Supplementary Figures

Size: px
Start display at page:

Download "Supplementary Figures"

Transcription

1 Supplementary Figures Spatial arrangement Variation in the morphology of central NCs (shape x size) x Variation in the morphology of satellite NCs (shape x size) x Variations in the spatial arrangement = Diverse HMNC architectures Supplementary Figure S1. Schematic illustration of the architectural diversity of heterogeneous metallic nanocrystals (HMNCs). The three axes are the three architecturedetermining elements of a HMNC, namely the shape and size of central and satellite nanocrystals (NCs) and their spatial arrangement. Variations in these architecture-determining elements generate an unprecedented diversity of HMNCs. 1

2 Satellite NCs Central NCs Supplementary Figure S2. Schematic illustration of the architectural diversity of the HMNCs through the tuning of the shapes of the central (vertical axis) and satellite NCs (horizontal axis). Only the most commonly synthesized shapes (octahedrons, cubes, and their truncated forms with different truncation degrees) are shown. The satellite NCs are all located on the corners of the central NCs. 2

3 Supplementary Figure S3. SEM (left column) and TEM (right column) images of the corner-satellite Au/AgPd HMNCs with Au central NCs in different polyhedral shapes. The central NCs are (A) octahedrons, (B) and (C) truncated octahedrons with small and large truncations respectively, and (D) cubes. 3

4 Supplementary Figure S4. Large area SEM images of the corner-satellite Au/AgPd HMNCs with Au central NCs in different polyhedral shapes. The central NCs are (A) octahedrons, (B) and (C) truncated octahedrons with small and large truncations respectively, and (D) cubes. The HMNCs are monodisperse in both size and shape. 4

5 Supplementary Figure S5. Comparison of (Row 1) the geometric models of central NCs in different polyhedral shapes, with (Row 2) the geometric models and (Row 3) SEM images of the corresponding corner-satellite HMNCs. The central NCs are (A) octahedrons, (B) and (C) truncated octahedrons with small and large truncation degrees respectively, and (D) cubes. The vertices of the central NCs and geometric centre of each satellite NC in the HMNCs are marked by. The location and number of geometric centres of the satellite NCs agree well with the corresponding vertices of the central NCs. 5

6 Supplementary Figure S6. Identifying the exposed facets of corner-satellite NCs in Au/AgPd HMNCs. Au central NCs are: (A) octahedrons, truncated octahedrons with (B) small and (C) large truncations, and (D) cubes. Column 1 and 2 are TEM images of the HMNCs viewed from the <100> and <110> directions respectively. The characteristic projection angles of an octahedron (90 in <100> direction; and 70.5 in <110> direction) are marked. The insets are the corresponding (bottom left) geometric models and (bottom right) SEM images. Column 3 are HRTEM images of the square area marked in the TEM images in Column 2 and corresponding FFT patterns (as insets). The outlines of the satellite NCs and the {111} planes are marked in the HRTEM images. 6

7 Supplementary Figure S7. SEM (left column) and TEM (right column) images of the edgesatellite Au/AgPd HMNCs with Au central NCs in different polyhedral shapes. The central NCs are (A) octahedrons, (B) and (C) truncated octahedrons with small and large truncations respectively, and (D) cubes. 7

8 Supplementary Figure S8. Large area SEM images of the edge-satellite Au/AgPd HMNCs with Au central NCs in different polyhedral shapes. The central NCs are (A) octahedrons, (B) and (C) truncated octahedrons with small and large truncations respectively, and (D) cubes. The HMNCs were monodisperse in size and shape. 8

9 Supplementary Figure S9. Identification of the exposed facets of edge-satellite NCs in Au/AgPd HMNCs. Au central NCs are (A) octahedrons, (B) and (C) truncated octahedrons with small and large truncations respectively, and (D) cubes. Column 1 and 2 are TEM images of the HMNCs viewed from the <100> and <110> directions respectively. The characteristic projection angles of an octahedron (90 in <100> direction; and 70.5 in <110> direction) are also indicated. The insets are the corresponding (bottom left) geometric models and (bottom right) SEM images. The arrows in (A2) show the two obtuse angles with a dark contrast. The arrows in (B2) show the V-shape contrast boundary. Column 3 are the HRTEM images of the square areas in the TEM images in Column 2 and corresponding FFT patterns (as insets). The outlines of the satellite NCs and the {111} planes are marked off in the HRTEM images. 9

10 Supplementary Figure S10. Ag underpotential deposition (UPD) on central NCs. UV-vis spectroscopy of (A) Au NCs and (B) NCs before and after mixing with AgNO 3 solution. (C) EDX and (D) XPS survey spectra of NCs prepared by ascorbic acid reduction of AgNO 3 in the presence of Au@Pd NCs. The inset in (D) is a high resolution XPS spectrum of Ag 3d. 10

11 Supplementary Figure S11. NCs formed by the addition of H 2 PdCl 4 solution to the growth solution containing Au octahedral central NCs and ageing for 10 min. (A) TEM images of NCs; (B) HRTEM image showing the corner area of a NC. 11

12 Supplementary Figure S12. Edge-satellite HMNCs formed with core-shell central NCs. (A) TEM image of central NCs used for the preparation of HMNCs. (B) HRTEM image showing the core-shell structure of the NCs. (C-F) Morphology of HMNCs produced with core-shell central NCs shown in (A): (C) TEM image; (D) SEM image of the HMNCs; (E) and (F) HRTEM images showing the edge regions of the HMNCs. 12

13 Supplementary Figure S13. Au NCs in different polyhedral shapes. (A) Octahedrons, (B) and (C) truncated octahedrons with small and large truncations respectively, and (D) cubes. Column 1-3 are TEM images, SEM images and geometric models with corresponding SEM images of individual NCs viewed in different orientations. 13

14 Supplementary Figure S14. SEM (left column) and TEM (right column) images of HMNCs with satellite NCs in various shapes. The exposed facets for the satellite NCs are (A and C) {100} or (B and D) a combination of {111} and {100} facets. (A and B) are corner-satellite HMNCs and (C and D) are edge-satellite HMNCs. 14

15 Supplementary Figure S15. Large area SEM images of HMNCs with satellite NCs in various shapes. The exposed facets for the satellite NCs are (A and C) {100} or (B and D) a combination of {111} and {100} facets. (A and B) are corner-satellite HMNCs and (C and D) are edge-satellite HMNCs. The HMNCs were monodisperse in size and shape. 15

16 Supplementary Figure S16. Identification of the exposed facets of the HMNCs with satellite NCs in various shapes. The exposed facets for the satellite NCs are (A and C) {100}, and (B and D) a combination of {111} and {100} facets. (A and B) are corner-satellite HMNCs and (C and D) are edge-satellite HMNCs. Column 1 and 2 are TEM images of the HMNCs viewed from the <100> and <110> directions respectively. The characteristic projection angles of an octahedron (90 in <100> direction; and 70.5 in <110> direction) and those of a cube (90 in both <100> and <110> directions) are shown. The insets are the corresponding (bottom left) geometric models and (bottom right) SEM images. Column 3 are HRTEM images of the square areas in the TEM images in Column 2 and corresponding FFT patterns (as insets). The outlines of the satellite NCs and the {111} and {100} planes are marked off in the HRTEM images. The green and red outlines represent {100} and {111} facets respectively. 16

17 Supplementary Figure S17. Composition of corner-satellite Au/AgPd HMNCs. (A) STEM images and element maps of corner-satellite HMNCs with octahedral central NCs and cornersatellite NCs with {100} facets. (B)-(C) STEM images, element maps, and line scans of individual corner-satellite HMNCs oriented in the <100> and <110> directions. The insets in (B) and (C) are: (1) STEM image; (2-4) elemental mapping of Au, Pd and Ag respectively; (5) the geometric model and (6) Ag element map showing the locations of the satellite NCs according to the geometric model; (7) The line scan profile along the red line shown in (1). 17

18 Supplementary Figure S18. Composition of edge-satellite Au/AgPd HMNCs. (A) STEM images and element maps of edge-satellite HMNCs with octahedral central NCs and edgesatellite NCs with {100} facets. (B)-(C) STEM images, element maps, and line scans of individual edge-satellite HMNCs oriented in the <100> and <110> directions. The insets in (B) and (C) are: (1) STEM image; (2-4) elemental maps of Au, Pd and Ag respectively; (5) the geometric model and (6) Ag element map with dotted lines showing the most intense signal; (7) Line scan profile along the red line shown in (1). 18

19 Supplementary Figure S19. TEM images of octahedral NCs in different sizes. (A) 33 nm, (B) 61 nm, and (C) 83 nm. 19

20 Supplementary Figure S20. Au/AgPt HMNCs consisting of octahedral Au central NCs and corner-satellite AgPt bimetallic NCs in octahedral shape. The AgPt satellite NCs were not solid but porous dendritic NCs with an overall quasi-octahedral shape. (A) Low magnification SEM image. (B) TEM image of the HMNCs viewed from the <110> direction. The right insets are elemental maps of Au, Ag and Pt respectively. The bottom inset is the line scan across the dash line shown in the TEM image. Elemental mapping and line scan measurements revealed Au in the centre and Ag and Pt in the satellite NCs. The equal distribution of Ag and Pt signal throughout the satellite NCs confirmed the formation of AgPt bimetallic satellite NCs. (C) HRTEM image of the square region in the TEM image in (B) indicating that the AgPt satellite NCs were single crystals with some ill-defined {111} facets. 20

21 Supplementary Figure S21. Ternary Au/Pd/AgPd HMNCs with a Au central NC, a cubic Pd shell and satellite AgPd NCs on the edges of the Pd shell. (A) Low magnification SEM and (B) TEM images. The satellite NCs deposited exclusively on the edges of the central NCs resulting in an excavated cubic shape with a depression in each facet. The Au central NCs could be seen in the TEM image as regions of darker contrast overlaid with Moiré fringes. The Pd shell and AgPd bimetallic satellite NCs did not generate significant mass contrast because of the similar atomic weights of Ag and Pd. 21

22 Supplementary Figure S22. Cubic core-shell NCs. (A) TEM image; (B) SEM image with inset showing the geometric model of the cubic NCs; (C) TEM image of single NC viewed along <100> direction; and (D) HRTEM image of the square area in (C). Inset in (D) is the FFT pattern. 22

23 Supplementary Notes Supplementary Note 1: Architectural Diversity of HMNCs The shape and size of component NCs and their spatial relationship are the architecturedetermining elements of a HMNC. Metal NCs can now be synthesized in a variety of polyhedral shapes. The geometry of the polyhedral NCs can be further varied through truncations or overgrowths in the corners or promoting growth in certain directions to yield different degrees of truncation (or overgrowth) and aspect ratios. In addition, the polyhedral NCs can be fabricated in various sizes. Thus we have quite a large library of NCs that can be assimilated into HMNCs. These polyhedral NCs can be arranged in many varied ways to form different spatial relationships. In this way an unprecedented diversity of HMNCs can be created through the detailed engineering of their architecture-determining elements (Supplementary Figure S1). We will demonstrate the architectural diversity with a simple case in Supplementary Figure S2, where binary HMNCs were assembled from octahedral and cubic component NCs and their truncated forms (in different degrees of truncation); and satellite NCs on the corners of the central NC. 20 HMNCs with different architectures are used as examples in Supplementary Figure S2. The selected architectures from the top most row and left most column of Supplementary Figure S2 will be used to demonstrate our synthesis strategy. Furthermore, the HMNCs can also be prepared from different combinations of metals and possess more than two types of component NCs. The multi-component HMNCs display an even higher architectural diversity because each component NC, with its own morphology and relative spatial arrangement, can be assembled combinatorially to increase the number of possible HMNC variants. 23

24 Supplementary Note 2: Structural analysis of corner-satellite Au/AgPd HMNCs The architectures of corner-satellite Au/AgPd HMNCs with central NCs in different polyhedral shapes (octahedrons, truncated octahedrons in different degrees of truncation (small and large), and cubes) are shown in Fig. 2 and Supplementary Figures S3-S6. A close examination of the EM images showed that each satellite NC was an octahedron seated on the corner of the central NC with the vertex of the latter as its geometric centre. For illustration, the geometric models of different polyhedral central NCs were compared with the geometric models and SEM images of the corresponding HMNCs viewed from the <100> directions (Supplementary Figure S5). The vertices of the central NCs and the geometric centre of each satellite NC in the HMNCs are marked as. Good agreements in terms of number and position were found between the vertices of the central NCs and the geometric centres of the satellite NCs. The increase in the number and proximity of corners in truncated octahedral central NCs resulted in some overlapping of the satellite NCs. The exposed {111} facets of the octahedral satellite NCs were further confirmed by analyzing the projection angles in the TEM images as shown in Supplementary Figure S6. An octahedral NC enclosed by {111} facets forms a rhombic projection with projection angles of 70.5 o and o viewed from the <110> direction and a square projection with right angles from the <100> direction. These characteristic angles are marked in the TEM images of the HMNCs viewed from the <100> and <110> directions. The projection angles of the satellite NCs are consistent with the characteristic angles of an octahedron; thereby implicating the exposure of {111} facets. The exposed facets of the satellite NCs could also be inferred from the edge-on facets, i.e. facets parallel to the viewing directions which are projected as a line. An octahedron viewed from the <110> direction would have four facets projected edge-on as the boundary of the rhombus 24

25 projection. As outlined in the HRTEM images in Supplementary Figure S6, these boundaries are parallel to the {111} planes thereby confirming the exposure of {111} facets. Supplementary Note 3: Structural analysis of edge-satellite Au/AgPd HMNCs The architectures of edge-satellite Au/AgPd HMNCs with central NCs in different polyhedral shapes (octahedrons, truncated octahedrons with small and large truncations, and cubes) are shown in Fig. 2 and Supplementary Figure S7-S9. A depression in each facet can be clearly seen in the SEM images. There were two types of facets in the edge-satellite NCs: facets parallel to the surface of the underlying central NC (referred to as the outer facets) and facets facing the depressions (referred to as the inner facets). Both types of facets could be identified by TEM: outer facets from the outlines of TEM projections and inner facets from the contrast in the satellite NC projections. HMNCs with octahedral central NCs can be visualized as octahedrons with an excavated truncated trigonal pyramidal depression in each facet. The outlines of HMNCs in the TEM images are consistent with the projections of an octahedron suggesting that the outer facets of the satellite NCs were {111} facets. The inner facets were revealed by TEM imaged in the <110> direction. In this direction, the rhombic shaped projection showed a dark contrast in the two obtuse angle regions (arrows in Supplementary Figure S9A2). The contrast was caused by the two ridges parallel to the viewing direction. The facets of these two ridges were projected edgeon and defined the boundary of the dark region. The contrast boundary was parallel to the {111} planes, indicating that the inner facets of the depression were also {111} facets. 25

26 When small truncated octahedrons were used as the central NCs, the HMNCs were truncated octahedrons with an excavated truncated trigonal pyramidal depression in the {111} facets and a square pyramidal depression in the {100} facets. The TEM projections of HMNCs showed the characteristics of a truncated octahedron. Since the satellite NCs had a square pyramidal depression on the {100} facets of the underlying central NC with no facets parallel to the latter, the outer facets were exclusively {111} facets. Two facets of the square pyramidal depressions were projected edge-on in the <110> directions thereby giving rise to a thickness contrast with a V-shape boundary (arrows in Supplementary Figure S9B2). The contrast boundary of the Vshape was parallel to the {111} planes indicating that the inner facets were {111} facets too. Edge-satellite NCs deposited on highly truncated octahedral and cubic central NCs had rough surfaces. A closer examination of the EM images showed that the edge-satellite NCs were made of linear assemblies of small NCs on the edges of the central NCs. From the HRTEM images, these linearly assembled small NCs were not randomly oriented, but epitaxially grown on the central NCs. Their TEM projection angles in the <110> and <100> directions are consistent with those of an octahedron, indicating that these small NCs were overlapping octahedrons bound by {111} facets. The outlines of the satellite NCs were parallel to the {111} planes as shown in the HRTEM images which further confirmed the exposure of {111} facets. Supplementary Note 4: Ag underpotential deposition (UPD) on central NCs Ag + can be reduced on the surface of a second metal, such as Au NCs and Pd single crystals 22, up to a monolayer coverage at potentials lower than its standard reduction potential. This process is known as the UPD. The formation of Ag UPD on the metal NCs in this study was inferred from two experimental observations (Supplementary Figure S10): no significant reduction of Ag + 26

27 in the presence of central NCs; and the formation of a Ag deposit on the central NCs with thickness around one atomic layer. a) It is known that Ag + cannot be extensively reduced by ascorbic acid with CTAB capping agent at room temperature. 18 When the ascorbic acid reduction of AgNO 3 was carried out in the presence of CTAB-capped Au NCs or Au@Pd NCs, UV-vis spectroscopy could not detect the reduction of Ag + to a Ag 0 phase (Ag NCs or a sufficiently thick shell on the seed NCs) significantly enough to interfere with the surface Plasmon resonance (SPR) of Au and Au@Pd central NCs to cause peak and intensity shifts in the latter (Supplementary Figure S10A-B). The lack of significant spectral changes after the central NC solutions were aged with AgNO 3 in sufficiently high concentrations suggests that no significant reduction of Ag + to Ag 0 had taken place. b) That said the reduction of Ag + did occur on the Au or Au@Pd surface up to a monolayer by the UPD process. The experimental evidence was provided by EDX and XPS. The results from the Au@Pd NCs will be used here as an example. The composition of Au@Pd NCs after mixing with the AgNO 3 solution in the presence of ascorbic acid and CTAB was analysed. EDX analysis detected a trace amount of Ag (3.73 atom%) on the NCs (Supplementary Figure S10C), which agrees well with the calculated value of 3.2 atom% for a Ag monolayer on a 55 nm octahedral NC. XPS of the same sample (Supplementary Figure S10D) measured the Ag atom% to be ~15.65 %. Since the XPS penetration depth is typically around 3 nm, the low Ag concentration measured by XPS suggests that the Ag layer on the NC surface was much thinner than 3 nm and was around one atomic layer thick. 27

28 Supplementary Note 5: Edge-selective deposition through Pd-coating on the central NCs Edge-satellite HMNCs were prepared by adding H 2 PdCl 4 solution to the central NC solution and ageing the mixture for 10 min before the addition of AgNO 3 solution. The TEM images taken after aging showed clear Moiré fringes with alternating bright and dark bands (Supplementary Figure S11A). These Moiré fringes, which are characteristic of Au@Pd core-shell NCs because of the Au and Pd lattice mismatch, suggest the formation of a Pd-coating on the Au central NCs during aging. The Pd-coating could also be identified in the HRTEM image (Supplementary Figure S11B) as a light contrast skin about nm in thickness over a darker Au central NC. The lattice of the Pd-coating was in registration with the lattice of the central Au NC. For confirmation that edge-selective deposition was assisted by the Pd-coating on Au central NCs, Au@Pd NCs (with a 5 nm thick Pd shell) were used as the central NCs in the preparation of HMNCs (Supplementary Figure S12). Specifically the Au@Pd central NC solution was mixed with AgNO 3 solution and H 2 PdCl 4 solution in the same order as that used to promote the formation of corner-satellite HMNCs. Interestingly only edge-satellite HMNCs were formed in this case; showing that Pd-coating was essential for the edge-selective deposition of satellite NCs. Supplementary Note 6: Structural analysis of Au/AgPd HMNCs with satellite NCs in various shapes Fig. 3 and Supplementary Figure S14-S16 show the architectures of corner- and edge-satellite HMNCs where the exposed facets of the satellite NCs were {100}, or a combination of {100} and {111}. The central NCs were all octahedral. These two types of corner-satellite HMNCs could be visualized as octahedral central NCs with cubic or truncated octahedral satellite NCs on their six corners. The cubic shape satellite NCs are clearly identifiable in the SEM images. 28

29 Square projections in both <110> and <100> directions in the TEM images confirmed the exposure of {100} facets. Truncated octahedral satellite NCs had a more spherical appearance in the SEM images; and the outlines of their projections in HRTEM were parallel to either {111} or {100} planes, confirming the presence of both {111} and {100} facets. Edge-satellite HMNCs where the satellite NCs were bound by {100} facets appeared as three intercepting identical square prisms which were perpendicular to one another. The right projection angles viewed from the <110> and <100> directions confirmed the exposure of {100} facets. Edge-satellite HMNCs with satellite NCs enclosed by both {100} and {111} facets could be seen as truncated octahedrons with excavated truncated trigonal pyramidal depressions only in the {111} facets. The TEM projections showed the characteristics of a truncated octahedron. In this case, there were also facets parallel to the {100} facets of the central NCs. Therefore, the outer facets were a combination of {111} and {100} facets. The inner facets of the depression could be characterized by the outlines of the darker regions at the two obtuse corners where two ridges were projected parallel to the viewing directions with their facets projected edge-on. The parallelism to {100} planes indicated that the inner facets of the depression were {100} facets. Supplementary Note 7: Composition of Au/AgPd HMNCs The chemical composition of Au/AgPd HMNCs was analyzed by STEM-EDX. Corner- and edge-satellite HMNCs with octahedral central NCs; and satellite NCs with {100} facets; were chosen as examples and shown in Supplementary Figure S17 and S18 respectively. Cornersatellite HMNCs which were viewed in the <100> and <110> directions had a cross shape as shown in the STEM image and corresponding elemental maps (Supplementary Figure S17A). Elemental maps and line scans of <100> and <110> oriented corner-satellite HMNCs are given 29

30 in Supplementary Figure S17B and S17C respectively. Corner-satellite HMNCs with octahedral central NCs had six satellite NCs. When the HMNCs were oriented in the <100> direction, the six satellite NCs would appear differently as shown in Supplementary Figure S17B5: four as branches of the cross shape and the other two superimposed with one above and the other below the centre of the central NC. Elemental mapping detected Ag and Pd signals all over the cross shape with higher percentages of these metals in the centre. Au, on the other hand, was detected in the central regions only. Line scan measurements confirmed the same trend in elemental distribution with the intensities of the Ag and Pd signals in the centre nearly doubling those at the two sides. For corner-satellite HMNCs oriented in the <110> direction (where the octahedral central NC was projected as a rhombus with two sharp angles and two obtuse angles), the six satellite NCs would appear in the way shown in Supplementary Figure S17C5: one at each sharp corner of the rhombic projection of the central NCs and two superimposed at each obtuse corner. In elemental mapping, Ag and Pd were detected at the four corners of the rhombic projection of the central NCs with higher percentages of their presence in the obtuse corners. Line scans showed stronger Ag and Pd signals at the two sides corresponding to the corner-satellite NCs and a stronger Au signal in the centre corresponding to the central NCs. Edge-satellite HMNCs oriented near their <100> direction showed a square projection with a cross in the middle which was marked off in the STEM image and the element maps in Supplementary Figure S18A. The intense signals in the Ag and Pd elemental maps formed a cross shape (Supplementary Figure S18B). For the edge-satellite HMNCs oriented in the <110> direction, the Ag and Pd signals formed a ф shape in the element maps (rotated 90 o in Supplementary Figure S18C) corresponding to the edges of the rhombic projection of the 30

31 octahedral central NC. The equal distribution of Ag and Pd signals for both corner- and edgesatellite NCs confirms the formation of the bimetallic AgPd NCs. 31

32 Supplementary Methods Synthesis of polyhedral Au NCs Au NCs in various polyhedral shapes (octahedral, truncated octahedral with different degrees of truncation and cubic) were prepared first and used as the central NCs for the preparation of heterogeneous metallic nanocrystals (HMNCs). Synthesis of Au octahedral seed NCs. Au octahedral NCs were prepared first and used as seeds for the preparation of larger octahedral or other types of polyhedral NCs. The synthesis of Au octahedral seed NCs was based on a seed-mediated growth method using small Au NCs as seeds. For the preparation of small Au seed NCs, 7 ml 75 mm CTAB solution was prepared at 30 o C to dissolve the CTAB µl 20 mm HAuCl 4 solution was added to the CTAB solution. 0.6 ml of an ice-cold NaBH 4 solution (10 mm) was then injected quickly into the mixture under vigorous mixing to form a brown seed solution. Stirring continued gently at 30 o C for 2 to 5 hours to decompose the excess NaBH 4. The seed solution was then diluted 100 fold with ultrapure water. A growth solution was separately prepared by adding 25 µl 20 mm HAuCl 4 solution and ml 38.8 mm ascorbic acid (in that order) into 12.1 ml 16.5 mm CTAB solution in a clean test tube at 28 o C with thorough mixing after each addition ml of the diluted seed solution was added to the growth solution and thoroughly mixed. The mixture was left unperturbed at 28 o C overnight. The color of the solution changed to pink indicating the formation of Au NCs. Synthesis of octahedral Au NCs. 5 ml of the octahedral Au seed solution was added to 12.5 ml of a growth solution containing 16 mm CTAB, 0.04 mm HAuCl 4 and 1.2 mm ascorbic acid to enlarge the octahedral Au NCs (to edge length of 45 nm). The mixture was thoroughly mixed and left unperturbed overnight. For the growth of larger octahedral NCs (edge lengths of 61 nm and 32

33 83 nm), 5 ml and 2 ml of the 45-nm octahedral Au NC solution were added to 12.5 ml of the abovementioned growth solution respectively. Synthesis of truncated octahedral Au NCs. 5 ml of the octahedral Au seed solution was added to 12.5 ml of growth solution. The growth solution for truncated octahedral Au NCs with small truncations was 16 mm CTAB, 0.04 mm HAuCl 4 and 2 mm ascorbic acid. For truncated octahedral Au NCs with large truncations, the growth solution contained 16 mm CTAB, 0.08 mm HAuCl 4 and 4 mm ascorbic acid. The mixture was thoroughly mixed and left unperturbed overnight. Synthesis of cubic Au NCs. The growth solution in this case contained 16 mm CTAB, 0.2 mm HAuCl 4 and 9.5 mm ascorbic acid. 6.5 ml of the octahedral seed solution was added to 12.5 ml of the growth solution to initiate the growth of cubic NCs. The mixture was thoroughly mixed and left unperturbed overnight. Synthesis of HMNCs. Synthesis of Au/AgPt HMNCs. The preparation of Au/AgPt HMNCs was similar to the preparation of corner-satellite Au/AgPd HMNCs except that H 2 PdCl 4 in the growth solution was replaced by H 2 PtCl 6 at the same concentration, and the reaction time was extended to one week. In particular, 36 µl 5 mm AgNO 3 and ml 38.8 mm ascorbic acid were added to 3 ml octahedral Au NC solution. After thorough mixing, 60 µl 100 mm HCl and 42 µl 5 mm H 2 PtCl 6 were added in turns to the octahedral Au NC solution. The solutions were mixed well and left on the shaker for one week. 33

34 Synthesis of ternary Au/Pd/AgPd HMNCs. For the synthesis of ternary Au/Pd/AgPd HMNCs, a cubic Pd shell was grown on the Au octahedral central NCs. Specifically ml 5 mm H 2 PdCl 4 and ml 38.8 mm ascorbic acid were added to 12.5 ml of Au octahedral seed solution. The mixture was thoroughly mixed and left unperturbed overnight. For the deposition of satellite AgPd NCs on the cubic Au@Pd NCs, 36 µl 5 mm AgNO 3 and ml 38.8 mm ascorbic acid were added to 3 ml cubic Au@Pd NC solution. After thorough mixing, 60 µl 100 mm HCl and 60 µl 5 mm H 2 PdCl 4 were added consecutively to the cubic Au@Pd NC solution. The solutions were mixed well and left on the shaker overnight. 34

Reagent-Free Electrophoretic Synthesis of Few-Atom- Thick Metal Oxide Nanosheets

Reagent-Free Electrophoretic Synthesis of Few-Atom- Thick Metal Oxide Nanosheets Supporting Information Reagent-Free Electrophoretic Synthesis of Few-Atom- Thick Metal Oxide Nanosheets Chengyi Hou,*,, Minwei Zhang, Lili Zhang, Yingying Tang, Hongzhi Wang, and Qijin Chi*, State Key

More information

Supporting Information:

Supporting Information: Supporting Information: Competing Interactions between Various Entropic Forces towards Assembly of Pt 3 Ni Octahedra into a Body-Centered- Cubic Superlattice Ruipeng Li, Jun Zhang, Rui Tan, # Frauke Gerdes,

More information

Supplementary Figure S1. Statistical measurements on particle size and aspect ratio of

Supplementary Figure S1. Statistical measurements on particle size and aspect ratio of Supplementary Figure S1. Statistical measurements on particle size and aspect ratio of as-prepared Cd 0.5 Zn 0.5 S nanocrystals. a,b,c, Histograms of the particle size distribution of the three-type of

More information

Supplementary Figure 1. Sample preparation schematic. First (Stage I), square islands of MoO 3 are prepared by either photolithography followed by

Supplementary Figure 1. Sample preparation schematic. First (Stage I), square islands of MoO 3 are prepared by either photolithography followed by Supplementary Figure 1. Sample preparation schematic. First (Stage I), square islands of MoO 3 are prepared by either photolithography followed by thermal evaporation and liftoff or by a process where

More information

Epitaxial Growth of ZnO Nanowires on Graphene-Au

Epitaxial Growth of ZnO Nanowires on Graphene-Au Epitaxial Growth of ZnO Nanowires on Graphene-Au 1 Schematic of Growth Process Nanorod Nanowire Nanoribbon Giri et al.. ACS Appl. Mater. Interf. 6, 377 (2014). 2 1 FESEM image of ZnO NWs/NRBs Grown on

More information

Chemical Deposition of Cu 2 O Nanocrystals with Precise Morphology Control

Chemical Deposition of Cu 2 O Nanocrystals with Precise Morphology Control Extinction (a.u.) Supporting Information Chemical Deposition of Cu 2 O Nanocrystals with Precise Morphology Control Mariano D. Susman, Yishay Feldman, Alexander Vaskevich, * and Israel Rubinstein, * Department

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1: Predicted structure of the most stable {110} antiphase boundary defect in magnetite (model APB-I). a) The same structure as that shown in Fig. 1b (main text)

More information

Supplementary Fig. 1.

Supplementary Fig. 1. Supplementary Fig. 1. (a,b,e,f) SEM and (c,d,g,h) TEM images of (a-d) TiO 2 mesocrystals and (e-h) NiO mesocrystals. The scale bars in the panel c, d, g, and h are 500, 2, 50, and 5 nm, respectively. SAED

More information

Supporting Information. Observing Solid-state Formation of Oriented Porous. Functional Oxide Nanowire Heterostructures by in situ

Supporting Information. Observing Solid-state Formation of Oriented Porous. Functional Oxide Nanowire Heterostructures by in situ Supporting Information Observing Solid-state Formation of Oriented Porous Functional Oxide Nanowire Heterostructures by in situ TEM Jo-Hsuan Ho,+, Yi-Hsin Ting,,+, Jui-Yuan Chen,+, Chun-Wei Huang, Tsung-Chun

More information

Interface and defect structures of Zn ZnO core shell heteronanobelts

Interface and defect structures of Zn ZnO core shell heteronanobelts JOURNAL OF APPLIED PHYSICS VOLUME 95, NUMBER 1 1 JANUARY 2004 Interface and defect structures of Zn ZnO core shell heteronanobelts Y. Ding, X. Y. Kong, and Z. L. Wang a) School of Materials Science and

More information

Supporting Information. Evolution of atomically precise silver clusters to superlattices

Supporting Information. Evolution of atomically precise silver clusters to superlattices Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2012. Supporting Information for Part. Part. Sys. Charact., DOI: 10.1002/ppsc.((please add manuscript number)) Evolution of atomically

More information

Nature Neuroscience doi: /nn Supplementary Figure 1. Characterization of viral injections.

Nature Neuroscience doi: /nn Supplementary Figure 1. Characterization of viral injections. Supplementary Figure 1 Characterization of viral injections. (a) Dorsal view of a mouse brain (dashed white outline) after receiving a large, unilateral thalamic injection (~100 nl); demonstrating that

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Fig. 1. Current density profiles for backside-plating configuration cells and the cycle stability curve with and without carbon coating. Current density profiles of

More information

A low magnification SEM image of the fabricated 2 2 ZnO based triode array is

A low magnification SEM image of the fabricated 2 2 ZnO based triode array is Chapter 6 Characteristics of Field Emission Triode 6.1 Planar Gated Field Emission Triode 6.1.1 Structural and Electrical Analysis A low magnification SEM image of the fabricated 2 2 ZnO based triode array

More information

Plasmonic blood glucose monitor based on enzymatic. etching of gold nanorods

Plasmonic blood glucose monitor based on enzymatic. etching of gold nanorods Plasmonic blood glucose monitor based on enzymatic etching of gold nanorods Xin Liu, Shuya Zhang, Penglong Tan, Jiang Zhou, Yan Huang, Zhou Nie* and Shouzhuo Yao State Key Laboratory of Chemo/Biosensing

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2/12/e1601838/dc1 Supplementary Materials for General and programmable synthesis of hybrid liposome/metal nanoparticles Jin-Ho Lee, Yonghee Shin, Wooju Lee, Keumrai

More information

Supplementary Figure S1 Black silicon and dragonfly wing nanotopography.

Supplementary Figure S1 Black silicon and dragonfly wing nanotopography. Supplementary Figure S1 Black silicon and dragonfly wing nanotopography. Representative low-magnification scanning electron micrographs of a) Black silicon (bsi) and b) Diplacodes bipunctata dragonfly

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Absorption 4 3 2 1 Intensity Energy U(R) relaxation ~~~ ~~~~~~ 2 3 4 1 S S 1 2 3 4 1 Fluoescence 4 3 2 1 Intensity H-aggregation ~~~~ J-aggregation Absorption Emission Vibrational

More information

Strongly Fluorescent Quaternary Cu-In-Zn-S Nanocrystals Prepared from Cu 1-x InS 2 Nanocrystals by Partial Cation Exchange

Strongly Fluorescent Quaternary Cu-In-Zn-S Nanocrystals Prepared from Cu 1-x InS 2 Nanocrystals by Partial Cation Exchange SUPPORTING INFORMATION FOR: Strongly Fluorescent Quaternary Cu-In-Zn-S Nanocrystals Prepared from Cu 1-x InS 2 Nanocrystals by Partial Cation Exchange Inductively Coupled Plasma and emission analysis In:Cu

More information

Chemical Engineering, Xiamen University, Xiamen ,China. 4

Chemical Engineering, Xiamen University, Xiamen ,China. 4 Supporting Information for : One-pot synthesis of superfine core-shell Cu@metal nanowires for highly tenacious transparent LED dimmer Huachun Wang 1, Chenping Wu 1, Youyang Huang 1, Feipeng Sun 1, Na Lin

More information

Tunable surface plasmon resonance and enhanced electrical. conductivity of In doped ZnO colloidal nanocrystals

Tunable surface plasmon resonance and enhanced electrical. conductivity of In doped ZnO colloidal nanocrystals Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Abs (normalised) Electronic Supplementary Information : Tunable surface plasmon resonance and

More information

Microtubule Teardrop Patterns

Microtubule Teardrop Patterns Supporting Information Microtubule Teardrop Patterns Kosuke Okeyoshi 1, Ryuzo Kawamura 1, Ryo Yoshida 2, and Yoshihito Osada 1 * 1 RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198,

More information

Structural and Optical Properties of Single- and Few-Layer Magnetic

Structural and Optical Properties of Single- and Few-Layer Magnetic SUPPORTING INFORMATION Structural and Optical Properties of Single- and Few-Layer Magnetic Semiconductor CrPS 4 Jinhwan Lee 1, Taeg Yeoung Ko 2, Jung Hwa Kim 3, Hunyoung Bark 4, Byunggil Kang 4, Soon-Gil

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Supporting Information Surfactant-assisted ZnO processing as a versatile

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/333/6050/1730/dc1 Supporting Online Material for The Role of a Bilayer Interfacial Phase on Liquid Metal Embrittlement Jian Luo,* Huikai Cheng, Kaveh Meshinchi Asl,

More information

Highly active oxide photocathode for. photoelectrochemical water reduction

Highly active oxide photocathode for. photoelectrochemical water reduction SUPPLEMENTARY INFORMATION Highly active oxide photocathode for photoelectrochemical water reduction Adriana Paracchino 1, Vincent Laporte 2, Kevin Sivula 1, Michael Grätzel 1 and Elijah Thimsen 1 1 Institute

More information

Engineering the Growth of TiO 2 Nanotube Arrays on Flexible Carbon Fibre Sheets

Engineering the Growth of TiO 2 Nanotube Arrays on Flexible Carbon Fibre Sheets Engineering the Growth of TiO 2 Nanotube Arrays on Flexible Carbon Fibre Sheets Peng Chen, a Li Gu, b Xiudong Xue, a Mingjuan Li a and Xuebo Cao* a a Key Lab of Organic Synthesis of Jiangsu Province and

More information

Hydrothermal Synthesis of Monodispersed Octahedral Gold Nanocrystals with Five Different Size Ranges and Their Self-Assembled Structures

Hydrothermal Synthesis of Monodispersed Octahedral Gold Nanocrystals with Five Different Size Ranges and Their Self-Assembled Structures Article Subscriber access provided by NATIONAL TSING HUA UNIV Hydrothermal Synthesis of Monodispersed Octahedral Gold Nanocrystals with Five Different Size Ranges and Their Self-Assembled Structures Chia-Chien

More information

CHAPTER 6. BLUE GREEN AND UV EMITTING ZnO NANOPARTICLES SYNTHESIZED THROUGH A NON AQUEOUS ROUTE

CHAPTER 6. BLUE GREEN AND UV EMITTING ZnO NANOPARTICLES SYNTHESIZED THROUGH A NON AQUEOUS ROUTE 71 CHAPTER 6 BLUE GREEN AND UV EMITTING ZnO NANOPARTICLES SYNTHESIZED THROUGH A NON AQUEOUS ROUTE 6.1 INTRODUCTION Several techniques such as chemical vapour deposition, electrochemical deposition, thermal

More information

Evidence of intrinsic ferromagnetism in individual dilute magnetic semiconducting nanostructures O-K. (a) Zn-L Zn-L 2,3

Evidence of intrinsic ferromagnetism in individual dilute magnetic semiconducting nanostructures O-K. (a) Zn-L Zn-L 2,3 SUPPLEMENTARY INFORMATION Evidence of intrinsic ferromagnetism in individual dilute magnetic semiconducting nanostructures O-K (a) O-K Fe-L Co-L 2,3 2,3 Zn-L Zn-L 2,3 2,3 (b) Intensity (a. u.) 500 750

More information

A quantitative study of chemical kinetics for the synthesis of. doped oxide nanocrystals using FTIR spectroscopy

A quantitative study of chemical kinetics for the synthesis of. doped oxide nanocrystals using FTIR spectroscopy Supporting information A quantitative study of chemical kinetics for the synthesis of doped oxide nanocrystals using FTIR spectroscopy Na Zhang, 1,2 Xin Wang, 1 Zhizhen Ye 1 and Yizheng Jin, 1,3* 1 State

More information

J. Am. Chem. Soc. 2016, 138,

J. Am. Chem. Soc. 2016, 138, J. Am. Chem. Soc. 2016, 138, 11568 11574 Madhuri Jash 17/09/2016 1 INTRODUCTION: The catalytic activity of nanocrystalline catalysts used to have singleinterface length scale, where the atomic arrangements

More information

Supporting Information

Supporting Information Supporting Information Enhanced visible-light photocatalytic activity of g-c 3 N 4 /Zn 2 GeO 4 heterojunctions with effective interfaces based on band match Liming Sun, Yue Qi, Chun-Jiang Jia, Zhao Jin,

More information

Supporting Information to accompany: Resolving the Chemistry of Zn 3 P 2 Nanocrystal Growth

Supporting Information to accompany: Resolving the Chemistry of Zn 3 P 2 Nanocrystal Growth Supporting Information to accompany: Resolving the Chemistry of Zn 3 P 2 Nanocrystal Growth Benjamin A. Glassy and Brandi M. Cossairt* Department of Chemistry, University of Washington, Box 351700, Bagley

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2006 69451 Weinheim, Germany Stepwise Directing Nanocrystals to Self-Assemble at Water/Oil Interfaces Jing Wang, Dayang Wang, Nelli S. Sobal, Michael Giersig, Ming Jiang,

More information

Supporting Information (SI) for

Supporting Information (SI) for Supporting Information (SI) for Component-Controlled Synthesis and Assembly of Cu-Pd Nanocrystals on Graphene for Oxygen Reduction Reaction Yulin Zheng, Shulin Zhao, Suli Liu, Huanhuan Yin, Yu-Yun Chen,

More information

Theta sequences are essential for internally generated hippocampal firing fields.

Theta sequences are essential for internally generated hippocampal firing fields. Theta sequences are essential for internally generated hippocampal firing fields. Yingxue Wang, Sandro Romani, Brian Lustig, Anthony Leonardo, Eva Pastalkova Supplementary Materials Supplementary Modeling

More information

Supplementary figures

Supplementary figures Supplementary figures Supplementary Figure 1. Overlaid GPC traces (RI) of the PFDMS 61 aliquot, pure PFDMS 61-b- PMVS 574 copolymer and BCP P after sulfurisation of pendant phosphines. 1 Supplementary

More information

Reliability Analysis of the Phased-Array Ultrasonic System used for the Inspection of Friction Stir Welds of Copper Canisters

Reliability Analysis of the Phased-Array Ultrasonic System used for the Inspection of Friction Stir Welds of Copper Canisters 19 th World Conference on Non-Destructive Testing 2016 Reliability Analysis of the Phased-Array Ultrasonic System used for the Inspection of Friction Stir Welds of Copper Canisters Mato PAVLOVIC 1, Christina

More information

Polyoxometalate Macroion Induced Phase and Morphology

Polyoxometalate Macroion Induced Phase and Morphology Polyoxometalate Macroion Induced Phase and Morphology Instability of Lipid Membrane Benxin Jing a, Marie Hutin c, Erin Connor a, Leroy Cronin c,* and Yingxi Zhu a,b,* a Department of Chemical and Biomolecular

More information

Nature Methods: doi: /nmeth Supplementary Figure 1. Activity in turtle dorsal cortex is sparse.

Nature Methods: doi: /nmeth Supplementary Figure 1. Activity in turtle dorsal cortex is sparse. Supplementary Figure 1 Activity in turtle dorsal cortex is sparse. a. Probability distribution of firing rates across the population (notice log scale) in our data. The range of firing rates is wide but

More information

Supporting information for the manuscript

Supporting information for the manuscript Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Supporting information for the manuscript Toward enhanced photoactivity

More information

bio-mof-1 DMASM Wavenumber (cm -1 ) Supplementary Figure S1 FTIR spectra of bio-mof-1, DMASMI, and bio-mof-1 DMASM.

bio-mof-1 DMASM Wavenumber (cm -1 ) Supplementary Figure S1 FTIR spectra of bio-mof-1, DMASMI, and bio-mof-1 DMASM. bio-mof-1 Transmittance bio-mof-1 DMASM DMASMI 2000 1500 1000 500 Wavenumber (cm -1 ) Supplementary Figure S1 FTIR spectra of bio-mof-1, DMASMI, and bio-mof-1 DMASM. Intensity (a.u.) bio-mof-1 DMASM as

More information

Stretching Cardiac Myocytes: A Finite Element Model of Cardiac Tissue

Stretching Cardiac Myocytes: A Finite Element Model of Cardiac Tissue Megan McCain ES240 FEM Final Project December 19, 2006 Stretching Cardiac Myocytes: A Finite Element Model of Cardiac Tissue Cardiac myocytes are the cells that constitute the working muscle of the heart.

More information

Complex ZnO Nanotree Arrays with Tunable Top, Stem and Branch Structures

Complex ZnO Nanotree Arrays with Tunable Top, Stem and Branch Structures Supporting Information Complex ZnO Nanotree Arrays with Tunable Top, Stem and Branch Structures Fenghua Zhao, JianGuo Zheng, Xianfeng Yang, Xiuyang Li, Jing Wang, Fuli Zhao, Kam Sing Wong, Chaolun Liang

More information

Deposition of aluminum-doped zinc oxide films by RF magnetron sputtering and study of their surface characteristics

Deposition of aluminum-doped zinc oxide films by RF magnetron sputtering and study of their surface characteristics Surface and Coatings Technology 174 175 (2003) 187 192 Deposition of aluminum-doped zinc oxide films by RF magnetron sputtering and study of their surface characteristics a b b a a, S.H. Jeong, S. Kho,

More information

Surface-Enhanced Raman Scattering Active Gold Nanoparticles. with Enzyme-Mimicking Activities for Measuring Glucose and

Surface-Enhanced Raman Scattering Active Gold Nanoparticles. with Enzyme-Mimicking Activities for Measuring Glucose and Surface-Enhanced Raman Scattering Active Gold Nanoparticles with Enzyme-Mimicking Activities for Measuring Glucose and Lactate in Living Tissues Yihui Hu, Hanjun Cheng, Xiaozhi Zhao, Jiangjiexing Wu, Faheem

More information

Exploring Physical And Optical Behavior Of Co:Zno Nanostructures

Exploring Physical And Optical Behavior Of Co:Zno Nanostructures Exploring Physical And Optical Behavior Of Co:Zno Nanostructures Durga Prasad Gogoi 1 1 Associate Professor, Dept. of Physics, Namrup college, Dist: Dibrugarh, Assam: 786623, India Abstract- Zinc oxide

More information

One-step photochemical attachment of NHS-terminated monolayers onto. silicon surfaces and subsequent functionalization

One-step photochemical attachment of NHS-terminated monolayers onto. silicon surfaces and subsequent functionalization Supporting Information: ne-step photochemical attachment of NHS-terminated monolayers onto silicon surfaces and subsequent functionalization Menglong Yang, Rosalie L.M. Teeuwen, Marcel Giesbers, Jacob

More information

Sulfate Radical-Mediated Degradation of Sulfadiazine by CuFeO 2 Rhombohedral Crystal-Catalyzed Peroxymonosulfate: Synergistic Effects and Mechanisms

Sulfate Radical-Mediated Degradation of Sulfadiazine by CuFeO 2 Rhombohedral Crystal-Catalyzed Peroxymonosulfate: Synergistic Effects and Mechanisms Supporting Information for Sulfate Radical-Mediated Degradation of Sulfadiazine by CuFeO 2 Rhombohedral Crystal-Catalyzed Peroxymonosulfate: Synergistic Effects and Mechanisms Submitted by Yong Feng, Deli

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Supporting information Seeing the Diabetes: Visual Detection of Glucose Based on the Intrinsic

More information

Supplementary figure 1: LII/III GIN-cells show morphological characteristics of MC

Supplementary figure 1: LII/III GIN-cells show morphological characteristics of MC 1 2 1 3 Supplementary figure 1: LII/III GIN-cells show morphological characteristics of MC 4 5 6 7 (a) Reconstructions of LII/III GIN-cells with somato-dendritic compartments in orange and axonal arborizations

More information

ZnO Thin Films Generated by Ex-Situ Thermal Oxidation of Metallic Zn for Photovoltaic Applications

ZnO Thin Films Generated by Ex-Situ Thermal Oxidation of Metallic Zn for Photovoltaic Applications Macalester Journal of Physics and Astronomy Volume 4 Issue 1 Spring 2016 Article 12 May 2016 ZnO Thin Films Generated by Ex-Situ Thermal Oxidation of Metallic Zn for Photovoltaic Applications Kovas Zygas

More information

Supplementary Fig. 1 Atomic force microscopy topography images Two-dimensional atomic force microscopy images (with an area of 1 m 1 m) of Cu and

Supplementary Fig. 1 Atomic force microscopy topography images Two-dimensional atomic force microscopy images (with an area of 1 m 1 m) of Cu and Supplementary Fig. 1 Atomic force microscopy topography images Two-dimensional atomic force microscopy images (with an area of 1 m 1 m) of Cu and Cu(O = 5.0%) films deposited on 20-nm-thick ZnO films during

More information

Supporting Information

Supporting Information Supporting Information An efficient broadband and omnidirectional light-harvesting scheme employing the hierarchical structure based on ZnO nanorod/si 3 N 4 -coated Si microgroove on 5-inch single crystalline

More information

Metal-Semiconductor Zn-ZnO Core-Shell Nanobelts and Nanotubes

Metal-Semiconductor Zn-ZnO Core-Shell Nanobelts and Nanotubes 570 J. Phys. Chem. B 2004, 108, 570-574 Metal-Semiconductor Zn-ZnO Core-Shell Nanobelts and Nanotubes Xiang Yang Kong,, Yong Ding, and Zhong Lin Wang*, School of Materials Sciences and Engineering, Shanghai

More information

Center for Nanoscience and Nanotechnology, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia

Center for Nanoscience and Nanotechnology, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia Copyright 2002 by the American Chemical Society VOLUME 106, NUMBER 49, DECEMBER 12, 2002 LETTERS Self-Assembled Nanowire-Nanoribbon Junction Arrays of ZnO Puxian Gao Center for Nanoscience and Nanotechnology,

More information

What is superhydrophobicity? How it is defined? What is oleophobicity?

What is superhydrophobicity? How it is defined? What is oleophobicity? Avijit Baidya 12.11.2016 What is superhydrophobicity? How it is defined? What is oleophobicity? Introduction : Hydrophobic and amphiphobic surfaces have been studied in great depth over the past couple

More information

Supplementary Information

Supplementary Information Supplementary Information for Chemical Synthesis of Blue-emitting Metallic Zinc Nano-hexagons Nguyen T. Mai, Trinh T. Thuy, Derrick M. Mott and Shinya Maenosono* School of Materials Science, Japan Advanced

More information

ZnO nanostructures epitaxially grown on ZnO seeded Si (100) substrates by chemical vapor deposition

ZnO nanostructures epitaxially grown on ZnO seeded Si (100) substrates by chemical vapor deposition ZnO nanostructures epitaxially grown on ZnO seeded Si (100) substrates by chemical vapor deposition Zhuo Chen 1, T. Salagaj 2, C. Jensen 2, K. Strobl 2, Mim Nakarmi 1, and Kai Shum 1, a 1 Physics Department,

More information

Technology and TEM characterization of Al doped ZnO nanomaterials

Technology and TEM characterization of Al doped ZnO nanomaterials Technology and TEM characterization of Al doped ZnO nanomaterials 國立成功大學 (NCKU) 材料科學及工程系 (MSE) 劉全璞 (Chuan-Pu Liu) Outline Introduction of ZnO Doping ZnO nanomaterials in CVD Al doped ZnO Nanowires Al doped

More information

PREPARATION AND CHARACTERIZATION OF METAL OXIDE NANOPOWDERS BY MICROWAVE- ASSISTED COMBUSTION METHOD FOR GAS SENSING DEVICES

PREPARATION AND CHARACTERIZATION OF METAL OXIDE NANOPOWDERS BY MICROWAVE- ASSISTED COMBUSTION METHOD FOR GAS SENSING DEVICES i PREPARATION AND CHARACTERIZATION OF METAL OXIDE NANOPOWDERS BY MICROWAVE- ASSISTED COMBUSTION METHOD FOR GAS SENSING DEVICES THESIS SUBMITTED TO ALAGAPPA UNIVERSITY IN PARTIAL FULFILMENT FOR THE AWARD

More information

List of Figure. Figure 1.1. Selective pathways for the metabolism of arachidonic acid

List of Figure. Figure 1.1. Selective pathways for the metabolism of arachidonic acid List of Figure Figure 1.1. Selective pathways for the metabolism of arachidonic acid Figure 1.2. Arachidonic acid transformation to ω and ω-1 hydroxylase 14 19 reaction mediated by cytochrome P450 enzyme

More information

Supplementary Figure 1 (previous page). EM analysis of full-length GCGR. (a) Exemplary tilt pair images of the GCGR mab23 complex acquired for Random

Supplementary Figure 1 (previous page). EM analysis of full-length GCGR. (a) Exemplary tilt pair images of the GCGR mab23 complex acquired for Random S1 Supplementary Figure 1 (previous page). EM analysis of full-length GCGR. (a) Exemplary tilt pair images of the GCGR mab23 complex acquired for Random Conical Tilt (RCT) reconstruction (left: -50,right:

More information

SPONTANEOUS AND STIMULATED EMISSION OF ZnO NANORODS OF DIFFERENT SHAPE

SPONTANEOUS AND STIMULATED EMISSION OF ZnO NANORODS OF DIFFERENT SHAPE SPONTANEOUS AND STIMULATED EMISSION OF ZnO NANORODS OF DIFFERENT SHAPE A.N. Gruzintsev, A.N. Redkin,**G.A. Emelchenko, *C. Barthou Institute of Microelectronics Technology, Russian Academy of Sciences,

More information

Supplementary Figure 1. Properties of various IZUMO1 monoclonal antibodies and behavior of SPACA6. (a) (b) (c) (d) (e) (f) (g) .

Supplementary Figure 1. Properties of various IZUMO1 monoclonal antibodies and behavior of SPACA6. (a) (b) (c) (d) (e) (f) (g) . Supplementary Figure 1. Properties of various IZUMO1 monoclonal antibodies and behavior of SPACA6. (a) The inhibitory effects of new antibodies (Mab17 and Mab18). They were investigated in in vitro fertilization

More information

The Surface Structure of Cu 2 O(100)

The Surface Structure of Cu 2 O(100) The Surface Structure of Cu 2 O(100) Supplementary (Supporting) information Markus Soldemo 1, Joakim Halldin Stenlid 2, Zahra Besharat 1, Milad Ghadami Yazdi 1, Anneli Önsten 1, Christofer Leygraf 3, Mats

More information

Photoelectrochemical Water Splitting

Photoelectrochemical Water Splitting Electronic Supplementary Information (ESI) ZnO-TiO 2 Core-Shell Nanowires: A Sustainable Photoanode for Enhanced Photoelectrochemical Water Splitting Kyuwon Jeong, a# Prashant R. Deshmukh, a# Jinse Park,

More information

LECTURE 13. Dr. Teresa D. Golden University of North Texas Department of Chemistry

LECTURE 13. Dr. Teresa D. Golden University of North Texas Department of Chemistry LECTURE 13 Dr. Teresa D. Golden University of North Texas Department of Chemistry Goniometer circle - centered at the sample, with the x-ray source and detector on the circumference of the circle. Focusing

More information

Solution-processed ZnO films as an alternative to sputtered buffer layers for inorganic photovoltaics

Solution-processed ZnO films as an alternative to sputtered buffer layers for inorganic photovoltaics Solution-processed ZnO films as an alternative to sputtered buffer layers for inorganic photovoltaics ICONN 214, Adelaide Dr. Enrico Della Gaspera CSIRO MATERIALS SCIENCE AND ENGINEERING / FUTURE MANUFACTURING

More information

Report for using aquatic plant as phytoremediation for removing heavy metals

Report for using aquatic plant as phytoremediation for removing heavy metals Report for using aquatic plant as phytoremediation for removing heavy metals Vu Thi Dieu Huong (M2) 1. INTRODUCTION Charophytes are submerged macrophytes grown in wide range of water bodies and its existence

More information

v Feature Stamping SMS 13.0 Tutorial Prerequisites Requirements Map Module Mesh Module Scatter Module Time minutes

v Feature Stamping SMS 13.0 Tutorial Prerequisites Requirements Map Module Mesh Module Scatter Module Time minutes v. 13.0 SMS 13.0 Tutorial Objectives Learn how to use conceptual modeling techniques to create numerical models which incorporate flow control structures into existing bathymetry. The flow control structures

More information

Introduction. The goal of TRUS QA is to ensure your system can do all of this accurately.

Introduction. The goal of TRUS QA is to ensure your system can do all of this accurately. TRUS QA Workshop Introduction The goals of using TRUS in prostate brachytherapy Visualize the prostate Need the US to penetrate deeply enough Need sufficient grey scale resolution to be able to visualize

More information

SAXS on lipid structures

SAXS on lipid structures Practical Course in Biophysics, Experiment R2b SAXS on lipid structures Summer term 2015 Room: Advisor: X-ray lab at LS Rädler, NU111 Stefan Fischer Tel: +49-(0)89-2180-1459 Email: stefan.f.fischer@physik.lmu.de

More information

Use understandings of angles and deductive reasoning to write and solve equations

Use understandings of angles and deductive reasoning to write and solve equations Unit 4: Geometry 3rd 9 Weeks Suggested Instructional Days: 20 Unit Summary (Learning Target/Goal): Draw, construct, and describe geometrical figures and describe the relationships between them. Solve real-life

More information

SDS-Assisted Protein Transport Through Solid-State Nanopores

SDS-Assisted Protein Transport Through Solid-State Nanopores Supplementary Information for: SDS-Assisted Protein Transport Through Solid-State Nanopores Laura Restrepo-Pérez 1, Shalini John 2, Aleksei Aksimentiev 2 *, Chirlmin Joo 1 *, Cees Dekker 1 * 1 Department

More information

Outline of the talk. FIB fabrication of ZnO nanodevices. Properties of ZnO 4/19/2011. Crystal structure of ZnO. Collaborators. Wurtzite structure

Outline of the talk. FIB fabrication of ZnO nanodevices. Properties of ZnO 4/19/2011. Crystal structure of ZnO. Collaborators. Wurtzite structure FIB fabrication of ZnO nanodevices Crystal structure of ZnO Wurtzite structure Lee Chow Department of Physics University of Central Florida 1 4 Collaborators X-ray diffraction pattern of ZnO nanorods Synthesis,

More information

Hierarchical ZnO Nanostructures

Hierarchical ZnO Nanostructures Hierarchical ZnO Nanostructures Jing Yu Lao, Jian Guo Wen, and Zhi Feng Ren* NANO LETTERS 2002 Vol. 2, No. 11 1287-1291 Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467 Received

More information

Ultrasound Physics & Terminology

Ultrasound Physics & Terminology Ultrasound Physics & Terminology This module includes the following: Basic physics terms Basic principles of ultrasound Ultrasound terminology and terms Common artifacts seen Doppler principles Terms for

More information

Five-Fold Reduction of Lasing Threshold near the First ΓL-Pseudogap of ZnO Inverse Opals arxiv: v1 [physics.

Five-Fold Reduction of Lasing Threshold near the First ΓL-Pseudogap of ZnO Inverse Opals arxiv: v1 [physics. Five-Fold Reduction of Lasing Threshold near the First ΓL-Pseudogap of ZnO Inverse Opals arxiv:0907.0736v1 [physics.optics] 4 Jul 2009 Michael Scharrer 1, Heeso Noh 1,2, Xiaohua Wu 1, Mark A Anderson 1,

More information

Supplementary Figure 1. Mother centrioles can reduplicate while in the close association

Supplementary Figure 1. Mother centrioles can reduplicate while in the close association C1-GFP distance (nm) C1-GFP distance (nm) a arrested HeLa cell expressing C1-GFP and Plk1TD-RFP -3 s 1 2 3 4 5 6 7 8 9 11 12 13 14 16 17 18 19 2 21 22 23 24 26 27 28 29 3 b 9 8 7 6 5 4 3 2 arrested HeLa

More information

Annealing Influence on the Optical Properties of Nano ZnO

Annealing Influence on the Optical Properties of Nano ZnO Available online www.ejaet.com European Journal of Advances in Engineering and Technology, 2014, 1(1): 69-73 Research Article ISSN: 2394-658X Annealing Influence on the Optical Properties of Nano ZnO Saad

More information

Structural biology of viruses

Structural biology of viruses Structural biology of viruses Biophysical Chemistry 1, Fall 2010 Coat proteins DNA/RNA packaging Reading assignment: Chap. 15 Virus particles self-assemble from coat monomers Virus Structure and Function

More information

Structural, Optical & Surface Morphology of Zinc Oxide (ZnO) Nanorods in Molten Solution

Structural, Optical & Surface Morphology of Zinc Oxide (ZnO) Nanorods in Molten Solution Journal of Materials Science and Engineering B 6 (3-4) (2016) 68-73 doi: 10.17265/2161-6221/2016.3-4.002 D DAVID PUBLISHING Structural, Optical & Surface Morphology of Zinc Oxide (ZnO) Nanorods in Molten

More information

Quantifying Lipid Contents in Enveloped Virus Particles with Plasmonic Nanoparticles

Quantifying Lipid Contents in Enveloped Virus Particles with Plasmonic Nanoparticles Quantifying Lipid Contents in Enveloped Virus Particles with Plasmonic Nanoparticles Amin Feizpour Reinhard Lab Department of Chemistry and the Photonics Center, Boston University, Boston, MA May 2014

More information

Fluorescent Carbon Dots as Off-On Nanosensor for Ascorbic Acid

Fluorescent Carbon Dots as Off-On Nanosensor for Ascorbic Acid Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Fluorescent Carbon Dots as Off-On Nanosensor for Ascorbic Acid Jun Gong, Xin Lu, Xueqin An*

More information

Engineering of efficiency limiting free carriers and interfacial energy. barrier for an enhancing piezoelectric generation

Engineering of efficiency limiting free carriers and interfacial energy. barrier for an enhancing piezoelectric generation SUPPLEMENTARY INFORMATION Engineering of efficiency limiting free carriers and interfacial energy barrier for an enhancing piezoelectric generation Jung Inn Sohn, ad SeungNam Cha, * ad Byong Gwon Song,

More information

Supporting Information

Supporting Information Supporting Information Intense visible emission from ZnO/PAAX (X = H or Na) nanocomposite synthesized via a simple and scalable sol-gel method Yao Zhu, Aleksandra Apostoluk, Pierrick Gautier, Audrey Valette,

More information

Supplementary Information Methods Subjects The study was comprised of 84 chronic pain patients with either chronic back pain (CBP) or osteoarthritis

Supplementary Information Methods Subjects The study was comprised of 84 chronic pain patients with either chronic back pain (CBP) or osteoarthritis Supplementary Information Methods Subjects The study was comprised of 84 chronic pain patients with either chronic back pain (CBP) or osteoarthritis (OA). All subjects provided informed consent to procedures

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Visualization of the Self Assembly of Silica Nanochannels reveals growth mechanism Christophe Jung, Peter Schwaderer, Mark Dethlefsen, Ralf Köhn, Jens Michaelis * and Christoph

More information

Supporting Information. Self-assembly in a drying nanofluid droplet: Spontaneous formation of 3D fibre network structures

Supporting Information. Self-assembly in a drying nanofluid droplet: Spontaneous formation of 3D fibre network structures Electronic Supplementary Material (ESI) for Soft Matter. This journal is The Royal Society of Chemistry 2014 Supporting Information Self-assembly in a drying nanofluid droplet: Spontaneous formation of

More information

MOF-Derived Zn-Mn Mixed Hollow Disks. with Robust Hierarchical Structure for High-Performance. Lithium-Ion Batteries

MOF-Derived Zn-Mn Mixed Hollow Disks. with Robust Hierarchical Structure for High-Performance. Lithium-Ion Batteries Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information (ESI) MOF-Derived Zn-Mn Mixed Oxides@Carbon

More information

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research)

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Emerging Technologies in Computational

More information

Cholesterol determination using protein-templated fluorescent gold nanocluster probes

Cholesterol determination using protein-templated fluorescent gold nanocluster probes Electronic Supplementary Information for Cholesterol determination using protein-templated fluorescent gold nanocluster probes Xi Chen and Gary A. Baker* Department of Chemistry, University of Missouri-Columbia,

More information

Hydrogen-Sensing Characteristics of Palladium-Doped Zinc-Oxide Nanostructures

Hydrogen-Sensing Characteristics of Palladium-Doped Zinc-Oxide Nanostructures Hydrogen-Sensing Characteristics of Palladium-Doped Zinc-Oxide Nanostructures Undergraduate Researcher Saranya Sathananthan University of Tennessee, Knoxville Faculty Mentor Vinayak P. Dravid Department

More information

Supporting Information for

Supporting Information for Supporting Information for Rupture of Lipid Membranes Induced by Amphiphilic Janus Nanoparticles Kwahun Lee, Liuyang Zhang, Yi Yi, Xianqiao Wang, Yan Yu* Department of Chemistry, Indiana University, Bloomington,

More information

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1 Supplementary Figure 1 Design of isolated protein and RNC constructs, and homogeneity of purified RNCs. (a) Schematic depicting the design and nomenclature used for all the isolated proteins and RNCs used

More information

Supplementary Figure 1. Overview of steps in the construction of photosynthetic protocellular systems

Supplementary Figure 1. Overview of steps in the construction of photosynthetic protocellular systems Supplementary Figure 1 Overview of steps in the construction of photosynthetic protocellular systems (a) The small unilamellar vesicles were made with phospholipids. (b) Three types of small proteoliposomes

More information