CAMOSUN COLLEGE BIOLOGY 144 (2010) LABS

Size: px
Start display at page:

Download "CAMOSUN COLLEGE BIOLOGY 144 (2010) LABS"

Transcription

1 LAB 8: CARDIOVASCULAR PHYSIOLOGY PART 1. HEART SOUNDS AND PULSE DETERMINATIONS Introduction Two distinct sounds can be heard during each cardiac cycle. These sounds are commonly described as lub and dup after which there is a pause. The first sound is associated with closure of the atrioventricular valves and signifies the onset of systole as the ventricular pressure rises above the atrial pressure. The second sound is associated with the closure of the semilunar valves at the end of systole. The sounds are not actually the sounds of the valves closing but rather the sound of the turbulence of blood caused by the closure of the valves. Regions of the thorax as shown in Figure 2 are auscultated (listened to) with a stethoscope. In this exercise you will auscultate heart sounds with an ordinary stethoscope. The term pulse refers to the alternating surges of pressure (expansion and then recoil) in an artery that occur with each contraction and relaxation of the left ventricle. Normally the pulse rate equals the heart rate and the pulse averages 70 to 76 beats per minute in the resting state. The pulse may be felt easily on any superficial artery when the artery is compressed over a bone or firm tissue. Refer to Figure 3 to locate common pulse points. Purpose 1. To auscultate heart sounds using a stethoscope and to relate these heart sounds to the cardiac cycle. 2. To demonstrate the thoracic locations where the first and second heart sounds are most accurately auscultated. 3. To accurately determine a subject s apical and radial pulse. Materials stethoscope, alcohol, absorbent cotton, watch or clock with a second hand 8-1

2 Procedure Clean and disinfect the earpieces of a stethoscope with alcohol-soaked cotton and allow to dry. Place the stethoscope in your ears and check the bell by gently tapping. You should hear an amplified tapping sound. Figure 2 Areas of the thorax where valvular sounds can best be detected. To hear the heart sounds which occur from the turbulence caused by the closure of the AV valves, place the diaphragm of the stethoscope on the sternal side of the left nipple at the fifth intercostal space, and listen carefully. The first sound will be a longer, louder sound than the second sound which is short and sharp. If you wish to differentiate individual valve sounds somewhat more precisely, auscultate the heart sounds over specific thoracic regions as shown in Figure 2 above. Record your apical pulse for 60 seconds to obtain a heart rate in bpms (beats per minute) apical pulse rate Explain what causes the first heart sound second heart sound 8-2

3 Referring to Figure 3, palpate the pulse or pressure points by placing the first two or three fingers of one hand over the common carotid artery. Begin by compressing the artery firmly and then ease up on the pressure slightly. Note the regularity of the pulse and record the pulse rate as follows. Using a watch with a second hand, count the beats in a one minute period. Figure 3. Body sites where pulse is most easily palpated Repeat the procedure using the radial artery Compare the apical pulse rate (the heart rate you recorded using the stethoscope) with the radial and carotid pulse rates. Calculate the mean of the 3 values and record this mean on the board REGION apical carotid radial mean RATE BPM Questions: 1. Do the pulse rates differ? 2. Do these values represent resting heart rate values? Explain 8-3

4 Class data Measures of central tendency and variability The normal range of resting heart rate values is bpm, with a mean of approximately 72 bpm. When a variable such as this is assessed in a large group of individuals, a normal distribution of values (bell-shaped curve) is obtained. Central tendency describes the tendency of data to cluster around certain central values, and may me measured as the mean (sum of all values / sample size) median (value above and below which half the values lie) mode (most frequently occurring value) Variablity is a measure of how dissimilar values are. The range of a data set is the simplest measure of variability. range (lowest to highest value) Arrange the resting heart rate values for the entire class from lowest to highest, making sure you record all of the values (some values will likely appear more than once). After you have recorded the values, complete the exercises outlined in the lab assignment. Resting heart rate values of Biology 144 students (in order from lowest to highest): Questions 1. What is the range of the data? range = Is this similar to the population range of bpm? 2. Calculate the mean resting heart rate for the class mean = Is this greater or less than the reported population mean of 72 bpm? 3. Calculate the median heart rate value median = 4. Calculate the mode of the data set mode = 8-4

5 PART 2. BLOOD PRESSURE DETERMINATION INTRODUCTION Blood pressure is defined as the pressure the blood exerts against the blood vessel walls and it is generally measured in the arteries. The alternating contraction and relaxation of the heart results in a rhythmic flow of blood into the arteries which causes the blood pressure to rise and fall with each beat. Determination of blood pressure includes the measurement of systolic pressure, which is the pressure in the arteries at the peak of ventricular contraction and ejection of blood, and the measurement of diastolic pressure, which is the pressure during ventricular relaxation. Blood pressures are reported in millimeters of mercury (mmhg or the pressure required to support a column of mercury of a certain height). The systolic pressure is reported first and the diastolic second. The reading of 120/80 translates to a systolic pressure of 120 mm Hg and a diastolic pressure of 80 mm Hg. Normal blood pressure varies considerably from one person to another dependent on many factors. In this exercise, you will measure arterial pressures by indirect means and under various conditions. You will investigate and demonstrate factors which affect blood pressure. Purpose To determine a subject s blood pressure with a sphygmomanometer. To relate systolic and diastolic pressures to the events of the cardiac cycle. To define the terms related to blood pressure. Materials stethoscope, sphygmomanometer, alcohol swabs, absorbent cotton Procedure Obtain a stethoscope and clean the earpieces with alcohol swabs. Have the subject sit in a comfortable position with one arm resting on a table which is approximately at heart level Examine the standard sphygmomanometer cuff to determine the area to be placed against the brachial artery and wrap the cuff around the subject s arm just above the elbow. The cuff should fit snugly but should not be tight. Palpate the brachial artery to ensure correct placement. Place the earpieces of the stethoscope in your ears and place the diaphragm over the pulse point in the antecubital fossa. (see picture following page) 8-5

6 Close the valve on the side of the rubber bulb and inflate the cuff to approximately 150 mm Hg. (NOTE: cuff sizes vary; use one appropriate for your subject!) Open the valve slightly and listen for pressure sounds. These sounds are caused by the spurting of blood through the narrowed artery under the cuff into the fully open artery below the cuff. The vibrations are called Korotkoff s sounds. These vibrations may cause slight deflections in the needle on the pressure gauge. The pressure at which these sounds are first detected is the systolic pressure. Note the value on the indicator at which this sound first occurs and report on the data sheet. As the cuff deflates, listen for the total disappearance of all sounds (the needle on the gauge will stop deflecting if it was moving during systole). The point at which no sound can be detected is recorded as the diastolic pressure. Note the value on the gauge when the sound disappears and record this on your data sheet. Now, make a similar recording of blood pressure using the other arm and using the automated sphygmomanometer. Record your data. Compute the pulse pressure for each trial. The pulse pressure is the difference between the systolic and diastolic pressures and reflects the amount of blood forced from the heart during systole. This represents the actual working pressure. 8-6

7 Record your blood pressure determinations below: At rest (manual sphygmomanometer) SUBJECT #1 Systolic Diastolic Pulse pressure At rest (automated sphygmomanometer At rest (manual sphygmomanometer) SUBJECT #2 Systolic Diastolic Pulse pressure At rest (automated sphygmomanometer QUESTIONS: 1. Was each subject s routine BP within the ideal range? 2. If not, suggest some factors that might cause a healthy person s blood pressure to be elevated: 3. Were the results obtained with the automated sphygmomanometer the same as those obtained with the manual sphygmomanometer? 4. What is hypertension? 5. What are 2 causes or contributing factors to hypertension? 8-7

8 PART 2. ELECTROCARDIOGRAM (ECG) EFFECT OF EXERCISE ON HEART RATE AND BLOOD PRESSURE Cardiac muscle produces measurable electrical signals that can be detected at the surface of the body. In this lab we will place electrodes in three locations: one on each ankle and one on the right wrist. This is a standard electrode configuration for a non-clinical setting. On it you will see the standard waves which by convention are labeled P through T. Each component can be analyzed in terms of its duration (in seconds), its amplitude (in millivolts) and its configuration (shape of the waveform). Using your text as a reference, label the ECG tracing below: a. P wave, QRS complex and T wave b. P-Q interval, S-T interval, Q-T interval, QRS interval, P-R segment, S-T segment c. Atrial depolarization, ventricular depolarization and ventricular repolarization 8-8

9 The extent to which each of the components is visible depends on where the electrodes are placed and the condition of the heart. The process begins with a relaxed heart (registering about 0 mv). The first sign of activity is called the P wave and represents the electrical activity associated with the depolarization of the atria. The P wave is a small (0.1 mv) signal of about 0.1 second duration. After the P wave there is a brief period, the P-R segment (0.08 sec), during which the impulse spreads through the AV node and the AV bundle and into the left and right bundle branches. No muscle cells are depolarizing at this time hence no electrical activity is being generated. The P-R segment is followed by the QRS complex. The Q portion represents the moment when the impulse begins to depolarize the interventricular septum. The R and S components represent apical and late ventricular depolarization. The whole QRS component lasts no more than 0.1 seconds but has a large amplitude (variable to 1.3mV). This is followed by the S-T segment (0.12 sec) during which time the ventricles are reaching their maximum contraction but are not generating any electrical activity. Finally comes the T wave which represents the electrical activity associated with ventricular repolarization. The various segments and intervals can be used to diagnose problems with the conduction system of the heart. For example, a longer than normal P-Q interval (>0.18 sec) suggests damage to the AV node. If the QRS interval is prolonged, it may indicate a right or left bundle branch block in which one ventricle is contracting later than the other. Materials: Computer with Biopac software disposable electrodes electrode lead cables (SS2L) Procedure: Select a volunteer from your group. This individual must be suitably dressed to exercise and physically capable of moderately strenuous exercise. Record the subject s blood pressure Prepare the subject as follows: a. rub the skin with an alcohol pad over a small area on the inside of both ankles just above the medial malleolus and over the anterior surface of right forearm just above the wrist joint. b. attach disposable electrodes and coloured cables as described below. white cable to right forearm (on anterior surface of wrist) red cable to left ankle (just above medial malleolus) black cable to right ankle (just above medial malleolus) c. attach the connector of the SS2L electrode to channel 2 8-9

10 2. The computer operator should set up the computer as follows: a. start the BIOPAC program and click on lesson 5 b. type the subject s initials followed immediately by number 1 c. have the subject sit quietly and click the Setup button. The subject must remain still for 15 seconds 3. Record the resting ECG a. when the subject is seated and relaxed, and following the instructions on the computer, click calibrate (calibration takes 10 sec) and then record an ECG for 30 seconds b. when you click done the program will save a copy of your ECG c. have your instructor check your recording before printing (you may enlist their help making the recording look nicer before printing) d. obtain printed copies of the subject s resting ECG (one for each person in your group); print with the paper in the landscape orientation. 4. Record a second ECG on the same subject after 5 minutes of moderately vigorous exercise a. disconnect the cables from the electrodes (leave the electrode pads attached to the skin) and have the subject exercise for 5 minutes (briskly walk up and down the stairs, go for a little jog, skip in place..) b. while the subject is exercising, open the BIOPAC program and choose lesson 5; type in the subject s initials followed by the number 2 c. seat the subject as soon as they have finished exercising and quickly connect the cables to the electrodes as before d. perform the Setup (15 sec) and then measure the ECG as you did before 5. Record the subject s post-exercise blood pressure asap after exercise (Table p 12) 8-10

11 RESULTS and QUESTIONS: 1. What happened to the R-R interval after exercise? 2. Note that the R-R interval consists of the sum of QRS, S-T, T-P and P-R. Which of these become shorter when the heart rate increased? 3. What is the length of the cardiac cycle in your subject: before exercise sec after exercise sec 4. What is the heart rate of your subject: before exercise bpms after exercise bpms 5. Cardiovascular training involves elevating the heart rate into the target heart rate zone (65 85% maximum heart rate) for an extended period of time (> 20 minutes) at least 3 times per week. This generally requires sustained vigorous exercise (stair climbing, swimming, cycling, rowing, running, cross-country skiing, etc.). Estimates of target heart rate can be made by calculating an individual s maximum heart rate. An estimate of maximum heart rate can be obtained as follows: maximum HR = 220 age in years What was the target zone for the exercise subject Did your subject reach their target heart rate zone during exercise? 6. Did the amplitude of the waves in the ECG change following exercise? Comment: 8-11

12 Effect of exercise on Blood pressure Record the subject s blood pressure values in the table below subject BP (at rest) BP (postexercise) % change in systolic value % change in diastolic value 1. calculate % change in the systolic and diastolic values. (BP after exercise BP before exercise) % change = X 100 BP before exercise 2. record the percent change values on the board 3. Calculate the mean % change in diastolic and systolic values for the class: mean change in systolic BP = mean change in diastolic BP = 4. Summarize and explain your observations below: 8-12

#6 - Cardiovascular III Heart Sounds, Pulse Rate, Hemoglobin Saturation, and Blood Pressure

#6 - Cardiovascular III Heart Sounds, Pulse Rate, Hemoglobin Saturation, and Blood Pressure #6 - Cardiovascular III Heart Sounds, Pulse Rate, Hemoglobin Saturation, and Blood Pressure Objectives: Observe slide of artery and vein cross-section Auscultate heart sounds using a stethoscope Measure

More information

Lab #3: Electrocardiogram (ECG / EKG)

Lab #3: Electrocardiogram (ECG / EKG) Lab #3: Electrocardiogram (ECG / EKG) An introduction to the recording and analysis of cardiac activity Introduction The beating of the heart is triggered by an electrical signal from the pacemaker. The

More information

Human Cardiovascular Physiology: Blood Pressure and Pulse Determinations

Human Cardiovascular Physiology: Blood Pressure and Pulse Determinations ighapmlre33apg269_274 5/12/04 3:10 PM Page 269 impos03 302:bjighapmL:ighapmLrevshts:layouts: NAME Human Cardiovascular Physiology: Blood Pressure and Pulse Determinations LAB TIME/DATE REVIEW SHEET exercise

More information

Lab #3: Electrocardiogram (ECG / EKG)

Lab #3: Electrocardiogram (ECG / EKG) Lab #3: Electrocardiogram (ECG / EKG) An introduction to the recording and analysis of cardiac activity Introduction The beating of the heart is triggered by an electrical signal from the pacemaker. The

More information

Protocol 4: Measuring Blood Pressure

Protocol 4: Measuring Blood Pressure Zool 430L Protocols Page 8 of 12 Protocol 4: Measuring Blood Pressure 4.1 Via Auscultation (listening through stethoscope) The estimate of blood pressure is obtained by cutting off blood flow with a known

More information

HUMAN ANATOMY AND PHYSIOLOGY

HUMAN ANATOMY AND PHYSIOLOGY HUMAN ANATOMY AND PHYSIOLOGY NAME Detection of heart sounds. Clean the ear pieces of the stethoscope before using. The ear pieces should be pointing slightly forward when inserted into the ears because

More information

Cardiovascular Physiology

Cardiovascular Physiology Cardiovascular Physiology The mammalian heart is a pump that pushes blood around the body and is made of four chambers: right and left atria and right and left ventricles. The two atria act as collecting

More information

Biology 13A Lab #10: Cardiovascular System II ECG & Heart Disease

Biology 13A Lab #10: Cardiovascular System II ECG & Heart Disease Biology 13A Lab #10: Cardiovascular System II ECG & Heart Disease Lab #10 Table of Contents: Expected Learning Outcomes...... 83 Introduction....... 84 Activity 1: Collecting ECG Data..... 85 Activity

More information

PART I: HEART ANATOMY

PART I: HEART ANATOMY Lab 7: Heart Sounds and Blood Pressure PART I: HEART ANATOMY a) You should be able to identify the following structures on an adult human heart diagram. the 4 chambers the bicuspid (mitral) and tricuspid

More information

IB TOPIC 6.2 THE BLOOD SYSTEM

IB TOPIC 6.2 THE BLOOD SYSTEM IB TOPIC 6.2 THE BLOOD SYSTEM THE BLOOD SYSTEM TERMS TO KNOW circulation ventricle artery vein 6.2.U1 - Arteries convey blood at high pressure from the ventricles to the tissues of the body Circulation

More information

IB TOPIC 6.2 THE BLOOD SYSTEM

IB TOPIC 6.2 THE BLOOD SYSTEM IB TOPIC 6.2 THE BLOOD SYSTEM TERMS TO KNOW circulation ventricle artery vein THE BLOOD SYSTEM 6.2.U1 - Arteries convey blood at high pressure from the ventricles to the tissues of the body Circulation

More information

Objectives of the Heart

Objectives of the Heart Objectives of the Heart Electrical activity of the heart Action potential EKG Cardiac cycle Heart sounds Heart Rate The heart s beat separated into 2 phases Relaxed phase diastole (filling of the chambers)

More information

Physiology of the Circulatory System modified from

Physiology of the Circulatory System modified from Physiology of the Circulatory System modified from http://www.ekcsk12.org/science/aplabreview/aplab10.htm Introduction The circulatory system functions to deliver oxygen and nutrients to tissues for growth

More information

Lab #10 Physiology of the Circulatory System

Lab #10 Physiology of the Circulatory System Lab #10 Physiology of the Circulatory System Introduction The circulatory system functions to deliver oxygen an nutrients to tissues for growth and metabolism, and to remove metabolic wastes. The heart

More information

Biology 212: Anatomy and Physiology II. Lab #5: Physiology of the Cardiovascular System For Labs Associated With Dr. Thompson s Lectures

Biology 212: Anatomy and Physiology II. Lab #5: Physiology of the Cardiovascular System For Labs Associated With Dr. Thompson s Lectures Biology 212: Anatomy and Physiology II Lab #5: Physiology of the Cardiovascular System For Labs Associated With Dr. Thompson s Lectures References: Saladin, KS: Anatomy and Physiology, The Unity of Form

More information

LAB: Blood Pressure Measurable Indicator of the Health of the Circulatory System!

LAB: Blood Pressure Measurable Indicator of the Health of the Circulatory System! LAB: Blood Measurable Indicator of the Health of the Circulatory System! Lab Objectives. At the completion of the lab, you should be able to: measure pulse or heart rate (HR) and respiratory rate (RR);

More information

12.2 Monitoring the Human Circulatory System

12.2 Monitoring the Human Circulatory System 12.2 Monitoring the Human Circulatory System Video 1: 3D Animation of Heart Pumping Blood blood flow through the heart... Video 2: Hank Reviews Everything on the Heart https://www.youtube.com/watch?v=x9zz6tcxari

More information

LAB 9: Metabolic Rates

LAB 9: Metabolic Rates LAB 9: Metabolic Rates Introduction: The cardiovascular (circulatory) system functions to deliver oxygen and nutrients to tissues for growth and metabolism, and to remove metabolic wastes. The heart pumps

More information

Blood Pressure Laboratory

Blood Pressure Laboratory Introduction The blood that circulates throughout the body maintains a flow and pressure. The nervous system can change the flow and pressure based on the particular needs at a given time. For example,

More information

BLOOD PRESSURE ASSESSMENT

BLOOD PRESSURE ASSESSMENT BLOOD PRESSURE ASSESSMENT Course Principles of Health Science Unit X Vital Signs Course Health Science Unit VI CPR / AED & First Aid Essential Question How do health care skills help to promote health

More information

Cardiac Cycle. Each heartbeat is called a cardiac cycle. First the two atria contract at the same time.

Cardiac Cycle. Each heartbeat is called a cardiac cycle. First the two atria contract at the same time. The Heartbeat Cardiac Cycle Each heartbeat is called a cardiac cycle. First the two atria contract at the same time. Next the two ventricles contract at the same time. Then all the chambers relax. http://www.youtube.com/watch?v=frd3k6lkhws

More information

SARASOTA MEMORIAL HOSPITAL NURSING PROCEDURE. MEASURING BLOOD PRESSURE - MANUAL (equ04)

SARASOTA MEMORIAL HOSPITAL NURSING PROCEDURE. MEASURING BLOOD PRESSURE - MANUAL (equ04) SARASOTA MEMORIAL HOSPITAL NURSING PROCEDURE TITLE: ISSUED FOR: MEASURING BLOOD PRESSURE - MANUAL Nursing DATE: REVIEWED: PAGES: 2/80 7/17 1 of 5 RESPONSIBILITY: RN, LPN, Patient Care Technician Multi-skilled

More information

Lesson 16 BLOOD PRESSURE

Lesson 16 BLOOD PRESSURE Physiology Lessons for use with the Lesson 16 BLOOD PRESSURE Indirect measurement Ventricular Systole & Diastole Korotkoff sounds Mean Arterial pressure Manual Revision 3.7.3 061808 Richard Pflanzer, Ph.D.

More information

Cardiovascular Effects of Exercise. Background Cardiac function

Cardiovascular Effects of Exercise. Background Cardiac function Cardiovascular Effects of Exercise In this experiment, you will record an electrocardiogram, or ECG, and finger pulse from a healthy volunteer. You will then compare the ECG and pulse recordings when the

More information

Lab 4: Introduction to Physiological Measurements - Cardiovascular

Lab 4: Introduction to Physiological Measurements - Cardiovascular Lab 4: Introduction to Physiological Measurements - Cardiovascular INTRODUCTION: This lab will demonstrate cardiovascular measurements by creating an ECG with instruments used in previous labs. Students

More information

Large Arteries of Heart

Large Arteries of Heart Cardiovascular System (Part A-2) Module 5 -Chapter 8 Overview Arteries Capillaries Veins Heart Anatomy Conduction System Blood pressure Fetal circulation Susie Turner, M.D. 1/5/13 Large Arteries of Heart

More information

Cardiovascular Physiology Laboratory Clive M. Baumgarten, Ph.D.

Cardiovascular Physiology Laboratory Clive M. Baumgarten, Ph.D. Cardiovascular Physiology Laboratory Clive M. Baumgarten, Ph.D. To pump blood, the heart has a rhythmical sequence of both electrical and mechanical events, the cardiac cycle. The electrical activity,

More information

LEARNING OUTCOME The students will be able to elicit vital signs correctly on human volunteers/patients

LEARNING OUTCOME The students will be able to elicit vital signs correctly on human volunteers/patients Vital signs (pulse, blood pressure, temperature, respiratory rate, pain) are physiological parameters that a healthcare professional requires when dealing with patients. Accurate measurement of vital signs

More information

Name Class Date. Bell Diaphragm. Chest piece. Stethoscope

Name Class Date. Bell Diaphragm. Chest piece. Stethoscope Name Class Date Sensing Circulation Exploring the Effects of Exercise on Heart Rate Investigative Lab 30 8 Questions How do the sounds you hear through a stethoscope relate to the stages of a heartbeat?

More information

Blood Pressure and Exercise Lab

Blood Pressure and Exercise Lab Blood Pressure and Exercise Lab Rob MacLeod March 9, 2006 1 Purpose and Background Purpose: To learn about external means to measure blood pressure, observe features of venous circulation, and observe

More information

LABORATORY INVESTIGATION

LABORATORY INVESTIGATION LABORATORY INVESTIGATION Recording Electrocardiograms The taking of an electrocardiogram is an almost universal part of any complete physical examination. From the ECG record of the electrical activity

More information

Taking and recording blood pressure and pulse. City Gate Training Centre all rights reserved

Taking and recording blood pressure and pulse. City Gate Training Centre all rights reserved Taking and recording blood pressure and pulse City Gate Training Centre all rights reserved Course Content: Definition of Blood Pressure Normal Blood Pressure Readings Systolic and Diastolic Blood Pressure

More information

2. The heart sounds are produced by a summed series of mechanical events, as follows:

2. The heart sounds are produced by a summed series of mechanical events, as follows: Heart Sounds. Phonocardiography 1 Objectives 1. Phonocardiography - Definition 2. What produces the heart sounds 3. Where to listen for the heart sounds 4. How to record a phonocardiogram 5. Normal heart

More information

Electrical Conduction

Electrical Conduction Sinoatrial (SA) node Electrical Conduction Sets the pace of the heartbeat at 70 bpm AV node (50 bpm) and Purkinje fibers (25 40 bpm) can act as pacemakers under some conditions Internodal pathway from

More information

2. Measure a subject's blood pressure and heart rate both at rest and during exercise.

2. Measure a subject's blood pressure and heart rate both at rest and during exercise. Lab Activity 11 The Cardiovascular System Student Learning Objectives After completing this lab, you should be able to: 1. Define, explain and correctly use the key terms. 2. Measure a subject's blood

More information

AP Biology Lab 10 PHYSIOLOGY OF THE CIRCULATORY SYSTEM

AP Biology Lab 10 PHYSIOLOGY OF THE CIRCULATORY SYSTEM AP Biology Laboratory Date: Name and Period: AP Biology Lab 10 PHYSIOLOGY OF THE CIRCULATORY SYSTEM OVERVIEW In this lab you will: 1. in Exercise 10A you will learn how to measure blood pressure. 2. in

More information

Science in Sport. 204a ECG demonstration (Graph) Read. The Electrocardiogram. ECG Any 12 bit EASYSENSE. Sensors: Loggers: Logging time: 10 seconds

Science in Sport. 204a ECG demonstration (Graph) Read. The Electrocardiogram. ECG Any 12 bit EASYSENSE. Sensors: Loggers: Logging time: 10 seconds Sensors: Loggers: ECG Any 12 bit EASYSENSE Science in Sport Logging time: 10 seconds 204a ECG demonstration (Graph) Read Regular medical check ups are essential part of the life of a professional sports

More information

#4 Cardiovascular I The Heart & EKG

#4 Cardiovascular I The Heart & EKG #4 Cardiovascular I Objectives: Identify a list of human heart structures using a virtual human dissection Dissect a sheep heart to identify external and internal structures Identify a list of human heart

More information

How Do We Sense, Think, and Move? -- Lab #11 Bioelectronics Measuring Electrical Properties of the Body

How Do We Sense, Think, and Move? -- Lab #11 Bioelectronics Measuring Electrical Properties of the Body How Do We Sense, Think, and Move? -- Lab #11 Bioelectronics Measuring Electrical Properties of the Body Experiment #1 Your Body's Resistance Equipment: Digital multimeter, Banana leads Important Equipment

More information

INTRODUCTION TO ECG. Dr. Tamara Alqudah

INTRODUCTION TO ECG. Dr. Tamara Alqudah INTRODUCTION TO ECG Dr. Tamara Alqudah Excitatory & conductive system of the heart + - The ECG The electrocardiogram, or ECG, is a simple & noninvasive diagnostic test which records the electrical

More information

PLANK 1 Direct Care Staff Trained in Accurate BP Measurement

PLANK 1 Direct Care Staff Trained in Accurate BP Measurement Direct Care Staff Trained in Accurate BP Measurement 1. 2. 3. 5. 22 to 26 cm Small adult (12X22 cm) 27 to 34 cm Adult (16X30 cm) 35 to 44 cm Large adult (16X36 cm) 45 to 52 cm Adult thigh (16X42 cm) widths

More information

CARDIAC CYCLE CONTENTS. Divisions of cardiac cycle 11/13/13. Definition. Badri Paudel GMC

CARDIAC CYCLE CONTENTS. Divisions of cardiac cycle 11/13/13. Definition. Badri Paudel GMC CARDIAC CYCLE Badri Paudel GMC CONTENTS Ø DEFINATION Ø DIVISION OF CARDIAC CYCLE Ø SUB DIVISION AND DURATION OF CARDIAC CYCLE Ø SYSTOLE Ø DIASTOLE Ø DESCRIPTION OF EVENTS OF CARDIAC CYCLE Ø SUMMARY Ø ELECTROCARDIOGRAPHY

More information

The Cardiac Cycle Clive M. Baumgarten, Ph.D.

The Cardiac Cycle Clive M. Baumgarten, Ph.D. The Cardiac Cycle Clive M. Baumgarten, Ph.D. OBJECTIVES: 1. Describe periods comprising cardiac cycle and events within each period 2. Describe the temporal relationships between pressure, blood flow,

More information

PHONOCARDIOGRAPHY (PCG)

PHONOCARDIOGRAPHY (PCG) PHONOCARDIOGRAPHY (PCG) The technique of listening to sounds produced by the organs and vessels of the body is called auscultation. The areas at which the heart sounds are heard better are called auscultation

More information

Lecture #3 - Blood Pressure Recording Procedure. Equipment

Lecture #3 - Blood Pressure Recording Procedure. Equipment Lecture #3 - Blood Pressure Recording Procedure CKiD Blood Pressure Training Equipment Mabis Medic-Kit aneroid sphygmomanometer Mabis Medic-Kit assortment of cuff sizes Stethoscope with bell (pediatric

More information

Chapter 08. Health Screening and Risk Classification

Chapter 08. Health Screening and Risk Classification Chapter 08 Health Screening and Risk Classification Preliminary Health Screening and Risk Classification Protocol: 1) Conduct a Preliminary Health Evaluation 2) Determine Health /Disease Risks 3) Determine

More information

ECG, Blood Pressure, and Exercise Lab

ECG, Blood Pressure, and Exercise Lab ECG, Blood Pressure, and Exercise Lab Rob MacLeod March 31, 2006 1 Purpose and Background Purpose: The purpose of the lab is to learn about measuring the ECG and blood pressures and observing the effects

More information

Figure 1 muscle tissue to its resting state. By looking at several beats you can also calculate the rate for each component.

Figure 1 muscle tissue to its resting state. By looking at several beats you can also calculate the rate for each component. ANALYZING THE HEART WITH EKG WITH LABQUEST LAB From Human Physiology with Vernier Westminster College INTRODUCTION An electrocardiogram (ECG or EKG) is a graphical recording of the electrical events occurring

More information

Experiment HH-3: Exercise, the Electrocardiogram, and Peripheral Circulation

Experiment HH-3: Exercise, the Electrocardiogram, and Peripheral Circulation Experiment HH-3: Exercise, the Electrocardiogram, and Peripheral Circulation Background The arterial system functions as a pressure reservoir. Blood enters via the heart and exits through the capillaries.

More information

LAB 4. Human Cardiovascular Lab

LAB 4. Human Cardiovascular Lab 35 Assignments: LAB 4 Human Cardiovascular Lab Due before lab: Do IP exercises (Factors that Affect Blood Pressure and Arterial Baroreceptor Reflex (Pgs. 46-47). Quiz: Define the terms on pg 36 and IP

More information

CARDIOVASCULAR PHYSIOLOGY

CARDIOVASCULAR PHYSIOLOGY CARDIOVASCULAR PHYSIOLOGY LECTURE 4 Cardiac cycle Polygram - analysis of cardiac activity Ana-Maria Zagrean MD, PhD The Cardiac Cycle - definitions: the sequence of electrical and mechanical events that

More information

Bio& 242, Unit 3/ Lab 4 Blood Vessels, Lymphatic System and Blood Pressure G. Blevins/ G. Brady Summer 2009

Bio& 242, Unit 3/ Lab 4 Blood Vessels, Lymphatic System and Blood Pressure G. Blevins/ G. Brady Summer 2009 Bio& 242, Unit 3/ Lab 4 Blood Vessels, Lymphatic System and Blood Pressure G. Blevins/ G. Brady Summer 2009 Major Arteries and for arteries and veins with common names your answer must include either artery

More information

Analyzing the Heart with EKG

Analyzing the Heart with EKG Analyzing the Heart with EKG LabQuest An electrocardiogram (ECG or EKG) is a graphical recording of the electrical events occurring within the heart. In a healthy heart there is a natural pacemaker in

More information

iworx Sample Lab Experiment HC-5: Body Position, Exercise, and Cardiac Output

iworx Sample Lab Experiment HC-5: Body Position, Exercise, and Cardiac Output Experiment HC-5: Body Position, Exercise, and Cardiac Output Exercise 1: Cardiac Output While Reclining Aim: To determine the cardiac output of a subject through the measurement of blood pressures and

More information

Human Anatomy and Physiology II Laboratory Cardiovascular Physiology

Human Anatomy and Physiology II Laboratory Cardiovascular Physiology Human Anatomy and Physiology II Laboratory Cardiovascular Physiology 1 This lab involves two exercises: 1) Conduction System of the Heart and Electrocardiography and 2) Human Cardiovascular Physiology:

More information

37 1 The Circulatory System

37 1 The Circulatory System H T H E E A R T 37 1 The Circulatory System The circulatory system and respiratory system work together to supply cells with the nutrients and oxygen they need to stay alive. a) The respiratory system:

More information

Section 03: Pre Exercise Evaluations and Risk Factor Assessment

Section 03: Pre Exercise Evaluations and Risk Factor Assessment Section 03: Pre Exercise Evaluations and Risk Factor Assessment ACSM Guidelines: Chapter 3 Pre Exercise Evaluations ACSM Manual: Chapter 3 Risk Factor Assessments HPHE 4450 Dr. Cheatham Purpose The extent

More information

4. The two inferior chambers of the heart are known as the atria. the superior and inferior vena cava, which empty into the left atrium.

4. The two inferior chambers of the heart are known as the atria. the superior and inferior vena cava, which empty into the left atrium. Answer each statement true or false. If the statement is false, change the underlined word to make it true. 1. The heart is located approximately between the second and fifth ribs and posterior to the

More information

L63 - Bioelectronics Measuring Electrical Properties of the Body

L63 - Bioelectronics Measuring Electrical Properties of the Body L63 - Bioelectronics Measuring Electrical Properties of the Body Experiment #1 Your Body's Resistance Equipment: Digital multimeter, Banana leads Important Equipment Warnings for Today's Lesson In general

More information

Lab 16. The Cardiovascular System Heart and Blood Vessels. Laboratory Objectives

Lab 16. The Cardiovascular System Heart and Blood Vessels. Laboratory Objectives Lab 16 The Cardiovascular System Heart and Blood Vessels Laboratory Objectives Describe the anatomical structures of the heart to include the pericardium, chambers, valves, and major vessels. Describe

More information

following: the readout..

following: the readout.. Read Me Vital Signs In-Lab Guide We will be studying 5 concepts in lab 1. Study the anatomy of the Intrinsic Conduction System using heart models. 2. Study the ECG tracings, including the following: -

More information

CARDIAC EXAMINATION MINI-QUIZ

CARDIAC EXAMINATION MINI-QUIZ CARDIAC EXAMINATION MINI-QUIZ 1. Sitting bolt upright, your dyspneic (short of breath) patient has visible jugular venous pulsations to the angle of his jaw, which is 12 cm above his sternal angle. What

More information

IP: Regulation of Cardiac Output

IP: Regulation of Cardiac Output ANP 1105D Winter 2013 Assignment 9: The Heart, part 2: Chap... Assignment 9: The Heart, part 2: Chapter 18 Signed in as Alex Sokolowski Help Close Resources Due: 11:59pm on Monday, March 25, 2013 Note:

More information

Each student should record the ECG of one of the members of the lab group and have their own ECG recorded.

Each student should record the ECG of one of the members of the lab group and have their own ECG recorded. EXPERIMENT 1 ELECTROCARDIOGRAPHY The purpose of this experiment is to introduce you to the techniques of electrocardiography and the interpretation of electrocardiograms. In Part A of the experiment, you

More information

BIO 360: Vertebrate Physiology Performing and analyzing an EKG Lab 11: Performing and analyzing an EKG Lab report due April 17 th

BIO 360: Vertebrate Physiology Performing and analyzing an EKG Lab 11: Performing and analyzing an EKG Lab report due April 17 th BIO 60: Vertebrate Physiology Lab : Lab report due April 7 th All muscles produce an electrical current when they contract. The heart is no exception. An electrocardiogram (ECG or EKG) is a graphical recording

More information

THE CARDIOVASCULAR SYSTEM : (circulatory system) Lab-4

THE CARDIOVASCULAR SYSTEM : (circulatory system) Lab-4 THE CARDIOVASCULAR SYSTEM : (circulatory system) Lab-4 The Circulatory System: The circulatory system (cardiovascular system) has 3 basic components:- *A muscular pump: heart *Interconnecting tubes: blood

More information

How To Measure Vital Signs

How To Measure Vital Signs How To Measure Vital Signs How to Use This Tutorial This tutorial is intended for healthcare providers or students to teach basic vital signs skills Use the navigation buttons below to move through the

More information

The Heart and Cardiovascular System

The Heart and Cardiovascular System The Heart and Cardiovascular System What you will learn The location of the heart 3 layers and covering of the heart Explain the function of the heart as 2 separate pumps Identify the 4 chambers of the

More information

Biopac Student Lab Lesson 5 ELECTROCARDIOGRAPHY (ECG) I Procedure. Rev

Biopac Student Lab Lesson 5 ELECTROCARDIOGRAPHY (ECG) I Procedure. Rev 42 Aero Camino, Goleta, CA 93117 www.biopac.com Biopac Student Lab Lesson 5 ELECTROCARDIOGRAPHY (ECG) I Procedure Rev. 07112013 Richard Pflanzer, Ph.D. Associate Professor Emeritus Indiana University School

More information

Chapter 15: Measuring Height, Weight, and Vital Signs. Copyright 2012 Wolters Kluwer Health Lippincott Williams & Wilkins

Chapter 15: Measuring Height, Weight, and Vital Signs. Copyright 2012 Wolters Kluwer Health Lippincott Williams & Wilkins Chapter 15: Measuring Height, Weight, and Vital Signs Height and Weight Weight Baseline measurement at patient s first visit Measured in kg or lbs Common types of scales Balance beam Dial Digital Height

More information

Ambulatory Services Orientation & Skill Review Skill Performance Checklist: Vital Signs. Name: Date:

Ambulatory Services Orientation & Skill Review Skill Performance Checklist: Vital Signs. Name: Date: Evaluation Levels Behavior Level 3 Met Performed all skills competently. No behaviors omitted. Level 2 Satisfactory Omitted no more than three (3) non-critical behaviors. Level 1 Unsatisfactory Omitted

More information

SMALL GROUP SESSION 19 January 30 th or February 1st. Groups 1-12: Cardiac Case and Cardiac Exam Workshop

SMALL GROUP SESSION 19 January 30 th or February 1st. Groups 1-12: Cardiac Case and Cardiac Exam Workshop SMALL GROUP SESSION 19 January 30 th or February 1st Groups 1-12: Cardiac Case and Cardiac Exam Workshop Readings: Complete the cardiac examination tutorial on the POM1 web site. Optional: http://medicine.ucsd.edu/clinicalmed/heart.htm

More information

Collin County Community College

Collin County Community College Collin County Community College BIOL. 2402 Anatomy & Physiology WEEK 5 The Heart 1 The Heart Beat and the EKG 2 1 The Heart Beat and the EKG P-wave = Atrial depolarization QRS-wave = Ventricular depolarization

More information

Data Collection Worksheet

Data Collection Worksheet Data Collection Worksheet 1. Has a doctor or nurse ever said that you have: High blood pressure or hypertension? [ ] No [ ] Yes [ ] Not Sure 1.a. If Yes, then at what age were you first told this? Age

More information

Clinical Research Coordinator Skills Program

Clinical Research Coordinator Skills Program Clinical Research Coordinator Skills Program Vital Signs This Skill Requires Provider direction Standard Precautions Using purell before and after contact with the patient or the patient s environment

More information

Lesson 5 BIOPAC Systems, Inc. Manual Revision PL3.7.5

Lesson 5 BIOPAC Systems, Inc. Manual Revision PL3.7.5 Physiology Lessons for use with the Biopac Student Lab Lesson 5 ELECTROCARDIOGRAPHY I Components of the ECG Richard Pflanzer, Ph.D. Associate Professor Emeritus Indiana University School of Medicine Purdue

More information

Cardiovascular System Notes: Physiology of the Heart

Cardiovascular System Notes: Physiology of the Heart Cardiovascular System Notes: Physiology of the Heart Interesting Heart Fact Capillaries are so small it takes ten of them to equal the thickness of a human hair. Review What are the 3 parts of the cardiovascular

More information

THE CARDIOVASCULAR SYSTEM. Heart 2

THE CARDIOVASCULAR SYSTEM. Heart 2 THE CARDIOVASCULAR SYSTEM Heart 2 PROPERTIES OF CARDIAC MUSCLE Cardiac muscle Striated Short Wide Branched Interconnected Skeletal muscle Striated Long Narrow Cylindrical PROPERTIES OF CARDIAC MUSCLE Intercalated

More information

The cardiovascular system is composed of the heart and blood vessels that carry blood to and from the body s organs. There are 2 major circuits:

The cardiovascular system is composed of the heart and blood vessels that carry blood to and from the body s organs. There are 2 major circuits: 1 The cardiovascular system is composed of the heart and blood vessels that carry blood to and from the body s organs. There are 2 major circuits: pulmonary and systemic. The pulmonary goes out to the

More information

CARDIOVASCULAR SYSTEM

CARDIOVASCULAR SYSTEM CARDIOVASCULAR SYSTEM Overview Heart and Vessels 2 Major Divisions Pulmonary Circuit Systemic Circuit Closed and Continuous Loop Location Aorta Superior vena cava Right lung Pulmonary trunk Base of heart

More information

Introduction to Lesson 2 - Heartbeat

Introduction to Lesson 2 - Heartbeat Introduction to Lesson 2 - Heartbeat Activity: Locate your pulse at rest. Count how many times it beats in 15 seconds (look at a clock), then multiply this number by 4. This is your pulse rate Approximately

More information

Heart Rate and Blood Pressure as Vital Signs

Heart Rate and Blood Pressure as Vital Signs Heart Rate and Blood Pressure as Vital Signs Computer 10 Since the earliest days of medicine heart rate has been recognized as a vital sign an indicator of health, disease, excitement, and stress. Medical

More information

Biology 212: Anatomy and Physiology II Lab #4: CARDIOVASCULAR PHYSIOLOGY AND THE ELECTROCARDIOGRAM

Biology 212: Anatomy and Physiology II Lab #4: CARDIOVASCULAR PHYSIOLOGY AND THE ELECTROCARDIOGRAM Biology 212: Anatomy and Physiology II Lab #4: CARDIOVASCULAR PHYSIOLOGY AND THE ELECTROCARDIOGRAM References: Saladin, KS: Anatomy and Physiology, The Unity of Form and Function 7 th (2015). Be sure you

More information

Sample. Analyzing the Heart with EKG. Computer

Sample. Analyzing the Heart with EKG. Computer Analyzing the Heart with EKG Computer An electrocardiogram (ECG or EKG) is a graphical recording of the electrical events occurring within the heart. In a healthy heart there is a natural pacemaker in

More information

CRITICAL THINKING QUESTIONS AND ANSWERS AND CYCLE 2 LAB EXAM TEMPLATE. There are two main mechanisms that work in conjunction to return the blood

CRITICAL THINKING QUESTIONS AND ANSWERS AND CYCLE 2 LAB EXAM TEMPLATE. There are two main mechanisms that work in conjunction to return the blood CRITICAL THINKING QUESTIONS AND ANSWERS AND CYCLE 2 LAB EXAM TEMPLATE There are two main mechanisms that work in conjunction to return the blood THE CARDIAC PUMP 1) The forward pull(vis a fronte) This

More information

ECG. Prepared by: Dr.Fatima Daoud Reference: Guyton and Hall Textbook of Medical Physiology,12 th edition Chapters: 11,12,13

ECG. Prepared by: Dr.Fatima Daoud Reference: Guyton and Hall Textbook of Medical Physiology,12 th edition Chapters: 11,12,13 ECG Prepared by: Dr.Fatima Daoud Reference: Guyton and Hall Textbook of Medical Physiology,12 th edition Chapters: 11,12,13 The Concept When the cardiac impulse passes through the heart, electrical current

More information

Experiment HH-2: The Electrocardiogram and Heart Sounds

Experiment HH-2: The Electrocardiogram and Heart Sounds Experiment HH-2: The Electrocardiogram and Heart Sounds Exercise 1: The ECG in a Resting Subject Aim: To measure the ECG in a resting individual. Procedure 1. Click on the Record button, located on the

More information

Measuring body temperature, blood pressure, pulse, respiratory rate and oxygen saturation

Measuring body temperature, blood pressure, pulse, respiratory rate and oxygen saturation Vital Signs Measuring body temperature, blood pressure, pulse, respiratory rate and oxygen saturation Aims To ensure that students are able to demonstrate the safe and correct technique for setting up

More information

BP-600 Noninvasive Blood Pressure Sensor

BP-600 Noninvasive Blood Pressure Sensor Technical Note BP-600 Overview A person's cardiac output, peripheral vascular resistance, blood pressure, and other cardiovascular parameters change in response to the activities and events taking place

More information

science-u.org What affects blood Blood Pressure Directions You Will Need BEST FOR GRADES 5-8 ESTIMATED TIME Minutes

science-u.org What affects blood Blood Pressure Directions You Will Need BEST FOR GRADES 5-8 ESTIMATED TIME Minutes What affects blood pressure? BEST FOR GRADES 5-8 ESTIMATED TIME 25-60 Minutes You Will Need Sphygmomanometer (blood pressure cuff) Stethoscope Blood pressure cuffs and stethoscopes can be found online

More information

Warm Up- Monday -AND- Setup Cornell Notes.

Warm Up- Monday -AND- Setup Cornell Notes. Warm Up- Monday Brainstorm in your notebook: If the heart sends blood to all organs, how and where does the heart get blood to provide oxygen for its muscles? -AND- Setup Cornell Notes. Announcements Unit

More information

Overview. Page 1 of 9. Impedance Cardiography

Overview.  Page 1 of 9. Impedance Cardiography Updated 05.14.10 BSL PRO Lesson H21: Impedance Cardiography Data collected from a subject using the referenced set-up procedure. Note that dz/dt maximum is determined on a cycle by cycle basis from the

More information

Experiment HH-3: Exercise, the Electrocardiogram, and Peripheral Circulation

Experiment HH-3: Exercise, the Electrocardiogram, and Peripheral Circulation Experiment HH-3: Exercise, the Electrocardiogram, and Peripheral Circulation Exercise 1: The ECG and the Pulse in a Resting Subject Aim: To measure and correlate the ECG and the pulse in a resting individual.

More information

Human Nerve Chapter. Experiment HH-1: The Electrocardiogram and Peripheral Circulation. Answer Sheet for Experiment HM-1

Human Nerve Chapter. Experiment HH-1: The Electrocardiogram and Peripheral Circulation. Answer Sheet for Experiment HM-1 Contents Human Heart Chapter Experiment HH-1: The Electrocardiogram and Peripheral Circulation Answer Sheet for Experiment HH-1 Experiment HH-2: The Electrocardiogram and Heart Sounds Answer Sheet for

More information

Experiment HC-1: Blood Pressure, Peripheral Circulation, and Body Position

Experiment HC-1: Blood Pressure, Peripheral Circulation, and Body Position Experiment HC-1: Blood Pressure, Peripheral Circulation, and Body Position Exercise 1: Blood Pressures from the Left Arm Aim: To determine the systolic and diastolic blood pressures in a reclining subject,

More information

Electrocardiogram sensor (ECG/EKG sensor)

Electrocardiogram sensor (ECG/EKG sensor) [KDS-1040] Electrocardiogram sensor (ECG/EKG sensor) User's Manual Note This product is designed for educational use only. Not recommended for industrial, medical, commercial use. What is Electrocardiogram?

More information

2The Concept of Periodic Functions

2The Concept of Periodic Functions The Concept of Periodic Functions EKG INTRODUCTION The heart is a fist-sized muscle that acts as an electrical generator lying in a conducting medium made of body tissue and fluids. The heart pumps oxygen-rich

More information

SMALL GROUP SESSION 18A January 17th or January 19th. Groups 1-12: VS and Chest Exam and Harvey Stethophone Session

SMALL GROUP SESSION 18A January 17th or January 19th. Groups 1-12: VS and Chest Exam and Harvey Stethophone Session SMALL GROUP SESSION 18A January 17th or January 19th Groups 1-12: VS and Chest Exam and Harvey Stethophone Session Readings: Complete the cardiac examination web module. Mosby s Physical Examination, 4

More information

Pearson's Comprehensive Medical Assisting Administrative and Clinical Competencies

Pearson's Comprehensive Medical Assisting Administrative and Clinical Competencies Pearson's Comprehensive Medical Assisting Administrative and Clinical Competencies THIRD EDITION CHAPTER 27 The Cardiovascular System Lesson 1: Overview of the Cardiovascular System Lesson Objectives Upon

More information