Part I. Boolean modelling exercises

Size: px
Start display at page:

Download "Part I. Boolean modelling exercises"

Transcription

1 Part I. Boolean modelling exercises. Glucose repression of Icl in yeast In yeast Saccharomyces cerevisiae, expression of enzyme Icl (isocitrate lyase-, involved in the gluconeogenesis pathway) is important for the production of industrially important chemical Succinic acid. Icl is known to be repressed by glucose and understanding of this regulatory phenomenon is essential to increase the Succinic acid production. In a (very very) simple model it can be assumed that: in the absence of glucose, the expression of Icl is induced only in the presence of ethanol and/or acetate. Draw a logic gate representation of the above-described model assuming that all variables are binary. Provide the truth table as well, i.e. a table summarizing all possible input conditions and corresponding output. Truth table: Glucose Ethanol Acetate ICL Boolean model for LAC operon in E. coli When exposed to a mixture of different nutrient sources, most microorganisms show a preferential utilization pattern, i.e., certain food sources are preferred over the others and consumed before others. This allows them to utilize the cellular resources optimally towards achieving high growth rate and thereby increase the fitness in a competitive environment. One such example is preferential utilization of glucose over lactose in bacterium E. coli (see the following figure). This sequential consumption is regulated at the molecular level by repressing the lactose consumption genes (LAC genes) in the presence of glucose. In fact, expression of lactose consumption genes is regulated extensively in E. coli. In a simple model, we can state that the expression of LAC genes is turned on only in the absence of glucose and in the presence of lactose. Draw a binary logic gate circuit summarizing this model. Also provide the truth table. Biomass!-galactosidase

2 Growth of E. coli on a mixture of glucose and lactose. The squares show biomass growth while circles show the expression of an enzyme essential for lactose utilization. A shift in the growth regime can clearly be seen after first exponential growth phase. Truth table: Glucose Lactose LAC Glucose NOT Lactose AND LAC 3. Select circuit Using only basic logic gates (i.e. AND, OR & NOT) it is possible to build very complex circuits. This is because any statement/rule that describes a binary output in terms binary inputs can be coded using these three logic operators. Thus, it is also possible to build complex cellular networks in Boolean space by using these basic logic gates. One example of a complex circuit is select circuit, as shown in the following figure. The output is equal to A if C is ON, and equal to B if D is ON. It is assumed that C & D are never ON together. One biological example of such scheme could be a transporter-mediated substrate uptake where C & D code for the transporters for substrates A & B respectively. Your task now is to design a select circuit using the basic logic gates. A B C D Output A C B D 4. Discussion What in your opinion are advantages & disadvantages of Boolean modelling of signal transduction/regulatory pathways? Under what conditions such models should be used? List a signal-response curve that may be suitable for making a binary behaviour assumption. Open question. Sample answer: Advantages: Simple to represent and simulate. No parameters. Easy to interpret the results. Disadvantages: Over-simplification of the reality, hence limited usefulness.

3 Such models should be used only in the conditions where binary behaviour can be approximated and/or in the conditions where no other detailed information is available about the system.

4 Part II. Break (x min) Think of something else than systems biology. Part III. Overview of signalling paradigm Example signalling pathways in the yeast Saccharomyces cerevisisae. The signalling scheme shown in above figures is quite conserved across eukaryotes. Understanding the operation of such signalling pathways has many implications in disease research. For example, more than one third of the cancer drugs present in the market target the receptors leading to kinase cascades. New generation of drugs need to target the signal transmission inside the cells in order to achieve better results. In the following set of exercises, you will have a little flavour of the some of the components in these pathways. Although, the

5 realistic models are much more complex, usually the only difficult part is to identify the components and links between them. Simulation of the resulting set of equations (e.g. set of nonlinear ODEs) is no longer a bottleneck, thanks to high-speed computers. 5. Receptor ligand interaction K D L. R = = LR K equilibrium Calculate equilibrium and dissociation constants for receptor-ligand interaction shown in the above figure. Assume (all concentrations in arbitrary units): [R] = 0-8 [L] = 0-3 [LR] = 0-8 K eq = [LR] / [R][L] = 000 K d = /K eq = 0-3

6 6. Mitogen Activated Protein Kinase (MAPK) cascade example, longer pathways can give faster response! i) Write differential equation model for a signal transduction cascade shown in the above figure. For simplicity assume that there is only one kinase element downstream of the receptor. You can also neglect the involvement of ATP in the reaction, which contributes the Phosphate group. In a special case of weakly activated pathways, it can be assumed that the fraction of the phosphorylated kinase (i.e. ratio of phosphorylated kinase to the sum of both phosphorylated & unphosphorylated kinase) is much less than. Simplify your model for this new assumption. What happens to the signal output (i.e. concentration of phosphorylated kinase) at the steady state? ii) The activity of the cascade is usually proportional to the concentration of the phosphorylated form of the final kinase in the cascade. Thus the overall effect of cascade can be seen as signal amplification. What effect (positive or negative) will be of the parameters β on this amplification? iii) One interesting fact about the MAPK signalling cascades is that, with a right set of kinetic parameters, the longer cascades can give a faster response (see the figure below, where n is number of kinase steps in the cascade and the total signal amplification is kept constant)! This of course comes at an expense, as each phosphorylation reaction consumes more ATP. Discuss possible biological implication (/s) of such behaviour of the system.

7 i) Balance over receptor R: dr = "! R Note that there is only degradation term and hence the concentration of R can only decrease over time. Balance over the phosphorylated kinase (X ): dx = " X R #! X * X * is the concentration of the unphosphorylated X. Lets define C as the total concentration of kinase, i.e. C = X + X *. Since the total concentration of kinase will be constant in this model (there is no degradation or synthesis) we can treat C *α as a constant (lets call it α as well for simplicity). dx ) X & = " R ' # $ #! ( % X C $ If C >> X, i.e. weakly activated pathway, we get dx = " R #! X Now, if we assume a steady state (which is not so correct assumption in light of the fact that R is decreasing with time), time derivative becomes zero and we get: X " =! R

8 ii) We can easily see from the above balance equations that beta will be inversely related with the activity. iii) Open question. 7. Adaptation motif in signalling Combination of a simple linear response element with a second signalling pathway can be described with the following equations. dr = k S! k XR 2 dx = k S! k X 3 4 R and X are responses of two sensing circuits for the input signal S. Show that this combination of two sensors results in an adapted response, i.e. the steady state value of R is independent of signal strength S. The behaviour of this system is similar to the sense of smell and hence also called as sniffer. At steady state the differential terms in the equations are equal to zero. Hence we get: 0 = k S! k XR 0 = k S! k X 3 from () k S R = k X 2 from (2) k S 3 X = k () (2) (3) Using this value of X in (3) k k R = k k Thus, the steady-state response R is independent of the signal S.

The Chemostat: Stability at Steady States. Chapter 5: Linear & Non-Linear Interaction Models. So, in dimensional form, α 1 > 1 corresponds to

The Chemostat: Stability at Steady States. Chapter 5: Linear & Non-Linear Interaction Models. So, in dimensional form, α 1 > 1 corresponds to Introduction & Simple Models Logistic Growth Models The Chemostat: Stability at Steady States 1 So, in dimensional form, α 1 > 1 corresponds to K max < V F. As K max is max bacterial repro rate with unlimited

More information

Regulation. 1. Short term control 8-1

Regulation. 1. Short term control 8-1 Regulation Several aspects of regulation have been alluded to or described in detail as we have progressed through the various sections of the course. These include: (a) compartmentation: This was not

More information

Supplementary Materials for

Supplementary Materials for www.sciencesignaling.org/cgi/content/full/6/305/ra106/dc1 Supplementary Materials for Controlling Long-Term Signaling: Receptor Dynamics Determine Attenuation and Refractory Behavior of the TGF-β Pathway

More information

Chapter 3: Linear & Non-Linear Interaction Models

Chapter 3: Linear & Non-Linear Interaction Models Chapter 3: 155/226 Chapter develops the models above to examine models which involve interacting species or quantities. Models lead to simultaneous differential equations for coupled quantites due to the

More information

Cell Signaling part 2

Cell Signaling part 2 15 Cell Signaling part 2 Functions of Cell Surface Receptors Other cell surface receptors are directly linked to intracellular enzymes. The largest family of these is the receptor protein tyrosine kinases,

More information

Page 32 AP Biology: 2013 Exam Review CONCEPT 6 REGULATION

Page 32 AP Biology: 2013 Exam Review CONCEPT 6 REGULATION Page 32 AP Biology: 2013 Exam Review CONCEPT 6 REGULATION 1. Feedback a. Negative feedback mechanisms maintain dynamic homeostasis for a particular condition (variable) by regulating physiological processes,

More information

It is all in the enzymes

It is all in the enzymes Enzyme regulation 1 It is all in the enzymes Enzymes can enhance the rates of metabolic (or other) reactions by many orders of magnitude. A rate enhancement of 10 17 means that what would occur in 1 second

More information

Glycolysis. Glycolysis Expectations. Glycolysis 10/20/2015. Chapter 16, Stryer Short Course. Memorize/learn Figure 16.1

Glycolysis. Glycolysis Expectations. Glycolysis 10/20/2015. Chapter 16, Stryer Short Course. Memorize/learn Figure 16.1 Glycolysis Chapter 16, Stryer Short Course Glycolysis Expectations Memorize/learn Figure 16.1 Know overall reaction and stages Explain chemical/physiological purpose of each step Learn structures Reversible/Irreversible

More information

Multiple choice: Circle the best answer on this exam. There are 12 multiple choice questions, each question is worth 3 points.

Multiple choice: Circle the best answer on this exam. There are 12 multiple choice questions, each question is worth 3 points. CHEM 4420 Exam 4 Spring 2015 Dr. Stone Page 1 of 6 Name Use complete sentences when requested. There are 120 possible points on this exam. Therefore there are 20 bonus points. Multiple choice: Circle the

More information

BENG 221 Report - Simulation of Glucose Diffusion in a Cylindrical Cell Juyuong Baek, Jason Dang, Ali Ebrahim, Wei Ren

BENG 221 Report - Simulation of Glucose Diffusion in a Cylindrical Cell Juyuong Baek, Jason Dang, Ali Ebrahim, Wei Ren BENG 221 Report - Simulation of Glucose Diffusion in a Cylindrical Cell Juyuong Baek, Jason Dang, Ali Ebrahim, Wei Ren Introduction Metabolism is the set of chemical reactions that happen in living organisms

More information

ANSC 689 PHYSIOLOGICAL CHEMISTRY OF LIVESTOCK SPECIDS. Enzyme Kinetics and Control Reactions

ANSC 689 PHYSIOLOGICAL CHEMISTRY OF LIVESTOCK SPECIDS. Enzyme Kinetics and Control Reactions Handout Enzyme Kinetics and Control Reactions ANSC 689 PHYSIOLOGICAL CHEMISTRY OF LIVESTOCK SPECIDS Enzyme Kinetics and Control Reactions I. Kinetics A. Reaction rates 1. First order (reaction rate is

More information

CHEM 527 SECOND EXAM FALL 2006

CHEM 527 SECOND EXAM FALL 2006 CEM 527 SECD EXAM FALL 2006 YUR AME: TES: 1. Where appropriate please show work if in doubt show it anyway. 2. Pace yourself you may want to do the easier questions first. 3. Please note the point value

More information

LAB 6 Fermentation & Cellular Respiration

LAB 6 Fermentation & Cellular Respiration LAB 6 Fermentation & Cellular Respiration INTRODUCTION The cells of all living organisms require energy to keep themselves alive and fulfilling their roles. Where does this energy come from? The answer

More information

ECE 2300 Digital Logic & Computer Organization

ECE 2300 Digital Logic & Computer Organization ECE 23 Digital Logic & Computer Organization Spring 28 Combinational Logic Minimization Lecture 3: Announcements Lab 2 is on CMS Tutorial B: CAD tool installation HW will be released tonight Rescheduled

More information

Research Communication

Research Communication IUBMB Life, 58(11): 659 663, November 2006 Research Communication Sequestration Shapes the Response of Signal Transduction Cascades Nils Blu thgen Molecular Neurobiology, Free University Berlin, and Institute

More information

Metabolism. Metabolic pathways. BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 11: Metabolic Pathways

Metabolism. Metabolic pathways. BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 11: Metabolic Pathways BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 11: Metabolic Pathways http://compbio.uchsc.edu/hunter/bio5099 Larry.Hunter@uchsc.edu Metabolism Metabolism is the chemical change of

More information

BIOLOGY. Cell Communication CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick

BIOLOGY. Cell Communication CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 11 Cell Communication Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Cellular Messaging Cells can signal to

More information

Adaptive Type-2 Fuzzy Logic Control of Non-Linear Processes

Adaptive Type-2 Fuzzy Logic Control of Non-Linear Processes Adaptive Type-2 Fuzzy Logic Control of Non-Linear Processes Bartolomeo Cosenza, Mosè Galluzzo* Dipartimento di Ingegneria Chimica dei Processi e dei Materiali, Università degli Studi di Palermo Viale delle

More information

Cellular Respiration

Cellular Respiration Cellular Respiration How do living things use chemical reactions to get energy from food? Version November 2017 1 How do we get our energy from food? 1 The connection between food and energy We ve figured

More information

NAME KEY ID # EXAM 3a BIOC 460. Wednesday April 10, Please include your name and ID# on each page. Limit your answers to the space provided!

NAME KEY ID # EXAM 3a BIOC 460. Wednesday April 10, Please include your name and ID# on each page. Limit your answers to the space provided! EXAM 3a BIOC 460 Wednesday April 10, 2002 Please include your name and ID# on each page. Limit your answers to the space provided! 1 1. (5 pts.) Define the term energy charge: Energy charge refers to the

More information

Review II: Cell Biology

Review II: Cell Biology Review II: Cell Biology Rajan Munshi BBSI @ Pitt 2006 Department of Computational Biology University of Pittsburgh School of Medicine May 24, 2006 Outline Cell Cycle Signal Transduction 1 Cell Cycle Four

More information

WJEC. Respiration. Questions

WJEC. Respiration. Questions WJEC Respiration Questions 6. Answer one of the following questions. Any diagrams included in your answer must be fully annotated. 13 Examiner only Arholwr yn unig Either, (a)

More information

Enzyme Action. Intermediate 2 Biology Unit 1: Living Cells

Enzyme Action. Intermediate 2 Biology Unit 1: Living Cells Enzyme Action Intermediate 2 Biology Unit 1: Living Cells Learning Objectives Describe 2 ways in which chemical reactions can be speeded up. Name the products of the breakdown of hydrogen peroxide. State

More information

Biochemistry 463, Summer II University of Maryland, College Park Your SID #:

Biochemistry 463, Summer II University of Maryland, College Park Your SID #: Biochemistry 463, Summer II Your Name: University of Maryland, College Park Your SID #: Biochemistry and Physiology Prof. Jason Kahn Final Exam (150 points total) August 16, 2013 You have 90 minutes for

More information

Identification of influential proteins in the classical retinoic acid signaling pathway

Identification of influential proteins in the classical retinoic acid signaling pathway Ghaffari and Petzold Theoretical Biology and Medical Modelling (2018) 15:16 https://doi.org/10.1186/s12976-018-0088-7 RESEARCH Open Access Identification of influential proteins in the classical retinoic

More information

Chemical Energy. Valencia College

Chemical Energy. Valencia College 9 Pathways that Harvest Chemical Energy Valencia College 9 Pathways that Harvest Chemical Energy Chapter objectives: How Does Glucose Oxidation Release Chemical Energy? What Are the Aerobic Pathways of

More information

PHSI3009 Frontiers in Cellular Physiology 2017

PHSI3009 Frontiers in Cellular Physiology 2017 Overview of PHSI3009 L2 Cell membrane and Principles of cell communication L3 Signalling via G protein-coupled receptor L4 Calcium Signalling L5 Signalling via Growth Factors L6 Signalling via small G-protein

More information

9 Metabolic trigger: control of methionine metabolism

9 Metabolic trigger: control of methionine metabolism 9 Metabolic trigger: control of methionine metabolism M.V. Martinov 1,V.M.Vitvitsky 1,E.V.Mosharov 2,R.Banerjee 2,F.I.Ataullakhanov 1 1 National Research Center for Hematology, Moscow, Russia 125167 2

More information

BY: RASAQ NURUDEEN OLAJIDE

BY: RASAQ NURUDEEN OLAJIDE BY: RASAQ NURUDEEN OLAJIDE LECTURE CONTENT INTRODUCTION CITRIC ACID CYCLE (T.C.A) PRODUCTION OF ACETYL CoA REACTIONS OF THE CITIRC ACID CYCLE THE AMPHIBOLIC NATURE OF THE T.C.A CYCLE THE GLYOXYLATE CYCLE

More information

Lecture 6: Allosteric regulation of enzymes

Lecture 6: Allosteric regulation of enzymes Chem*3560 Lecture 6: Allosteric regulation of enzymes Metabolic pathways do not run on a continuous basis, but are regulated according to need Catabolic pathways run if there is demand for ATP; for example

More information

Biochem sheet (5) done by: razan krishan corrected by: Shatha Khtoum DATE :4/10/2016

Biochem sheet (5) done by: razan krishan corrected by: Shatha Khtoum DATE :4/10/2016 Biochem sheet (5) done by: razan krishan corrected by: Shatha Khtoum DATE :4/10/2016 Note about the last lecture: you must know the classification of enzyme Sequentially. * We know that a substrate binds

More information

Metabolic Pathways and Energy Metabolism

Metabolic Pathways and Energy Metabolism Metabolic Pathways and Energy Metabolism Last Week Energy Metabolism - The first thing a living organism has got to be able to do is harness energy from the environment - Plants do it by absorbing sunlight

More information

Biological Pathways. Janick Mathys

Biological Pathways. Janick Mathys Biological Pathways Janick Mathys Biological Pathways Definition Biochemical compounds Biological interactions Energy Control interactions Levels of abstraction Types of biological pathways Integration

More information

ECE 2300 Digital Logic & Computer Organization

ECE 2300 Digital Logic & Computer Organization ECE 23 Digital Logic & Computer Organization Spring 27 Combinational Logic Minimization Lecture 3: Announcements Lab 2 is on CMS Tutorial B: CAD tool installation HW will be released tonight Rescheduled

More information

Cell Communication. Cell Communication. Communication between cells requires: ligand: the signaling molecule

Cell Communication. Cell Communication. Communication between cells requires: ligand: the signaling molecule Cell Communication Cell Communication Communication between cells requires: ligand: the signaling molecule receptor protein: the molecule to which the ligand binds (may be on the plasma membrane or within

More information

PPP_glycogen_metabolism Part 2 الفريق الطبي األكاديمي. Done By: - Shady Soghayr

PPP_glycogen_metabolism Part 2 الفريق الطبي األكاديمي. Done By: - Shady Soghayr PPP_glycogen_metabolism Part 2 الفريق الطبي األكاديمي Done By: - Shady Soghayr لكية الطب البرشي البلقاء التطبيقية / املركز 6166 6102/ **How we get glucose-1-phosphate from glucose (source of glucose-1-

More information

Life Science 1A Final Exam. January 19, 2006

Life Science 1A Final Exam. January 19, 2006 ame: TF: Section Time Life Science 1A Final Exam January 19, 2006 Please write legibly in the space provided below each question. You may not use calculators on this exam. We prefer that you use non-erasable

More information

Fermentation Analysis

Fermentation Analysis Fermentation Analysis In order to understand how an organism makes its energy or what biochemical pathways are present, one must first know what the products of metabolism are. First Law of Thermodynamics:

More information

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General Cellular Pathways That Harvest Chemical Energy A. Obtaining Energy and Electrons from Glucose Lecture Series 12 Cellular Pathways That Harvest Chemical Energy B. An Overview: Releasing Energy from Glucose

More information

Biochemistry 463, Summer II University of Maryland, College Park Your SID #:

Biochemistry 463, Summer II University of Maryland, College Park Your SID #: Biochemistry 463, Summer II Your Name: University of Maryland, College Park Your SID #: Biochemistry and Physiology Profs. Doug Julin and Jason Kahn Exam II (100 points total) August 11, 2008 You have

More information

2402 : Anatomy/Physiology

2402 : Anatomy/Physiology Dr. Chris Doumen Lecture 2 2402 : Anatomy/Physiology The Endocrine System G proteins and Adenylate Cyclase /camp TextBook Readings Pages 405 and 599 through 603. Make use of the figures in your textbook

More information

Plant Respiration. Exchange of Gases in Plants:

Plant Respiration. Exchange of Gases in Plants: Plant Respiration Exchange of Gases in Plants: Plants do not have great demands for gaseous exchange. The rate of respiration in plants is much lower than in animals. Large amounts of gases are exchanged

More information

Computational Biology I LSM5191

Computational Biology I LSM5191 Computational Biology I LSM5191 Aylwin Ng, D.Phil Lecture 6 Notes: Control Systems in Gene Expression Pulling it all together: coordinated control of transcriptional regulatory molecules Simple Control:

More information

Tricarboxylic Acid Cycle. TCA Cycle; Krebs Cycle; Citric Acid Cycle

Tricarboxylic Acid Cycle. TCA Cycle; Krebs Cycle; Citric Acid Cycle Tricarboxylic Acid ycle TA ycle; Krebs ycle; itric Acid ycle The Bridging Step: Pyruvate D hase O H 3 - - pyruvate O O - NAD + oash O 2 NADH O H 3 - - S - oa acetyl oa Pyruvate D hase omplex Multienzyme

More information

AMPK. Tomáš Kučera.

AMPK. Tomáš Kučera. AMPK (AMP- ACTIVATED PROTEIN KINASE ) Tomáš Kučera tomas.kucera@lfmotol.cuni.cz Department of Medical Chemistry and Clinical Biochemistry 2nd Faculty of Medicine, Charles University in Prague and Motol

More information

number Done by Corrected by Doctor Alia Shatnawi

number Done by Corrected by Doctor Alia Shatnawi number 11 Done by Lojayn Salah Corrected by Doctor Alia Shatnawi The last thing we talked about in the previous lecture was the effect of a drug at a particular dose, and we took this equation: E= Emax

More information

Chapter 15: Signal transduction

Chapter 15: Signal transduction Chapter 15: Signal transduction Know the terminology: Enzyme-linked receptor, G-protein linked receptor, nuclear hormone receptor, G-protein, adaptor protein, scaffolding protein, SH2 domain, MAPK, Ras,

More information

GENERAL THOUGHTS ON REGULATION. Lecture 16: Enzymes & Kinetics IV Regulation and Allostery REGULATION IS KEY TO VIABILITY

GENERAL THOUGHTS ON REGULATION. Lecture 16: Enzymes & Kinetics IV Regulation and Allostery REGULATION IS KEY TO VIABILITY GENERAL THOUGHTS ON REGULATION Lecture 16: Enzymes & Kinetics IV Regulation and Allostery Margaret A. Daugherty Fall 2004 1). Enzymes slow down as product accumulates 2). Availability of substrates determines

More information

Lecture 15. Signal Transduction Pathways - Introduction

Lecture 15. Signal Transduction Pathways - Introduction Lecture 15 Signal Transduction Pathways - Introduction So far.. Regulation of mrna synthesis Regulation of rrna synthesis Regulation of trna & 5S rrna synthesis Regulation of gene expression by signals

More information

Lecture 34. Carbohydrate Metabolism 2. Glycogen. Key Concepts. Biochemistry and regulation of glycogen degradation

Lecture 34. Carbohydrate Metabolism 2. Glycogen. Key Concepts. Biochemistry and regulation of glycogen degradation Lecture 34 Carbohydrate Metabolism 2 Glycogen Key Concepts Overview of Glycogen Metabolism Biochemistry and regulation of glycogen degradation Biochemistry and regulation of glycogen synthesis What mechanisms

More information

Six Types of Enzyme Catalysts

Six Types of Enzyme Catalysts Six Types of Enzyme Catalysts Although a huge number of reactions occur in living systems, these reactions fall into only half a dozen types. The reactions are: 1. Oxidation and reduction. Enzymes that

More information

Chapter 9. Cellular Signaling

Chapter 9. Cellular Signaling Chapter 9 Cellular Signaling Cellular Messaging Page 215 Cells can signal to each other and interpret the signals they receive from other cells and the environment Signals are most often chemicals The

More information

Supplementary methods 1: Parameter estimation

Supplementary methods 1: Parameter estimation Supplementary methods : Parameter estimation A number of estimates of the parameters in model () of the main text can be obtained from the literature. However these estimates are not necessarily obtained

More information

Information transmission

Information transmission 1-3-3 Case studies in Systems Biology Goutham Vemuri goutham@chalmers.se Information transmission Fluxome Metabolome flux 1 flux flux 3 Proteome metabolite1 metabolite metabolite3 protein 1 protein protein

More information

Carbohydrate Metabolism

Carbohydrate Metabolism Chapter 34 Carbohydrate Metabolism Carbohydrate metabolism is important for both plants and animals. Introduction to General, Organic, and Biochemistry, 10e John Wiley & Sons, Inc Morris Hein, Scott Pattison,

More information

Lancaster Farming, 2009, Penn State Study of Modified Crop Reveals Hidden Cost of Resistance, Lancaster Farming 55(6):A10 (21 Nov).

Lancaster Farming, 2009, Penn State Study of Modified Crop Reveals Hidden Cost of Resistance, Lancaster Farming 55(6):A10 (21 Nov). Add this example to Section 1.6: Example 1.6-3. Unintended Consequence of GMO Squash Cultivated squash plants are susceptible to a variety of viral diseases that cause infected plants to grow more slowly

More information

: -CH2O - anadph + bproduct + catp + dnadh + eco2 2O + 2NADPH + CO 2 2O ATP + CO 2

: -CH2O - anadph + bproduct + catp + dnadh + eco2 2O + 2NADPH + CO 2 2O ATP + CO 2 Supplementary Notes In the calculations below metabolism is assumed to be respiro-fermentative in nature, which is generally the case under high glycolytic flux and is the best case scenario for pathways

More information

Metabolic engineering some basic considerations. Lecture 9

Metabolic engineering some basic considerations. Lecture 9 Metabolic engineering some basic considerations Lecture 9 The 90ties: From fermentation to metabolic engineering Recruiting heterologous activities to perform directed genetic modifications of cell factories

More information

Chapter 7: How Cells Harvest Energy AP

Chapter 7: How Cells Harvest Energy AP Chapter 7: How Cells Harvest Energy AP Essential Knowledge 1.B.1 distributed among organisms today. (7.1) 1.D.2 Organisms share many conserved core processes and features that evolved and are widely Scientific

More information

Some Similarities between the Spread of Infectious Disease and Population Growth 1

Some Similarities between the Spread of Infectious Disease and Population Growth 1 Some Similarities between the Spread of Infectious Disease and Population Growth 1 The Spread of Infectious Disease 1. An infectious disease is any disease caused by germs such as viruses or bacteria.

More information

Margaret A. Daugherty Fall 2003

Margaret A. Daugherty Fall 2003 Enzymes & Kinetics IV Regulation and Allostery ENZYME-SUBSTRATE INTERACTIONS THE LOCK & KEY MODEL Margaret A. Daugherty Fall 2003 A perfect match between enzyme and substrate can explain enzyme specificity

More information

Cellular Signaling Pathways. Signaling Overview

Cellular Signaling Pathways. Signaling Overview Cellular Signaling Pathways Signaling Overview Signaling steps Synthesis and release of signaling molecules (ligands) by the signaling cell. Transport of the signal to the target cell Detection of the

More information

Cellular Respiration. Overview of Cellular Respiration. Lecture 8 Fall Overview of Cellular Respiration. Overview of Cellular Respiration

Cellular Respiration. Overview of Cellular Respiration. Lecture 8 Fall Overview of Cellular Respiration. Overview of Cellular Respiration Overview of Cellular Respiration 1 Cellular Respiration Lecture 8 Fall 2008 All organisms need ATP to do cellular work Cellular Respiration: The conversion of chemical energy of carbon compounds into another

More information

AMPK. Tomáš Kuc era. Ústav lékar ské chemie a klinické biochemie 2. lékar ská fakulta, Univerzita Karlova v Praze

AMPK. Tomáš Kuc era. Ústav lékar ské chemie a klinické biochemie 2. lékar ská fakulta, Univerzita Karlova v Praze AMPK (AMP- ACTIVATED PROTEIN KINASE ) Tomáš Kuc era Ústav lékar ské chemie a klinické biochemie 2. lékar ská fakulta, Univerzita Karlova v Praze 2013 AMPK AMP-ACTIVATED PROTEIN KINASE present in all eukaryotic

More information

Tala Saleh. Ahmad Attari. Mamoun Ahram

Tala Saleh. Ahmad Attari. Mamoun Ahram 23 Tala Saleh Ahmad Attari Minna Mushtaha Mamoun Ahram In the previous lecture, we discussed the mechanisms of regulating enzymes through inhibitors. Now, we will start this lecture by discussing regulation

More information

Integration Of Metabolism

Integration Of Metabolism Integration Of Metabolism Metabolism Consist of Highly Interconnected Pathways The basic strategy of catabolic metabolism is to form ATP, NADPH, and building blocks for biosyntheses. 1. ATP is the universal

More information

Discussion of Prism modules and predicted interactions (Fig. 4)

Discussion of Prism modules and predicted interactions (Fig. 4) SUPPLEMENTARY NOTES Discussion of Prism modules and predicted interactions (Fig. 4) a. Interactions of the TCA-cycle, respiratory chain, and ATP synthetase with the amino acid biosynthesis modules. Given

More information

METABOLISM Biosynthetic Pathways

METABOLISM Biosynthetic Pathways METABOLISM Biosynthetic Pathways Metabolism Metabolism involves : Catabolic reactions that break down large, complex molecules to provide energy and smaller molecules. Anabolic reactions that use ATP energy

More information

GLYCOLYSIS Generation of ATP from Metabolic Fuels

GLYCOLYSIS Generation of ATP from Metabolic Fuels GLYCOLYSIS Generation of ATP from Metabolic Fuels - Catabolic process degradative pathway - Energy stored in sugars (carbohydrates) released to perform biological work - Transforms GLUCOSE to PYRUVATE

More information

FIRST BIOCHEMISTRY EXAM Tuesday 25/10/ MCQs. Location : 102, 105, 106, 301, 302

FIRST BIOCHEMISTRY EXAM Tuesday 25/10/ MCQs. Location : 102, 105, 106, 301, 302 FIRST BIOCHEMISTRY EXAM Tuesday 25/10/2016 10-11 40 MCQs. Location : 102, 105, 106, 301, 302 The Behavior of Proteins: Enzymes, Mechanisms, and Control General theory of enzyme action, by Leonor Michaelis

More information

Marah Bitar. Faisal Nimri ... Nafeth Abu Tarboosh

Marah Bitar. Faisal Nimri ... Nafeth Abu Tarboosh 8 Marah Bitar Faisal Nimri... Nafeth Abu Tarboosh Summary of the 8 steps of citric acid cycle Step 1. Acetyl CoA joins with a four-carbon molecule, oxaloacetate, releasing the CoA group and forming a six-carbon

More information

Outline Insulin-Glucose Dynamics a la Deterministic models Biomath Summer School and Workshop 2008 Denmark

Outline Insulin-Glucose Dynamics a la Deterministic models Biomath Summer School and Workshop 2008 Denmark Outline Insulin-Glucose Dynamics a la Deterministic models Biomath Summer School and Workshop 2008 Denmark Seema Nanda Tata Institute of Fundamental Research Centre for Applicable Mathematics, Bangalore,

More information

Lecture 29: Membrane Transport and metabolism

Lecture 29: Membrane Transport and metabolism Chem*3560 Lecture 29: Membrane Transport and metabolism Insulin controls glucose uptake Adipose tissue and muscles contain a passive glucose transporter GluT4 which takes up glucose from blood. (This is

More information

IGEM team SIAT-SCIE Modelling part - an intuitive summary

IGEM team SIAT-SCIE Modelling part - an intuitive summary IGEM team SIAT-SCIE Modelling part - an intuitive summary Dsup - the key protein that protects tardigrades from lethal dosage of radiation Part 0 - Kinetic based model st edition backup The primary focus

More information

Chapter 2 Transport Systems

Chapter 2 Transport Systems Chapter 2 Transport Systems The plasma membrane is a selectively permeable barrier between the cell and the extracellular environment. It permeability properties ensure that essential molecules such as

More information

Β-FRUCTOFURANOSIDASE ENZYME

Β-FRUCTOFURANOSIDASE ENZYME KINETICS ANALYSIS OF Β-FRUCTOFURANOSIDASE ENZYME 2-The effects of enzyme concentration on the rate of an enzyme catalyzed reaction. Systematic names and numbers β-fructofuranosidase (EC 3.2.1.26) Reactions

More information

A cell s metabolism is all the organism s chemical reactions. Metabolism manages the material and energy resources of the cell.

A cell s metabolism is all the organism s chemical reactions. Metabolism manages the material and energy resources of the cell. Enzymes Metabolism Metabolism A cell s metabolism is all the organism s chemical reactions. Metabolism manages the material and energy resources of the cell. Energy is the capacity to do work. Metabolism

More information

Equation Development of Tumor-Immune ODE System

Equation Development of Tumor-Immune ODE System Equation Development of Tumor-Immune ODE System L.G. de Pillis and A.E. Radunskaya August 22, 2002 ThisworkwassupportedinpartbyagrantfromtheW.M.KeckFoundation 0-0 TUMOR-IMMUNE EQUATION DEVELOPMENT Overview

More information

MODELING DISEASE FINAL REPORT 5/21/2010 SARAH DEL CIELLO, JAKE CLEMENTI, AND NAILAH HART

MODELING DISEASE FINAL REPORT 5/21/2010 SARAH DEL CIELLO, JAKE CLEMENTI, AND NAILAH HART MODELING DISEASE FINAL REPORT 5/21/2010 SARAH DEL CIELLO, JAKE CLEMENTI, AND NAILAH HART ABSTRACT This paper models the progression of a disease through a set population using differential equations. Two

More information

5.0 HORMONAL CONTROL OF CARBOHYDRATE METABOLISM

5.0 HORMONAL CONTROL OF CARBOHYDRATE METABOLISM 5.0 HORMONAL CONTROL OF CARBOHYDRATE METABOLISM Introduction: Variety of hormones and other molecules regulate the carbohydrates metabolism. Some of these have already been cited in previous sections.

More information

14 BACTERIAL METABOLISM

14 BACTERIAL METABOLISM 14 BACTERIAL METABOLISM 14.1. ENERGY-GENERATING METABOLISM The term metabolism refers to the sum of the biochemical reactions required for energy generation and the use of energy to synthesize cell material

More information

Name: KEY. Chem 3511 Exam 4

Name: KEY. Chem 3511 Exam 4 Chem 3511 Exam 4 The exam starts on the next page. It has 12 questions, worth a total of 100 points. Please write legibly and don t assume that long answers are required if there is a lot of space left

More information

2013 W. H. Freeman and Company. 12 Signal Transduction

2013 W. H. Freeman and Company. 12 Signal Transduction 2013 W. H. Freeman and Company 12 Signal Transduction CHAPTER 12 Signal Transduction Key topics: General features of signal transduction Structure and function of G protein coupled receptors Structure

More information

kcat, but isozyme M (in muscle) has a Km of 5 um and isozyme L (in liver) has a Km of 20 um. Answer

kcat, but isozyme M (in muscle) has a Km of 5 um and isozyme L (in liver) has a Km of 20 um. Answer Name ENZYMES and KINETICS (10 points this page) A substrate S is converted into product P. When an enzyme is added to the reaction, the activation energy is lowered. Use single sentence answers for the

More information

CHEM 527 Final exam, Fall 2006

CHEM 527 Final exam, Fall 2006 EM 527 Final exam, Fall 2006 AME TES: 1. Please stay calm. 2. Where appropriate, show work to receive full credit. 3. This exam contains 11 pages + metabolic charts (detach gently, please). 4. Pace yourself

More information

*For complete material(s) information, refer to

*For complete material(s) information, refer to Butler Community College Science, Technology, Engineering, and Math Division Robert Carlson New Fall 2017 Implemented Fall 2018 COURSE OUTLINE Biochemistry Course Description CH 275. Biochemistry. 4 hours

More information

CARBOHYDRATE METABOLISM

CARBOHYDRATE METABOLISM Note (Study Glycolysis, fermentation and their regulation, Gluconeogenesis and glycogenolysis, Metabolism of galactose, TCA cycle and Amphibolic role of the cycle, and Glyoxalic acid cycle, HMP shunt in

More information

Influence of Glucose and Dissolved Oxygen Concentrations on Yields of Escherichia colt' B in Dialysis Culture

Influence of Glucose and Dissolved Oxygen Concentrations on Yields of Escherichia colt' B in Dialysis Culture Journal of General Microbiology (1977), 103, 353-358. Printed in Great Britain 353 Influence of Glucose and Dissolved Oxygen Concentrations on Yields of Escherichia colt' B in Dialysis Culture By PETER

More information

Chem 454, Spring Exam I R, the ideal gas law constant = x 10-3 kj/mol = x 10-3 kcal/mol

Chem 454, Spring Exam I R, the ideal gas law constant = x 10-3 kj/mol = x 10-3 kcal/mol Name Chem 454, Spring 2003 - Exam I R, the ideal gas law constant = 8.314 x 10-3 kj/mol = 1.987 x 10-3 kcal/mol 1. Metabolism can be divided into two processes: catabolism and anabolism. a. Define metabolism,

More information

Name: Chem 351 Exam 3

Name: Chem 351 Exam 3 Multiple hoice: Pick the BEST answer and write it in the box at the end of the section. 1) The TA (Krebs) ycle depends on oxygen availability, though it does not directly use it. How can you best explain

More information

Chapter 11: Cell Communication

Chapter 11: Cell Communication Name Period Chapter 11: Cell Communication The special challenge in Chapter 11 is not that the material is so difficult, but that most of the material will be completely new to you. Cell communication

More information

Cell Respiration - 1

Cell Respiration - 1 Cell Respiration - 1 All cells must do work to stay alive and maintain their cellular environment. The energy needed for cell work comes from the bonds of ATP. Cells obtain their ATP by oxidizing organic

More information

Chapter 8. Metabolism. Topics in lectures 15 and 16. Chemical foundations Catabolism Biosynthesis

Chapter 8. Metabolism. Topics in lectures 15 and 16. Chemical foundations Catabolism Biosynthesis Chapter 8 Topics in lectures 15 and 16 Metabolism Chemical foundations Catabolism Biosynthesis 1 Metabolism Chemical Foundations Enzymes REDOX Catabolism Pathways Anabolism Principles and pathways 2 Chemical

More information

Krebs Cycle. Color Index: Original slides. Important. 436 Notes 438 notes. Extra information Biochemistry team 438. Red boxes are IMPORTANT!

Krebs Cycle. Color Index: Original slides. Important. 436 Notes 438 notes. Extra information Biochemistry team 438. Red boxes are IMPORTANT! Red boxes are IMPORTANT! Krebs Cycle Color Index: Original slides. Important. 436 Notes 438 notes : ل ی د ع ت ل ا ط ب ا ر https://docs.google.com/document/d/1wvdec1atp7j- ZKWOUSukSLsEcosjZ0AqV4z2VcH2TA0/edit?usp=sharing

More information

Linear Regression in SAS

Linear Regression in SAS 1 Suppose we wish to examine factors that predict patient s hemoglobin levels. Simulated data for six patients is used throughout this tutorial. data hgb_data; input id age race $ bmi hgb; cards; 21 25

More information

Reading Questions. ChE 436

Reading Questions. ChE 436 Reading Questions ChE 436 PPC, Ch. 1 Competencies - What are the 2 level-three competencies listed for the Process Control class? (These are also on the ChE 436 web page). 1.1 Many of the products from

More information

Chapter 6 Cellular Respiration: Obtaining Energy from Food

Chapter 6 Cellular Respiration: Obtaining Energy from Food Chapter 6 Cellular Respiration: Obtaining Energy from Food PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon,

More information

Design of Low-Power CMOS Cell Structures Using Subthreshold Conduction Region

Design of Low-Power CMOS Cell Structures Using Subthreshold Conduction Region International Journal of Scientific & Engineering Research, Volume 2, Issue 2, February-2011 1 Design of Low-Power CMOS Cell Structures Using Subthreshold Conduction Region Vishal Sharma, Sanjay Kumar

More information

By the name of Allah

By the name of Allah By the name of Allah Receptors function and signal transduction ( Hormones and receptors Types) We were talking about receptors of the neurotransmitters; we have 2 types of receptors: 1- Ionotropic receptors

More information

Student Number: THE UNIVERSITY OF MANITOBA April 10, 2000, 9:00 AM - 12:00 PM Page 1 (of 4) Biochemistry II Lab Section Final Examination

Student Number: THE UNIVERSITY OF MANITOBA April 10, 2000, 9:00 AM - 12:00 PM Page 1 (of 4) Biochemistry II Lab Section Final Examination Name: Student Number: THE UNIVERSITY OF MANITOBA April 10, 2000, 9:00 AM - 12:00 PM Page 1 (of 4) Biochemistry II Lab Section Final Examination Examiner: Dr. A. Scoot 1. Answer ALL questions.. 2. Questions

More information