Chimica Farmaceutica. Pharmacokinetics and related topics

Size: px
Start display at page:

Download "Chimica Farmaceutica. Pharmacokinetics and related topics"

Transcription

1 Chimica Farmaceutica Pharmacokinetics and related topics

2 INTRODUCTION In order to produce its intended effect, a drug must be present at an appropriate concentration in the fluid surrounding the effect site, that is, the biophase. Only rarely can drugs be applied directly to the biophase; in most cases drugs need to be transferred from the site of administration to the biophase. Usually, this translocation involves two steps: absorption and distribution. During absorption, the drug passes from its site of administration into the systemic circulation. Subsequently, the drug is distributed via the circulating blood plasma (the fluid portion of the blood) to the different parts of the organism, including the organ(s) in which the biophase for the drug is localized. Each drug molecule that reaches the target site can add to the intended pharmacological effect of the drug. However, at all times a portion of the drug molecules in the body is also distributed to organs and tissues that account for an irreversible loss of drug molecules from the body (drug elimination) by either biotransformation (the conversion of one chemical entity to another) or excretion. This causes a decrease in the concentration of the drug in the body and, consequently, also in the biophase. Pagina 2

3 INTRODUCTION A schematic representation of the processes involved in the journey of a drug molecule through the human body is shown in the left Figure. In the right Figure is shows a more detailed scheme of the main routes of drug absorption, distribution and elimination. Pharmacokinetics is the study of the drug concentrations in the different parts of the organism as a function of time. These concentrations depend on the dose administered and upon the rate and extent of absorption, distribution and elimination. Pagina 3

4 Pharmacodynamics and Pharmacokinetics The way how drugs can be designed to optimize binding interactions with their targets is an area of medicinal chemistry known as pharmacodynamics. However, the compound with the best binding interactions for a target is not necessarily the best drug to use in medicine. This is because a clinically useful drug has to travel through the body in order to reach its target. There are many barriers and hurdles in its way and, as far as the drug is concerned, it is a long and arduous journey. The study of how a drug reaches it target, and what happens to it during that journey, is known as pharmacokinetics. When carrying out a drug design programme, it is important to study pharmacokinetics alongside pharmacodynamics. There is no point perfecting a compound with superb drug-target interactions if it has no chance of reaching its target. The four main topics to consider in pharmacokinetics are absorption, distribution, metabolism and excretion (often abbreviated to ADME) (and toxicology) ADMET Pagina 4

5 PASSAGE OF DRUGS THROUGH BIOLOGICAL BARRIERS On its journey through the body, a drug needs to cross different biological barriers. These barriers can be a single layer of cells (e.g. the intestinal epithelium), several layers of cells (e.g. in the skin), or the cell membrane itself (e.g. to reach an intracellular receptor). A drug can cross a cell layer either by traveling through the cells (transcellular drug transport) or through gaps between the cells (paracellular drug transport). Transcellular drug transport In order to travel through a cell or to reach a target inside a cell, a drug molecule must be able to traverse the cell membrane(s). The cell membrane (also called plasma membrane) is a lipid bilayer interspersed with carbohydrates and proteins. Although cell membranes largely vary in their permeability characteristics depending on the tissue, the main mechanisms of drugs passing through the cell membrane are passive diffusion, carrier-mediated processes and vesicular transport. Pagina 5

6 Passive diffusion Passive diffusion is the process by which molecules spontaneously diffuse from a region of higher concentration (e.g. outside of the cell) to a region of lower concentration (e.g. inside the cell), and it is the main mechanism for passage of drugs through membranes. Lipid-soluble drugs penetrate the lipid cell membrane with ease, and can pass the cell membrane by passive diffusion. Polar molecules and ionized compounds, on the other hand, partition poorly into lipids and are not able to diffuse through the cell membrane or do so at a much lower rate. Also, large molecules, such as proteins and protein-bound drugs, cannot diffuse through the cell membrane. Transmembrane diffusion is driven by the concentration gradient of the drug over the cell membrane. The rate of diffusion depends, apart from the lipid/water partition coefficient of the drug (P) and the concentration gradient (C_out C_in), on membrane properties such as the membrane area (A) and thickness (h), and the diffusion coefficient (D) of the drug in the membrane, according to Fick's law: Pagina 6

7 Passive diffusion Pagina 7

8 Passive diffusion Many drugs are acidic or basic compounds, which are ionized to a certain degree in aqueous medium. Their degree of ionization depends on their dissociation constant (pka) and the ph of the solution, according to the Henderson-Hasselbach equation: Very weak acids with pka values higher than 7.5, are essentially unionized at physiological ph values. For these drugs diffusion over the cell membrane is rapid and independent of ph changes within the body, provided the unionized form of the drug is lipid soluble. For acidic drugs with a pka value between 3.0 and 7.5, the fraction of unionized drug varies with the changes in ph encountered in the organism. For these drugs the ph of the extracellular environment is critical in determining the diffusion across the cell membrane. For acidic drugs with a pka lower than 2.5, the fraction of unionized drug is low at any physiological ph, resulting in very slow diffusion across membranes. A similar analysis can be made for bases. At the diffusion equilibrium, the concentrations of unionized molecules on both sides of a biological barrier are equal. If the ph on both sides of the barrier is equal, then the concentration of ionized molecules and, consequently, the total concentration of the molecules, will be the same on both sides of the barrier. However, if there is a difference in ph, as e.g. between blood plasma (ph 7.4) and stomach contents (ph 1-3), the concentration of the ionized molecules at equilibrium, and, therefore, the total concentration, will be much higher on one side of the barrier than on the other. This phenomenon is called ion trapping. Pagina 8

9 Carrier-mediated processes Many cell membranes possess specialized transport mechanisms that regulate entry and exit of physiologically important molecules and drugs. Such transport systems involve a carrier molecule, that is, a transmembrane protein that binds one or more molecules and releases them on the other side of the membrane. Such systems may operate passively (without any energy source) and along a concentration gradient; this is called "facilitated diffusion." However, facilitated diffusion seems to play only a minor role in drug transport. An example is the transport of vitamin B12 across the GI membrane. Pagina 9

10 Carrier-mediated processes Alternatively, the system may spend energy (obtained from the energy rich molecule adenosine triphosphate (ATP) required to pump molecules against a concentration gradient; this mechanism is called "active transport." At high drug concentrations the carrier sites become saturated, and the rate of transport does not further increase with concentration. Furthermore, competitive inhibition of transport can occur if another substrate for this carrier is present. In recent years, several transporters have been described to be present in various organs and tissues throughout the body and to determine absorption, distribution and elimination of compounds that are substrates for these transporters. Although some transporters mediate the uptake of compounds in the cell (influx transporters), others may mediate secretion back out of the cell (efflux transporters). Transporters in the intestinal membrane affect the absorption of drugs, while transporters in the liver and kidney influence elimination by mediating transport into and out of cells responsible for biotransformation (hepatocytes) or excretion (e.g. renal tubule cells in the kidneys). Furthermore, efflux transporters may limit the penetration of compounds into certain areas of the body, such as the cerebrospinal fluid and blood cells. Pagina 10

11 Vesicular transport During vesicular transport the cell membrane forms a small cavity that gradually surrounds particles or macromolecules, thereby internalizing them into the cell in the form of a vesicle or vacuole. Vesicular transport is the proposed process for the absorption of orally administered Sabin polio vaccine and of various large proteins. It is called endocytosis when moving a macromolecule into a cell, exocytosis when moving a macromolecule out of a cell, and transcytosis when moving a macromolecule across a cell. Pagina 11

12 Paracellular drug transport Drugs can also cross a cell layer through the small aqueous contact points (cell junctions) between cells. This paracellular drug transport can be initiated by a concentration gradient over the cell layer (passive diffusion), or by a hydrostatic pressure gradient across the cell layer (filtration). The size and characteristics of cell junctions widely vary between different barriers to drug transport. For example, the endothelium of glomerular capillaries in the kidney forms a leaky barrier, which is very rich in intercellular pores. Therefore, this membrane is very permeable and permits filtration of water and solutes. On the other hand, endothelial cells of brain capillaries are sealed together by tight junctions, practically eliminating the possibility of paracellular drug transport. Pagina 12

13 Drug absorption Absorption can be defined as the passage of a drug from its site of administration into the systemic circulation. If a drug is administered directly into the systemic circulation by intravenous (i.v.) administration, absorption is not needed. Pagina 13

14 Drug absorption Drugs can be administered by enteral and parenteral routes. Enteral administration occurs through the GI tract, by contact of the drug with the mucosa in the mouth (buccal or sublingual), by swallowing (oral) or by rectal administration. Pagina 14

15 Drug absorption Drugs can also be absorbed through the skin or through the mucosa of various organs (e.g. bronchi, nose, and vagina). In some cases, a drug is applied for a local effect, and no absorption is intended (e.g. antacids that neutralize stomach acid). In this chapter, we will describe drug administration by the oral route, which is the most common and popular route of drug dosing. Pagina 15

16 Common Routes of Drug Administration Pagina 16

17 Common Routes of Drug Administration Pagina 17

18 Common Routes of Drug Administration Pagina 18

19 Drug absorption Drug absorption refers to the route or method by which a drug reaches the blood supply. This in turn depends on how the drug is administered. The most common and preferred method of administering drugs is the oral route and so we shall first concentrate on the various barriers and problems associated with oral delivery. An orally taken drug enters the gastrointestinal tract (GIT), which comprises the mouth, throat, stomach, and the upper and lower intestines. A certain amount of the drug may be absorbed through the mucosal membranes of the mouth, but most passes down into the stomach where it encounters gastric juices and hydrochloric acid. These chemicals aid in the digestion of food and will treat drugs in a similar fashion if the drug is susceptible to breakdown. For example, the first penicillin used clinically was broken down in the stomach and had to be administered by injection. Other acid-labile drugs, such as local anaesthetics or insulin, cannot be given orally. Pagina 19

20 Drug absorption If the drug does survive the stomach, it enters the upper intestine where it encounters digestive enzymes that serve to break down food. Assuming the drug survives this attack, it then has to pass through the cells lining the intestinal or gut wall. This means that the drug has to pass through a cell membrane on two occasions, first to enter the cell and then to exit it on the other side. Once the drug has passed through the cells of the gut wall, it can enter the blood supply relatively easily as the cells lining the blood vessels have pores between them through which most drugs can pass. In other words, drugs enter the blood vessels by passing between cells rather than through them. The drug is now transported in the blood to the body's 'customs office': the liver. The liver contains enzymes which are ready and waiting to intercept foreign chemicals, and modify them such that they are more easily excreted: a process called drug metabolism. Pagina 20

21 Drug absorption It can be seen that stringent demands are made on any orally taken drug. The drug must be chemically stable to survive the stomach acids, and metabolically stable to survive the digestive enzymes in the GIT as well as the metabolic enzymes in the liver. It must also have the correct balance of water versus fat solubility. If the drug is too polar (hydrophilic), it will fail to pass through the fatty cell membranes of the gut wall. On the other hand, if the drug is too fatty (hydrophobic), it will be poorly soluble in the gut and will dissolve in fat globules. This means that there will be poor surface contact with the gut wall, resulting in poor absorption. Pagina 21

22 Drug absorption It is noticeable how many drugs contain an amine functional group. There are good reasons for this. Amines are often involved in a drug's binding interactions with its target. However, they are also an answer to the problem of balancing the dual requirements of water and fat solubility. Amines are weak bases, and it is found that many of the most effective drugs are amines having a pka value in the range 6-8. In other words, they are partially ionized at blood ph (~7.4) and can easily equilibrate between their ionized and non-ionized forms. This allows them to cross cell membranes in the non-ionized form, while the presence of the ionized form gives the drug good water solubility and permits good binding interactions with its target binding site. Pagina 22

23 Henderson-Hasselbalch equation The extent of ionization at a particular ph can be determined by the HendersonHasselbalch equation: where [RNH2] is the concentration of the free base and [RNH3+] is the concentration of the ionized amine. Ka is the equilibrium constant for the equilibrium shown, and the Henderson-Hasselbalch equation can be derived from the equilibrium constant. Note that when the concentration of the ionized and unionized amines are identical (i.e. when [RNH2 = [RNH3+]), the ratio ([RNH2/[RNH3+]) is 1. Since log 1 = 0, the Henderson-Hasselbalch equation will simplify to ph = pka. In other words, when the amine is 50% ionized, ph = pka. Therefore, drugs with a pka of 6-8 are approximately 50% ionized at blood ph (7.4). Pagina 23

24 Lipinski's rule of five The hydrophilic-hydrophobic character of the drug is the crucial factor affecting absorption through the gut wall, and the molecular weight of the drug should in theory be irrelevant. For example, cidosporin is successfully absorbed through cell membranes, although it has a molecular weight of about In practice, however, larger molecules tend to be poorly absorbed, because they are likely to contain a large number of polar functional groups. As a rule of thumb, orally absorbed drugs tend to obey what is known as Lipinski's rule of five. The rule of five was derived from an analysis of compounds from the World Drugs Index database, aimed at identifying features that were important in making a drug orally active. It was found that the factors concerned involved numbers that are multiples of 5: a molecular weight less than 500 no more than 5 hydrogen bond donor groups no more than 10 hydrogen bond acceptor groups a calculated log P value less than +5 (log P is a measure of a drug's hydrophobicity) Pagina 24

25 Lipinski's rule of five failures The rule of five has been an extremely useful rule of thumb for many years, but it is neither quantitative nor foolproof. For example, orally active drugs such as atorvastatin, rosuvastatin, cidosporin and vinorelbine do not obey the rule of five. It has also been demonstrated that a high molecular weight does not in itself cause poor oral bioavailability. One of the reasons that the molecular weight appears to be important is that larger molecules invariably have too many functional groups capable of forming hydrogen bonds. Therefore, further research has been carried out to find guidelines that are independent of molecular weight. Pagina 25

26 Other rules Work carried out by Veber et al. in 2002, demonstrated the rather surprising finding that molecular flexibility (as measured by the number of freely rotatable bonds present in the structure) plays an important role in oral bioavailability. The more flexible the molecule, the less likely it is to be orally active. Less surprisingly, the analysis showed that the polar surface area of the molecule could be used as a factor instead of the number of hydrogen bonding groups. These findings led to the following parameters for acceptable oral activity. Either: a polar surface area 140 Å and 10 rotatable bonds or 12 hydrogen bond donors and acceptors in total and 10 rotatable bonds, Some researchers set the limit of rotatable bonds to 7 since the analysis shows a marked improvement in oral bioavailability for such molecules. Pagina 26

27 Other rules These rules are independent of molecular weight and open the way to studying larger structures that have been 'shelved' up to now. Unfortunately, structures having a molecular weight larger than 500 are quite likely to have more than 10 rotatable bonds. However, the new rules suggest that rigidifying the structures to reduce the number of rotatable bonds would be beneficial. Rigidification tactics will be described as a strategy to improve a drug's pharmacodynamic properties, but these same tactics could also be used to improve pharmacokinetic properties. Polar drugs that break the above rules are usually poorly absorbed and have to be administered by injection. Nevertheless, some highly polar drugs can be absorbed from the digestive system. For example, there are polar drugs that can 'hijack' specific transport proteins in the cell membrane. Transport proteins are essential to a cells survival, as they transport the highly polar building blocks required for various biosynthetic pathways. If the drug bears a structural resemblance to one of these building blocks, then it too may be smuggled into the cell. For example, levodopa is transported by the transport protein for the amino acid phenylalanine, and fluorouracil is transported by transport proteins for the nucleic acid bases thymine and uracil. The antihypertensive agent lisinopril is transported by transport proteins for dipeptides, and the anticancer agent methotrexate and the antibiotic erythromycin are also absorbed by means of transport proteins. Pagina 27

28 Drug absorption of polar drugs Other highly polar drugs can be absorbed into the blood supply if they have a low molecular weight (less than 200), as they can then pass through small pores between the cells lining the gut wall. Occasionally, polar drugs with high molecular weight can cross the cells of the gut wall without actually passing through the membrane. This involves a process known as pinocytosis where the drug is engulfed by the cell membrane and a membranebound vesicle is pinched off to carry the drug across the cell. The vesicle then fuses with the membrane to release the drug on the other side of the cell. Sometimes, drugs are deliberately designed to be highly polar so that they are not absorbed from the GIT. These are usually antibacterial agents targeted against gut infections. Making them highly polar ensures that the drug reaches the site of infection in higher concentration. Pagina 28

29 Key Points on Drug Absorption Pharmacodynamics is the study of how drugs interact with a molecular target, whereas pharmacokinetics is the study of how a drug reaches its target in the body and how it is affected on that journey. The four main issues in pharmacokinetics are absorption, distribution, metabolism, and excretion. Orally taken drugs have to be chemically stable to survive the acidic conditions of the stomach, and metabolically stable to survive digestive and metabolic enzymes. Orally taken drugs must be sufficiently polar to dissolve in the git and blood supply, but sufficiently fatty to pass through cell membranes. Most orally taken drugs obey Lipinski's rule of five and have no more than seven rotatable bonds. Highly polar drugs can be orally active if they are small enough to pass between the cells of the gut wall, are recognized by carrier proteins, or are taken across the gut wall by pinocytosis. Distribution round the blood supply is rapid. Distribution to the interstitial fluid surrounding tissues and organs is rapid if the drug Is not bound to plasma proteins. Some drugs have to enter cells in order to reach their target. A certain percentage of a drug may be absorbed into fatty tissue and/or bound to macromolecules. Drugs entering the CNS have to cross the blood-brain barrier. Polar drugs are unable to cross this barrier unless they make use of carrier proteins or are taken across by pinocytosis. Some drugs cross the placental barrier into the fetus and may harm development or prove toxic in newborn babies Pagina 29

30 Practical Examples Chemaxon Marvin Sketch Pagina 30

Many drugs have both lipophilic and hydrophilic chemical substituents. Those drugs that are more lipid soluble tend to traverse cell membranes more

Many drugs have both lipophilic and hydrophilic chemical substituents. Those drugs that are more lipid soluble tend to traverse cell membranes more Lecture-4 Many drugs have both lipophilic and hydrophilic chemical substituents. Those drugs that are more lipid soluble tend to traverse cell membranes more easily than less lipid-soluble or more water-soluble

More information

Define the terms biopharmaceutics and bioavailability.

Define the terms biopharmaceutics and bioavailability. Pharmaceutics Reading Notes Define the terms biopharmaceutics and bioavailability. Biopharmaceutics: the area of study concerning the relationship between the physical, chemical, and biological sciences

More information

Pharmacokinetics Dr. Iman Lec. 3

Pharmacokinetics Dr. Iman Lec. 3 Pharmacokinetics r. Iman Lec. 3 Pharmacokinetics A dequate drug doses must be delivered to the target organ to get therapeutic but not toxic levels. So, pharmacokinetic examines the movement of drug over

More information

2- Minimum toxic concentration (MTC): The drug concentration needed to just produce a toxic effect.

2- Minimum toxic concentration (MTC): The drug concentration needed to just produce a toxic effect. BIOPHARMACEUTICS Drug Product Performance Parameters: 1- Minimum effective concentration (MEC): The minimum concentration of drug needed at the receptors to produce the desired pharmacologic effect. 2-

More information

Pharmacokinetics I. Dr. M.Mothilal Assistant professor

Pharmacokinetics I. Dr. M.Mothilal Assistant professor Pharmacokinetics I Dr. M.Mothilal Assistant professor DRUG TRANSPORT For a drug to produce a therapeutic effect, it must reach to its target and it must accumulate at that site to reach to the minimum

More information

Pharmacokinetics of Drugs. Assistant Prof. Dr. Najlaa Saadi PhD Pharmacology Faculty of Pharmacy University of Philadelphia

Pharmacokinetics of Drugs. Assistant Prof. Dr. Najlaa Saadi PhD Pharmacology Faculty of Pharmacy University of Philadelphia Pharmacokinetics of Drugs Assistant Prof. Dr. Najlaa Saadi PhD Pharmacology Faculty of Pharmacy University of Philadelphia Absorption Is the transfer of a drug from its site of administration to the bloodstream.

More information

DRUG DISTRIBUTION. Distribution Blood Brain Barrier Protein Binding

DRUG DISTRIBUTION. Distribution Blood Brain Barrier Protein Binding DRUG DISTRIBUTION Distribution Blood Brain Barrier Protein Binding DRUG DISTRIBUTION Drug distribution is a reversible transport of drug through the body by the systemic circulation The drug molecules

More information

Cell membrane & Transport. Dr. Ali Ebneshahidi Ebneshahidi

Cell membrane & Transport. Dr. Ali Ebneshahidi Ebneshahidi Cell membrane & Transport Dr. Ali Ebneshahidi Cell Membrane To enclose organelles and other contents in cytoplasm. To protect the cell. To allow substances into and out of the cell. To have metabolic reactions

More information

TRANSPORT ACROSS MEMBRANES

TRANSPORT ACROSS MEMBRANES Unit 2: Cells, Membranes and Signaling TRANSPORT ACROSS MEMBRANES Chapter 5 Hillis Textbook TYPES OF TRANSPORT ACROSS THE CELL (PLASMA) MEMBRANE: What do you remember? Complete the chart with what you

More information

WHY... 8/21/2013 LEARNING OUTCOMES PHARMACOKINETICS I. A Absorption. D Distribution DEFINITION ADME AND THERAPEUIC ACTION

WHY... 8/21/2013 LEARNING OUTCOMES PHARMACOKINETICS I. A Absorption. D Distribution DEFINITION ADME AND THERAPEUIC ACTION PHARMACOKINETICS I Absorption & Distribution LEARNING OUTCOMES By the end of the lecture students will be able to.. Dr Ruwan Parakramawansha MBBS, MD, MRCP(UK),MRCPE, DMT(UK) (2013/08/21) Define pharmacokinetics,

More information

Chapter 3b Cells Membrane transport - Student Notes

Chapter 3b Cells Membrane transport - Student Notes Chapter 3b Cells Membrane transport - Student Notes 1 Transport are permeable Some molecules the membrane; others do 2 Types of Membrane Transport processes No cellular required Substance its processes

More information

ENVIRONMENTAL TOXICOLOGY

ENVIRONMENTAL TOXICOLOGY ENVIRONMENTAL TOXICOLOGY Chapter 4 Toxicokinetics Mohd Amir Bin Arshad Toxicokinetics study on how a substance gets into the body and what happens to it in the body" The kinetics (movement) of substances

More information

Cell Membranes and Signaling

Cell Membranes and Signaling 5 Cell Membranes and Signaling Concept 5.1 Biological Membranes Have a Common Structure and Are Fluid A membrane s structure and functions are determined by its constituents: lipids, proteins, and carbohydrates.

More information

Lecture Series 4 Cellular Membranes

Lecture Series 4 Cellular Membranes Lecture Series 4 Cellular Membranes Reading Assignments Read Chapter 11 Membrane Structure Review Chapter 21 pages 709-717 717 (Animal( Cell Adhesion) Review Chapter 12 Membrane Transport Review Chapter

More information

Lecture 1: Physicochemical Properties of Drugs and Drug Disposition

Lecture 1: Physicochemical Properties of Drugs and Drug Disposition Lecture 1: Physicochemical Properties of Drugs and Drug Disposition Key objectives: 1. Be able to explain the benefits of oral versus IV drug administration 2. Be able to explain the factors involved in

More information

Cell Membranes Valencia college

Cell Membranes Valencia college 6 Cell Membranes Valencia college 6 Cell Membranes Chapter objectives: The Structure of a Biological Membrane The Plasma Membrane Involved in Cell Adhesion and Recognition Passive Processes of Membrane

More information

Lecture Series 5 Cellular Membranes

Lecture Series 5 Cellular Membranes Lecture Series 5 Cellular Membranes Cellular Membranes A. Membrane Composition and Structure B. Animal Cell Adhesion C. Passive Processes of Membrane Transport D. Active Transport E. Endocytosis and Exocytosis

More information

A. Membrane Composition and Structure. B. Animal Cell Adhesion. C. Passive Processes of Membrane Transport. D. Active Transport

A. Membrane Composition and Structure. B. Animal Cell Adhesion. C. Passive Processes of Membrane Transport. D. Active Transport Cellular Membranes A. Membrane Composition and Structure Lecture Series 5 Cellular Membranes B. Animal Cell Adhesion E. Endocytosis and Exocytosis A. Membrane Composition and Structure The Fluid Mosaic

More information

Fundamentals of Pharmacology for Veterinary Technicians Chapter 4

Fundamentals of Pharmacology for Veterinary Technicians Chapter 4 (A) (B) Figure 4-1 A, B (C) FIGURE 4-1C The active transport process moves particles against the concentration gradient from a region of low concentration to a region of high concentration. Active transport

More information

Determination of bioavailability

Determination of bioavailability Pharmaceutics 2 Bioavailability Bioavailability is the rate and extent to which an administered drug reaches the systemic circulation. For example, if 100 mg of a drug is administered orally and 70 mg

More information

Cells: The Living Units

Cells: The Living Units Cells: The Living Units Introduction Life in general occurs in an aqueous environment All chemical processes essential to life occur within the aqueous environment of the cell and surrounding fluids contained

More information

The ADME properties of most drugs strongly depends on the ability of the drug to pass through membranes via simple diffusion.

The ADME properties of most drugs strongly depends on the ability of the drug to pass through membranes via simple diffusion. 1 MEDCHEM 562 Kent Kunze Lecture 1 Physicochemical Properties and Drug Disposition The ADME properties of most drugs strongly depends on the ability of the drug to pass through membranes via simple diffusion.

More information

Pharmacokinetic Phase

Pharmacokinetic Phase RSPT 2217 Principles of Drug Action Part 2: The Pharmacokinetic Phase Gardenhire Chapter 2; p. 14-25 From the Text Common Pathways for Drug Box 2-3; page 18 Plasma Half-lives of Common Drugs Table 2-4;

More information

Chapter 7: Membranes

Chapter 7: Membranes Chapter 7: Membranes Roles of Biological Membranes The Lipid Bilayer and the Fluid Mosaic Model Transport and Transfer Across Cell Membranes Specialized contacts (junctions) between cells What are the

More information

Gateway to the Cell 11/1/2012. The cell membrane is flexible and allows a unicellular organism to move FLUID MOSAIC MODEL

Gateway to the Cell 11/1/2012. The cell membrane is flexible and allows a unicellular organism to move FLUID MOSAIC MODEL Gateway to the Cell The cell membrane is flexible and allows a unicellular organism to move Isolates the cell, yet allows communication with its surroundings fluid mosaics = proteins (and everything else)

More information

Lecture Series 4 Cellular Membranes. Reading Assignments. Selective and Semi-permeable Barriers

Lecture Series 4 Cellular Membranes. Reading Assignments. Selective and Semi-permeable Barriers Lecture Series 4 Cellular Membranes Reading Assignments Read Chapter 11 Membrane Structure Review Chapter 12 Membrane Transport Review Chapter 15 regarding Endocytosis and Exocytosis Read Chapter 20 (Cell

More information

The Plasma Membrane - Gateway to the Cell

The Plasma Membrane - Gateway to the Cell The Plasma Membrane - Gateway to the Cell 1 Photograph of a Cell Membrane 2 Cell Membrane The cell membrane is flexible and allows a unicellular organism to move 3 Homeostasis Balanced internal condition

More information

Unit 1 Matter & Energy for Life

Unit 1 Matter & Energy for Life Unit 1 Matter & Energy for Life Chapter 2 Interaction of Cell Structure Biology 2201 Sept. 2011 Primary Membrane Function: Homeostasis Section 2.2 Conditions in the cell must remain more or less constant

More information

Membrane Structure and Function

Membrane Structure and Function Membrane Structure and Function Chapter 7 Objectives Define the following terms: amphipathic molecules, aquaporins, diffusion Distinguish between the following pairs or sets of terms: peripheral and integral

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction What is Pharmacology From the Greek pharmakon (=drug), logos (=study) Pharmacology is the science that deals with the mechanisms of action, uses, adverse effects and fate of drugs

More information

Unit 1 Matter & Energy for Life

Unit 1 Matter & Energy for Life Unit 1 Matter & Energy for Life Chapter 2 Interaction of Cell Structure Biology 2201 Primary Membrane Function: Homeostasis Conditions in the cell must remain more or less constant under many different

More information

Cell Membrane: a Phospholipid Bilayer. Membrane Structure and Function. Fluid Mosaic Model. Chapter 5

Cell Membrane: a Phospholipid Bilayer. Membrane Structure and Function. Fluid Mosaic Model. Chapter 5 Membrane Structure and Function Chapter 5 Cell Membrane: a Phospholipid Bilayer Phospholipid Hydrophilic Head Hydrophobic Tail Lipid Bilayer Fluid Mosaic Model Mixture of saturated and unsaturated fatty

More information

Membrane Structure and Function - 1

Membrane Structure and Function - 1 Membrane Structure and Function - 1 The Cell Membrane and Interactions with the Environment Cells interact with their environment in a number of ways. Each cell needs to obtain oxygen and other nutrients

More information

Assem Al Refaei. Sameer Emeish. Dr.Alia. Hodaifa Ababneh & Abdullah Shurafa

Assem Al Refaei. Sameer Emeish. Dr.Alia. Hodaifa Ababneh & Abdullah Shurafa 8 Assem Al Refaei Sameer Emeish Hodaifa Ababneh & Abdullah Shurafa Dr.Alia Sheet Checklist Bioequivalence and Therapeutic equivalence. Factors Influencing Absorption. Revising Bioavailability. Factors

More information

MEMBRANE STRUCTURE AND TRAFFIC. Cell Membrane Structure and Function

MEMBRANE STRUCTURE AND TRAFFIC. Cell Membrane Structure and Function MEMBRANE STRUCTURE AND TRAFFIC Cell Membrane Structure and Function 4.1 How Is the Structure of a Membrane Related to Its Function? 4.1.1 The Plasma Membrane Isolates the Cell While Allowing Communication

More information

Unit 1 Matter & Energy for Life

Unit 1 Matter & Energy for Life Unit 1 Matter & Energy for Life Chapter 2 Interaction of Cell Structures Biology 2201 Primary Membrane Function: Homeostasis Section 2.2 Conditions in the cell must remain more or less constant under many

More information

Pharmacokinetic Phase

Pharmacokinetic Phase RSPT 2317 Principles of Drug Action Part 2: The Pharmacokinetic Phase Pharmacokinetic Phase This phase describes the time course and disposition of a drug in the body, based on its absorption, distribution,

More information

Transport through membranes

Transport through membranes Transport through membranes Membrane transport refers to solute and solvent transfer across both cell membranes, epithelial and capillary membranes. Biological membranes are composed of phospholipids stabilised

More information

Principles of Drug Action. Intro to Pharmacology: Principles of Courework Drug Action Intro to Pharmacology

Principles of Drug Action. Intro to Pharmacology: Principles of Courework Drug Action Intro to Pharmacology Principles of Drug Action Intro to Pharmacology: Principles of Courework 102.3 Drug Action Intro to Pharmacology Directions Read the PPT and complete R.E.A.D. Assignment. There are videos embedded within

More information

Introduction to Pharmacokinetics

Introduction to Pharmacokinetics - 1 - Introduction to Pharmacokinetics Outline accompanies required webcast for Marie Biancuzzo s Lactation Exam Review and Marie Biancuzzo s Comprehensive Lactation Course Notes We will not cover this

More information

An introduction to Liposomal Encapsulation Technology

An introduction to Liposomal Encapsulation Technology An introduction to Liposomal Encapsulation Technology Mother Nature has the innate ability to solve problems through the most efficient and effective route possible. The problem of how to make an oil-soluble

More information

Lecture Series 4 Cellular Membranes

Lecture Series 4 Cellular Membranes Lecture Series 4 Cellular Membranes Reading Assignments Read Chapter 11 Membrane Structure Review Chapter 12 Membrane Transport Review Chapter 15 regarding Endocytosis and Exocytosis Read Chapter 20 (Cell

More information

Problem Set for Fundamentals 9 Oct 2013

Problem Set for Fundamentals 9 Oct 2013 20.201 Problem Set for Fundamentals 9 ct 2013 Please prepare your answers in electronic format and submit the answers or on ctober 11. While this is not a graded problem set, you will get cr completing

More information

Outline. Membrane Structure and Function. Membrane Models Fluid-Mosaic. Chapter 5

Outline. Membrane Structure and Function. Membrane Models Fluid-Mosaic. Chapter 5 Membrane Structure and Function Chapter 5 Membrane Models Fluid-Mosaic Outline Plasma Membrane Structure and Function Protein Functions Plasma Membrane Permeability! Diffusion! Osmosis! Transport Via Carrier

More information

Chapter 1 Plasma membranes

Chapter 1 Plasma membranes 1 of 5 TEXTBOOK ANSWERS Chapter 1 Plasma membranes Recap 1.1 1 The plasma membrane: keeps internal contents of the cell confined to one area keeps out foreign molecules that damage or destroy the cell

More information

Membrane Structure and Function

Membrane Structure and Function Chapter 7 Membrane Structure and Function PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

The Plasma Membrane - Gateway to the Cell

The Plasma Membrane - Gateway to the Cell The Plasma Membrane - Gateway to the Cell 1 Photograph of a Cell Membrane 2 Cell Membrane The cell membrane is flexible and allows a unicellular organism to move 3 Homeostasis Balanced internal condition

More information

UNIVERSITY OF MEDICAL SCIENCES, ONDO DEPARTMENT OF PHYSIOLOGY PHS 211 TRANSPORT MECHANISM LECTURER: MR A.O. AKINOLA

UNIVERSITY OF MEDICAL SCIENCES, ONDO DEPARTMENT OF PHYSIOLOGY PHS 211 TRANSPORT MECHANISM LECTURER: MR A.O. AKINOLA UNIVERSITY OF MEDICAL SCIENCES, ONDO DEPARTMENT OF PHYSIOLOGY PHS 211 TRANSPORT MECHANISM LECTURER: MR A.O. AKINOLA OUTLINE Introduction Basic mechanisms Passive transport Active transport INTRODUCTION

More information

Title: Sep 10 7:59 PM (1 of 36) Ch 3 Cell Organelles and Transport

Title: Sep 10 7:59 PM (1 of 36) Ch 3 Cell Organelles and Transport Title: Sep 10 7:59 PM (1 of 36) Ch 3 Cell Organelles and Transport Title: Sep 10 8:02 PM (2 of 36) Cell organelles Nucleus: contains DNA Title: Sep 10 8:03 PM (3 of 36) Nuclear envelope double membrane

More information

Drug Distribution. Joseph K. Ritter, Ph.D., Assoc. Prof. Medical Sciences Building, Room

Drug Distribution. Joseph K. Ritter, Ph.D., Assoc. Prof. Medical Sciences Building, Room Drug Distribution Joseph K. Ritter, Ph.D., Assoc. Prof. Medical Sciences Building, Room 531 jkritter@vcu.edu 828-1022 Department of Pharmacology and Toxicology Medical College of Virginia Campus Virginia

More information

Membranes. Chapter 5

Membranes. Chapter 5 Membranes Chapter 5 Membrane Structure The fluid mosaic model of membrane structure contends that membranes consist of: -phospholipids arranged in a bilayer -globular proteins inserted in the lipid bilayer

More information

CH 7.2 & 7.4 Biology

CH 7.2 & 7.4 Biology CH 7.2 & 7.4 Biology LABEL THE MEMBRANE Phospholipids Cholesterol Peripheral proteins Integral proteins Cytoskeleton Cytoplasm Extracellular fluid Most of the membrane A phospholipid bi-layer makes up

More information

Membrane Structure. Membrane Structure. Membrane Structure. Membranes

Membrane Structure. Membrane Structure. Membrane Structure. Membranes Membrane Structure Membranes Chapter 5 The fluid mosaic model of membrane structure contends that membranes consist of: -phospholipids arranged in a bilayer -globular proteins inserted in the lipid bilayer

More information

The table indicates how changing the variable listed alone will alter diffusion rate.

The table indicates how changing the variable listed alone will alter diffusion rate. Rate of Diffusion (flux) Concentration gradient substance x surface area of membrane x lipid solubility = Distance (thickness of membrane) x molecular weight Table 3-1: Factors Influencing the Rate of

More information

Plasma Membrane & Movement of Materials in Cells

Plasma Membrane & Movement of Materials in Cells Plasma Membrane & Movement of Materials in Cells Why do cells need to control what enters and exits? Plasma membrane boundary between the cell and its environment Homeostasis maintaining the cells environment

More information

DistanceLearningCentre.com

DistanceLearningCentre.com DistanceLearningCentre.com Course: Essential reading: Tortora, G.J., and Grabowski, S.R., 2002. Principles of Anatomy and Physiology. 10 th ed. London: John Wiley & Sons. ISBN: 9780471224723 Recommended

More information

Membrane Transport. Biol219 Lecture 9 Fall 2016

Membrane Transport. Biol219 Lecture 9 Fall 2016 Membrane Transport Permeability - the ability of a substance to pass through a membrane Cell membranes are selectively permeable Permeability is determined by A. the phospholipid bilayer and B. transport

More information

I. Chemical Properties of Phospholipids. Figure 1: Phospholipid Molecule. Amphiphatic:

I. Chemical Properties of Phospholipids. Figure 1: Phospholipid Molecule. Amphiphatic: I. Chemical Properties of Phospholipids Figure 1: Phospholipid Molecule Amphiphatic: a) The amphiphatic nature & cylindrical shape of phospholipids contributes to their ability to assume bilayers in an

More information

Chapter 5. The Working Cell. Lecture by Richard L. Myers

Chapter 5. The Working Cell. Lecture by Richard L. Myers Chapter 5 The Working Cell PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Lecture by Richard L. Myers MEMBRANE STRUCTURE AND FUNCTION

More information

Diffusion across cell membrane

Diffusion across cell membrane The Cell Membrane and Cellular Transport Diffusion across cell membrane Cell membrane is the boundary between inside & outside separates cell from its environment Can it be an impenetrable boundary? NO!

More information

Transport Movement across the Cell Membrane

Transport Movement across the Cell Membrane Transport Movement across the Cell Membrane Lipids of cell membrane Membrane consists primarily of phosphos phospho bilayer inside cell phosphate hydrophilic outside cell hydrophobic S1 The Fluidity of

More information

BIOL 158: BIOLOGICAL CHEMISTRY II

BIOL 158: BIOLOGICAL CHEMISTRY II BIOL 158: BIOLOGICAL CHEMISTRY II Lecture 1: Membranes Lecturer: Christopher Larbie, PhD Introduction Introduction Cells and Organelles have membranes Membranes contain lipids, proteins and polysaccharides

More information

Transport. Slide 1 of 47. Copyright Pearson Prentice Hall

Transport. Slide 1 of 47. Copyright Pearson Prentice Hall & Transport 1 of 47 Learning Targets TN Standard CLE 3216.1.3 Explain how materials move into and out of cells. CLE 3216.1.5 Investigate how proteins regulate the internal environment of a cell through

More information

Membranes. Chapter 5. Membrane Structure

Membranes. Chapter 5. Membrane Structure Membranes Chapter 5 Membrane Structure Lipid Bilayer model: - double phospholipid layer - Gorter & Grendel: 1925 Fluid Mosaic model: consist of -phospholipids arranged in a bilayer -globular proteins inserted

More information

Name: Date: Block: Biology 12

Name: Date: Block: Biology 12 Name: Date: Block: Biology 12 Provincial Exam Review: Cell Processes and Applications January 2003 Use the following diagram to answer questions 1 and 2. 1. Which labelled organelle produces most of the

More information

BSC Exam I Lectures and Text Pages

BSC Exam I Lectures and Text Pages BSC 2010 - Exam I Lectures and Text Pages I. Intro to Biology (2-29) II. Chemistry of Life Chemistry review (30-46) Water (47-57) Carbon (58-67) Macromolecules (68-91) III. Cells and Membranes Cell structure

More information

Membrane Transport. Anatomy 36 Unit 1

Membrane Transport. Anatomy 36 Unit 1 Membrane Transport Anatomy 36 Unit 1 Membrane Transport Cell membranes are selectively permeable Some solutes can freely diffuse across the membrane Some solutes have to be selectively moved across the

More information

Ch 3 Membrane Transports

Ch 3 Membrane Transports Ch 3 Membrane Transports what's so dynamic about cell membranes? living things get nutrients and energy from the envrionment this is true of the entire organism and each cell this requires transport in/out

More information

Chapter 4: Cell Membrane Structure and Function

Chapter 4: Cell Membrane Structure and Function Chapter 4: Cell Membrane Structure and Function Plasma Membrane: Thin barrier separating inside of cell (cytoplasm) from outside environment Function: 1) Isolate cell s contents from outside environment

More information

The Plasma Membrane. 5.1 The Nature of the Plasma Membrane. Phospholipid Bilayer. The Plasma Membrane

The Plasma Membrane. 5.1 The Nature of the Plasma Membrane. Phospholipid Bilayer. The Plasma Membrane 5.1 The Nature of the Plasma Membrane The Plasma Membrane Four principal components in animals Phospholipid bilayer Molecules of cholesterol interspersed within the bilayer. Membrane proteins embedded

More information

Diffusion, Osmosis and Active Transport

Diffusion, Osmosis and Active Transport Diffusion, Osmosis and Active Transport Particles like atoms, molecules and ions are always moving Movement increases with temperature (affects phases of matter - solid, liquid, gas) Solids - atoms, molecules

More information

The Cell Membrane. Lecture 3a. Overview: Membranes. What is a membrane? Structure of the cell membrane. Fluid Mosaic Model. Membranes and Transport

The Cell Membrane. Lecture 3a. Overview: Membranes. What is a membrane? Structure of the cell membrane. Fluid Mosaic Model. Membranes and Transport Lecture 3a. The Cell Membrane Membranes and Transport Overview: Membranes Structure of cell membranes Functions of cell membranes How things get in and out of cells What is a membrane? Basically, a covering

More information

Microanatomy-Cytology (cells)

Microanatomy-Cytology (cells) Microanatomy-Cytology (cells) Levels of Organization least complex most complex Chemical level>cellular level>tissue level>organ level>organ system level>organism level Cytology Cytology-the study of the

More information

CHAPTER 8 MEMBRANE STUCTURE AND FUNCTION

CHAPTER 8 MEMBRANE STUCTURE AND FUNCTION CHAPTER 8 MEMBRANE STUCTURE AND FUNCTION Plasma Membrane Plasma membrane is selectively permeable, (allowing some substances to cross more easily than others) PM is flexible bends and changes shape

More information

Pharmacodynamics & Pharmacokinetics 1

Pharmacodynamics & Pharmacokinetics 1 PCTH 325 Pharmacodynamics & Pharmacokinetics 1 Dr. Shabbits jennifer.shabbits@ubc.ca September 9, 2014 Learning objectives 1. Describe the categories of intended drug action 2. Compare and contrast agonists

More information

UNIVERSITY OF THE WEST INDIES, ST AUGUSTINE

UNIVERSITY OF THE WEST INDIES, ST AUGUSTINE UNIVERSITY OF THE WEST INDIES, ST AUGUSTINE FACULTY OF MEDICAL SCIENCES SCHOOL OF PHARMACY BACHELOR OF SCIENCE IN PHARMACY DEGREE COURSE SYLLABUS COURSE TITLE: COURSE CODE: BIOPHARMACEUTICS, NEW DRUG DELIVERY

More information

II. Active Transport (move molecules against conc. gradient - cell must expend energy) (uses carrier proteins)

II. Active Transport (move molecules against conc. gradient - cell must expend energy) (uses carrier proteins) Chapter 5 - Homeostasis and Transport I. Passive Transport (no energy from cell required) A. Diffusion 1. movement of molecules from an area of higher concentration to an area of lower concentration a.

More information

Ch7: Membrane Structure & Function

Ch7: Membrane Structure & Function Ch7: Membrane Structure & Function History 1915 RBC membranes studied found proteins and lipids 1935 membrane mostly phospholipids 2 layers 1950 electron microscopes supported bilayer idea (Sandwich model)

More information

Transport across the cell membrane

Transport across the cell membrane Transport across the cell membrane Learning objectives Body compartments ECF and ICF Constituents Lipid Bilayer: Barrier to water and water-soluble substances ions glucose H 2 O urea CO 2 O 2 N 2 halothane

More information

REVIEW: Section 1: Human Organization and the chemistry of life A) Chemistry of life I. Elements II. Atoms III. Matter Matter

REVIEW: Section 1: Human Organization and the chemistry of life A) Chemistry of life I. Elements II. Atoms III. Matter Matter REVIEW: Section 1: Human Organization and the chemistry of life A) Chemistry of life I. Elements Cannot be broken down by chemical means and still retain the same chemical and physical characteristics

More information

D9G : Oro-Mucosal Dosage Forms Development Background Paper

D9G : Oro-Mucosal Dosage Forms Development Background Paper D9G : Oro-Mucosal Dosage Forms Development Background Paper Introduction This background paper is intended to provide a basic rationale for initial formulation efforts, and define some of the terminology

More information

Chapter 5Membrane Structure and. Function

Chapter 5Membrane Structure and. Function Chapter 5Membrane Structure and Function Cell (plasma) membrane Cells need an inside & an outside separate cell from its environment ability to discriminate chemical exchanges Phospholipid Bilayer A membrane

More information

Comprehensive and Easy Course Notes for BIOL1040 Exams and Assessment

Comprehensive and Easy Course Notes for BIOL1040 Exams and Assessment Comprehensive and Easy Course Notes for BIOL1040 Exams and Assessment MODULE 1: PRINCIPLES OF CELL FUNCTION Membrane Structure & Function Cellular membranes are fluid mosaics of lipids and proteins Phospholipids

More information

Phospholipids. Extracellular fluid. Polar hydrophilic heads. Nonpolar hydrophobic tails. Polar hydrophilic heads. Intracellular fluid (cytosol)

Phospholipids. Extracellular fluid. Polar hydrophilic heads. Nonpolar hydrophobic tails. Polar hydrophilic heads. Intracellular fluid (cytosol) Module 2C Membranes and Cell Transport All cells are surrounded by a plasma membrane. Eukaryotic cells also contain internal membranes and membrane- bound organelles. In this module, we will examine the

More information

Factors affecting drug absorption and distribution

Factors affecting drug absorption and distribution Factors affecting drug absorption and distribution Shruti Chillistone Jonathan Hardman Abstract The pharmacokinetic properties of a drug comprise the relationship between its absorption, distribution and

More information

Membrane Structure & Function (Learning Objectives)

Membrane Structure & Function (Learning Objectives) Membrane Structure & Function (Learning Objectives) Review the basic function and biochemical composition of the plasma membrane. Learn the fluid state of membranes and the movement of its lipids and proteins.

More information

Chapter 8 Cells and Their Environment

Chapter 8 Cells and Their Environment Chapter Outline Chapter 8 Cells and Their Environment Section 1: Cell Membrane KEY IDEAS > How does the cell membrane help a cell maintain homeostasis? > How does the cell membrane restrict the exchange

More information

FIGURE A. The phosphate end of the molecule is polar (charged) and hydrophilic (attracted to water).

FIGURE A. The phosphate end of the molecule is polar (charged) and hydrophilic (attracted to water). PLASMA MEMBRANE 1. The plasma membrane is the outermost part of a cell. 2. The main component of the plasma membrane is phospholipids. FIGURE 2.18 A. The phosphate end of the molecule is polar (charged)

More information

I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins

I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins Lecture 6: Membranes and Cell Transport Biological Membranes I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins 1. Characteristics a. Phospholipids form bilayers

More information

4. ABSORPTION. Transport mechanisms. Absorption ABSORPTION MECHANISMS. Active transport. Active transport uses metabolic energy

4. ABSORPTION. Transport mechanisms. Absorption ABSORPTION MECHANISMS. Active transport. Active transport uses metabolic energy 4. ABSORPTION ABSORPTION MECHANISMS Once the digestive process is completed, the nutrients have to be transferred across the digestive tract epithelium into the intracellular space and eventually into

More information

Plasma Membrane. Functions of the plasma membrane

Plasma Membrane. Functions of the plasma membrane Plasma Membrane Functions of the plasma membrane Isolates the cell s contents from environment Regulates exchange of essential substances Communicates with other cells Creates attachments within and between

More information

Homeostasis, Transport & The Cell Membrane. Chapter 4-2 (pg 73 75) Chapter 5

Homeostasis, Transport & The Cell Membrane. Chapter 4-2 (pg 73 75) Chapter 5 Homeostasis, Transport & The Cell Membrane Chapter 4-2 (pg 73 75) Chapter 5 Unit 5: Lecture 1 Topic: The Cell Membrane Covers: Chapter 5, pages 95-96 Chapter 4, pages 73-75 The Cell Membrane The chemistry

More information

Unit 2: More on Matter & Energy in Ecosystems. Macromolecules to Organelles to Cells

Unit 2: More on Matter & Energy in Ecosystems. Macromolecules to Organelles to Cells IN: Unit 2: More on Matter & Energy in Ecosystems Macromolecules to Organelles to Cells Where are cells on the biological scale? Sub-Atomic Particles Atoms Molecules Macromolecules (proteins, lipids, nucleic

More information

BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes

BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes The cell membrane is the gateway into the cell, and must allow needed things such as nutrients into the cell without letting them escape.

More information

Chapter 5 Ground Rules of Metabolism Sections 6-10

Chapter 5 Ground Rules of Metabolism Sections 6-10 Chapter 5 Ground Rules of Metabolism Sections 6-10 5.6 Cofactors in Metabolic Pathways Most enzymes require cofactors Energy in ATP drives many endergonic reactions Table 5-1 p86 Cofactors and Coenzymes

More information

Chapter 7: Membrane Structure & Function

Chapter 7: Membrane Structure & Function Chapter 7: Membrane Structure & Function 1. Membrane Structure 2. Transport Across Membranes 1. Membrane Structure Chapter Reading pp. 125-129 What are Biological Membranes? Hydrophilic head WATER They

More information

Chapter 7: Membrane Structure & Function. 1. Membrane Structure. What are Biological Membranes? 10/21/2015. Why phospholipids? 1. Membrane Structure

Chapter 7: Membrane Structure & Function. 1. Membrane Structure. What are Biological Membranes? 10/21/2015. Why phospholipids? 1. Membrane Structure Chapter 7: Membrane Structure & Function 1. Membrane Structure 2. Transport Across Membranes 1. Membrane Structure Chapter Reading pp. 125-129 What are Biological Membranes? Hydrophilic head WATER They

More information

Cell Boundaries. Chapter 7.3 Strand: B2.5h

Cell Boundaries. Chapter 7.3 Strand: B2.5h Cell Boundaries Chapter 7.3 Strand: B2.5h Review: Cell Membrane What is the role of the cell membrane within a cell? The cell membrane regulates what enters and leaves the cell and also provides protection

More information

MEMBRANE STRUCTURE AND FUNCTION

MEMBRANE STRUCTURE AND FUNCTION MEMBRANE STRUCTURE AND FUNCTION 2.4.2 Membranes organize the chemical activities of cells Membranes provide structural order for metabolism Form most of the cell's organelles Compartmentalize chemical

More information

Chapter 3 Review Assignment

Chapter 3 Review Assignment Class: Date: Chapter 3 Review Assignment Multiple Choice 40 MC = 40 Marks Identify the choice that best completes the statement or answers the question. 1. Which of the following organelles produces transport

More information