THE increase in cardiac output during

Size: px
Start display at page:

Download "THE increase in cardiac output during"

Transcription

1 Effects of Cateeholamines and Atropine on Cardiovascular Response to Exercise in the Dog By ERNST W. 0. KECK, M.D., MICHAEL J. ALLWOOD, M.B., PH.D., ROBERT J. MARSHALL, M.D., M.R.C.P., AND JOHN T. SHEPHERD, M.D., M.CH., D.SC. THE increase in cardiac output during exercise in the dog is caused mainly by tachycardia, the stroke volume increasing only slightly from the resting value. 1 " In the present study, the response to exercise was analyzed further by observing the modifications induced by infusions of cateeholamines and by atropinization. The results show that under these conditions the increased cardiac output during exercise may be achieved by wide variations in the relative contributions of stroke volume and heart rate. Methods Twelve mongrel dogs, weighing from to 0 Kg., were taught to stand quietly and to run at graded speeds on a treadmill. The techniques were similar to those described previously but, in all observations being reported here, the cardiac catheters were introduced under local anesthesia, and a densitometer with a fast dynamic response was used. Infusions of epinephrine bitartrate (Supra - renin),t norepinephrine bitartrate (levarterenol; Levophed), and isoproterenol hydrochloride (Isuprel-Winthrop) in doses of to 0 ;ttg. of the salt per minute were made into the right atrium by means of a motor-driven syringe. The cardiac output was measured by the indicator-dilution methodt during the third minute of infusion. From the Mayo Clinic and the Mayo Foundation, Bochester, Minnesota. Supported in part by a grant from the Minnesota Heart Association, and in part by Eesearch Grant H- from the U.S. Public Health Service. Received for publication December 0, 10. *The densitometer was similar to model XC-0A manufactured by the Waters Corporation, Eochester, Minnesota, but it had a slightly larger internal diameter to permit higher sampling rates. tsynthetie J-epinephrine (Suprarenin) was generously supplied by Winthrop Laboratories, Xew York, New York. }The cardio-green dye used in this method was kindly supplied by Hynson, Westcott and Dunning, Baltimore, Maryland. When an infusion was given during exercise, both procedures were started almost simultaneously. After each infusion, sufficient time was permitted for the heart rate and blood pressure to return to previous levels. Atropine sulfate was given by injection into the right atrium, usually in divided doses, until no further increase in heart rate occurred. Results Table 1 summarizes the results from experiments in which the cateeholamines were infused. It includes only data obtained at rest and at one grade of exercise. Responses to other doses of the drugs and other grades of exercise were qualitatively similar. Table summarizes the results of five experiments, also at rest and at one grade of exercise, before and after atropinization. Figure 1 shows dilution curves obtained in one of the dogs during rest and exercise before and after atropinization. The effects of exercise alone were similar to those previously reported. For the 15 experiments summarized in the tables, the mean increases from rest to exercise were 1 per cent for cardiac output, per cent for heart rate, and per cent for stroke volume. Epinephrine Infusions of epinephrine at the rate of jug. per minute in three resting dogs increased the aortic blood pressure by per cent, the cardiac output by per cent, the heart rate by per cent, and the stroke volume by per cent (mean values). Infusions during exercise were associated with a cardiac output similar to that during identical exercise before any infusion was given. The heart rate was consistently less and the stroke volume consistently greater than values during control exercises. Results of four other experiments were discarded because the infusion was associated with ventricular extra- 5 Circulation Research, Volume IX. May 11

2 CATECHOLAMINES, ATROPINE, AND EXERCISE 5 (Dog- kg.) iorta- - REST - STANDING REST -STANDING (Following.0 mg. Alropine) (mg/l.j 1 W AQBTA ror! fftf A l i.l B mg Cert ran int > SupfiOf io-g Con/a 1 ' no EXERCISE - km.p.h. (mg.su h1 > a EXERCISE- km.p.h. (Following.0 mg. Atrotpine) V v,v AORTA A AQRT, - Z - w Figure 1 Indicator-dilution curves from dog, experiment 1, standing at rent (left panels) and running at km.p.h. (right panels) both before (above) and after (beloiv) intravenous injection of atropine. Electrically damped aortic pressure pulses, from winch the heart rate ivas counted, also are shown. Table 1 Cardiac Response 11 to Infusions of Catecholamines During Rest and Exercise Dog 1 5 Experiment 1 5 Weight, Kg Condition Best, standing Eunning, 1 km.p.h. Running, km.p.li. Running, km.p.h. Before infus;ion H During infusiont volume, ml. (Experiments 1 to : epinephrine bitartrate, pg. per minute. Experiments to : norepinephrine bitartrate, p%. per minute. Experiments to : isoproterenol hydrochloride, /ig. npr per minntp. minute. Circulation Reiearch, Volume IX, May 11 '

3 5 KECK, ALLWOOD, MARSHALL, SHEPHERD Table Cardiac Response" to Atropinizution During Rest and Exercise Dog H 1 Experiment Weight, Kg. 0 Total dose. mg 'Same abbreviations as in table 1. Condition Running, 1 km.p.li. Running, kin.p.li. Running, km.p.li. Running, km.p.li. Running, 1 km.p.li. Before injection Duri CO ng injection H.R. S.V systoles, ventricular tachycardia, or severe sinus arrhythmia. Norepinephrine Infusions of norepinephrine at a rate of /xg. per minute in three resting dogs increased the mean aortic blood pressure by 5 per cent; the cardiac output was reduced by 11 per cent, the heart rate was reduced by per cent, and the stroke volume was increased by 5 per cent (mean values). Infusions of norepinephrine during exercise were associated with a cardiac output slightly less than that during control periods of exercise; the heart rate was considerably less and the stroke volume was greater than corresponding values during control exercises. Thus, the increased stroke volume induced by both epinephrine and norepinephrine at rest was maintained at a comparable level during exercise. Figure (a) illustrates the results in dog 5 when norepinephrine was infused at a rate of /xg. per minute. Isoproterenol Infusions of isoproterenol at a rate of /xg. per minute in four resting dogs reduced the mean aortic blood pressure by 15 per cent; the cardiac output increased by per cent, the heart rate increased by per cent, and the stroke volume was reduced by per cent (mean values). During exercise, the cardiac output was to (mean ) per cent greater than during identical exercise when no infusion was given; the corresponding heart rate was to (mean 1) per cent greater; the stroke volume was almost unchanged, varying by to + (mean 0) per cent. The mean blood pressure was to 0 mm. Hg less than that under control conditions of exercise. Atropine Figure (b) shows the comprehensive results in experiment ; as noted previously, representative results from all five experiments involving atropine are summarized in table. Before atropinization, the cardiac output, heart rate, and stroke volume during exercise were increased by 5, 0, and per cent over the resting values. Measurements made after atropinization both at rest and during exercise showed corresponding increases of 1,, and 0 per cent. Discussion As already mentioned, the response of the heart rate and stroke volume during moderate exercise prior to the administration of the drugs was similar to that previously reported. When epinephrine was infused during exercise, the cardiac output was similar to that during comparable exercise without the drug, but the heart rate was less; therefore, the stroke volume was greater. Thus, the increase in stroke volume induced by the infusion of epinephrine at rest was maintained at a comparable level during exercise (table 1). Similarly, the smaller increase induced by the infusion of norepinephrine at rest was main- Circitlation Research, Volume IX, May 11

4 CATECHOLAMINES, ATROPINE, AND EXERCISE 5 DOG (1 kg.) (Dog. kg.) MEAN l AORTIC PRESSURE,<0 (mm. Hg) HEART RATE (beats/min.) 0 HEART RATE (bears /min.) 1 STROKE VOLUME (ml.) 0 STROKE VOLUME (ml.) CARDIAC OUTPUT (L./ min.) CARDIAC OUTPUT (L.min.) 5 SPEED (km.p.h.) b Figure 1 1 SPEED (km.p.h.) (a) Cardiovascular response to exercise in dog before (closed circles) and during (open circles) infusion of norepinephrine bitartrate at /xg. per minute, (b) Cardiovascular response to exercise in dog, experiment, before (closed circles) and after (open circles) intravenous injection of atropine. tained at a comparable level during exercise (table 1 andfig. a). The bradycardia caused by infusion of norepinephrine is a reflex vagal effect mediated by the pressure receptors. In an added experiment, norepinephrine was infused at a rate of 0 jig. per minute in an atropinized dog. Despite an increase in mean aortic pressure from 1 to 0 mm. Hg, the heart rate increased from 0 to 0 beats per minute, the stroke volume increased from 15 to 1 ml., and the cardiac output doubled. Infusion of epiuephrine at the rate of yug. per minute increased the mean blood pressure from 1 to mm. Hg; the heart rate increased from 1 to beats per minute, and the stroke volume increased from 1 to 5 ml.; the cardiac output was doubled. Thus, the increase in stroke volume in nonatropinized dogs during infusion of epinephrine and norepinephrine is unlikely to be caused solely by a relative or absolute increase in the filling period, but is probably also a consequence of the direct effect of these substances on the heart. Rushmer and associates previously pointed Circulation Research, Volume IX, May 11 out certain similarities between the effects of infusion of isoproterenol at rest and those of exercise in dogs. Both circumstances are characterized by tachycardia, increased cardiac output, reduced ventricular diameter, increased arterial pulse pressure, and decreased peripheral resistance. Little change occurs in stroke volume. However, isoproterenol decreases the mean blood pressure, whereas exercise increases it. With mild and moderate exercise, the cardiac output during atropinization was similar to, or slightly less than, that obtained during previous exercise of comparable degree. However, the relative contribution of changes in the heart rate and stroke volume to the increased output during exercise differed. Thus, after injection of atropine, the heart rate at rest was as much, or almost as much, as that during subsequent exercise; hence, the increase in output with exercise was wholly or predominantly caused by an increase in stroke volume. Although recent evidence has shown that exercise is accompanied in both man and

5 KECK, ALLWOOD, MARSHALL, SHEPHERD dog 1 " by relatively small changes in stroke volume, great changes in stroke volume may occur under other circumstances. Thus, Warner and Toronto, who produced complete atrioventricular dissociation in dogs and stimulated the ventricles at various rates, found that, within wide limits, the cardiac output was independent of the heart rate both at rest and during mild exercise. The present observations provide further evidence of the ability of the heart in unusual circumstances to regulate its output largely or predominantly by changes in stroke volume. In the atropinized dog, owing to the tachycardia at rest, the stroke volume is small, but it increases during exercise to approach the premedication value. By contrast, both epinephrine and norepinephrine increase the stroke volume in the resting animal, and a similar increase in stroke volume is maintained when these agents are infused during exercise. Thus, we agree with Warner and Toronto, who concluded that the cardiac output may be regulated to provide the required flow mainly through changes in stroke volume, even though adjustment of the heart rate is the usual means of attaining this end. Summary The manner in which the administration of epinephrine, norepinephrine, isoproterenol, and atropine modifies the cardiovascular response to exercise has been studied in 1 dogs. In control observations, exercise increased the cardiac output by 1 per cent, the heart rate by per cent, and the stroke volume by per cent. When epinephrine was infused during identical exercise, the cardiac output was similar; however, the stroke volume was increased by per cent. During infusion of norepinephrine, the cardiac output was reduced by 11 per cent compared with that during control exercise, and the stroke volume was increased by 5 per cent. With isoproterenol, the cardiac output exceeded that during control exercise, but the stroke volume was unchanged. Prior to administration of atropine, the cardiac output at rest averaged. L. per minute. After injection of atropine, the cardiac output averaged. L. per minute, the heart rate increased from 11 to beats per minute, and the stroke volume decreased from 5 to 15 ml. Before atropinization, the cardiac output, heart rate, and stroke volume during exercise were increased by 5, 0, and per cent over the resting values; after atropinization, the corresponding increases were 1,, and 0 per cent. Thus, while cardiac output during exercise normally is regulated mainly by changes in the heart rate, the stroke volume may make a major contribution under other circumstances. Acknowledgment The authors wish to thank W. A. Meeker and Julius Zarins for their assistance. References 1. FRANKLIN, D. L., ELLIS, R. M., AND EOSHMBR, R. F.: Aortic blood flow in dogs during treadmill exercise. J. Appl. Physiol. 1: 0, 15.. EUSHMEE, R. F.: Constancy of stroke volume in ventricular responses to exertion. Am. J. Physiol. 1: 5, 15.. WANG, Y., MARSHALL, R. J., AND SHEPHERD, J. T.: Stroke volume in the dog during graded exercise. Circulation Research : 55, 10.. RUSHMER, R. F., SMITH, O., AND FRANKLIN, D.: Mechanisms of cardiac control in exercise. Circulation Research : 0, WANG, Y., MARSHALL, R. J., AND SHEPHERD, J. T.: Effect of changes in posture and of graded exercise on stroke volume in man. J. Clin. Invest. : 51, 10.. WARNER, H. R., AND TORONTO, A. F.: Regulation of cardiac output through stroke volume. Circulation Research : 5, 10. Circulation Research, Volume IX, May 11

RUSIIMER and his colleagues, using a

RUSIIMER and his colleagues, using a Stroke Volume in the Dog During Graded Exercise BY YANG WANG, M.D., ROBERT J. MARSHALL, M.D., M.R.C.P., AND JOHN T. SHEPHERD, M.D., M.CH., D.SC. RUSIIMER and his colleagues, using a sonar teelmic to monitor

More information

ANCE ON THE LEFT ATRIAL PRESSURE PULSE: A

ANCE ON THE LEFT ATRIAL PRESSURE PULSE: A THE EFFECTS OF ACUTELY INCREASED SYSTEMIC RESIST- ANCE ON THE LEFT ATRIAL PRESSURE PULSE: A METHOD FOR THE CLINICAL DETECTION OF MITRAL INSUFFICIENCY By EUGENE BRAUNWALD, G. H. WELCH, JR., AND ANDREW G.

More information

Determination of Stroke Volume from Left Ventricular Isovolumetric Contraction and Ejection Times

Determination of Stroke Volume from Left Ventricular Isovolumetric Contraction and Ejection Times Determination of Stroke Volume from Left Ventricular Isovolumetric Contraction and Ejection Times Clarence M. AGRESS, M.D. and Stanley WEGNER SUMMARY Examination was made of the relationship of left ventricular

More information

BOTH ATEOPINE and isoproterenol

BOTH ATEOPINE and isoproterenol Effects of tropine and Isoproterenol on Cardiac Output, Central Venous Pressure, and Transit Time of Indicators Placed at Three Different Sites in the Venous System y KLPH RTEX, M.D., J. CULIE GUNXELLS,

More information

QUIZ 2. Tuesday, April 6, 2004

QUIZ 2. Tuesday, April 6, 2004 Harvard-MIT Division of Health Sciences and Technology HST.542J: Quantitative Physiology: Organ Transport Systems Instructors: Roger Mark and Jose Venegas MASSACHUSETTS INSTITUTE OF TECHNOLOGY Departments

More information

By Bertram Pitt, M.D., Eric C. Elliot, M.D., and Donald E. Gregg, Ph.D., M.D.

By Bertram Pitt, M.D., Eric C. Elliot, M.D., and Donald E. Gregg, Ph.D., M.D. Adrenergic Receptor Activity in the Coronary Arteries of the Unanesthetized Dog By Bertram Pitt, M.D., Eric C. Elliot, M.D., and Donald E. Gregg, Ph.D., M.D. ABSTRACT Both a- (vasoconstrictor) and (- (vasodilator)

More information

BIPN100 F15 Human Physiol I (Kristan) Lecture 14 Cardiovascular control mechanisms p. 1

BIPN100 F15 Human Physiol I (Kristan) Lecture 14 Cardiovascular control mechanisms p. 1 BIPN100 F15 Human Physiol I (Kristan) Lecture 14 Cardiovascular control mechanisms p. 1 Terms you should understand: hemorrhage, intrinsic and extrinsic mechanisms, anoxia, myocardial contractility, residual

More information

SLOPE-VOLUME METHOD AS AN INDEX OF PULMONARY BLOOD VOLUME* tion of the blood flow and the rate of diminishing

SLOPE-VOLUME METHOD AS AN INDEX OF PULMONARY BLOOD VOLUME* tion of the blood flow and the rate of diminishing EVALUATION OF THE SLOPE-VOLUME METHOD AS AN INDEX OF PULMONARY BLOOD VOLUME* By YANG WANG,t JOHN T. SHEPHERD 4 AND ROBERT J. MARSHALL (From the Mayo Clinic and Mayo Foundation,II Rochester, Minn.) (Submitted

More information

various types of cardiac denervation.

various types of cardiac denervation. Journal of Clinical Investigation Vol. 42, No. 5, 1963 THE ROLE OF AUTONOMIC AND MYOCARDIAL FACTORS I.N CARDIAC CONTROL* By THOMAS A. BRUCE.-t CARLETON B. CHAPMAN, ORLAND BAKER, AND JOSEPH N. FISHER (From

More information

Heart Pump and Cardiac Cycle. Faisal I. Mohammed, MD, PhD

Heart Pump and Cardiac Cycle. Faisal I. Mohammed, MD, PhD Heart Pump and Cardiac Cycle Faisal I. Mohammed, MD, PhD 1 Objectives To understand the volume, mechanical, pressure and electrical changes during the cardiac cycle To understand the inter-relationship

More information

Chapter 9. Learning Objectives. Learning Objectives 9/11/2012. Cardiac Arrhythmias. Define electrical therapy

Chapter 9. Learning Objectives. Learning Objectives 9/11/2012. Cardiac Arrhythmias. Define electrical therapy Chapter 9 Cardiac Arrhythmias Learning Objectives Define electrical therapy Explain why electrical therapy is preferred initial therapy over drug administration for cardiac arrest and some arrhythmias

More information

CARDIAC OUTPUT,VENOUS RETURN AND THEIR REGULATION. DR.HAROON RASHID. OBJECTIVES

CARDIAC OUTPUT,VENOUS RETURN AND THEIR REGULATION. DR.HAROON RASHID. OBJECTIVES CARDIAC OUTPUT,VENOUS RETURN AND THEIR REGULATION. DR.HAROON RASHID. OBJECTIVES Define Stroke volume, Cardiac output Venous return,& identity their normal values. Describe control (intrinsic & extrinsic)

More information

FOWLER AND COWORKERS have

FOWLER AND COWORKERS have Effect of 1Arterenol Infusion on "Central Blood Volume" in the Dog By OSCAR W. SHADLB, M.D., JAMES C. MOORE, M.D. AND DOAL M. BILLIG, A.B. Infusion of 1arterenol into anesthetized dogs increased the volume

More information

*Generating blood pressure *Routing blood: separates. *Ensuring one-way blood. *Regulating blood supply *Changes in contraction

*Generating blood pressure *Routing blood: separates. *Ensuring one-way blood. *Regulating blood supply *Changes in contraction *Generating blood pressure *Routing blood: separates pulmonary and systemic circulations *Ensuring one-way blood flow: valves *Regulating blood supply *Changes in contraction rate and force match blood

More information

THE CARDIOVASCULAR SYSTEM. Heart 2

THE CARDIOVASCULAR SYSTEM. Heart 2 THE CARDIOVASCULAR SYSTEM Heart 2 PROPERTIES OF CARDIAC MUSCLE Cardiac muscle Striated Short Wide Branched Interconnected Skeletal muscle Striated Long Narrow Cylindrical PROPERTIES OF CARDIAC MUSCLE Intercalated

More information

Hemodynamic effects of isoproterenol and norepinephrine in acute cardiac tamponade

Hemodynamic effects of isoproterenol and norepinephrine in acute cardiac tamponade Hemodynamic effects of isoproterenol and norepinephrine in acute cardiac tamponade Noble O. Fowler, John C. Holmes J Clin Invest. 1969;48(3):502-507. https://doi.org/10.1172/jci106007. Research Article

More information

is Prevented by Atropine

is Prevented by Atropine Brit. Heart J., 1969, 31, 67. Action of Propranolol on Left Ventricular Contraction in Aortic Stenosis When a Fall in Heart Rate is Prevented by Atropine JOHN HAMER AND JAMES FLEMING From the Department

More information

HOW LOW CAN YOU GO? HYPOTENSION AND THE ANESTHETIZED PATIENT.

HOW LOW CAN YOU GO? HYPOTENSION AND THE ANESTHETIZED PATIENT. HOW LOW CAN YOU GO? HYPOTENSION AND THE ANESTHETIZED PATIENT. Donna M. Sisak, CVT, LVT, VTS (Anesthesia/Analgesia) Seattle Veterinary Specialists Kirkland, WA dsisak@svsvet.com THE ANESTHETIZED PATIENT

More information

Citation Acta medica Nagasakiensia. 1984, 29

Citation Acta medica Nagasakiensia. 1984, 29 NAOSITE: Nagasaki University's Ac Title Author(s) Efficacy of Coenzyme Q10 Administra Aortic Stenosis and Pacemaker Induc Igarashi, Katsuro Citation Acta medica Nagasakiensia. 1984, 29 Issue Date 1984-10-25

More information

Cardiovascular Physiology. Heart Physiology. Introduction. The heart. Electrophysiology of the heart

Cardiovascular Physiology. Heart Physiology. Introduction. The heart. Electrophysiology of the heart Cardiovascular Physiology Heart Physiology Introduction The cardiovascular system consists of the heart and two vascular systems, the systemic and pulmonary circulations. The heart pumps blood through

More information

The Cardiovascular System

The Cardiovascular System The Cardiovascular System The Cardiovascular System A closed system of the heart and blood vessels The heart pumps blood Blood vessels allow blood to circulate to all parts of the body The function of

More information

Determination of left ventricular stroke volume from the arterial pressure wave

Determination of left ventricular stroke volume from the arterial pressure wave Integrative Human Cardiovascular Control The Panum Institute/ Rigshospitalet, University of Copenhagen May 2018 Determination of left ventricular stroke volume from the arterial pressure wave Jo(Han)nes

More information

The Cardiovascular System

The Cardiovascular System Chapter 18 Part A The Cardiovascular System 1/19/16 1 Annie Leibovitz/Contact Press Images Similarities of Cardiac and Skeletal Muscle RMP Ion concentration Deploarization Action Potential Repolarization

More information

Introduction. Circulation

Introduction. Circulation Introduction Circulation 1- Systemic (general) circulation 2- Pulmonary circulation carries oxygenated blood to all parts of the body carries deoxygenated blood to the lungs From Lt. ventricle aorta From

More information

Simultaneous Pressure, Flow and Diameter of the Vena Cava with Fright and Exercise

Simultaneous Pressure, Flow and Diameter of the Vena Cava with Fright and Exercise Simultaneous Pressure, Flow and Diameter of the Vena Cava with Fright and Exercise By Emilio Tafur, M.D., and Warren G. Guntheroth, M.D. With the technical assistance of Donald G. Breozea/e and George

More information

Norepinephrine (Levophed )

Norepinephrine (Levophed ) Norepinephrine (Levophed ) Scope C3IFT CCT Generic Name: Norepinephrine Trade Name: Levophed Chemical Class: Therapeutic Class: Actions: Pharmacokinetics: Vasopressor Vasopressor Mechanism of Action: Norepinephrine

More information

Major Function of the Cardiovascular System. Transportation. Structures of the Cardiovascular System. Heart - muscular pump

Major Function of the Cardiovascular System. Transportation. Structures of the Cardiovascular System. Heart - muscular pump Structures of the Cardiovascular System Heart - muscular pump Blood vessels - network of tubes Blood - liquid transport vehicle brachiocephalic trunk superior vena cava right pulmonary arteries right pulmonary

More information

equal volume of physiological saline solution. For the

equal volume of physiological saline solution. For the Journal of Clinical Investigation Vol. 41, No. 3, 1962 VENTRICULAR FUNCTION AND AUTONOMIC NERVOUS ACTIVITY DURING CYCLOPROPANE ANESTHESIA IN MAN * By HENRY L. PRICE, RICHARD E. JONES, STANLEY DEUTSCH AND

More information

Principles of Anatomy and Physiology

Principles of Anatomy and Physiology Principles of Anatomy and Physiology 14 th Edition CHAPTER 20 The Cardiovascular System: The Heart Introduction The purpose of the chapter is to: 1. Learn about the components of the cardiovascular system

More information

Impedance Cardiography (ICG) Method, Technology and Validity

Impedance Cardiography (ICG) Method, Technology and Validity Method, Technology and Validity Hemodynamic Basics Cardiovascular System Cardiac Output (CO) Mean arterial pressure (MAP) Variable resistance (SVR) Aortic valve Left ventricle Elastic arteries / Aorta

More information

IB TOPIC 6.2 THE BLOOD SYSTEM

IB TOPIC 6.2 THE BLOOD SYSTEM IB TOPIC 6.2 THE BLOOD SYSTEM THE BLOOD SYSTEM TERMS TO KNOW circulation ventricle artery vein 6.2.U1 - Arteries convey blood at high pressure from the ventricles to the tissues of the body Circulation

More information

The Cardiovascular System

The Cardiovascular System 11 PART A The Cardiovascular System PowerPoint Lecture Slide Presentation by Jerry L. Cook, Sam Houston University ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY EIGHTH EDITION ELAINE N. MARIEB The Cardiovascular

More information

OT Exam 3, August 19, 2002 Page 1 of 6. Occupational Therapy Physiology, Summer Examination 3. August 19, 2002

OT Exam 3, August 19, 2002 Page 1 of 6. Occupational Therapy Physiology, Summer Examination 3. August 19, 2002 Page 1 of 6 Occupational Therapy Physiology, Summer 2002 Examination 3 August 19, 2002 There are 20 questions and each question is worth 5 points for a total of 100 points. Dr. Heckman's section is questions

More information

Role of the Frank-Starling Mechanism In Exercise

Role of the Frank-Starling Mechanism In Exercise Role of the Frank-Starling Mechanism In Exercise By Lawrence D. Horwitz, James M. Atkins, and Stephen J. Leshin ABSTRACT The mechanisms which determine the response of stroke volume to mild, moderate,

More information

WHILE it is generally agreed that elevation

WHILE it is generally agreed that elevation The Derivation of Coronary Sinus Flow During Elevation of Right Ventricular Pressure By HERMAN M. GELLER, B.S., M.D., MARTIN BRANDFONBRENEU, M.D., AND CARL J. WIGGERS, M.D., The derivation of coronary

More information

The circulatory system

The circulatory system Introduction to Physiology (Course # 72336) 1 הלב עקרונות בסיסיים (הכנה למעבדת לב) Adi Mizrahi mizrahia@cc.huji.ac.il Textbook Chapter 12 2 The circulatory system To the heart Away from the heart 3 L 2.5

More information

Circulation: Chapter 25. Cardiac Output. The Mammalian Heart Fig Right side of the heart

Circulation: Chapter 25. Cardiac Output. The Mammalian Heart Fig Right side of the heart Circulation: Chapter 25 1. Limits of Diffusion A. Small organisms use diffusion B. rapid over small distances 2. Most animals have circulatory systems A. Blood B. Pump (Heart) or propulsive structures

More information

Determination of Cardiac Output By Equating Venous Return Curves With Cardiac Response Curves1

Determination of Cardiac Output By Equating Venous Return Curves With Cardiac Response Curves1 Determination of Cardiac Output By Equating Venous Return Curves With Cardiac Response Curves1 ARTHUR C. GUYTQN From the Department of Physiology and Biophysics, School of Medicine, University of Mississippi,

More information

Introduction to Physiology (Course # 72336) 1. Adi Mizrahi Textbook Chapter 12

Introduction to Physiology (Course # 72336) 1. Adi Mizrahi Textbook Chapter 12 Introduction to Physiology (Course # 72336) 1 עקרונות בסיסיים (הכנה למעבדת לב) הלב Adi Mizrahi mizrahia@cc.huji.ac.il Textbook Chapter 12 2 The circulatory system To the heart Away from the heart 3 L 2.5

More information

Principles of Biomedical Systems & Devices. Lecture 8: Cardiovascular Dynamics Dr. Maria Tahamont

Principles of Biomedical Systems & Devices. Lecture 8: Cardiovascular Dynamics Dr. Maria Tahamont Principles of Biomedical Systems & Devices Lecture 8: Cardiovascular Dynamics Dr. Maria Tahamont Review of Cardiac Anatomy Four chambers Two atria-receive blood from the vena cave and pulmonary veins Two

More information

Introduction. Invasive Hemodynamic Monitoring. Determinants of Cardiovascular Function. Cardiovascular System. Hemodynamic Monitoring

Introduction. Invasive Hemodynamic Monitoring. Determinants of Cardiovascular Function. Cardiovascular System. Hemodynamic Monitoring Introduction Invasive Hemodynamic Monitoring Audis Bethea, Pharm.D. Assistant Professor Therapeutics IV January 21, 2004 Hemodynamic monitoring is necessary to assess and manage shock Information obtained

More information

(D) (E) (F) 6. The extrasystolic beat would produce (A) increased pulse pressure because contractility. is increased. increased

(D) (E) (F) 6. The extrasystolic beat would produce (A) increased pulse pressure because contractility. is increased. increased Review Test 1. A 53-year-old woman is found, by arteriography, to have 5% narrowing of her left renal artery. What is the expected change in blood flow through the stenotic artery? Decrease to 1 2 Decrease

More information

HTEC 91. Performing ECGs: Procedure. Normal Sinus Rhythm (NSR) Topic for Today: Sinus Rhythms. Characteristics of NSR. Conduction Pathway

HTEC 91. Performing ECGs: Procedure. Normal Sinus Rhythm (NSR) Topic for Today: Sinus Rhythms. Characteristics of NSR. Conduction Pathway HTEC 91 Medical Office Diagnostic Tests Week 3 Performing ECGs: Procedure o ECG protocol: you may NOT do ECG if you have not signed up! If you are signed up and the room is occupied with people who did

More information

Evidence for the Direct Effect of Adrenergic Drugs on the Cerebral Vascular Bed of the Unanesthetized Goat

Evidence for the Direct Effect of Adrenergic Drugs on the Cerebral Vascular Bed of the Unanesthetized Goat Evidence for the Direct Effect of Adrenergic Drugs on the Cerebral Vascular Bed of the Unanesthetized Goat BY SALVADOR LLUCH, M.D., CHARLES REIMANN, M.D., AND GERALD GLICK, M.D. Abstract: Evidence for

More information

THE CARDIOVASCULAR SYSTEM

THE CARDIOVASCULAR SYSTEM THE CARDIOVASCULAR SYSTEM AND RESPONSES TO EXERCISE Mr. S. Kelly PSK 4U North Grenville DHS THE HEART: A REVIEW Cardiac muscle = myocardium Heart divided into two sides, 4 chambers (L & R) RS: pulmonary

More information

SymBioSys Exercise 2 Cardiac Function Revised and reformatted by C. S. Tritt, Ph.D. Last updated March 20, 2006

SymBioSys Exercise 2 Cardiac Function Revised and reformatted by C. S. Tritt, Ph.D. Last updated March 20, 2006 SymBioSys Exercise 2 Cardiac Function Revised and reformatted by C. S. Tritt, Ph.D. Last updated March 20, 2006 The goal of this exercise to explore the behavior of the heart as a mechanical pump. For

More information

T HE value of the vasoconstrictor effect of epinephrine in angiography has now

T HE value of the vasoconstrictor effect of epinephrine in angiography has now APRIL, 1969 CONTRAST-VASOCONSTRICTOR IN ANGIOGRAPHY* MIXTURES By PAUL C. KAHN, M.D. With the Technical Assistance of Joseph P. Zeppieri, A.B.,t and Gerald S. Lorch, B.S.t BOSTON, T HE value of the vasoconstrictor

More information

Approximately the size of your fist Location. Pericardial physiology

Approximately the size of your fist Location. Pericardial physiology Heart Anatomy Approximately the size of your fist Location Superior surface of diaphragm Left of the midline Anterior to the vertebral column, posterior to the sternum Wednesday, March 28, 2012 Muscle

More information

Cardiovascular System- Heart. Miss Wheeler Unit 8

Cardiovascular System- Heart. Miss Wheeler Unit 8 Cardiovascular System- Heart Miss Wheeler Unit 8 Overview CARDIOVASCULAR SYSTEM heart vessels Made up of heart, blood vessels, and blood Functions Heart- pump blood Vessels- (veins, arteries, capillaries)

More information

THE HEART RATE WITH EXERCISE IN PATIENTS WITH AURICULAR FIBRILLATION

THE HEART RATE WITH EXERCISE IN PATIENTS WITH AURICULAR FIBRILLATION THE HEART RATE WTH EXERCSE N PATENTS WTH AURCULAR FBRLLATON BY n a previous article (Knox, 1940) an accurate method of recording the changes in heart rate during exercise was described, and results were

More information

BUSINESS. Articles? Grades Midterm Review session

BUSINESS. Articles? Grades Midterm Review session BUSINESS Articles? Grades Midterm Review session REVIEW Cardiac cells Myogenic cells Properties of contractile cells CONDUCTION SYSTEM OF THE HEART Conduction pathway SA node (pacemaker) atrial depolarization

More information

Cardiac Output MCQ. Professor of Cardiovascular Physiology. Cairo University 2007

Cardiac Output MCQ. Professor of Cardiovascular Physiology. Cairo University 2007 Cardiac Output MCQ Abdel Moniem Ibrahim Ahmed, MD Professor of Cardiovascular Physiology Cairo University 2007 90- Guided by Ohm's law when : a- Cardiac output = 5.6 L/min. b- Systolic and diastolic BP

More information

EKG Competency for Agency

EKG Competency for Agency EKG Competency for Agency Name: Date: Agency: 1. The upper chambers of the heart are known as the: a. Atria b. Ventricles c. Mitral Valve d. Aortic Valve 2. The lower chambers of the heart are known as

More information

Influence of Respiratory Acidosis on Circulatory Effect of Epinephrine in Dogs

Influence of Respiratory Acidosis on Circulatory Effect of Epinephrine in Dogs Influence of Respiratory Acidosis on Circulatory Effect of Epinephrine in Dogs By Henrik H. Bendixen, M.D., Myron B. Laver, M.D., and Werner E. Flacke, M.D. In 1880 Gaskell 1 showed that the tone of isolated

More information

3/10/2009 VESSELS PHYSIOLOGY D.HAMMOUDI.MD. Palpated Pulse. Figure 19.11

3/10/2009 VESSELS PHYSIOLOGY D.HAMMOUDI.MD. Palpated Pulse. Figure 19.11 VESSELS PHYSIOLOGY D.HAMMOUDI.MD Palpated Pulse Figure 19.11 1 shows the common sites where the pulse is felt. 1. Temporal artery at the temple above and to the outer side of the eye 2. External maxillary

More information

THAT RESISTANCE to blood flow in the

THAT RESISTANCE to blood flow in the Effect of Hematocrit on Venous Return By ARTHUR C. GUYTON, M.D., AND TRAVIS Q. RICHARDSON, B.S. THAT RESISTANCE to blood flow in the systemic circulation, especially in the veins, influences venous return

More information

Algorithm Focus. Emergency Cardiovascular Care: EMT-Intermediate Treatment Algorithms. Perspective regarding the EMT- Intermediate algorithms

Algorithm Focus. Emergency Cardiovascular Care: EMT-Intermediate Treatment Algorithms. Perspective regarding the EMT- Intermediate algorithms Emergency Cardiovascular Care: EMT-Intermediate Treatment Algorithms Algorithms for the Conscious Patient Prehospital Medication Profiles Algorithm Focus Bradycardia Acute Pulmonary Edema and Shock Hypothermia

More information

Cardiovascular Responses to Exercise

Cardiovascular Responses to Exercise CARDIOVASCULAR PHYSIOLOGY 69 Case 13 Cardiovascular Responses to Exercise Cassandra Farias is a 34-year-old dietician at an academic medical center. She believes in the importance of a healthy lifestyle

More information

Cardiovascular System: The Heart

Cardiovascular System: The Heart Cardiovascular System: The Heart I. Anatomy of the Heart (See lab handout for terms list) A. Describe the size, shape and location of the heart B. Describe the structure and function of the pericardium

More information

The Mammalian Circulatory System

The Mammalian Circulatory System The Mammalian Heart The Mammalian Circulatory System Recall: What are the 3 cycles of the mammalian circulatory system? What are their functions? What are the three main vessel types in the mammalian circulatory

More information

salt-free dextran. Increase in cardiac output was Evans Blue Dye. generally observed following hypervolemia.

salt-free dextran. Increase in cardiac output was Evans Blue Dye. generally observed following hypervolemia. FURTHER OBSERVATONS ON THE HEMODYNAMC EFFECT OF PLASMA VOLUME EXPANSON BY DEXTRAN1 By J. W. FLEMNG AND W. L. BLOOM (From the Piedmont Hospital, Atlanta, Ga., and the Medical Research Laboratory, Veterans

More information

12.2 Monitoring the Human Circulatory System

12.2 Monitoring the Human Circulatory System 12.2 Monitoring the Human Circulatory System Video 1: 3D Animation of Heart Pumping Blood blood flow through the heart... Video 2: Hank Reviews Everything on the Heart https://www.youtube.com/watch?v=x9zz6tcxari

More information

The Cardiovascular System (Heart)

The Cardiovascular System (Heart) The Cardiovascular System The Cardiovascular System (Heart) A closed system of the heart and blood vessels The heart pumps blood Blood vessels allow blood to circulate to all parts of the body The function

More information

Objectives: This presentation will help you to:

Objectives: This presentation will help you to: emergency Drugs Objectives: This presentation will help you to: Five rights for medication administration Recognize different cardiac arrhythmias and determine the common drugs used for each one List the

More information

Chronotropic and Inotropic Effects of 3 Kinds of Alpha-Adrenergic Blockers on the Isolated Dog Atria

Chronotropic and Inotropic Effects of 3 Kinds of Alpha-Adrenergic Blockers on the Isolated Dog Atria Chronotropic and Inotropic Effects of 3 Kinds of Alpha-Adrenergic Blockers on the Isolated Dog Atria Shigetoshi CHIBA, M.D., Yasuyuki FURUKAWA, M.D., and Hidehiko WATANABE, M.D. SUMMARY Using the isolated

More information

AS Level OCR Cardiovascular System

AS Level OCR Cardiovascular System AS Level OCR Cardiovascular System Learning Objectives The link between the Cardiac Cycle and the Conduction system of the heart. The relationship between Stroke volume, Heart rate and Cardiac Output.

More information

Anaesthesia. Update in. An Introduction to Cardiovascular Physiology. James Rogers Correspondence

Anaesthesia. Update in. An Introduction to Cardiovascular Physiology. James Rogers Correspondence Update in Anaesthesia Originally published in Update in Anaesthesia, edition 10 (1999) An Introduction to Cardiovascular Physiology Correspondence Email: James.Rogers@nbt.nhs.uk INTRODUCTION The cardiovascular

More information

DESCRIBE THE FACTORS AFFECTING CARDIAC OUTPUT.

DESCRIBE THE FACTORS AFFECTING CARDIAC OUTPUT. DESCRIBE THE FACTORS AFFECTING CARDIAC OUTPUT. BY: DISHA PRAKASH I MBBS, ROLL NO: 16M069 OBJECTIVES OF LEARNING Terminology and conceptual understanding of Cardiac Output. Factors regulating Cardiac Output.

More information

OUTPUT IN CONGESTIVE HEART FAILURE

OUTPUT IN CONGESTIVE HEART FAILURE TRICUSPID INCOMPETENCE AND RIGHT VENTRICULAR OUTPUT IN CONGESTIVE HEART FAILURE BY PAUL KORNER* AND JOHN SHILLINGFORDt From the Department of Medicine, Postgraduate Medical School, Hammersmith Received

More information

The Cardiovascular System

The Cardiovascular System Essentials of Human Anatomy & Physiology Elaine N. Marieb Seventh Edition Chapter 11 The Cardiovascular System Slides 11.1 11.19 Lecture Slides in PowerPoint by Jerry L. Cook The Cardiovascular System

More information

What was the range of the resting heart rates in males after the exercise programme?

What was the range of the resting heart rates in males after the exercise programme? Q1.Scientists investigated the effect of a 6-week exercise programme on the resting heart rate of males and females. The scientists recruited a large group of male volunteers and a large group of female

More information

REGULATION OF CARDIOVASCULAR FUNCTIONS DURING ACUTE BLOOD LOSS

REGULATION OF CARDIOVASCULAR FUNCTIONS DURING ACUTE BLOOD LOSS Indian J Physiol Pharmacol 2005; 49 (2) : 213 219 REGULATION OF CARDIOVASCULAR FUNCTIONS DURING ACUTE BLOOD LOSS RAJINDER K. GUPTA* AND MOHAMMAD FAHIM Department of Physiology, Vallabhbhai Patel Chest

More information

Effect of Acute Experimental Aortic Stenosis on Coronary Circulation

Effect of Acute Experimental Aortic Stenosis on Coronary Circulation Effect of Acute Experimental Aortic Stenosis on Coronary Circulation By Marvin R. Blumenthal, M.D., Hsueh-Hwa Wang, M.B., and S. C. Wang, M.D., Ph.D. The effect of aortic stenosis on the coronary circulation

More information

Neosynephrine. Name of the Medicine

Neosynephrine. Name of the Medicine Name of the Medicine Neosynephrine Phenylephrine hydrochloride 1% injection Neosynephrine Presentation Neosynephrine is a clear, colourless, aqueous solution, free from visible particulates, in sterile

More information

Cardiovascular Management of Septic Shock

Cardiovascular Management of Septic Shock Cardiovascular Management of Septic Shock R. Phillip Dellinger, MD Professor of Medicine Robert Wood Johnson Medical School/UMDNJ Director, Critical Care Medicine and Med/Surg ICU Cooper University Hospital

More information

BME 5742 Bio-Systems Modeling and Control. Lecture 41 Heart & Blood Circulation Heart Function Basics

BME 5742 Bio-Systems Modeling and Control. Lecture 41 Heart & Blood Circulation Heart Function Basics BME 5742 Bio-Systems Modeling and Control Lecture 41 Heart & Blood Circulation Heart Function Basics Dr. Zvi Roth (FAU) 1 Pumps A pump is a device that accepts fluid at a low pressure P 1 and outputs the

More information

Chad Morsch B.S., ACSM CEP

Chad Morsch B.S., ACSM CEP What Is Cardiac Stress Testing? Chad Morsch B.S., ACSM CEP A Cardiac Stress Test is a test used to measure the heart's ability to respond to external stress in a controlled clinical environment. Cardiac

More information

EKG Rhythm Interpretation Exam

EKG Rhythm Interpretation Exam as EKG Rhythm Interpretation Exam Name: Date: ID# Unit Assume each strip is a 6 second strip. Passing is 80%. 1. Identify the following rhythm: a. Asystole b. Ventricular fibrillation c. Atrial fibrillation

More information

Effect of Altering P-R Interval on the Amplitude of the First Heart Sound in the Anesthetized Dog

Effect of Altering P-R Interval on the Amplitude of the First Heart Sound in the Anesthetized Dog Effect of Altering P-R Interval on the Amplitude of the First Heart Sound in the Anesthetized Dog By Michael E. Stept, Charles E. Heid, James A. Sharer, M.D., Donald F. Leon, M.D., and James J. Leonard,

More information

4. The two inferior chambers of the heart are known as the atria. the superior and inferior vena cava, which empty into the left atrium.

4. The two inferior chambers of the heart are known as the atria. the superior and inferior vena cava, which empty into the left atrium. Answer each statement true or false. If the statement is false, change the underlined word to make it true. 1. The heart is located approximately between the second and fifth ribs and posterior to the

More information

During exercise the heart rate is 190 bpm and the stroke volume is 115 ml/beat. What is the cardiac output?

During exercise the heart rate is 190 bpm and the stroke volume is 115 ml/beat. What is the cardiac output? The Cardiovascular System Part III: Heart Outline of class lecture After studying part I of this chapter you should be able to: 1. Be able to calculate cardiac output (CO) be able to define heart rate

More information

Effects of Propranolol on Patients with Complete Heart Block and Implanted Pacemakers

Effects of Propranolol on Patients with Complete Heart Block and Implanted Pacemakers Effects of Propranolol on Patients with Complete Heart Block and Implanted Pacemakers By EPHRAIM DONOSO, M.D., LAWRENCE J. COHN, M.D., BERTRAM J. NEWMAN, M.D., HENRY S. BLOOM, M.D., WILLIAm C. STFIN, M.D.,

More information

Chapter 9, Part 2. Cardiocirculatory Adjustments to Exercise

Chapter 9, Part 2. Cardiocirculatory Adjustments to Exercise Chapter 9, Part 2 Cardiocirculatory Adjustments to Exercise Electrical Activity of the Heart Contraction of the heart depends on electrical stimulation of the myocardium Impulse is initiated in the right

More information

When arrhythmias complicate heart failures

When arrhythmias complicate heart failures When arrhythmias complicate heart failures Throughout the years, heart failure complicates usually with anomalies of the cardiac rhythm. These anomalies can have an atrial, a ventricular or an atrioventricular

More information

EFFECTS OF SUDDEN AND PROLONGED STANDING FROM SUPINE POSTURE ON HEART RATE, ECG-PATTERN AND BLOOD PRESSURE

EFFECTS OF SUDDEN AND PROLONGED STANDING FROM SUPINE POSTURE ON HEART RATE, ECG-PATTERN AND BLOOD PRESSURE J. Human Ergol.,17: 3-12,1988 Center for Academic Publications Japan. Printed in Japan. EFFECTS OF SUDDEN AND PROLONGED STANDING FROM SUPINE POSTURE ON HEART RATE, ECG-PATTERN AND BLOOD PRESSURE Satipati

More information

Interrelationship between Angiotensin Catecholamines. Tatsuo SATO, M.D., Masaru MAEBASHI, M.D., Koji GOTO, M.D., and Kaoru YOSHINAGA, M.D.

Interrelationship between Angiotensin Catecholamines. Tatsuo SATO, M.D., Masaru MAEBASHI, M.D., Koji GOTO, M.D., and Kaoru YOSHINAGA, M.D. Interrelationship between Angiotensin and Catecholamines Tatsuo SATO, M.D., Masaru MAEBASHI, M.D., Koji GOTO, M.D., and Kaoru YOSHINAGA, M.D. SUMMARY Urinary catecholamines were measured with an attempt

More information

Physiology of the Heart Delmar Learning, a Division of Thomson Learning, Inc.

Physiology of the Heart Delmar Learning, a Division of Thomson Learning, Inc. Physiology of the Heart 2004 Delmar Learning, a Division of Thomson Learning, Inc. Physiology of the Heart State Standards 35) Outline the structure and functions of the anatomy of the cardiovascular system,

More information

Collin County Community College

Collin County Community College Collin County Community College BIOL. 2402 Anatomy & Physiology WEEK 5 The Heart 1 The Heart Beat and the EKG 2 1 The Heart Beat and the EKG P-wave = Atrial depolarization QRS-wave = Ventricular depolarization

More information

Propranolol Blocks Ventricular Refractory Period Changes With Orthostatic Stress in Humans

Propranolol Blocks Ventricular Refractory Period Changes With Orthostatic Stress in Humans 1488 JACC Vol. 12, No.6 Propranolol Blocks Ventricular Refractory Period Changes With Orthostatic Stress in Humans JAMES B. MARTINS, MD, MICHAEL G. KIENZLE, MD, FACC, MICHAEL L. McCUE, RN, LUIS CONSTANTIN,

More information

PHYSIOEX 3.0 EXERCISE 33B: CARDIOVASCULAR DYNAMICS

PHYSIOEX 3.0 EXERCISE 33B: CARDIOVASCULAR DYNAMICS PHYSIOEX 3.0 EXERCISE 33B: CARDIOVASCULAR DYNAMICS Objectives 1. To define the following: blood flow; viscosity; peripheral resistance; systole; diastole; end diastolic volume; end systolic volume; stroke

More information

Lab 16. The Cardiovascular System Heart and Blood Vessels. Laboratory Objectives

Lab 16. The Cardiovascular System Heart and Blood Vessels. Laboratory Objectives Lab 16 The Cardiovascular System Heart and Blood Vessels Laboratory Objectives Describe the anatomical structures of the heart to include the pericardium, chambers, valves, and major vessels. Describe

More information

Do Now. Get out work from last class to be checked

Do Now. Get out work from last class to be checked Do Now Get out work from last class to be checked Heart Actions Cardiac Cycle: One complete heartbeat. The contraction of a heart chamber is called systole and the relaxation of a chamber is called diastole.

More information

10. Thick deposits of lipids on the walls of blood vessels, called, can lead to serious circulatory issues. A. aneurysm B. atherosclerosis C.

10. Thick deposits of lipids on the walls of blood vessels, called, can lead to serious circulatory issues. A. aneurysm B. atherosclerosis C. Heart Student: 1. carry blood away from the heart. A. Arteries B. Veins C. Capillaries 2. What is the leading cause of heart attack and stroke in North America? A. alcohol B. smoking C. arteriosclerosis

More information

J. Physiol. (I957) I37, I4I-I53

J. Physiol. (I957) I37, I4I-I53 141 J. Physiol. (I957) I37, I4I-I53 EFFECTS OF NORADRENALINE AND ADRENALINE ON THE ATRIAL RHYTHM IN THE HEART-LUNG PREPARATION BY J. H. BURN, A. J. GUNNING AND J. M. WALKER From the Department of Pharmacology,

More information

Circulatory system of mammals

Circulatory system of mammals Circulatory system of mammals Explain the cardiac cycle and its initiation Discuss the internal factors that control heart action Blood flows through the heart as a result of pressure differences Blood

More information

(Received 5 November 1963) rabbit were 65 and 80 mm Hg, respectively. The mean arterial blood

(Received 5 November 1963) rabbit were 65 and 80 mm Hg, respectively. The mean arterial blood J. Phy8iol. (1964), 174, pp. 136-171 163 With 5 text-figure8 Printed in Great Britain AORTIC BARORCPTOR THRSHOLD AND SNSITIVITY IN RABBITS AT DIFFRNT AGS BY C. M. BLOOR* From the Nuffield Institute for

More information