Enzyme Activity Lecture. Every reaction has energy requirement. The minimum amount of energy required is termed activation energy.

Size: px
Start display at page:

Download "Enzyme Activity Lecture. Every reaction has energy requirement. The minimum amount of energy required is termed activation energy."

Transcription

1 Enzyme Activity Lecture Every reaction has energy requirement. The minimum amount of energy required is termed activation energy. Living organisms have optimum temperature requirement so elevating the temperature to increase incidence of molecular collision will harm the biological structure. Increasing the concentration of the reactants also increases the likelihood of collisions, however concentrations are normally low. Enzymes are used by biological systems to lower the activation energy. The enzymes provide another pathway that requires less energy and increases the rate of reaction. Enzyme Properties: 1. Show remarkable specificity for their reactants, called substrates. 2. Nearly all enzymes are protein. 3. Each enzyme has a unique, intricately shaped binding surface called the active site. 4. Most enzymes often contain non-protein components such as metal ions called cofactor. Co-enzymes are organic nom-protein component (example: vitamins) 5. The protein component of an enzyme is called the apoenzyme and an enzyme that has the cofactor intact is called the haloenzyme. 6. The non-covalent forces that bind substrate to the active site are the same forces that account for the conformations of protein themselves: van der Waals forces, electrostatic forces, hydrogen bonding and hydrophobic interactions.

2 7. How do enzymes work? The Induced Fit Model. The enzyme and the substrate combine to form an enzyme-substrate complex. The formation of the complex often induces a conformational change in that allows it to bind to the substrate. Binding the substrate also often causes certain of its bond to become strained, and therefore is easily broken. The product of the reaction usually has a different shape from the substrate, and the altered shape or the intervention of another molecule causes the complex to dissociate. The enzyme can then accept another molecule of substrate, repeating the whole process. 1. How is enzyme activity regulated? The reaction is stopped by enzyme inhibition: competitive, non-competitive and feedback inhibition. In competitive inhibition, another substance other than the substrate competes for the active site of the enzyme. This type of inhibition slows down the reaction and is reversible.

3 In non-competitive inhibition, the inhibitors with portions of the active site which results in the changing of its shape. Once the active site's shape is changed, it can no longer attach to the substrate In allosteric inhibition another substance bind to the enzyme in a spot other than the active site, altering the conformation of the enzyme. The enzyme is left non-functional.

4 In feedback inhibition, the amount of product present or absent determines enzyme activity. 2. Factors that affect the enzyme activity. a. Substrate Concentration Rate of reaction initially increases as substrate concentration is increased. At a certain concentration the substrate, the rate of reaction reaches a maximum. b. Enzyme Concentration Rate of reaction increases with increased enzyme concentration. There will be a leveling off as the substrate is used up. 3. Effect of Temperature and ph Enzymes function most effectively at neutral ph. The rate of reaction falls rapidly as the solution is made acidic or alkaline. At extreme ph the enzyme actually looses it biological active conformation and is denatured. Enzymes are rapidly destroyed if the temperature rise above 37 o C but remain stable at much lower temperatures.

5 Experiment: Part A Extraction of polypheloxidase Extract polyphenoloxidase from potato. Polyphenoloxidase catalyses oxidation of dihydroxyphenols to quinones. Colorless Reddish Brown Part B Enzyme specificity Will compounds that have similar structure as cathechol also be catalyzed by polyphenoxidase? Phenol 1,4 cyclohexanediol Cathecol

6 For the remainder of the experiment: Keep test tube A from Part B as your negative control. Keep test tube B from Part B as your positive control Part C Substrate Concentration Because the enzyme extracted for the potato is not quantified, a qualitative measure is done. You must be able to differentiate the color among the different enzyme concentrations. If no difference in intensity is observed in Part C, the enzyme might be too concentrated. Dilute enzyme stock solution 2:1 (8 ml enzyme + 4 ml 2% NaF) and repeat the Part C with the diluted enzyme. If this is still too concentrated, dilute the enzyme 1:1 with the NaF solution. Once the optimum concentration is achieved, use the same enzyme concentration for the remaining parts of the experiment. Part D Enzyme Concentration Part E Effect of ph Part F Effect of Temperature Part G Inhibitors When a ppt is observed, the protein has denatured. Phenylthiourea combines with the copper cofactor. Is it a competitive or noncompetitive inhibitor. Data Analysis Recommendation: Graph with Excel. Determine the relative intensity among the samples for each part of the experiment only. What do Parts B and G determine. Plot graph for Part C and D Part C plot Intensity VS Relative Substrate Concentration Part D plot Intensity VS Relative Enzyme Concentration Connect the points in the graph. Do not do a best fit. For Part E and F A bar graph would represent the data best.

7

Organic molecules are the molecules in living things There are four types of organic (carbon-based) molecules: Carbohydrates Lipids (fats) Proteins

Organic molecules are the molecules in living things There are four types of organic (carbon-based) molecules: Carbohydrates Lipids (fats) Proteins Organic molecules are the molecules in living things There are four types of organic (carbon-based) molecules: Carbohydrates Lipids (fats) Proteins Nucleic Acids Protein Muscles are made of proteins Enzymes

More information

CHAPTER 2- ENZYMES PROTEINS B. AMINO ACID- 10/4/2016

CHAPTER 2- ENZYMES PROTEINS B. AMINO ACID- 10/4/2016 CHAPTER 2- ENZYMES BIOL. 1 AB KENNEDY PROTEINS A. DEFINITION- LARGE MACROMOLECULES MADE OF CARBON, HYDROGEN, NITROGEN, OXYGEN, AND SULFUR THEIR PRIMARY BUILDING BLOCK IS THE AMINO ACID THEY FUNCTION AS

More information

ENZYMES: BIOLOGICAL CATALYSTS OF LIFE

ENZYMES: BIOLOGICAL CATALYSTS OF LIFE Potential Energy Lab 6 ENZYMES: BIOLOGICAL CATALYSTS OF LIFE OBJECTIVES Define catalyst, enzyme, activation energy, enzyme-substrate complex, substrate, product, active site, denaturation, and cofactor;

More information

Review of Energetics Intro

Review of Energetics Intro Review of Energetics Intro Learning Check The First Law of Thermodynamics states that energy can be Created Destroyed Converted All of the above Learning Check The second law of thermodynamics essentially

More information

AP BIOLOGY Enzyme Catalysis

AP BIOLOGY Enzyme Catalysis AP BIOLOGY Enzyme Catalysis Introduction In general, enzymes are proteins produced by living cells; they act as catalysts in biochemical reactions. A catalyst affects the rate of a chemical reaction. One

More information

6.5 Enzymes. Enzyme Active Site and Substrate Specificity

6.5 Enzymes. Enzyme Active Site and Substrate Specificity 180 Chapter 6 Metabolism 6.5 Enzymes By the end of this section, you will be able to: Describe the role of enzymes in metabolic pathways Explain how enzymes function as molecular catalysts Discuss enzyme

More information

Chapter 6. Flow of energy through life. Chemical reactions of life. Examples. Examples. Chemical reactions & energy 9/7/2012. Enzymes & Metabolism

Chapter 6. Flow of energy through life. Chemical reactions of life. Examples. Examples. Chemical reactions & energy 9/7/2012. Enzymes & Metabolism Flow of energy through life Chapter 6 Life is built on chemical reactions Enzymes & Metabolism Chemical reactions of life Examples Metabolism Forming bonds between molecules Dehydration synthesis Anabolic

More information

BIOCHEMISTRY Unit 2 Part 4 ACTIVITY #7 (Chapter 8.4) Enzymes. A. Is this reaction dehydration synthesis or hydrolysis?

BIOCHEMISTRY Unit 2 Part 4 ACTIVITY #7 (Chapter 8.4) Enzymes. A. Is this reaction dehydration synthesis or hydrolysis? AP BIOLOGY BIOCHEMISTRY Unit 2 Part 4 ACTIVITY #7 (Chapter 8.4) NAME DATE PERIOD Enzymes 8.4 1. Enzymes are an important type of protein. For now, use this sketch to review what you know about enzymes.

More information

Studying the Effect of Hydrogen Peroxide Substrate Concentration on Catalase Induced Reaction

Studying the Effect of Hydrogen Peroxide Substrate Concentration on Catalase Induced Reaction Studying the Effect of Hydrogen Peroxide Substrate Concentration on Catalase Induced Reaction Submitted by: [Student Name] [Course Name] [University Name] Table of Contents 1.0 Aim... 3 2.0 Background

More information

Enzymes. Enzyme Structure. How do enzymes work?

Enzymes. Enzyme Structure. How do enzymes work? Page 1 of 6 Enzymes Enzymes are biological catalysts. There are about 40,000 different enzymes in human cells, each controlling a different chemical reaction. They increase the rate of reactions by a factor

More information

Review of Biochemistry

Review of Biochemistry Review of Biochemistry Chemical bond Functional Groups Amino Acid Protein Structure and Function Proteins are polymers of amino acids. Each amino acids in a protein contains a amino group, - NH 2,

More information

Terminology-Amino Acids

Terminology-Amino Acids Enzymes 1 2 Terminology-Amino Acids Primary Structure: is a polypeptide (large number of aminoacid residues bonded together in a chain) chain of amino acids linked with peptide bonds. Secondary Structure-

More information

Life and the Flow of Energy. Chapter 6. The Flow of Energy

Life and the Flow of Energy. Chapter 6. The Flow of Energy Life and the Flow of Energy Chapter 6 Metabolism: Energy and Enzymes Energy is the ability to do work Cells (and organisms) need a constant supply of Life on Earth is dependent on solar Solar The Flow

More information

Notes 2-4. Chemical Reactions and Enzymes

Notes 2-4. Chemical Reactions and Enzymes Notes 2-4 Chemical Reactions and Enzymes Chemical Reaction: A process that changes one set of chemicals into another set of chemicals Reactants: Elements entered into the reaction Products: Elements or

More information

Unit 7 ~ Learning Guide

Unit 7 ~ Learning Guide Unit 7 ~ Learning Guide Name: INSTRUCTIONS Complete the following notes and questions as you work through the related lessons. You are required to have this package completed BEFORE you write your unit

More information

Chapter 6. Metabolism & Enzymes. AP Biology

Chapter 6. Metabolism & Enzymes. AP Biology Chapter 6. Metabolism & Enzymes Flow of energy through life Life is built on chemical reactions Chemical reactions of life Metabolism forming bonds between molecules dehydration synthesis anabolic reactions

More information

Examples. Chapter 8. Metabolism & Enzymes. Flow of energy through life. Examples. Chemical reactions of life. Chemical reactions & energy

Examples. Chapter 8. Metabolism & Enzymes. Flow of energy through life. Examples. Chemical reactions of life. Chemical reactions & energy WH Examples dehydration synthesis Chapter 8 Metabolism & Enzymes + H 2 O hydrolysis + H 2 O Flow of energy through life Life is built on chemical reactions Examples dehydration synthesis hydrolysis 2005-2006

More information

Chapter 5- Enzymes. State Standard Standard 1.b.

Chapter 5- Enzymes. State Standard Standard 1.b. Chapter 5- Enzymes State Standard Standard 1.b. Enzymes Speed Up Chemical Reactions Most of the essential chemical reactions in cells must occur quickly and precisely for the cell to survive For a chemical

More information

Chapter 23 Enzymes 1

Chapter 23 Enzymes 1 Chapter 23 Enzymes 1 Enzymes Ribbon diagram of cytochrome c oxidase, the enzyme that directly uses oxygen during respiration. 2 Enzyme Catalysis Enzyme: A biological catalyst. With the exception of some

More information

increase rate of reaction without being consumed reduce activation energy don t change free energy ( G) released or required

increase rate of reaction without being consumed reduce activation energy don t change free energy ( G) released or required Enzymes Enzymes Biological catalysts proteins (& RNA) facilitate chemical reactions increase rate of reaction without being consumed reduce activation energy don t change free energy ( G) released or required

More information

Multiple Choice Review- Membranes & Enzymes

Multiple Choice Review- Membranes & Enzymes Multiple Choice Review- Membranes & Enzymes 1. Cell membranes are and regulate the materials moving into and out of the cell, in order to maintain equilibrium. a. completely permeable b. ionically permeable

More information

Enzymes - Exercise 3 - Germantown

Enzymes - Exercise 3 - Germantown Enzymes - Exercise 3 - Germantown Objectives -Understand the function of an enzyme. -Know where catechol oxidase (enzyme) used in today s experiment came from. -Understand why enzymes require a cofactor.

More information

BACKGROUND INFORMATION:

BACKGROUND INFORMATION: BIOLOGY 12 ENZYMES NAME: BACKGROUND INFORMATION: Energy: is defined as the ability to do or bring about change. A living organism must constantly perform work in order to maintain its organization, to

More information

Energy and catalysts. Enzymes. Contents. 1 Energy and catalysts 2 Enzymes

Energy and catalysts. Enzymes. Contents. 1 Energy and catalysts 2 Enzymes Contents 1 Energy and catalysts 2 Enzymes Energy and catalysts In Biological systems, energy is roughly defined as the capacity to do work. Molecules are held together by electrons. Breaking and building

More information

Slide 1. Slide 2. Slide 3. Chapter 5- Enzymes. State Standard. Enzymes Speed Up Chemical Reactions. Standard 1.b.

Slide 1. Slide 2. Slide 3. Chapter 5- Enzymes. State Standard. Enzymes Speed Up Chemical Reactions. Standard 1.b. Slide 1 Chapter 5- Enzymes Slide 2 State Standard Standard 1.b. Slide 3 Enzymes Speed Up Chemical Reactions Most of the essential chemical reactions in cells must occur quickly and precisely for the cell

More information

Name: Date: AP Biology LAB : FACTORS INFLUENCING ENZYME ACTIVITY

Name: Date: AP Biology LAB : FACTORS INFLUENCING ENZYME ACTIVITY LAB : FACTORS INFLUENCING ENZYME ACTIVITY Background Enzymes are biological catalysts capable of speeding up chemical reactions by lowering activation energy. One benefit of enzyme catalysts is that the

More information

Chemistry 107 Exam 4 Study Guide

Chemistry 107 Exam 4 Study Guide Chemistry 107 Exam 4 Study Guide Chapter 10 10.1 Recognize that enzyme catalyze reactions by lowering activation energies. Know the definition of a catalyst. Differentiate between absolute, relative and

More information

Energy. Energy is the ability to do work or bring about a change. Energy transactions must follow the laws of Thermodynamics

Energy. Energy is the ability to do work or bring about a change. Energy transactions must follow the laws of Thermodynamics Chapter 6 Energy Energy is the ability to do work or bring about a change Kinetic Energy: Energy of motion Potential Energy: Stored energy Energy transactions must follow the laws of Thermodynamics 1 st

More information

Concept 8.3: ATP powers cellular work by coupling exergonic reactions to endergonic reactions

Concept 8.3: ATP powers cellular work by coupling exergonic reactions to endergonic reactions Concept 8.3: ATP powers cellular work by coupling exergonic reactions to endergonic reactions A cell does three main kinds of work: Chemical Transport Mechanical To do work, cells manage energy resources

More information

Enzymes: The Catalysts of Life

Enzymes: The Catalysts of Life Chapter 6 Enzymes: The Catalysts of Life Lectures by Kathleen Fitzpatrick Simon Fraser University Activation Energy and the Metastable State Many thermodynamically feasible reactions in a cell that could

More information

Biological Molecules B Lipids, Proteins and Enzymes. Triglycerides. Glycerol

Biological Molecules B Lipids, Proteins and Enzymes. Triglycerides. Glycerol Glycerol www.biologymicro.wordpress.com Biological Molecules B Lipids, Proteins and Enzymes Lipids - Lipids are fats/oils and are present in all cells- they have different properties for different functions

More information

Enzymes. Ms. Paxson. From food webs to the life of a cell. Enzymes. Metabolism. Flow of energy through life. Examples. Examples

Enzymes. Ms. Paxson. From food webs to the life of a cell. Enzymes. Metabolism. Flow of energy through life. Examples. Examples From food webs to the life of a cell energy energy energy Flow of energy through life Life is built on chemical reactions sun transforming energy from one form to another solar energy ATP & organic molecules

More information

fossum/files/2012/01/10 Enzymes.pdf

fossum/files/2012/01/10 Enzymes.pdf http://www.laney.edu/wp/cheli fossum/files/2012/01/10 Enzymes.pdf Enzyme Catalysis Enzymes are proteins that act as catalysts for biological reactions. Enzymes, like all catalysts, speed up reactions without

More information

Unit 7 Part I: Introductions to Biochemistry

Unit 7 Part I: Introductions to Biochemistry Unit 7 Part I: Introductions to Biochemistry Chemical Reactions, Enzymes and ATP 19 March 2014 Averett 1 Reaction Graphs Every chemical reaction involves bond breaking and bond forming. In order for bonds

More information

AP Biology Summer Assignment Chapter 3 Quiz

AP Biology Summer Assignment Chapter 3 Quiz AP Biology Summer Assignment Chapter 3 Quiz 2016-17 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. All of the following are found in a DNA nucleotide

More information

Microbial Metabolism. PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R

Microbial Metabolism. PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R 5 Microbial Metabolism Big Picture: Metabolism Metabolism is the buildup and breakdown of nutrients

More information

AP Biology. Metabolism & Enzymes

AP Biology. Metabolism & Enzymes Metabolism & Enzymes From food webs to the life of a cell energy energy energy Flow of energy through life Life is built on chemical reactions transforming energy from one form to another organic molecules

More information

Enzymes Topic 3.6 & 7.6 SPEED UP CHEMICAL REACTIONS!!!!!!!

Enzymes Topic 3.6 & 7.6 SPEED UP CHEMICAL REACTIONS!!!!!!! Enzymes Topic 3.6 & 7.6 SPEED UP CHEMICAL REACTIONS!!!!!!! Key Words Enzyme Substrate Product Active Site Catalyst Activation Energy Denature Enzyme-Substrate Complex Lock & Key model Induced fit model

More information

A cell s metabolism is all the organism s chemical reactions. Metabolism manages the material and energy resources of the cell.

A cell s metabolism is all the organism s chemical reactions. Metabolism manages the material and energy resources of the cell. Enzymes Metabolism Metabolism A cell s metabolism is all the organism s chemical reactions. Metabolism manages the material and energy resources of the cell. Energy is the capacity to do work. Metabolism

More information

Enzymes Biological Catalysts Review

Enzymes Biological Catalysts Review Enzymes Biological Catalysts Review Catalyst a substance that speeds up a reaction but is not actually a part of the reaction nor changes because of the reaction Catalysis the process of speeding a chemical

More information

Metabolism & Enzymes. From food webs to the life of a cell. Flow of energy through life. Life is built on chemical reactions

Metabolism & Enzymes. From food webs to the life of a cell. Flow of energy through life. Life is built on chemical reactions Metabolism & Enzymes 2007-2008 From food webs to the life of a cell energy energy energy Flow of energy through life Life is built on chemical reactions transforming energy from one form to another organic

More information

Microbial Metabolism (Chapter 5) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus

Microbial Metabolism (Chapter 5) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus Microbial Metabolism (Chapter 5) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus Primary Source for figures and content: Tortora, G.J. Microbiology An Introduction

More information

Chapter 5 Microbial Metabolism: The Chemical Crossroads of Life

Chapter 5 Microbial Metabolism: The Chemical Crossroads of Life Chapter 5 Microbial Metabolism: The Chemical Crossroads of Life Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. The Metabolism of Microbes metabolism all chemical

More information

GRU3L1 Metabolism & Enzymes. AP Biology

GRU3L1 Metabolism & Enzymes. AP Biology GRU3L1 Metabolism & Enzymes From food webs to the life of a cell energy energy energy Flow of energy through life Life is built on chemical reactions u transforming energy from one form to organic molecules

More information

Chapter 8.4, 8.5. Enzymes. AP Biology

Chapter 8.4, 8.5. Enzymes. AP Biology Chapter 8.4, 8.5 Enzymes Activation energy Breaking down large molecules requires an initial input of energy activation energy large biomolecules are stable must absorb energy to break bonds cellulose

More information

Biochem sheet (5) done by: razan krishan corrected by: Shatha Khtoum DATE :4/10/2016

Biochem sheet (5) done by: razan krishan corrected by: Shatha Khtoum DATE :4/10/2016 Biochem sheet (5) done by: razan krishan corrected by: Shatha Khtoum DATE :4/10/2016 Note about the last lecture: you must know the classification of enzyme Sequentially. * We know that a substrate binds

More information

The MOLECULES of LIFE

The MOLECULES of LIFE The MOLECULES of LIFE Physical and Chemical Principles Solutions Manual Prepared by James Fraser and Samuel Leachman Chapter 16 Principles of Enzyme Catalysis Problems True/False and Multiple Choice 1.

More information

Chapter 8. Metabolism. Topics in lectures 15 and 16. Chemical foundations Catabolism Biosynthesis

Chapter 8. Metabolism. Topics in lectures 15 and 16. Chemical foundations Catabolism Biosynthesis Chapter 8 Topics in lectures 15 and 16 Metabolism Chemical foundations Catabolism Biosynthesis 1 Metabolism Chemical Foundations Enzymes REDOX Catabolism Pathways Anabolism Principles and pathways 2 Chemical

More information

Chapter 11 Enzymes and Metabolic Pathways

Chapter 11 Enzymes and Metabolic Pathways Chapter 11 Enzymes and Metabolic Pathways 11.1. Metabolism Metabolism comes from the Greek metabole, meaning "change". It is an emergent property of life. It includes all the chemical processes needed

More information

ENZYME ACTIVITY. Introduction

ENZYME ACTIVITY. Introduction ENZYME ACTIVITY This activity is an alternative to the titration proposed for Enzyme Catalysis (AP Bio Lab #2, Biology Lab Manual). There are numerous alternative lab activities that measure the rate of

More information

Section 5. Enzymes, Equilibrium, Energy and the Sulfonamides

Section 5. Enzymes, Equilibrium, Energy and the Sulfonamides Section 5 Enzymes, Equilibrium, Energy and the Sulfonamides Monday: ESKAPE handout describing them (Tiffany will provide). M-W Tie the metabolism back to the nutritional requirements and media choice,

More information

Foundations in Microbiology Seventh Edition

Foundations in Microbiology Seventh Edition Lecture PowerPoint to accompany Foundations in Microbiology Seventh Edition Talaro Chapter 8 An Introduction to Microbial Metabolism Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

ENZYMES: CLASSIFICATION, STRUCTURE

ENZYMES: CLASSIFICATION, STRUCTURE ENZYMES: CLASSIFICATION, STRUCTURE Enzymes - catalysts of biological reactions Accelerate reactions by a millions fold Common features for enzymes and inorganic catalysts: 1. Catalyze only thermodynamically

More information

Microbiology AN INTRODUCTION

Microbiology AN INTRODUCTION TORTORA FUNKE CASE Microbiology AN INTRODUCTION EIGHTH EDITION B.E Pruitt & Jane J. Stein Chapter 5, part A Microbial Metabolism PowerPoint Lecture Slide Presentation prepared by Christine L. Case Microbial

More information

Part 1: Energy and Metabolism

Part 1: Energy and Metabolism Part 1: Energy and Metabolism Life is highly organized rganisms need free energy to survive, grow, and reproduce In each system, the arrow is pointing in the direction of spontaneous change. Why? 1 2 More

More information

Amylase: a sample enzyme

Amylase: a sample enzyme Amylase: a sample enzyme Objectives: After completion of this laboratory exercise you will be able to: 1. Explain the importance of enzymes in biology. 2. Explain the basic properties of an enzyme as a

More information

Chapter 5 Metabolism: Energy and Enzymes

Chapter 5 Metabolism: Energy and Enzymes Biology 12 Name: Cell Biology Per: Date: Chapter 5 Metabolism: Energy and Enzymes Complete using BC Biology 12, pages 154-175 Diagnostic Questions (mark using the answer key on page 533) 1. B 2. B 3. C

More information

ENZYME ACTIVITY. Readings: Review pp , and in your text (POHS, 5 th ed.).

ENZYME ACTIVITY. Readings: Review pp , and in your text (POHS, 5 th ed.). ENZYME ACTIVITY Readings: Review pp. 51-58, and 128-139 in your text (POHS, 5 th ed.). Introduction Enzymes are biological catalysts; that is, enzymes are able to mediate the conversion of substrate into

More information

Enzymes - Exercise 3 - Rockville

Enzymes - Exercise 3 - Rockville Enzymes - Exercise 3 - Rockville Objectives -Understand the function of an enzyme. -Know what the substrate, enzyme, and the product of the reaction for this lab. -Understand how at various environments

More information

Enzymes. Ch 3: Macromolecules

Enzymes. Ch 3: Macromolecules Enzymes Ch 3: Macromolecules Living things use different chemical reactions to get the energy needed for life Chemical Reactions Reactants = substance that is changed Products = new substance that forms

More information

Chemical Basis For Life Open Ended Questions:

Chemical Basis For Life Open Ended Questions: Chemical Basis For Life Open Ended Questions: Answer the following questions to the best of your ability: Make sure you read each question carefully and provide answers to all of the parts of the question.

More information

DNA and Protein Synthesis Practice

DNA and Protein Synthesis Practice Biology 12 DNA and Protein Synthesis Practice Name: 1. DNA is often called the "code of life". Actually it contains the code for a) the sequence of amino acids in a protein b) the sequence of base pairs

More information

An Introduction to Enzyme Structure and Function

An Introduction to Enzyme Structure and Function An Introduction to Enzyme Structure and Function Enzymes Many reactions in living systems are similar to laboratory reactions. 1. Reactions in living systems often occur with the aid of enzymes. 2. Enzymes

More information

BY: RASAQ NURUDEEN OLAJIDE

BY: RASAQ NURUDEEN OLAJIDE BY: RASAQ NURUDEEN OLAJIDE LECTURE CONTENT INTRODUCTION MOST ENZYMES ARE PROTEINS ENZYME CLASSIFICATION AND NUMENCLATURE HOW ENZYMES WORK: ACTIVE SITE STRUCTURE OF THE ACTIVE SITE MODELS OF SUBSTRATE BINDING

More information

Enzyme Action. Intermediate 2 Biology Unit 1: Living Cells

Enzyme Action. Intermediate 2 Biology Unit 1: Living Cells Enzyme Action Intermediate 2 Biology Unit 1: Living Cells Learning Objectives Describe 2 ways in which chemical reactions can be speeded up. Name the products of the breakdown of hydrogen peroxide. State

More information

Chapter 5. The Working Cell. Lecture by Richard L. Myers

Chapter 5. The Working Cell. Lecture by Richard L. Myers Chapter 5 The Working Cell PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Lecture by Richard L. Myers MEMBRANE STRUCTURE AND FUNCTION

More information

SPRINGFIELD TECHNICAL COMMUNITY COLLEGE ACADEMIC AFFAIRS

SPRINGFIELD TECHNICAL COMMUNITY COLLEGE ACADEMIC AFFAIRS SPRINGFIELD TECHNICAL COMMUNITY COLLEGE ACADEMIC AFFAIRS Course Number: BIOL 140 Department: Biology Course Title: Biochemistry/Health Sciences Semester: Spring Year: 1997 Objectives/ Course Number: BIOL

More information

Biochemistry Department. Level 1 Lecture No : 3 Date : 1 / 10 / Enzymes kinetics

Biochemistry Department. Level 1 Lecture No : 3 Date : 1 / 10 / Enzymes kinetics Biochemistry Department Level 1 Lecture No : 3 Date : 1 / 10 / 2017 Enzymes kinetics 1 Intended Learning Outcomes By the end of this lecture, the student will be able to: 1.Understand what is meant by

More information

Cofactors and coenzymes. Reversible, irreversible, competitive, and noncompetitive inhibitors. Allosteric enzymes. Feedback inhibition.

Cofactors and coenzymes. Reversible, irreversible, competitive, and noncompetitive inhibitors. Allosteric enzymes. Feedback inhibition. Enzyme regulation Cofactors and coenzymes. Reversible, irreversible, competitive, and noncompetitive inhibitors. Allosteric enzymes. Feedback inhibition. Introduction The genome of a typical organism,

More information

An organic catalysts that enhances the speed or likelihood of a bio-chemical reaction by lowering the energy of activation.

An organic catalysts that enhances the speed or likelihood of a bio-chemical reaction by lowering the energy of activation. Micro 260 Fall 2009 Name: Allan Keys Tools: You may use your notes and or book for this assignment 1) What is an enzyme? (4 pts) An organic catalysts that enhances the speed or likelihood of a bio-chemical

More information

Chapter 8 Microbial Metabolism: The Chemical Crossroads of Life

Chapter 8 Microbial Metabolism: The Chemical Crossroads of Life Chapter 8 Microbial Metabolism: The Chemical Crossroads of Life / Building Your Knowledge 1) What are the two branches of metabolism? a. b. Which branch synthesizes large molecules from small subunits?

More information

AP Biology Protein Structure and Enzymes

AP Biology Protein Structure and Enzymes AP Biology Protein Structure and Enzymes Connection to the Nitrogen-cycle Amino acids (protein) Nucleic acids (RNA and DNA) ATP 78% 1. Assimilation of nitrate by photosynthetic eukaryotes 2. Nitrogen fixation

More information

Topic 4: Enzymes and metabolism

Topic 4: Enzymes and metabolism Topic 4: Enzymes and metabolism 1. An is a living molecule produced by glands to digest food in the alimentary canal. living molecule produced by cells to synthesise complex molecules from simpler ones.

More information

Life s molecular diversity is based on the. properties of carbon. Chain Ring Branching chain

Life s molecular diversity is based on the. properties of carbon. Chain Ring Branching chain Carbon Compounds Life s molecular diversity is based on the properties of carbon Chain Ring Branching chain The Chemistry of Carbon : carbon based Carbon can make 4 covalent bonds The foundation of organic

More information

MONDAY Review ( SL 2.5)

MONDAY Review ( SL 2.5) Enzymes 8.1 MONDAY Review ( SL 2.5) -Active site to which specific substrate binds -Enzymes are catalysts: bring about biochemical reactions! -Optimal environment: affected by ph, temp, and substrate concentration

More information

INTERACTION DRUG BODY

INTERACTION DRUG BODY INTERACTION DRUG BODY What the drug does to the body What the body does to the drug Receptors - intracellular receptors - membrane receptors - Channel receptors - G protein-coupled receptors - Tyrosine-kinase

More information

Biology 2180 Laboratory #3. Enzyme Kinetics and Quantitative Analysis

Biology 2180 Laboratory #3. Enzyme Kinetics and Quantitative Analysis Biology 2180 Laboratory #3 Name Introduction Enzyme Kinetics and Quantitative Analysis Catalysts are agents that speed up chemical processes and the catalysts produced by living cells are called enzymes.

More information

How Cells Work. Chapter 4

How Cells Work. Chapter 4 How Cells Work Chapter 4 Energy Laws Energy is the capacity to do work The total amount of energy in the universe is constant-energy can t be created or destroyed..only transferred! Energy is flowing from

More information

Enzymes. Biology Gr10. Complete the concept map showing the characteristics of enzymes. They Act as. They Are. Examples are. They cause.

Enzymes. Biology Gr10. Complete the concept map showing the characteristics of enzymes. They Act as. They Are. Examples are. They cause. Name: Class: Date: Grade 10 Science Related Reading/Biology Enzymes Biology Gr10 Complete the concept map showing the characteristics of enzymes. They Are They Act as They cause Examples are Affected by

More information

Tala Saleh. Ahmad Attari. Mamoun Ahram

Tala Saleh. Ahmad Attari. Mamoun Ahram 23 Tala Saleh Ahmad Attari Minna Mushtaha Mamoun Ahram In the previous lecture, we discussed the mechanisms of regulating enzymes through inhibitors. Now, we will start this lecture by discussing regulation

More information

LAB 5 - Enzymes BACKGROUND INFORMATION

LAB 5 - Enzymes BACKGROUND INFORMATION LAB 5 - Enzymes BACKGROUND INFORMATION Chemical Reactions The cells of organisms, from bacteria to plants to animals, carry out hundreds to thousands of chemical reactions that must be properly coordinated

More information

[BCH 322] Some Factors Affec.ng Polyphenol Oxidase Ac.vity

[BCH 322] Some Factors Affec.ng Polyphenol Oxidase Ac.vity [BCH 322] Some Factors Affec.ng Polyphenol Oxidase Ac.vity Polyphenol Oxidase (PPO): Is a copper- containing enzyme with an op4mum ph of 6.7. It catalyzes the oxida4on of di- and tri- hydroxyl phenol to

More information

Microbial Metabolism

Microbial Metabolism PowerPoint Lecture Slides for MICROBIOLOGY ROBERT W. BAUMAN Chapter 5 Microbial Metabolism Microbial Metabolism The sum total of chemical reactions that take place within cells (of an organism) Metabolic

More information

Browning Reactions. Maillard browning. Caramelization high temps. Enzymatic browning. + flavors. brown pigments. + flavors.

Browning Reactions. Maillard browning. Caramelization high temps. Enzymatic browning. + flavors. brown pigments. + flavors. Browning Reactions Maillard browning reducing sugar + amine Caramelization sugar high temps Enzymatic browning phenolics polyphenoloxidase brown pigments + flavors brown pigments + flavors brown pigments

More information

3/1/2011. Enzymes. Enzymes and Activation Energy. Enzymes Enzyme Structure and Action. Chapter 4 Outline. Enzymes

3/1/2011. Enzymes. Enzymes and Activation Energy. Enzymes Enzyme Structure and Action. Chapter 4 Outline. Enzymes Free content 3/1/2011 Chapter 4 Outline Enzymes as catalysts Control of enzyme activity Bioenergetics Enzymes 4-2 4-3 Enzymes Enzymes - function as biological catalysts permit reactions to occur rapidly

More information

Copyright 2016 Dan Dill 1

Copyright 2016 Dan Dill 1 carbonate These solutions are mixed and a precipitate forms. After the precipitation, the solution 1. will be positively charged 2. will be electrically neutral 3. will be negatively charged 4. More information

More information

Question Expected Answers Mark Additional Guidance 1 (a) (enzymes are) proteins / used in metabolism / used in named metabolic pathway ;

Question Expected Answers Mark Additional Guidance 1 (a) (enzymes are) proteins / used in metabolism / used in named metabolic pathway ; Question Expected Answers Mark Additional Guidance (a) (enzymes are) proteins / used in metabolism / used in named metabolic pathway ; ACCEPT used in reactions, in organisms / in the body IGNORE biological

More information

Enzymes. Enzymes accelerate chemical reactions as the engine accelerates this drag race.

Enzymes. Enzymes accelerate chemical reactions as the engine accelerates this drag race. Chapter 30 Enzymes Enzymes accelerate chemical reactions as the engine accelerates this drag race. Introduction to General, Organic, and Biochemistry, 10e John Wiley & Sons, Inc Morris Hein, Scott Pattison,

More information

Proteins have many structures, resulting in a wide range of functions

Proteins have many structures, resulting in a wide range of functions Proteins have many structures, resulting in a wide range of functions Proteins account for more than 50% of the dry mass of most cells. They are instrumental in almost everything an organism does. Protein

More information

1. Most organisms are active in a limited temperature range

1. Most organisms are active in a limited temperature range 1. Most organisms are active in a limited temperature range Identify the role of enzymes in metabolism, describe their chemical composition and use a simple model to describe their specificity on substrates

More information

QUALITATIVE TEST OF PROTEIN

QUALITATIVE TEST OF PROTEIN QUALITATIVE TEST F PRTEIN UTLINE Experment2 To detect the presence of peptide bonds or proteins in the sample Using Biuret Method Protein precipitation and denaturation Salt Strong Acid Heavy metals Heating

More information

About Science Prof Online PowerPoint Resources

About Science Prof Online PowerPoint Resources About Science Prof Online PowerPoint Resources Science Prof Online (SPO) is a free science education website that provides fully-developed Virtual Science Classrooms, science-related PowerPoints, articles

More information

Analysis of Polyphenoloxidase Enzyme Activity from Potato Extract Biochemistry Lab I (CHEM 4401)

Analysis of Polyphenoloxidase Enzyme Activity from Potato Extract Biochemistry Lab I (CHEM 4401) Analysis of Polyphenoloxidase Enzyme Activity from Potato Extract Biochemistry Lab I (CHEM 4401) Background Enzymes are protein molecules (primarily) that serve as biological catalysts. They are responsible

More information

Lecture 6: Allosteric regulation of enzymes

Lecture 6: Allosteric regulation of enzymes Chem*3560 Lecture 6: Allosteric regulation of enzymes Metabolic pathways do not run on a continuous basis, but are regulated according to need Catabolic pathways run if there is demand for ATP; for example

More information

Biological Science 101 General Biology

Biological Science 101 General Biology Lecture Seven: Cellular Respiration Ch. 9, Pgs. 163-181 Figs. 9.2-9.20 Biological Science 101 General Biology Cellular Respiration: - A series of processes that is involved in converting food to energy

More information

UNIT #3: Enzymes. What is an enzyme? How do enzymes work?

UNIT #3: Enzymes. What is an enzyme? How do enzymes work? UNIT #3: Enzymes What is an enzyme? How does an enzyme work? How is an enzyme structured? What are some factors that affect enzyma8c reac8ons? How are enzymes controlled in the body? What is an enzyme?

More information

Do Now #1. Name: Enzymes & ph. 1. Enzymes, hormones and cell receptors are examples of which type of macromolecule?

Do Now #1. Name: Enzymes & ph. 1. Enzymes, hormones and cell receptors are examples of which type of macromolecule? Name: Do Now #1 Enzymes & ph 1. Enzymes, hormones and cell receptors are examples of which type of macromolecule? 2. What do you think enzymes do for the body? Chemical reactions with enzymes are used

More information

Qualitative test of protein-lab2

Qualitative test of protein-lab2 1- Qualitative chemical reactions of amino acid protein functional groups: Certain functional groups in proteins can react to produce characteristically colored products. The color intensity of the product

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Practice Quiz 1 AP Bio Sept 2016 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The element present in all organic molecules is A) hydrogen.

More information

BIOCHEMISTRY I HOMEWORK III DUE 10/15/03 66 points total + 2 bonus points = 68 points possible Swiss-PDB Viewer Exercise Attached

BIOCHEMISTRY I HOMEWORK III DUE 10/15/03 66 points total + 2 bonus points = 68 points possible Swiss-PDB Viewer Exercise Attached BIOCHEMISTRY I HOMEWORK III DUE 10/15/03 66 points total + 2 bonus points = 68 points possible Swiss-PDB Viewer Exercise Attached 1). 20 points total T or F (2 points each; if false, briefly state why

More information