow-up of Glaucoma Karim A Raafat MD. Professor Of Ophthalmology Cairo University Hmmmm! Do I have Glaucoma or not?! 1 Visual Function 100% - N Gl Structure : - 5000 axon /

More information

Reproducibility of measurements and variability of the classification algorithm of Stratus OCT in normal, hypertensive, and glaucomatous patients

Reproducibility of measurements and variability of the classification algorithm of Stratus OCT in normal, hypertensive, and glaucomatous patients ORIGINAL RESEARCH Reproducibility of measurements and variability of the classification algorithm of Stratus OCT in normal, hypertensive, and glaucomatous patients Alfonso Antón 1,2,3 Marta Castany 1,2

More information

NIH Public Access Author Manuscript Ophthalmology. Author manuscript; available in PMC 2009 October 4.

NIH Public Access Author Manuscript Ophthalmology. Author manuscript; available in PMC 2009 October 4. NIH Public Access Author Manuscript Published in final edited form as: Ophthalmology. 2008 August ; 115(8): 1352 1357.e2. doi:10.1016/j.ophtha.2008.01.011. Combining Nerve Fiber Layer to Optimize Glaucoma

More information

Sensitivity and specificity of new GDx parameters Colen TP, Tang NEML, Mulder PGH and Lemij HG Submitted for publication CHAPTER 7

Sensitivity and specificity of new GDx parameters Colen TP, Tang NEML, Mulder PGH and Lemij HG Submitted for publication CHAPTER 7 Sensitivity and specificity of new GDx parameters Colen TP, Tang NEML, Mulder PGH and Lemij HG Submitted for publication CHAPTER 7 61 Abstract Purpose The GDx is a scanning laser polarimeter that assesses

More information

Advances in OCT Murray Fingeret, OD

Advances in OCT Murray Fingeret, OD Disclosures Advances in OCT Murray Fingeret, OD Consultant Alcon, Allergan, Bausch & Lomb, Carl Zeiss Meditec, Diopsys, Heidelberg Engineering, Reichert, Topcon Currently Approved OCT Devices OCT Devices

More information

Characterization of Peripapillary Atrophy Using Spectral Domain Optical Coherence Tomography

Characterization of Peripapillary Atrophy Using Spectral Domain Optical Coherence Tomography pissn: 1011-8942 eissn: 2092-9382 Korean J Ophthalmol 2010;24(6):353-359 DOI: 10.3341/kjo.2010.24.6.353 Characterization of Peripapillary trophy Using Spectral Domain Optical Coherence Tomography Original

More information

NIH Public Access Author Manuscript Arch Ophthalmol. Author manuscript; available in PMC 2013 October 01.

NIH Public Access Author Manuscript Arch Ophthalmol. Author manuscript; available in PMC 2013 October 01. NIH Public Access Author Manuscript Published in final edited form as: Arch Ophthalmol. 2012 September ; 130(9): 1107 1116. doi:10.1001/archophthalmol.2012.827. A Combined Index of Structure and Function

More information

Assessment of Retinal Nerve Fiber Layer Changes by Cirrus High-definition Optical Coherence Tomography in Myopia

Assessment of Retinal Nerve Fiber Layer Changes by Cirrus High-definition Optical Coherence Tomography in Myopia Divya Singh et al Original REASEARCH 10.5005/jp-journals-10028-1223 Assessment of Retinal Nerve Fiber Layer Changes by Cirrus High-definition Optical Coherence Tomography in Myopia 1 Divya Singh, 2 Sanjay

More information

Ability of Scanning Laser Polarimetry (GDx) to Discriminate among Early Glaucomatous, Ocular Hypertensive and Normal Eyes in the Korean Population

Ability of Scanning Laser Polarimetry (GDx) to Discriminate among Early Glaucomatous, Ocular Hypertensive and Normal Eyes in the Korean Population Korean J Ophthalmol Vol. 18:1-8, 2004 Ability of Scanning Laser Polarimetry (GDx) to Discriminate among Early Glaucomatous, Ocular Hypertensive and Normal Eyes in the Korean Population Sun Young Lee, MD,

More information

Introduction. Hemma Resch, Gabor Deak, Ivania Pereira and Clemens Vass. e225. Acta Ophthalmologica 2012

Introduction. Hemma Resch, Gabor Deak, Ivania Pereira and Clemens Vass. e225. Acta Ophthalmologica 2012 Comparison of optic disc parameters using spectral domain cirrus high-definition optical coherence tomography and confocal scanning laser ophthalmoscopy in normal eyes Hemma Resch, Gabor Deak, Ivania Pereira

More information

Glaucoma: Diagnostic Modalities

Glaucoma: Diagnostic Modalities Glaucoma: Diagnostic Modalities - Dr. Barun Kumar Nayak, Dr. Sarika Ramugade Glaucoma is a leading cause of blindness in the world, especially in older people. Early detection and treatment by ophthalmologist

More information

Differences between Non-arteritic Anterior Ischemic Optic Neuropathy and Open Angle Glaucoma with Altitudinal Visual Field Defect

Differences between Non-arteritic Anterior Ischemic Optic Neuropathy and Open Angle Glaucoma with Altitudinal Visual Field Defect pissn: 1011-8942 eissn: 2092-9382 Korean J Ophthalmol 2015;29(6):418-423 http://dx.doi.org/10.3341/kjo.2015.29.6.418 Original Article Differences between Non-arteritic Anterior Ischemic Optic Neuropathy

More information

The Effect of Pupil Dilation on Scanning Laser Polarimetry With Variable Corneal Compensation

The Effect of Pupil Dilation on Scanning Laser Polarimetry With Variable Corneal Compensation C L I N I C A L S C I E N C E The Effect of Pupil Dilation on Scanning Laser Polarimetry With Variable Corneal Compensation Amjad Horani, MD; Shahar Frenkel, MD, PhD; Eytan Z. Blumenthal, MD BACKGROUND

More information

The Role of the RNFL in the Diagnosis of Glaucoma

The Role of the RNFL in the Diagnosis of Glaucoma Chapter 1. The Role of the RNFL in the Diagnosis of Glaucoma Introduction Glaucoma is an optic neuropathy characterized by a loss of of retinal ganglion cells and their axons, the Retinal Nerve Fiber Layer

More information

Detection of Glaucoma Using Scanning Laser Polarimetry with Enhanced Corneal Compensation

Detection of Glaucoma Using Scanning Laser Polarimetry with Enhanced Corneal Compensation Detection of Glaucoma Using Scanning Laser Polarimetry with Enhanced Corneal Compensation Felipe A. Medeiros, Christopher Bowd, Linda M. Zangwill, Chirag Patel, and Robert N. Weinreb From the Hamilton

More information

Comparison of macular GCIPL and peripapillary RNFL deviation maps for detection of glaucomatous eye with localized RNFL defect

Comparison of macular GCIPL and peripapillary RNFL deviation maps for detection of glaucomatous eye with localized RNFL defect Comparison of macular GCIPL and peripapillary RNFL deviation maps for detection of glaucomatous eye with localized RNFL defect Mi Jeung Kim, 1,2 Ki Ho Park, 1,2 Beong Wook Yoo, 3 Jin Wook Jeoung, 1,2 Hee

More information

Glaucoma Diagnosis. Definition of Glaucoma. Diagnosing Glaucoma. Vision Institute Annual Fall Conference

Glaucoma Diagnosis. Definition of Glaucoma. Diagnosing Glaucoma. Vision Institute Annual Fall Conference Glaucoma Diagnosis Vision Institute Annual Fall Conference Mitchell W. Dul, OD, MS, FAAO mdul@sunyopt.edu Richard J. Madonna, MA, OD, FAAO rmadonna@sunyopt.edu Definition of Glaucoma Glaucoma can be regarded

More information

Cirrus High-Definition Optical Coherence Tomography Compared with Stratus Optical Coherence Tomography in Glaucoma Diagnosis

Cirrus High-Definition Optical Coherence Tomography Compared with Stratus Optical Coherence Tomography in Glaucoma Diagnosis Glaucoma Cirrus High-Definition Optical Coherence Tomography Compared with Stratus Optical Coherence Tomography in Glaucoma Diagnosis Javier Moreno-Montañés, Natalia Olmo, Aurora Alvarez, Noelia García,

More information

Reproducibility of Nerve Fiber Layer Thickness Measurements by Use of Optical Coherence Tomography

Reproducibility of Nerve Fiber Layer Thickness Measurements by Use of Optical Coherence Tomography Reproducibility of Nerve Fiber Layer Thickness Measurements by Use of Optical Coherence Tomography Eytan Z. Blumenthal, MD, 1 Julia M. Williams, BS, 1 Robert N. Weinreb, MD, 1 Christopher A. Girkin, MD,

More information

Reproducibility of Retinal Nerve Fiber Layer Thickness Measurements Using Spectral Domain Optical Coherence Tomography

Reproducibility of Retinal Nerve Fiber Layer Thickness Measurements Using Spectral Domain Optical Coherence Tomography ORIGINAL STUDY Reproducibility of Retinal Nerve Fiber Layer Thickness Measurements Using Spectral Domain Optical Coherence Tomography Huijuan Wu, MD, PhD,*w Johannes F. de Boer, PhD,z and Teresa C. Chen,

More information

Jong Chul Han, Da Ye Choi, and Changwon Kee. 1. Introduction

Jong Chul Han, Da Ye Choi, and Changwon Kee. 1. Introduction Ophthalmology Volume 2015, Article ID 641204, 7 pages http://dx.doi.org/10.1155/2015/641204 Clinical Study The Different Characteristics of Cirrus Optical Coherence Tomography between Superior Segmental

More information

Glaucoma is an optic neuropathy characterized by a gradual

Glaucoma is an optic neuropathy characterized by a gradual Optical Coherence Tomography Machine Learning Classifiers for Glaucoma Detection: A Preliminary Study Zvia Burgansky-Eliash, 1,2 Gadi Wollstein, 1,2 Tianjiao Chu, 3 Joseph D. Ramsey, 4 Clark Glymour, 4

More information

Diagnostic Accuracy of Scanning Laser Polarimetry with Enhanced versus Variable Corneal Compensation

Diagnostic Accuracy of Scanning Laser Polarimetry with Enhanced versus Variable Corneal Compensation Diagnostic Accuracy of Scanning Laser olarimetry with Enhanced versus Variable Corneal T. A. Mai, MD, N. J. Reus, MD, hd, H. G. Lemij, MD, hd urpose: To compare the diagnostic accuracy of scanning laser

More information

Screening for Glaucoma in High-Risk Populations Using Optical Coherence Tomography

Screening for Glaucoma in High-Risk Populations Using Optical Coherence Tomography Screening for Glaucoma in High-Risk Populations Using Optical Coherence Tomography Gisèle Li, MD, 1,2 Alvine Kamdeu Fansi, MD, PhD, 2 Jean-François Boivin, MD, ScD, 1 Lawrence Joseph, PhD, 1 Paul Harasymowycz,

More information

Patterns of Subsequent Progression of Localized Retinal Nerve Fiber Layer Defects on Red-free Fundus Photographs in Normal-tension Glaucoma

Patterns of Subsequent Progression of Localized Retinal Nerve Fiber Layer Defects on Red-free Fundus Photographs in Normal-tension Glaucoma pissn: 1011-8942 eissn: 2092-9382 Korean J Ophthalmol 2014;28(4):330-336 http://dx.doi.org/10.3341/kjo.2014.28.4.330 Original Article Patterns of Subsequent Progression of Localized Retinal Nerve Fiber

More information

Investigation of the relationship between central corneal thickness and retinal nerve fiber layer thickness in ocular hypertension

Investigation of the relationship between central corneal thickness and retinal nerve fiber layer thickness in ocular hypertension Acta Medica Anatolia Volume 2 Issue 1 2014 Investigation of the relationship between central corneal thickness and retinal nerve fiber layer thickness in ocular hypertension Remzi Mısır 1, Sinan Sarıcaoğlu

More information

Structural examina.on: Imaging

Structural examina.on: Imaging ManaMa: Glaucoma Structural examina.on: Imaging Luís Abegão Pinto, MD, PhD Department of Ophthalmology CHLC Lisbon Faculty of Medicine, Lisbon University 1 11-10- 2013 Structural changes Qualitative changes

More information

Scanning Laser Polarimetry in Patients with Acute Attack of Primary Angle Closure

Scanning Laser Polarimetry in Patients with Acute Attack of Primary Angle Closure Scanning Laser Polarimetry in Patients with Acute Attack of Primary Angle Closure Jimmy S. M. Lai*, Clement C. Y. Tham, Jonathan C. H. Chan*, Nelson K. F. Yip, Wilson W. T. Tang, Patrick S. H. Li*, Jane

More information

THE BASIC PATHOLOGIC CHANGE IN GLAUCOMA IS

THE BASIC PATHOLOGIC CHANGE IN GLAUCOMA IS Quantitative Assessment of Atypical Birefringence Images Using Scanning Laser Polarimetry With Variable Corneal Compensation HARMOHINA BAGGA, MD, DAVID S. GREENFIELD, MD, AND WILLIAM J. FEUER, MS PURPOSE:

More information

Evaluation of retinal nerve fiber layer thickness parameters in myopic population using scanning laser polarimetry (GDxVCC)

Evaluation of retinal nerve fiber layer thickness parameters in myopic population using scanning laser polarimetry (GDxVCC) Dada T et al Original article Evaluation of retinal nerve fiber layer thickness parameters in myopic population using scanning laser polarimetry (GDxVCC) Dada T1, Aggarwal A1, Bali SJ2, Sharma A1, Shah

More information

Clinical Study Glaucoma Diagnostic Accuracy of Machine Learning Classifiers Using Retinal Nerve Fiber Layer and Optic Nerve Data from SD-OCT

Clinical Study Glaucoma Diagnostic Accuracy of Machine Learning Classifiers Using Retinal Nerve Fiber Layer and Optic Nerve Data from SD-OCT Ophthalmology Volume 2013, Article ID 789129, 7 pages http://dx.doi.org/10.1155/2013/789129 Clinical Study Glaucoma Diagnostic Accuracy of Machine Learning Classifiers Using Retinal Nerve Fiber Layer and

More information

Peripapillary Retinal Thickness. Maps in the Evaluation of Glaucoma Patients: A Novel Concept.

Peripapillary Retinal Thickness. Maps in the Evaluation of Glaucoma Patients: A Novel Concept. Peripapillary Retinal Thickness Maps in the Evaluation of Glaucoma Patients: A Novel Concept The Harvard community has made this article openly available. Please share how this access benefits you. Your

More information

Clinical decision making based on data from GDx: One year observations

Clinical decision making based on data from GDx: One year observations Washington University School of Medicine Digital Commons@Becker Open Access Publications 2002 Clinical decision making based on data from GDx: One year observations James C. Bobrow Washington University

More information

Advances in the Structural Evaluation of Glaucoma with Optical Coherence Tomography

Advances in the Structural Evaluation of Glaucoma with Optical Coherence Tomography Curr Ophthalmol Rep (2013) 1:98 105 DOI 10.1007/s40135-013-0014-4 DIAGNOSIS AND MONITORING OF GLAUCOMA (S SMITH, SECTION EDITOR) Advances in the Structural Evaluation of Glaucoma with Optical Coherence

More information

CORRELATING OF THE VISUAL FIELD INDEX WITH MEAN DEVIATION AND PATTERN STANDARD DEVIATION IN GLAUCOMA PATIENTS

CORRELATING OF THE VISUAL FIELD INDEX WITH MEAN DEVIATION AND PATTERN STANDARD DEVIATION IN GLAUCOMA PATIENTS CORRELATING OF THE VISUAL FIELD INDEX WITH MEAN DEVIATION AND PATTERN STANDARD DEVIATION IN GLAUCOMA PATIENTS Bui Thi Huong Giang, Pham Thi Kim Thanh Department of Ophthamology, Hanoi Medical University

More information

CLINICAL SCIENCES. (FDP) was designed to emphasize the response characteristics of the parasol

CLINICAL SCIENCES. (FDP) was designed to emphasize the response characteristics of the parasol CLINICAL SCIENCES Detecting Visual Function Abnormalities Using the Swedish Interactive Threshold Algorithm and Matrix Perimetry in Eyes With Glaucomatous Appearance of the Optic Disc Lisandro M. Sakata,

More information

21st Century Visual Field Testing

21st Century Visual Field Testing Supplement to Supported by an educational grant from Carl Zeiss Meditec, Inc. Winter 2011 21st Century Visual Field Testing the Evolution Continues 21st Century Visual Field Testing 21st Century Visual

More information

NIH Public Access Author Manuscript Br J Ophthalmol. Author manuscript; available in PMC 2010 April 29.

NIH Public Access Author Manuscript Br J Ophthalmol. Author manuscript; available in PMC 2010 April 29. NIH Public Access Author Manuscript Published in final edited form as: Br J Ophthalmol. 2009 August ; 93(8): 1057 1063. doi:10.1136/bjo.2009.157875. Retinal nerve fibre layer thickness measurement reproducibility

More information

Scanning laser polarimetry (SLP) incorporates a confocal

Scanning laser polarimetry (SLP) incorporates a confocal Scanning Laser Polarimetry with Enhanced Corneal Compensation and Optical Coherence Tomography in Normal and Glaucomatous Eyes Mitra Sehi, 1 Stephen Ume, 1 David S. Greenfield, 1 and Advanced Imaging in

More information

S Morishita, T Tanabe, S Yu, M Hangai, T Ojima, H Aikawa, N Yoshimura. Clinical science

S Morishita, T Tanabe, S Yu, M Hangai, T Ojima, H Aikawa, N Yoshimura. Clinical science Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan Correspondence to: Dr T Tanabe, Department of Ophthalmology, The Tazuke Kofukai Medical Institute,

More information

Rates of Abnormal Retinal Nerve Fiber Layer and Ganglion Cell Layer OCT Scans in Healthy Myopic Eyes: Cirrus Versus RTVue

Rates of Abnormal Retinal Nerve Fiber Layer and Ganglion Cell Layer OCT Scans in Healthy Myopic Eyes: Cirrus Versus RTVue CLINICAL SCIENCE Rates of Abnormal Retinal Nerve Fiber Layer and Ganglion Cell Layer OCT Scans in Healthy Myopic Eyes: Cirrus Versus RTVue Jean-Claude Mwanza, MD, MPH, PhD; Fouad E. Sayyad, MD; Ahmad A.

More information

Position of retinal blood vessels correlates with retinal nerve fibre layer thickness profiles as measured with GDx VCC and ECC

Position of retinal blood vessels correlates with retinal nerve fibre layer thickness profiles as measured with GDx VCC and ECC Department of Ophthalmology, Medical University of Vienna, Austria Correspondence to Clemens Vass, Department of Ophthalmology and Optometry, Medical University of Vienna, General Hospital, Währinger Gürtel

More information

Cirrus TM HD-OCT. Details defi ne your decisions

Cirrus TM HD-OCT. Details defi ne your decisions Cirrus TM HD-OCT Details defi ne your decisions 2 With high-defi nition OCT Carl Zeiss Meditec takes you beyond standard spectral domain Built on 10 years experience at the vanguard of innovation, Carl

More information

Validation of the UNC OCT Index for the Diagnosis of Early Glaucoma

Validation of the UNC OCT Index for the Diagnosis of Early Glaucoma Article https://doi.org/10.1167/tvst.7.2.16 Validation of the UNC OCT Index for the Diagnosis of Early Glaucoma Jean-Claude Mwanza 1, Gary Lee 2, Donald L. Budenz 1, Joshua L. Warren 3, Michael Wall 4,

More information

Discrimination between normal and glaucomatous eyes with visual field and scanning laser polarimetry measurements

Discrimination between normal and glaucomatous eyes with visual field and scanning laser polarimetry measurements 586 Glaucoma Service, Department of Ophthalmology, University of Campinas, Campinas, Brazil R Lauande-Pimentel R A Carvalho H C Oliveira D C Gonçalves L M Silva V P Costa Glaucoma Service, Department of

More information

Generally, myopia is a condition of the eye that makes it

Generally, myopia is a condition of the eye that makes it Glaucoma Effect of Myopia on the Progression of Primary Open- Angle Glaucoma Jin Young Lee, 1 Kyung Rim Sung, 1 Seungbong Han, 2 and Jung Hwa Na 1 1 Department of Ophthalmology, College of Medicine, University

More information

Evaluation of Retinal nerve fiber layer thickness, mean deviation and visual field

Evaluation of Retinal nerve fiber layer thickness, mean deviation and visual field Evaluation of Retinal nerve fiber layer thickness, mean deviation and visual field index in progressive glaucoma. Sebastián A. Banegas,¹ Alfonso Antón, ² Antonio Morilla,² Marco Bogado, ² Eleonora M.Ayala²,

More information

New Normative Database of Inner Macular Layer Thickness Measured by Spectralis OCT Used as Reference Standard for Glaucoma Detection

New Normative Database of Inner Macular Layer Thickness Measured by Spectralis OCT Used as Reference Standard for Glaucoma Detection Article https://doi.org/10.1167/tvst.7.1.20 New Normative Database of Inner Macular Layer Thickness Measured by Spectralis OCT Used as Reference Standard for Glaucoma Detection María Nieves-Moreno 1,2,

More information

Scanning laser polarimetry (SLP) provides real-time, objective

Scanning laser polarimetry (SLP) provides real-time, objective The Effect of Atypical Birefringence Patterns on Glaucoma Detection Using Scanning Laser Polarimetry with Variable Corneal Compensation Christopher Bowd, Felipe A. Medeiros, Robert N. Weinreb, and Linda

More information

Although measurements of the optic disc and retinal nerve

Although measurements of the optic disc and retinal nerve Longitudinal Variability of Optic Disc and Retinal Nerve Fiber Layer Measurements Christopher Kai-shun Leung, 1,2 Carol Yim-lui Cheung, 1 Dusheng Lin, 1,3 Chi Pui Pang, 1 Dennis S. C. Lam, 1 and Robert

More information

Research Article Relationship between Spectral-Domain Optical Coherence Tomography and Standard Automated Perimetry in Healthy and Glaucoma Patients

Research Article Relationship between Spectral-Domain Optical Coherence Tomography and Standard Automated Perimetry in Healthy and Glaucoma Patients BioMed Research International, Article ID 514948, 7 pages http://dx.doi.org/10.1155/2014/514948 Research Article Relationship between Spectral-Domain Optical Coherence Tomography and Standard Automated

More information

Detection of Progressive Retinal Nerve Fiber Layer Loss in Glaucoma Using Scanning Laser Polarimetry with Variable Corneal Compensation

Detection of Progressive Retinal Nerve Fiber Layer Loss in Glaucoma Using Scanning Laser Polarimetry with Variable Corneal Compensation Detection of Progressive Retinal Nerve Fiber Layer Loss in Glaucoma Using Scanning Laser Polarimetry with Variable Corneal Compensation Felipe A. Medeiros, Luciana M. Alencar, Linda M. Zangwill, Christopher

More information

Correspondence should be addressed to Verena Prokosch;

Correspondence should be addressed to Verena Prokosch; Hindawi Ophthalmology Volume 2017, Article ID 8014294, 6 pages https://doi.org/10.1155/2017/8014294 Research Article Comparison between the Correlations of Retinal Nerve Fiber Layer Thickness Measured

More information

Ophthalmology Department, Lozano Blesa University Hospital, c/ San Juan Bosco 15, Zaragoza, Spain 2

Ophthalmology Department, Lozano Blesa University Hospital, c/ San Juan Bosco 15, Zaragoza, Spain 2 Ophthalmology Volume 2012, Article ID 107053, 6 pages doi:10.1155/2012/107053 Clinical Study Comparison of Retinal Nerve Fiber Layer Thickness Measurements in Healthy Subjects Using Fourier and Time Domain

More information

Eye Movements, Strabismus, Amblyopia, and Neuro-Ophthalmology

Eye Movements, Strabismus, Amblyopia, and Neuro-Ophthalmology Eye Movements, Strabismus, Amblyopia, and Neuro-Ophthaology Scanning Laser Polarimetry, but Not Optical Coherence Tomography Predicts Permanent Visual Field Loss in Acute Nonarteritic Anterior Ischemic

More information

STANDARD AUTOMATED PERIMETRY IS A GENERALLY

STANDARD AUTOMATED PERIMETRY IS A GENERALLY Comparison of Long-term Variability for Standard and Short-wavelength Automated Perimetry in Stable Glaucoma Patients EYTAN Z. BLUMENTHAL, MD, PAMELA A. SAMPLE, PHD, LINDA ZANGWILL, PHD, ALEXANDER C. LEE,

More information

Correlating Structure With Function in End-Stage Glaucoma

Correlating Structure With Function in End-Stage Glaucoma C L I N I C A L S C I E N C E Correlating Structure With Function in End-Stage Glaucoma Eytan Z. Blumenthal, MD; Amjad Horani, MD; Rajesh Sasikumar, MD; Chandrasekhar Garudadri, MD; Addepalli Udaykumar,

More information

Clinical Study Choroidal Thickness in Eyes with Unilateral Ocular Ischemic Syndrome

Clinical Study Choroidal Thickness in Eyes with Unilateral Ocular Ischemic Syndrome Hindawi Publishing Corporation Journal of Ophthalmology Volume 215, Article ID 62372, 5 pages http://dx.doi.org/1.1155/215/62372 Clinical Study Choroidal Thickness in Eyes with Unilateral Ocular Ischemic

More information

* Şükrü Bayraktar, MD, Zerrin Bayraktar, MD, and Ömer Faruk Yilmaz, MD

* Şükrü Bayraktar, MD, Zerrin Bayraktar, MD, and Ömer Faruk Yilmaz, MD Journal of Glaucoma 10:163 169 2001 Lippincott Williams & Wilkins, Inc. Influence of Scan Radius Correction for Ocular Magnification and Relationship Between Scan Radius With Retinal Nerve Fiber Layer

More information

Linking structure and function in glaucoma

Linking structure and function in glaucoma CET CONTINUING Sponsored by 1 CET POINT Linking structure and function in glaucoma 50 Dr Samantha McGinnigle PhD, BSc (Hons), MCOptom, AHEA This article will give an overview of the latest imaging technology

More information

A comparison of HRT II and GDx imaging for glaucoma detection in a primary care eye clinic setting

A comparison of HRT II and GDx imaging for glaucoma detection in a primary care eye clinic setting (2007) 21, 1050 1055 & 2007 Nature Publishing Group All rights reserved 0950-222X/07 $30.00 www.nature.com/eye CLINICAL STUDY A comparison of HRT II and GDx imaging for glaucoma detection in a primary

More information

Research Article Repeatability of Perimacular Ganglion Cell Complex Analysis with Spectral-Domain Optical Coherence Tomography

Research Article Repeatability of Perimacular Ganglion Cell Complex Analysis with Spectral-Domain Optical Coherence Tomography Ophthalmology Volume 2015, Article ID 605940, 5 pages http://dx.doi.org/10.1155/2015/605940 Research Article Repeatability of Perimacular Ganglion Cell Complex Analysis with Spectral-Domain Optical Coherence

More information

Cirrus TM HD-OCT. Details define your decisions

Cirrus TM HD-OCT. Details define your decisions Cirrus TM HD-OCT Details define your decisions 2 With high-definition OCT Carl Zeiss Meditec takes you beyond standard spectral domain Built on 10 years experience at the vanguard of innovation, Carl Zeiss

More information

In some patients with glaucoma, standard (achromatic) automated

In some patients with glaucoma, standard (achromatic) automated Detecting Early Glaucoma by Assessment of Retinal Nerve Fiber Layer Thickness and Visual Function Christopher Bowd, 1 Linda M. Zangwill, 1 Charles C. Berry, 2 Eytan Z. Blumenthal, 1 Cristiana Vasile, 1

More information