THE VENTILATORY RESPONSE TO HYPOXIA DURING EXERCISE IN CYANOTIC CONGENITAL HEART DISEASE

Size: px
Start display at page:

Download "THE VENTILATORY RESPONSE TO HYPOXIA DURING EXERCISE IN CYANOTIC CONGENITAL HEART DISEASE"

Transcription

1 Clinical Science and Molecular Medicine (1973) 45,99-5. THE VENTILATORY RESPONSE TO HYPOXIA DURING EXERCISE IN CYANOTIC CONGENITAL HEART DISEASE M. R. H. TAYLOR Department of Paediatrics, Institute of Diseases of the Chest, Brompton Hospital, London (Received 5 February 1973) SUMMARY 1. In contrast to the diminished ventilatory response to hypoxia which has been found at rest in cyanotic congenital heart disease, hyperventilation was noted on exercise in children who were cyanosed. 2. Sixteen children had low arterial oxygen saturations on exercise and thirteen of these hyperventilated by an amount similar to that reported in normal adults breathing hypoxic gas mixtures. 3. The three children who had little ventilatory response in relation to the increase of hypoxia during exercise all had a triad of long-standing cyanosis starting early in life, high haemoglobin concentration and low arterial oxygen saturation at rest in air. Key words : ventilation, exercise, hypoxia, congenital heart disease. Normal adults hyperventilate in response to hypoxia (Asmussen, 1967) but Sorensen & Severinghaus (1968) and Edelman, Lahiri, Braudo, Cherniack & Fishman (1970) have shown a diminution of the ventilatory response to hypoxia at rest in cyanotic congenital heart disease. However, in this laboratory, children with cyanotic congential heart disease were found to hyperventilate during exercise. Hyperventilation was most marked in those children who became deeply cyanosed. This paper records the ventilatory changes during exercise in Mteen children with varying degrees of cyanosis due to Fallot s tetralogy, and in two children with ventricular septa1 defects and right to left shunts. MATERIALS AND METHODS Details of the seventeen patients studied are given in Table 1. Parental consent was obtained for the study in each case. None of the children were receiving drug therapy at the time of the study. Exercise studies were performed in the upright position on an electrically braked Correspondence: Dr Mervyn R. H. Taylor, Department of Paediatrics, Trinity College, Dublin. 99

2 0 M. R. H. Taylor bicycle ergometer as described elsewhere (Godfrey, Davis, Wozniak & Barnes 1971a). Steadystate measurements were made at rest, one-third and two-thirds of the maximum work load that the child had completed in a previous assessment of his maximum working capacity. In a few children with severe exercise intolerance steady-state measurements were made at rest and one-half the maximum work load reached. The inspired gas was air throughout each study. Expired gas was flushed through a Tissot spirometer and analysed continuously for 0, and COz. When heart rate, minute ventilation TABLE 1. Details of the patients studied. = Fallot s tetralogy; VSD = ventricular septa1 defect; TCF = total correction of Fallot s tetralogy. Patient Age Age of onset Sex Height Diagnosis and operations no. (years) of cyanosis (cm) 1 I lo a 13b l+ years 8 months years At birth 2 years 11 years 5 days At birth At birth 1 week 1 week 5 years months M 122 M 9 F 112 M 1 F 1 F 1 M 136 F 124 M 1 M 1 F 4 F 1 M 135 M 1 M 145 F 1 F 1 M 125. Blalock shunt, aged 4 years. Pulmonary infundibular resection, aged 4 years Eisenmenger VSD Eisenrnenger VSD TCF, aged 4 years TCF, aged 8 months TCF, aged 8 months TCF, aged 9 years TCF, aged 8 years TCF, aged 6 years TCF, aged 24 years and expired gas concentrations were all steady a collection of expired gas was made in the spirometer over at least 1 min and analysed immediately. While the expired gas was being collected, a sample of blood was taken from an ear lobe for estimation of ph, Po, and Pco,. The blood was collected, analysed and the ph and PCO, corrected to arterial values as described by Godfrey, Wozniak, Courtenay-Evans & Samuels (1971b). The mean oxygen difference between ear and arterial samples using this method is 2.1 mmhg (SD 2.5) at rest and 0.9 mmhg on exercise (SD 3.1). Arterial oxygen saturation was calculated as described by Severinghaus (1966). Blood oxygen content was calculated from the oxygen saturation and haemoglobin concentration. A ventilatory index was used to relate the children s results to normal values. This was calculated as follows: observed minute ventilation = x 0 expected minute ventilation The expected minute ventilation was calculated from the child s oxygen consumption, height and sex using the data from normal children reported by Godfrey et al. (1971a).

3 Ventilation in hypoxic exercise 1 Fall in arteriol oxygen saturation from resting value FIG. 1. The relationship between ventilatory index and the fall in arterial oxygen saturation from the resting value (y = 4.081x+96.96: patients 2, 3 and 7 omitted). 95% confidence limits are given on either side of the regression line. The results from Asmussen s (1967) data are marked (A) _ C g I60 I 80 I I 1 I I I I I.I I I I I I I *I Arteriol Po2 (mmhg) FIG. 2. The relationship between ventilatory index and arterial Po2. The values from Asmussen s (1967) data are marked (A). The trend line was drawn by eye.

4 2 M. R. H. Taylor RESULTS At rest there was no significant difference between the mean minute ventilation of these children (8.2fSEM 1.0 litres/min) and that of normal children studied in this laboratory (7.8 f SEM 0.69 litres/min). Fig. 1 shows the relationship between the ventilatory index on exercise and the change in arterial oxygen saturation from the resting value. Fig. 2 shows the relationship between the ventilatory index on exercise and arterial Po,. There are no values available for the ventilatory response of normal children to hypoxia during exercise for comparison with this data. However, the results calculated from the normal adult data of Asmussen (1967) (assuming normal resting arterial oxygen saturation and a 2% venous admixture on exercise) agree with the present results (Fig. 1). The ventilatory index on exercise was significantly related to the arterial ph, but statistical assessment of the multiple regression analysis of ventilatory index, change in arterial oxygen TABLE 2. Haemoglobin concentration (Hb), oxygen consumption ( Vo,), ventilatory index, arterial Pco, (Pa,co,), arterial Poz(Pa,oz), % arterial oxygen saturation (Sa,o,) and arterial ph (ph) before and during exercise Patient Work Hb Vo, Ventilatory Pa,coz Pa,ol Sa,o, ph no. (W) (g/loo ml) (litres/min) index (mmhg) (mmhg) (%)

5 Ventilation in hypoxic exercise TABLE 2 (continued) 3 Patient Work Hb Vo2 Ventilatory Pa,co2 Pa,02 Sa,02 ph no. (W) (g/0 ml) (litreslmin) index (mmhg) (mmhg) (%) a 13b TABLE 3. Statistical analysis of the data. ASa,02 = change in arterial oxygen saturation from rest, Ca,02 = oxygen content of arterial blood (in vo1./0 ml). Other abbreviations are as in Table 2. In the upper section of the table, patients 2, 3 and 7 have been omitted; in the lower section all patients are included. Dependent variable (y) Independent variable (x) Correlation coefficient P value Pa,co2 Pa,02 Sa,02 ASa,02 Ca,ol PH > 03 < 0001 < < < < Sa, < 0001 ASa, < 0001 Ca, < 0.001

6 4 M. R. H. Taylor saturation and ph showed that the contribution made by ph was not significant when the ventilatory index and change in arterial oxygen saturation were known. Increase in arterial Pco2 (Pa,co2) and fall in ph both stimulate respiration and in theory could have been responsible for the raised ventilatory index on exercise. The highest Pa,co2 during exercise was 35 mmhg and Pa,co2 on exercise was not significantly related to the ventilatory index (Table 3). Therefore the increase in minute ventilation was not due to an increase in Pa,co2. Three children (patients 2, 3 and 7) had a lower ventilatory response than the others. Their results fell outside the 95% confidence limits estimated from the results of the other children. Direct measurement of ventilatory capacity in these children showed that they were all capable of a ventilation rate which would have brought their results within the 95% confidence limits. In these children Pa,co2 during exercise was not lower than that of the other children (Table 2). As all the children with a poor response during exercise had high haemoglobin values it was possible that their arterial oxygen content might be higher than was suggested by their arterial oxygen saturation, and the ventilatory response of all the children might be more closely related to oxygen content than saturation. However, statistical analysis showed that the ventilatory response was more closely related to both oxygen saturation and change in oxygen saturation than to oxygen content (Table 3). DISCUSSION The three patients (2,3 and 7), who had a poor ventilatory response in relation to the increase of hypoxia on exercise, all had haemoglobin concentration above 16 g/loo ml, arterial oxygen saturation (Sa,02) of less than 88% at rest in air, and a history of cyanosis of at least 43 years duration starting at or before years of age. Of the children who did not have a low ventilatory response on exercise, two patients (13 and ) had a similar history of cyanosis and a low saturation at rest, but a haemoglobin concentration below 16 g/loo ml, and one Opatient 11) had a low oxygen saturation at rest and a haemoglobin concentration of 18 g/0 ml, but a late onset of cyanosis. It would appear that a raised haemoglobin concentration, arterial desaturation in air at rest and long-standing cyanosis starting early in life were associated with insensitivity to hypoxia during exercise, though it is not possible to say which is cause and which is effect from the data available at present. Sorensen 8c Severinghaus (1968) using a steady-state technique have shown blunting of the ventilatory response to hypoxia at rest in adults with surgically corrected Fallot s tetralogy. Edelman et al. (1970) using transient hypoxia showed a diminished response in cyanotic congenital heart disease. In the present study it would have been interesting to compare the ventilatory response to hypoxia at rest with that on exercise but it was not felt that the induction of hypoxia at rest by breathing hypoxic mixtures was justifiable in these children. The ventilatory response on exercise was not diminished as compared with that reported by Asmussen (1967) in normal adults. It is possible that the ventilatory response to hypoxia is merely blocked at rest and not damaged as has been suggested (British Medical Journal, 1970). The results of the studies of totally corrected Fallot s tetralogy by Sorensen & Severinghaus (1968) and Edelman et al. (1970) are not in agreement. Sorensen & Severinghaus (1968) found a diminished ventilatory response to hypoxia at rest while Edelman et al. (1970) found a normal

7 Ventilation in hypoxic exercise 5 or near-normal response. This difference could be due to the different techniques used (steadystate and transient hypoxia) or to the fact that the three post-operative cases studied by Edelman el al. (1970) had normal arterial oxygen saturations and haemoglobin concentrations, while four of the five patients studied by Sorensen & Severinghaus (1968) were still hypoxic and had high haematocrits after total surgical correction. From the present study it appears that, except in patients with a triad of long-standing cyanosis from early life, a raised haemoglobin concentration and a low arterial oxygen saturation at rest in air, the ventilatory response during exercise in cyanotic congenital heart disease is not diminished as other workers have shown it to be at rest. ACKNOWLEDGMENTS I would like to thank the consultants of the Brompton and Guy s Hospital for allowing me to study patients under their care, my colleagues in the Institute of Diseases of the Chest for advice and assistance and Mr Andrew Nunn for statistical advice. This work was carried out during the tenure of the Eden Fellowship in Paediatrics. REFERENCES ASMUSSEN, E. (1967) Exercise and the regulation of ventilation. Circulation Research, 2CL21, Suppl., BRITISH MEDICAL JOURNAL (1970) Control of breathing. British Medical Journal, iii, EDELMAN, N.H., LAHIRI, S., BRAUDO, N.S., CHERNIACK, N.S. & FISHMAN, A.P. (1970) Blunted ventilatory response to hypoxia in congenital heart disease. New England Journal of Medicine, 282, GODFREY, S., DAVIS, C.T.M., WOZNIAK, E.R. & BARNES, C.A. (1971a) Cardio-respiratory response to exercise in normal children. Clinical Science,, GODFREY, S., WOZNIAK, E.R., COURTENAY-EVANS, R.J. & SAMUELS, C.S. (1971b) Ear lobe blood samples for blood gas analysis at rest and during exercise. British Journal of Diseases of the Chest, 65, SEVERINGHAUS, J.W. (1966) Blood gas calculator. Journal of Applied Physiology, 21, SORENSEN, S.C. & SEVERINGHAUS, J.W. (1968) Respiratory insensitivity to hypoxia persisting after correction of tetralogy of Fallot. Journal of Applied Ph.vsiology, 25,

CARDIO-RESPIRATORY RESPONSE TO EXERCISE IN NORMAL CHILDREN

CARDIO-RESPIRATORY RESPONSE TO EXERCISE IN NORMAL CHILDREN Clinical Science (1971) 40, 419431. CARDIORESPIRATORY RESPONSE TO EXERCISE IN NORMAL CHILDREN S. GODFREY, C. T. M. DAVIES, E. WOZNIAK AND CAROLYN A. BARNES Institute of Diseases of the Chest, London, and

More information

effects of haematocrit reduction in patients with

effects of haematocrit reduction in patients with Br HeartJ7 1980; 44: 584-8 Haemodynamic effects of haematocrit reduction in patients with polycythaemia secondary to cyanotic congenital heart disease P J OLDERSHAW, M G ST JOHN SUTTON From the Department

More information

Physiological Response to Exercise in Children with Lung or Heart Disease

Physiological Response to Exercise in Children with Lung or Heart Disease Archives of Disease in Childhood, 1970, 45, 534. Physiological Response to Exercise in Children with Lung or Heart Disease S. GODFREY From the Department of Paediatrics, Institute of Diseases of the Chest,

More information

Respiratory Physiology Part II. Bio 219 Napa Valley College Dr. Adam Ross

Respiratory Physiology Part II. Bio 219 Napa Valley College Dr. Adam Ross Respiratory Physiology Part II Bio 219 Napa Valley College Dr. Adam Ross Gas exchange Gas exchange in the lungs (to capillaries) occurs by diffusion across respiratory membrane due to differences in partial

More information

Hypoxic and hypercapnic response in asthmatic

Hypoxic and hypercapnic response in asthmatic Hypoxic and hypercapnic response in asthmatic subjects with previous respiratory failure ARLENE A HUTCHISON, ANTHONY OLINSKY From the Department of Thoracic Medicine, Royal Children's Hospital, Melbourne,

More information

HISTORY. Question: What type of heart disease is suggested by this history? CHIEF COMPLAINT: Decreasing exercise tolerance.

HISTORY. Question: What type of heart disease is suggested by this history? CHIEF COMPLAINT: Decreasing exercise tolerance. HISTORY 15-year-old male. CHIEF COMPLAINT: Decreasing exercise tolerance. PRESENT ILLNESS: A heart murmur was noted in childhood, but subsequent medical care was sporadic. Easy fatigability and slight

More information

Chronic Obstructive Pulmonary Disease

Chronic Obstructive Pulmonary Disease 136 PHYSIOLOGY CASES AND PROBLEMS Case 24 Chronic Obstructive Pulmonary Disease Bernice Betweiler is a 73-year-old retired seamstress who has never been married. She worked in the alterations department

More information

3. Which of the following would be inconsistent with respiratory alkalosis? A. ph = 7.57 B. PaCO = 30 mm Hg C. ph = 7.63 D.

3. Which of the following would be inconsistent with respiratory alkalosis? A. ph = 7.57 B. PaCO = 30 mm Hg C. ph = 7.63 D. Pilbeam: Mechanical Ventilation, 4 th Edition Test Bank Chapter 1: Oxygenation and Acid-Base Evaluation MULTIPLE CHOICE 1. The diffusion of carbon dioxide across the alveolar capillary membrane is. A.

More information

When Cyanosis is the Norm. Steven M. Schwartz, MD, FRCPC Cardiac Critical Care Medicine The Hospital for Sick Children Toronto

When Cyanosis is the Norm. Steven M. Schwartz, MD, FRCPC Cardiac Critical Care Medicine The Hospital for Sick Children Toronto When Cyanosis is the Norm Steven M. Schwartz, MD, FRCPC Cardiac Critical Care Medicine The Hospital for Sick Children Toronto No Disclosures When Cyanosis is the Norm Physiology of cyanotic congenital

More information

CIRCULATION IN CONGENITAL HEART DISEASE*

CIRCULATION IN CONGENITAL HEART DISEASE* THE EFFECT OF CARBON DIOXIDE ON THE PULMONARY CIRCULATION IN CONGENITAL HEART DISEASE* BY R. J. SHEPHARD From The Cardiac Department, Guy's Hospital Received July 26, 1954 The response of the pulmonary

More information

Lecture Notes. Chapter 2: Introduction to Respiratory Failure

Lecture Notes. Chapter 2: Introduction to Respiratory Failure Lecture Notes Chapter 2: Introduction to Respiratory Failure Objectives Define respiratory failure, ventilatory failure, and oxygenation failure List the causes of respiratory failure Describe the effects

More information

Non-Invasive PCO 2 Monitoring in Infants Hospitalized with Viral Bronchiolitis

Non-Invasive PCO 2 Monitoring in Infants Hospitalized with Viral Bronchiolitis Non-Invasive PCO 2 Monitoring in Infants Hospitalized with Viral Bronchiolitis Gal S, Riskin A, Chistyakov I, Shifman N, Srugo I, and Kugelman A Pediatric Department and Pediatric Pulmonary Unit Bnai Zion

More information

1. When a patient fails to ventilate or oxygenate adequately, the problem is caused by pathophysiological factors such as hyperventilation.

1. When a patient fails to ventilate or oxygenate adequately, the problem is caused by pathophysiological factors such as hyperventilation. Chapter 1: Principles of Mechanical Ventilation TRUE/FALSE 1. When a patient fails to ventilate or oxygenate adequately, the problem is caused by pathophysiological factors such as hyperventilation. F

More information

When is Risky to Apply Oxygen for Congenital Heart Disease 부천세종병원 소아청소년과최은영

When is Risky to Apply Oxygen for Congenital Heart Disease 부천세종병원 소아청소년과최은영 When is Risky to Apply Oxygen for Congenital Heart Disease 부천세종병원 소아청소년과최은영 The Korean Society of Cardiology COI Disclosure Eun-Young Choi The author have no financial conflicts of interest to disclose

More information

The Blue Baby. Network Stabilisation of the Term Infant Study Day 15 th March 2017 Joanna Behrsin

The Blue Baby. Network Stabilisation of the Term Infant Study Day 15 th March 2017 Joanna Behrsin The Blue Baby Network Stabilisation of the Term Infant Study Day 15 th March 2017 Joanna Behrsin Session Structure Definitions and assessment of cyanosis Causes of blue baby Structured approach to assessing

More information

Uptofate Study Summary

Uptofate Study Summary CONGENITAL HEART DISEASE Uptofate Study Summary Acyanotic Atrial septal defect Ventricular septal defect Patent foramen ovale Patent ductus arteriosus Aortic coartation Pulmonary stenosis Cyanotic Tetralogy

More information

Chapter 38: Pulmonary Circulation, Pulmonary Edema, Pleural Fluid UNIT VII. Slides by Robert L. Hester, PhD

Chapter 38: Pulmonary Circulation, Pulmonary Edema, Pleural Fluid UNIT VII. Slides by Robert L. Hester, PhD UNIT VII Chapter 38: Pulmonary Circulation, Pulmonary Edema, Pleural Fluid Slides by Robert L. Hester, PhD Objectives Describe the pulmonary circulation Describe the pulmonary blood pressures List the

More information

CONGENITAL HEART DISEASE (CHD)

CONGENITAL HEART DISEASE (CHD) CONGENITAL HEART DISEASE (CHD) DEFINITION It is the result of a structural or functional abnormality of the cardiovascular system at birth GENERAL FEATURES OF CHD Structural defects due to specific disturbance

More information

BiPAPS/TVAPSCPAPASV???? Lori Davis, B.Sc., R.C.P.T.(P), RPSGT

BiPAPS/TVAPSCPAPASV???? Lori Davis, B.Sc., R.C.P.T.(P), RPSGT BiPAPS/TVAPSCPAPASV???? Lori Davis, B.Sc., R.C.P.T.(P), RPSGT Modes Continuous Positive Airway Pressure (CPAP): One set pressure which is the same on inspiration and expiration Auto-PAP (APAP) - Provides

More information

Birmingham Medical Research Expeditionary Society 1977 Expedition:

Birmingham Medical Research Expeditionary Society 1977 Expedition: Postgraduate Medical Journal (July 1979) 55, 496-500 Birmingham Medical Research Expeditionary Society 1977 Expedition: Cardiopulmonary function before, during and after a twenty-one-day Himalayan trek

More information

CYANOTIC CONGENITAL HEART DISEASES. PRESENTER: DR. Myra M. Koech Pediatric cardiologist MTRH/MU

CYANOTIC CONGENITAL HEART DISEASES. PRESENTER: DR. Myra M. Koech Pediatric cardiologist MTRH/MU CYANOTIC CONGENITAL HEART DISEASES PRESENTER: DR. Myra M. Koech Pediatric cardiologist MTRH/MU DEFINITION Congenital heart diseases are defined as structural and functional problems of the heart that are

More information

Congenital heart disease: When to act and what to do?

Congenital heart disease: When to act and what to do? Leading Article Congenital heart disease: When to act and what to do? Duminda Samarasinghe 1 Sri Lanka Journal of Child Health, 2010; 39: 39-43 (Key words: Congenital heart disease) Congenital heart disease

More information

ACETYLCHOLINE AND THE PULMONARY CIRCULATION

ACETYLCHOLINE AND THE PULMONARY CIRCULATION ACETYLCHOLINE AND THE PULMONARY CIRCULATION IN MITRAL VALVULAR DISEASE BY BROR SODERHOLM AND LARS WERKO* From the Department of Clinical Physiology and the First Medical Service, Sahlgrenska Sjukhuset,

More information

Chapter 21. Flail Chest. Mosby items and derived items 2011, 2006 by Mosby, Inc., an affiliate of Elsevier Inc.

Chapter 21. Flail Chest. Mosby items and derived items 2011, 2006 by Mosby, Inc., an affiliate of Elsevier Inc. Chapter 21 Flail Chest 1 Figure 21-1. Flail chest. Double fractures of three or more adjacent ribs produce instability of the chest wall and paradoxical motion of the thorax. Inset, Atelectasis, a common

More information

Mechanical Ventilation. Assessing the Adequacy of Tissue Oxygenation. Tissue Oxygenation - Step 1. Tissue Oxygenation

Mechanical Ventilation. Assessing the Adequacy of Tissue Oxygenation. Tissue Oxygenation - Step 1. Tissue Oxygenation 1 Mechanical Ventilation Assessing the Adequacy of 2 Tissue oxygenation is the end-product of many complex steps - Step 1 3 Oxygen must be made available to alveoli 1 - Step 2 4 Oxygen must cross the alveolarcapillary

More information

the maximum of several estimations was taken and corrected to body temperature. The maximum responses to carbon dioxide were measured

the maximum of several estimations was taken and corrected to body temperature. The maximum responses to carbon dioxide were measured THE EFFECT OF OBSTRUCTION TO BREATHING ON THE VENTILATORY RESPONSE TO Co21 By R. M. CHERNIACK2 AND D. P. SNIDAL (From The Department of Physiology and Medical Research, the University of Manitoba, and

More information

CYANOSIS. İ.U. Cerrahpaşa Medical School Department of Pediatric Cardiology. İ. Levent SALTIK, MD

CYANOSIS. İ.U. Cerrahpaşa Medical School Department of Pediatric Cardiology. İ. Levent SALTIK, MD CYANOSIS İ.U. Cerrahpaşa Medical School Department of Pediatric Cardiology İ. Levent SALTIK, MD CYANOSIS Cyanosis is a blue-purple discoloration of the skin and mucous membranes Cyanosis is not a disease

More information

Interpretation of Arterial Blood Gases. Prof. Dr. W. Vincken Head Respiratory Division Academisch Ziekenhuis Vrije Universiteit Brussel (AZ VUB)

Interpretation of Arterial Blood Gases. Prof. Dr. W. Vincken Head Respiratory Division Academisch Ziekenhuis Vrije Universiteit Brussel (AZ VUB) Interpretation of Arterial Blood Gases Prof. Dr. W. Vincken Head Respiratory Division Academisch Ziekenhuis Vrije Universiteit Brussel (AZ VUB) Before interpretation of ABG Make/Take note of Correct puncture

More information

Critical Care Monitoring. Assessing the Adequacy of Tissue Oxygenation. Tissue Oxygenation - Step 1. Tissue Oxygenation

Critical Care Monitoring. Assessing the Adequacy of Tissue Oxygenation. Tissue Oxygenation - Step 1. Tissue Oxygenation Critical Care Monitoring 1 Assessing the Adequacy of Tissue oxygenation is the end-product of many complex steps 2 - Step 1 Oxygen must be made available to alveoli 3 1 - Step 2 Oxygen must cross the alveolarcapillary

More information

Pulmonary Function and Response to Exercise in

Pulmonary Function and Response to Exercise in Archives of Disease in Childhood, 1971, 46, 144 Pulmonary Function and Response to Exercise in Cystic Fibrosis S GODFREY and MARGARET MEARNS From the Institute of Diseases of the Chest, and Queen Elizabeth

More information

The Chest X-ray for Cardiologists

The Chest X-ray for Cardiologists Mayo Clinic & British Cardiovascular Society at the Royal College of Physicians, London : 21-23-October 2013 Cases-Controversies-Updates 2013 The Chest X-ray for Cardiologists Michael Rubens Royal Brompton

More information

How to Recognize a Suspected Cardiac Defect in the Neonate

How to Recognize a Suspected Cardiac Defect in the Neonate Neonatal Nursing Education Brief: How to Recognize a Suspected Cardiac Defect in the Neonate https://www.seattlechildrens.org/healthcareprofessionals/education/continuing-medical-nursing-education/neonatalnursing-education-briefs/

More information

emphysema may result in serious respiratory acidosis, coma, and even death (4, 5). The

emphysema may result in serious respiratory acidosis, coma, and even death (4, 5). The Journal of Clinical Investigation Vol. 41, No. 2, 1962 STUDIES ON THE MECHANISM OF OXYGEN-INDUCED HYPOVENTILATION. AN EXPERIMENTAL APPROACH.* By THOMAS B. BARNETT AND RICHARD M. PETERS (From the Departnments

More information

RESPIRATION AND SLEEP AT HIGH ALTITUDE

RESPIRATION AND SLEEP AT HIGH ALTITUDE MANO Pulmonologist-Intensivis Director of ICU and Sleep Dis Evangelism Ath RESPIRATION AND SLEEP AT HIGH ALTITUDE 2 nd Advanced Course in Mountain Medicine MAY 25-27 OLYMPUS MOUNTAIN Respiration Breathing

More information

Duct Dependant Congenital Heart Disease

Duct Dependant Congenital Heart Disease Children s Acute Transport Service Clinical Guidelines Duct Dependant Congenital Heart Disease This guideline has been agreed by both NTS & CATS Document Control Information Author CATS/NTS Author Position

More information

Module G: Oxygen Transport. Oxygen Transport. Dissolved Oxygen. Combined Oxygen. Topics to Cover

Module G: Oxygen Transport. Oxygen Transport. Dissolved Oxygen. Combined Oxygen. Topics to Cover Topics to Cover Module G: Oxygen Transport Oxygen Transport Oxygen Dissociation Curve Oxygen Transport Studies Tissue Hypoxia Cyanosis Polycythemia Oxygen Transport Oxygen is carried from the lungs to

More information

Carbon Dioxide Transport. Carbon Dioxide. Carbon Dioxide Transport. Carbon Dioxide Transport - Plasma. Hydrolysis of Water

Carbon Dioxide Transport. Carbon Dioxide. Carbon Dioxide Transport. Carbon Dioxide Transport - Plasma. Hydrolysis of Water Module H: Carbon Dioxide Transport Beachey Ch 9 & 10 Egan pp. 244-246, 281-284 Carbon Dioxide Transport At the end of today s session you will be able to : Describe the relationship free hydrogen ions

More information

SPECIFIC HEART DEFECTS

SPECIFIC HEART DEFECTS A. Acyanotic Defects 1. Ventricular Septal Defect (VSD): SPECIFIC HEART DEFECTS Which side of the heart is stronger? Left This is when there is an opening between the left and right ventricle (in the septum)

More information

Respiratory Pathophysiology Cases Linda Costanzo Ph.D.

Respiratory Pathophysiology Cases Linda Costanzo Ph.D. Respiratory Pathophysiology Cases Linda Costanzo Ph.D. I. Case of Pulmonary Fibrosis Susan was diagnosed 3 years ago with diffuse interstitial pulmonary fibrosis. She tries to continue normal activities,

More information

Anatomy & Physiology

Anatomy & Physiology 1 Anatomy & Physiology Heart is divided into four chambers, two atrias & two ventricles. Atrioventricular valves (tricuspid & mitral) separate the atria from ventricles. they open & close to control flow

More information

Arterial Blood Gas Analysis

Arterial Blood Gas Analysis Arterial Blood Gas Analysis L Lester www.3bv.org Bones, Brains & Blood Vessels Drawn from radial or femoral arteries. Invasive procedure Caution must be taken with patient on anticoagulants ph: 7.35-7.45

More information

The blue baby. Case 4

The blue baby. Case 4 Case 4 The blue baby Mrs Smith has brought her baby to A&E because she says he has started turning blue. What are your immediate differential diagnoses? 1 Respiratory causes: Congenital respiratory disorder.

More information

There are number of parameters which are measured: ph Oxygen (O 2 ) Carbon Dioxide (CO 2 ) Bicarbonate (HCO 3 -) AaDO 2 O 2 Content O 2 Saturation

There are number of parameters which are measured: ph Oxygen (O 2 ) Carbon Dioxide (CO 2 ) Bicarbonate (HCO 3 -) AaDO 2 O 2 Content O 2 Saturation Arterial Blood Gases (ABG) A blood gas is exactly that...it measures the dissolved gases in your bloodstream. This provides one of the best measurements of what is known as the acid-base balance. The body

More information

OXYGENATION AND ACID- BASE EVALUATION. Chapter 1

OXYGENATION AND ACID- BASE EVALUATION. Chapter 1 OXYGENATION AND ACID- BASE EVALUATION Chapter 1 MECHANICAL VENTILATION Used when patients are unable to sustain the level of ventilation necessary to maintain the gas exchange functions Artificial support

More information

PAEDIATRIC EMQs. Andrew A Mallick Paediatrics.info.

PAEDIATRIC EMQs. Andrew A Mallick Paediatrics.info. PAEDIATRIC EMQs Andrew A Mallick Paediatrics.info www.paediatrics.info Paediatric EMQs Paediatrics.info First published in the United Kingdom in 2012. While the advice and information in this book is believed

More information

W. J. RUSSELL*, M. F. JAMES

W. J. RUSSELL*, M. F. JAMES Anaesth Intensive Care 2004; 32: 644-648 The Effects on Arterial Haemoglobin Oxygen Saturation and on Shunt of Increasing Cardiac Output with Dopamine or Dobutamine During One-lung Ventilation W. J. RUSSELL*,

More information

Survival Rates of Children with Congenital Heart Disease continue to improve.

Survival Rates of Children with Congenital Heart Disease continue to improve. DOROTHY RADFORD Survival Rates of Children with Congenital Heart Disease continue to improve. 1940-20% 1960-40% 1980-70% 2010->90% Percentage of children with CHD reaching age of 18 years 1938 First Patent

More information

Duct Dependant Congenital Heart Disease

Duct Dependant Congenital Heart Disease Children s Acute Transport Service Clinical Guidelines Duct Dependant Congenital Heart Disease Document Control Information Author CATS/NTS Author Position CC Transport Services Document Owner E. Polke

More information

PATENT DUCTUS ARTERIOSUS (PDA)

PATENT DUCTUS ARTERIOSUS (PDA) PATENT DUCTUS ARTERIOSUS (PDA) It is a channel that connect the pulmonary artery with the descending aorta (isthumus part). It results from the persistence of patency of the fetal ductus arteriosus after

More information

Cardiac Emergencies in Infants. Michael Luceri, DO

Cardiac Emergencies in Infants. Michael Luceri, DO Cardiac Emergencies in Infants Michael Luceri, DO October 7, 2017 I have no financial obligations or conflicts of interest to disclose. Objectives Understand the scope of congenital heart disease Recognize

More information

Dr. Puntarica Suwanprathes. Version 2007

Dr. Puntarica Suwanprathes. Version 2007 Dr. Puntarica Suwanprathes Version 2007 O 2 and CO 2 transport in blood Oxyhemoglobin dissociation curve O 2 consumption (VO 2 ) CO 2 production (VCO 2 ) O 2 capacity O 2 content: CaO 2 or CvO 2 %saturation

More information

Approach to a baby with cyanosis

Approach to a baby with cyanosis Approach to a baby with cyanosis Objectives Cyanosis : types Differentials: cardiac vs. non cardiac Approach Case scenarios Cyanosis Greek word kuaneos meaning dark blue Bluish discolouration of skin,

More information

5. What is the cause of this patient s metabolic acidosis? LACTIC ACIDOSIS SECONDARY TO ANEMIC HYPOXIA (HIGH CO LEVEL)

5. What is the cause of this patient s metabolic acidosis? LACTIC ACIDOSIS SECONDARY TO ANEMIC HYPOXIA (HIGH CO LEVEL) Self-Assessment RSPT 2350: Module F - ABG Analysis 1. You are called to the ER to do an ABG on a 40 year old female who is C/O dyspnea but seems confused and disoriented. The ABG on an FiO 2 of.21 show:

More information

Objective 2/9/2012. Blood Gas Analysis In The Univentricular Patient: The Need For A Different Perspective. VENOARTERIAL CO2 GRADIENT

Objective 2/9/2012. Blood Gas Analysis In The Univentricular Patient: The Need For A Different Perspective. VENOARTERIAL CO2 GRADIENT Blood Gas Analysis In The Univentricular Patient: The Need For A Different Perspective. Gary Grist RN CCP Chief Perfusionist The Children s Mercy Hospitals and Clinics Kansas City, Mo. Objective The participant

More information

Arterial Blood Gases. Dr Mark Young Mater Health Services

Arterial Blood Gases. Dr Mark Young Mater Health Services Arterial Blood Gases Dr Mark Young Mater Health Services Why do them? Quick results Bedside test Range of important information Oxygenation Effectiveness of gas exchange Control of ventilation Acid base

More information

Chapter 24. Kyphoscoliosis. Mosby items and derived items 2011, 2006 by Mosby, Inc., an affiliate of Elsevier Inc.

Chapter 24. Kyphoscoliosis. Mosby items and derived items 2011, 2006 by Mosby, Inc., an affiliate of Elsevier Inc. Chapter 24 Kyphoscoliosis 1 A Figure 24-1. Kyphoscoliosis. Posterior and lateral curvature of the spine causing lung compression. Excessive bronchial secretions (A) and atelectasis (B) are common secondary

More information

Pattern of Congenital Heart Disease A Hospital-Based Study *Sadiq Mohammed Al-Hamash MBChB, FICMS

Pattern of Congenital Heart Disease A Hospital-Based Study *Sadiq Mohammed Al-Hamash MBChB, FICMS Pattern of Congenital Heart Disease A Hospital-Based Study *Sadiq Mohammed Al-Hamash MBChB, FICMS ABSTRACT Background: The congenital heart disease occurs in 0,8% of live births and they have a wide spectrum

More information

A SURGEONS' GUIDE TO CARDIAC DIAGNOSIS

A SURGEONS' GUIDE TO CARDIAC DIAGNOSIS A SURGEONS' GUIDE TO CARDIAC DIAGNOSIS PART II THE CLINICAL PICTURE DONALD N. ROSS B. Sc., M. B., CH. B., F. R. C. S. CONSULTANT THORACIC SURGEON GUY'S HOSPITAL, LONDON WITH 53 FIGURES Springer-Verlag

More information

Biomedical Instrumentation D. The Photoplethysmogram

Biomedical Instrumentation D. The Photoplethysmogram Biomedical Instrumentation D. The Photoplethysmogram Dr Gari Clifford Based on slides by Prof. Lionel Tarassenko The need for real-time oxygen saturation monitoring Respiratory failure & pulmonary disease

More information

PREVALENCE OF IRON DEFICIENCY IN CHILDREN WITH CYANOTIC HEART DISEASE SEEN AT KENYATTA NATIONAL HOSPITAL AND MATER HOSPITAL NAIROBI

PREVALENCE OF IRON DEFICIENCY IN CHILDREN WITH CYANOTIC HEART DISEASE SEEN AT KENYATTA NATIONAL HOSPITAL AND MATER HOSPITAL NAIROBI December 2009 (Supplement) Ea s t Af r i c a n Me d i c a l Jo u r n a l S47 East African Medical Journal Vol. 86 (Supplement) December 2009 PREVALENCE OF IRON DEFICIENCY IN CHILDREN WITH CYANOTIC HEART

More information

Images have been removed from the PowerPoint slides in this handout due to copyright restrictions.

Images have been removed from the PowerPoint slides in this handout due to copyright restrictions. Arterial Blood Gas Interpretation Routine Assessment Inspection Palpation Auscultation Labs Na 135-145 K 3.5-5.3 Chloride 95-105 CO2 22-31 BUN 10-26 Creat.5-1.2 Glu 80-120 Arterial Blood Gases WBC 5-10K

More information

a. Describe the physiological consequences of intermittent positive pressure ventilation and positive end-expiratory pressure.

a. Describe the physiological consequences of intermittent positive pressure ventilation and positive end-expiratory pressure. B. 10 Applied Respiratory Physiology a. Describe the physiological consequences of intermittent positive pressure ventilation and positive end-expiratory pressure. Intermittent positive pressure ventilation

More information

UNIVERSITY OF JORDAN DEPT. OF PHYSIOLOGY & BIOCHEMISTRY RESPIRATORY PHYSIOLOGY MEDICAL STUDENTS FALL 2014/2015 (lecture 1)

UNIVERSITY OF JORDAN DEPT. OF PHYSIOLOGY & BIOCHEMISTRY RESPIRATORY PHYSIOLOGY MEDICAL STUDENTS FALL 2014/2015 (lecture 1) UNIVERSITY OF JORDAN DEPT. OF PHYSIOLOGY & BIOCHEMISTRY RESPIRATORY PHYSIOLOGY MEDICAL STUDENTS FALL 2014/2015 (lecture 1) Textbook of medical physiology, by A.C. Guyton and John E, Hall, Twelfth Edition,

More information

Cyanotic spells in Tetralogy of Fallot

Cyanotic spells in Tetralogy of Fallot Cyanotic spells in Tetralogy of Fallot Information for families Great Ormond Street Hospital for Children NHS Foundation Trust 2 This information sheet from Great Ormond Street Hospital (GOSH) explains

More information

Comparison of formulae used to estimate oxygen

Comparison of formulae used to estimate oxygen British Heart Journal, I974, 36 446-45i. Comparison of formulae used to estimate oxygen saturation of mixed venous blood from caval samples H. C. Miller', D. J. Brown, and G. A. H. Miller From the Cardiac

More information

RAPID COMMUNICATION. Vascular Reactivity in Isolated Lungs of Rats with Spontaneous Systemic Hypertension

RAPID COMMUNICATION. Vascular Reactivity in Isolated Lungs of Rats with Spontaneous Systemic Hypertension Physiol. Res. 40:367-371,1991 RAPID COMMUNICATION Vascular Reactivity in Isolated Lungs of Rats with Spontaneous Systemic Hypertension V. HAMPL, J. HERGET Department of Physiology, 2nd Medical School,

More information

Pulmonary Pulmonary Hypertension

Pulmonary Pulmonary Hypertension Pulmonary Pulmonary Hypertension Jun'ichi Mise Department of Medicine, Yamaguchi University School of Medicine, Ube At the beginning of this presentation, the pulmonary hypertension was classified into

More information

THE SOUNDS AND MURMURS IN TRANSPOSITION OF THE

THE SOUNDS AND MURMURS IN TRANSPOSITION OF THE Brit. Heart J., 25, 1963, 748. THE SOUNDS AND MURMURS IN TRANSPOSITION OF THE GREAT VESSELS BY BERTRAND WELLS From The Hospital for Sick Children, Great Ormond Street, London W. C.J Received April 18,

More information

Cardiac surgery relative to population: pattern of cardiac surgery in South Australia,

Cardiac surgery relative to population: pattern of cardiac surgery in South Australia, Thorax, 1977, 32, 57-577 Cardiac surgery relative to population: pattern of cardiac surgery in South Australia, 1949-751 H. D. SUTHERLAND, D. R. CRADDOCK, J. L. WADDY, AND G. R. NUNN From the Cardio-Thoracic

More information

For more information about how to cite these materials visit

For more information about how to cite these materials visit Author(s): John G. Younger, M.D., 2009 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Share Alike 3.0 License: http://creativecommons.org/licenses/by-sa/3.0/

More information

Eisenmenger Syndrome: A Call for Action

Eisenmenger Syndrome: A Call for Action Cardiology Update, Davos 2013 Eisenmenger Syndrome: A Call for Action Adult Congenital Heart Centre & National Centre for Pulmonary Hypertension Royal Brompton Hospital/National Heart & Lung Institute,

More information

Anomalous muscle bundle of the right ventricle

Anomalous muscle bundle of the right ventricle British Heart Journal, 1978, 40, 1040-1045 Anomalous muscle bundle of the right ventricle Its recognition and surgical treatment M. D. LI, J. C. COLES, AND A. C. McDONALD From the Department of Paediatrics,

More information

Permissive hypoxaemia. Mervyn Singer Bloomsbury Institute of Intensive Care Medicine University College London, UK

Permissive hypoxaemia. Mervyn Singer Bloomsbury Institute of Intensive Care Medicine University College London, UK Permissive hypoxaemia Mervyn Singer Bloomsbury Institute of Intensive Care Medicine University College London, UK Is mechanical ventilation such a good idea? ventilator-induced lung injury (short- & long-term)

More information

Pulse oximetry in the accident and emergency department

Pulse oximetry in the accident and emergency department Archives of Emergency Medicine, 1989, 6, 137-142 Pulse oximetry in the accident and emergency department C. J. HOLBURN & M. J. ALLEN Accident and Emergency Department, Leicester Royal Infirmary, Leicester,

More information

IMAGES. in PAEDIATRIC CARDIOLOGY

IMAGES. in PAEDIATRIC CARDIOLOGY IMAGES in PAEDIATRIC CARDIOLOGY Images Paediatr Cardiol. 2006 Jul-Sep; 8(3): 1 6. PMCID: PMC3232564 A large, single pulmonary arteriovenous fistula presenting hours after birth AH McBrien, 1 AJ Sands,

More information

Cardiovascular Pathophysiology: Right to Left Shunts aka Cyanotic Lesions

Cardiovascular Pathophysiology: Right to Left Shunts aka Cyanotic Lesions Cardiovascular Pathophysiology: Right to Left Shunts aka Cyanotic Lesions Ismee A. Williams, MD, MS iib6@columbia.edu Pediatric Cardiology Learning Objectives To discuss the hemodynamic significance of

More information

Cardiovascular Pathophysiology: Right to Left Shunts aka Cyanotic Lesions Ismee A. Williams, MD, MS Pediatric Cardiology

Cardiovascular Pathophysiology: Right to Left Shunts aka Cyanotic Lesions Ismee A. Williams, MD, MS Pediatric Cardiology Cardiovascular Pathophysiology: Right to Left Shunts aka Cyanotic Lesions Ismee A. Williams, MD, MS iib6@columbia.edu Pediatric Cardiology Learning Objectives To discuss the hemodynamic significance of

More information

بسم هللا الرحمن الرحيم

بسم هللا الرحمن الرحيم بسم هللا الرحمن الرحيم Yesterday we spoke of the increased airway resistance and its two examples: 1) emphysema, where we have destruction of the alveolar wall and thus reducing the area available for

More information

How pregnancy impacts adult cyanotic congenital heart disease

How pregnancy impacts adult cyanotic congenital heart disease How pregnancy impacts adult cyanotic congenital heart disease Magalie Ladouceur Adult Congenital Heart Disease Unit, Hôpital Européen Georges Pompidou, Centre de reference des Malformations Cardiaques

More information

Identification and Treatment of the Patient with Sleep Related Hypoventilation

Identification and Treatment of the Patient with Sleep Related Hypoventilation Identification and Treatment of the Patient with Sleep Related Hypoventilation Hillary Loomis-King, MD Pulmonary and Critical Care of NW MI Munson Sleep Disorders Center X Conflict of Interest Disclosures

More information

Shunt Detection and Quantification. September 2007 Joe M. Moody, Jr, MD UTHSCSA and STVAHCS

Shunt Detection and Quantification. September 2007 Joe M. Moody, Jr, MD UTHSCSA and STVAHCS Shunt Detection and Quantification September 2007 Joe M. Moody, Jr, MD UTHSCSA and STVAHCS Normal Physiology - Overview Right heart saturations (oxygen content) are generally about 75% and are equal in

More information

Medical management of Hypercyanotic spells in neonates, infants with Tetralogy of Fallot

Medical management of Hypercyanotic spells in neonates, infants with Tetralogy of Fallot Medical management of Hypercyanotic spells in neonates, infants with Tetralogy of Fallot Version: 3 Approval Committee (e.g. Clinical network): Date of Approval: 13 June 2018 Signature of approving Group

More information

Exercise tolerance in children with cystic fibrosis undergoing lung transplantation assessment

Exercise tolerance in children with cystic fibrosis undergoing lung transplantation assessment Eur Respir J 21; 18: 293 297 Printed in UK all rights reserved Copyright #ERS Journals Ltd 21 European Respiratory Journal ISSN 93-1936 Exercise tolerance in children with cystic fibrosis undergoing lung

More information

What is controversial in adult congenital heart disease

What is controversial in adult congenital heart disease What is controversial in adult congenital heart disease Gerhard-Paul Diller Adult Congenital Heart Center and Center for Pulmonary Hypertension, Royal Brompton Hospital, London, UK, National Heart Institute,

More information

Patent ductus arteriosus PDA

Patent ductus arteriosus PDA Patent ductus arteriosus PDA Is connecting between the aortic end just distal to the origin of the LT sub clavian artery& the pulmonary artery at its bifurcation. Female/male ratio is 2:1 and it is more

More information

Causes and Consequences of Respiratory Centre Depression and Hypoventilation

Causes and Consequences of Respiratory Centre Depression and Hypoventilation Causes and Consequences of Respiratory Centre Depression and Hypoventilation Lou Irving Director Respiratory and Sleep Medicine, RMH louis.irving@mh.org.au Capacity of the Respiratory System At rest During

More information

They are updated regularly as new NICE guidance is published. To view the latest version of this NICE Pathway see:

They are updated regularly as new NICE guidance is published. To view the latest version of this NICE Pathway see: bring together everything NICE says on a topic in an interactive flowchart. are interactive and designed to be used online. They are updated regularly as new NICE guidance is published. To view the latest

More information

Control of Ventilation [2]

Control of Ventilation [2] Control of Ventilation [2] สรช ย ศร ส มะ พบ., Ph.D. ภาคว ชาสร รว ทยา คณะแพทยศาสตร ศ ร ราชพยาบาล มหาว ทยาล ยมห ดล Describe the effects of alterations in chemical stimuli, their mechanisms and response to

More information

Surgical Management of TOF in Adults. Dr Flora Tsang Associate Consultant Department of Cardiothoracic Surgery Queen Mary Hospital

Surgical Management of TOF in Adults. Dr Flora Tsang Associate Consultant Department of Cardiothoracic Surgery Queen Mary Hospital Surgical Management of TOF in Adults Dr Flora Tsang Associate Consultant Department of Cardiothoracic Surgery Queen Mary Hospital Tetralogy of Fallot (TOF) in Adults Most common cyanotic congenital heart

More information

Adult Congenital Heart Disease: What Every Practitioner Should Know

Adult Congenital Heart Disease: What Every Practitioner Should Know Adult Congenital Heart Disease: What Every Practitioner Should Know Sabrina Phillips, MD FACC FASE Associate Professor of Medicine Director of Adult Congenital Heart Disease Services The University of

More information

Pulmonary shunt as a prognostic indicator in head injury ELIZABETH A. M. FROST, M.D., CARLOS U. ARANCIBIA, M.D., AND KENNETH SHULMAN, M.D.

Pulmonary shunt as a prognostic indicator in head injury ELIZABETH A. M. FROST, M.D., CARLOS U. ARANCIBIA, M.D., AND KENNETH SHULMAN, M.D. J Neurosurg 50:768-772, 1979 Pulmonary shunt as a prognostic indicator in head injury ELIZABETH A. M. FROST, M.D., CARLOS U. ARANCIBIA, M.D., AND KENNETH SHULMAN, M.D. Departments of Anesthesiology and

More information

Pathological physiology of cardiovascular system Congenital heart diseases

Pathological physiology of cardiovascular system Congenital heart diseases Pathological physiology of cardiovascular system Congenital heart diseases Rácz Oliver, Sedláková Eva Institute of Pathological Physiology, Medical School, P.J. Šafárik University Oliver Rácz, Eva Sedláková

More information

By Dickens ATURWANAHO & ORIBA DAN LANGOYA MAKchs, MBchB CONGENTAL HEART DISEASE

By Dickens ATURWANAHO & ORIBA DAN LANGOYA MAKchs, MBchB CONGENTAL HEART DISEASE By Dickens ATURWANAHO & ORIBA DAN LANGOYA MAKchs, MBchB CONGENTAL HEART DISEASE Introduction CHDs are abnormalities of the heart or great vessels that are present at birth. Common type of heart disease

More information

Acute respiratory failure. Arterial blood gas assessment. finn rasmussen 2011

Acute respiratory failure. Arterial blood gas assessment. finn rasmussen 2011 Acute respiratory failure Arterial blood gas assessment finn rasmussen 2011 Normal P a CO 2 = 40mmHg Normal P a O 2 = 90-95 mmhg ALVEOLAR VENTILATION Normal HCO 3- = 22-27 mmol/l H + 2 0 CO + 2 H HCO -

More information

RESPIRATORY FAILURE - CAUSES, CLINICAL INFORMATION, TREATMENT AND CODING CONVENTIONS

RESPIRATORY FAILURE - CAUSES, CLINICAL INFORMATION, TREATMENT AND CODING CONVENTIONS RESPIRATORY FAILURE - CAUSES, CLINICAL INFORMATION, TREATMENT AND CODING CONVENTIONS QUIZ REVIEW The correct answer is in bold font. 1. Hypoxic respiratory failure involves: a. Low oxygen b. High oxygen

More information

Content Display. - Introduction to Unit 4. Unit 4 - Cardiorespiratory Response to Exercise : Lesson 1. KINE xxxx Exercise Physiology

Content Display. - Introduction to Unit 4. Unit 4 - Cardiorespiratory Response to Exercise : Lesson 1. KINE xxxx Exercise Physiology Content Display Unit 4 - Cardiorespiratory Response to Exercise : Lesson KINE xxxx Exercise Physiology 5 Unit 4 - Cardiorespiratory Response to Exercise Lesson U4LP - Introduction to Unit 4 The specific

More information

Spontaneous Breathing Trial and Mechanical Ventilation Weaning Process

Spontaneous Breathing Trial and Mechanical Ventilation Weaning Process Page 1 of 5 ASSESSMENT INTERVENTION Patient receiving mechanical ventilation Baseline ventilatory mode/ settings RT and RN to assess criteria 1 for SBT Does patient meet criteria? RT to initiate SBT Does

More information

Born Blue. Anesthesia and CHD. Kristine Faust, CRNA, MS, MBA, DNAP

Born Blue. Anesthesia and CHD. Kristine Faust, CRNA, MS, MBA, DNAP Born Blue Anesthesia and CHD Kristine Faust, CRNA, MS, MBA, DNAP Disclosures Disclosures None to Report Objectives Review all congenital defects in which the patient is blue Describe physiology of the

More information

Study of the ventilatory response to hypoxia in man is

Study of the ventilatory response to hypoxia in man is Safety Considerations t should be possible to put a subject either on a bed or floor and a bag and mask with a large flow of oxygen should be immediately at hand. We keep airways, endotracheal tubes, and

More information