Review Sessions for MT 1

Size: px
Start display at page:

Download "Review Sessions for MT 1"

Transcription

1 Review Sessions for MT 1 FRI (4/17): Mon (4/20): Kleiber all, 5-7 p.m. Kleiber all, 5-7 p.m. See ESSETIALS for MIDTERM 1 Problem sets and Midterms of 2008 and 2007 posted on the real 103 website (My UCDavis)

2 MIDTERM 1 ext Tuesday (4/21 from 1:40 3:00 p.m.) Seating Assignments (last name initial) (A-) Med Sci C 180 (I-Z) 198 Young all Bring a calculator supporting log functions!

3 Lecture 6 Degradation of other carbohydrates Pyruvate Dehydrogenase Complex (PD) Co-Factors, Reactions, Enzymes

4 The Powertrain of uman Metabolism (verview) CARBYDRATES PRTEIS LIPIDS Glucose Amino acids Fatty acids xaloacetate aerobic 2 Glycogen Glucose-6-P Pyruvate Acetyl-CoA AD ATP Glycolysis C 2 2 anaerobic Lactate Ketone bodies Ribose-5-P Cholesterol ADP AD p. 21

5 The Powertrain of uman Metabolism (verview) CARBYDRATES PRTEIS LIPIDS Sucrose Lactose Fructose Mannose Glycerol Galactose Starch Glucose xaloacetate Amino acids Fatty acids aerobic 2 Glycogen Glucose-6-P Pyruvate Acetyl-CoA AD ATP Glycolysis C 2 2 anaerobic Lactate Ketone bodies Ribose-5-P Cholesterol ADP AD p. 21

6 ydrolysis of Sucrose and Lactose C 2 glucosyl Sucrose 2 C C 2 fructosyl glucose (α1 β2) fructose Sucrose + 2 Glu + Fru Enzyme (ydrolase( ydrolase): Invertase (saliva, small intestines) p. 34

7 C 2 glucosyl Lactose C 2 galactosyl galactose (β1 4) glucose Lactose + 2 Gal + Glu Enzyme (ydrolase( ydrolase): Lactase (babies, weening animals) Lactose Intolerance p. 34

8 Metabolism of Fructose, Mannose, and Glycerol A. Fructose C 2 C 2 ATP 1 ADP C 2 C 2 P 2-3 Fructose F-6-P R C 2 C 2 Fructose ATP 14 ADP C 2 P 2-3 C 2 F-1-P 15 C 2 P 3 2- C 2 + C C 2 Dihydroxyacetone-P (DAP) ATP 16 ADP C C 2 P 3 2- Glyceraldehyde GA-3-P p. 35

9 B. Mannose C C ATP ADP C C 2 C 2 P C 2 P 3 Mannose Mannose-6-P (M-6-P) F-6-P p. 35

10 C. Glycerol C 2 C 2 Glycerol ATP 17 C 2 ADP C 2 P 2-3 Glycerol-3-P AD + 18 AD + + C 2 2- C 2 P 3 DAP p. 35

11 Enzymes for Converting ther Carbohydrates into Intermediates of Glycolysis ydrolases (di-, oligo-, and polysaccharides) Kinases (phosphotransferases; phosphorylation ) Isomerases (ketol isomerases, epimerases, mutases) Dehydrogenases (AD-dependent)

12 Metabolism of Galactose 23 UMP~P-Glc UMP~P-Gal UMP~P = UDP Galactose (Gal) Gal-1-P Glc-1-P p. 36

13 C C 2 C 2 ATP 21 ADP C 2 Metabolism of Galactose P 3 2- α-d-galctose α-d-gal-1-p C 2 P - P - 23 UDP-Glc 22 C 2 P - P - UDP-Gal C 2 α-d-glc-1-p P 3 2- p. 36

14 C 2 α-d-glc-1-p P 3 2- Metabolism of Galactose 24 Phosphoglucomutase 2- C 2 P 3 α-d-glc-6-p p. 36

15 Source of UDP-Glucose C 2 P 2-3 α-d-glc-1-p + - P - P - P - UTP 25 - P - P - - Pyrophosphate (PPi) + C 2 P - UDP-Glc P x Phosphate (Pi) p. 37

16 Degradation of Polysaccharides (Starch, Glycogen)

17 Digestive Tract Dietary Polysaccharides (Starch, Glycogen) Liver, Skeletal Muscles Intracellular Polysaccharides (Glycogen Reserve) ydrolysis (unregulated) Synthesis (ATP-dep.) Phosphorolysis (highly regulated) Glucose Glucose Glc-1-P (Glycolysis) Blood Glucose

18 Structure of Glycogen and Starch 6 C 2 C 2 C C 2 (α1 4) linkages C 2 C 2 (α1 4) linkages C 2 (α1 6) branch point 6C 2 C 2 C 2 C p. 38

19 p. 38 Structure of Glycogen and Starch

20 Starch Grains in Sweet Potato Tuber Cells mse.iastate.edu/images/microscopy/

21 ydrolysis of Dietary Starch and Glycogen β-amylase β-amylase β-amylase (exoglucosidase, plants) α(1 6) Glucosidase (debranching enzyme) β-amylase α-amylase (endoglucosidase) 2 0 (all glucosidases) Glc C Glc Maltase Maltose Glc (α1 4) Glc p. 39

22 Digestive Tract Dietary Polysaccharides (Starch, Glycogen) Liver, Skeletal Muscles Intracellular Polysaccharides (Glycogen Reserve) ydrolysis (unregulated) Synthesis (ATP-dep.) Phosphorolysis (highly regulated) Glucose Glucose Glc-1-P (Glycolysis) Blood Glucose

23 E P A T C Y T E Glycogen Granules (black) online-media. uni-marburg.de

24 Glycogen Granules in Muscle Fibers (white)

25 Phosphorolysis of Intracellular Glycogen on-reducing ends α1,4 linkages 4' 3' 2' Branch point one α1,6 linkage Reducing end 1' P 4 3- (Pi)...linked to protein Glycogen phosphorylase (or Starch phosphorylase) 11 Glc-1-P C 2 2- P 3 Limit dextrin 4' 3' 2' 1' α-(1,6) linkage linked to protein p. 40

26 Limit dextrin 4' 3' 2' 1' α-(1,6) linkage linked to protein Debranching enzyme (the glucanotransferase activity) 1' 4' 3' 2' Debranching enzyme (the α1,6 glucosidase activity) 2 Glucose...linked to protein 4' 3' 2' Glycogen phosphorylase 15 P 4 3- C 2...linked to protein 15 Glc-1-P...linked to protein 2- P 3 p. 40

27 The Powertrain of uman Metabolism (verview) CARBYDRATES PRTEIS LIPIDS Glucose Amino acids Fatty acids ther Carbohydrates xaloacetate 2 Glycogen Glucose-6-P Pyruvate Acetyl-CoA AD ATP Glycolysis C 2 2 Lactate Ketone bodies Ribose-5-P Cholesterol ADP AD p. 21

28 verall Goal: C C CARBYDRATES Glucose ther Carbohydrates Glycolysis PD 2 Glycogen Glucose-6-P Pyruvate Acetyl-CoA AD ATP C 2 C 2 2 Lactate (see p. 21)

29 Glucose 2AD ATP 2AD + + Cytosol Glycolysis 2x Pyruvate 2x Pyruvate 8AD + Mitochondria 2ATP 6x C 2 8AD + + Pyruvate Dehydrogenase (PD) Tricarboxylic Acid (TCA) Cycle

30

31

32 Inner-Membrane Transporters Are Powered by the Proton-Gradient + uter Membrane Pyr Intermembrane Space Inner Membrane + Pyr Mitochondrial Matrix

33 The Pyruvate Dehydrogenase (PD) Complex A. Additional Coenzymes Flavin Adenine Dinucleotide (FAD) Lipoic Acid (Lipoamide( Lipoamide) Coenzyme A (CoA( CoA-S)

34 FAD, FAD 2, FM, FM 2 2 Riboflavin (Vitamin B 2 ) 2 C C C C C 2 P P C 2 3 C C 3 C C 3 C 3 C C FAD 2 or FM 2 p. 41

35 Lipoic Acid (Lipoamide( Lipoamide) S S S S 2 C C (C 2 ) 4 C (C 2 ) 4 C 2 C C Rest C 2 C C 2 Lysine residue of enzyme (isopeptide bond) p. 42

36 Coenzyme A (CoA( CoA-S) Coenzyme A (CoA-S) 2 Pantothenic Acid (Vitamin B 5 ) C 2 P S C 2 C 2 C C 2 C 2 C C C 3 C C 2 P C 3 P CoA-S 3 C C S CoA Acetyl CoA p. 42

37 B. Reactions of the Pyruvate Dehydrogenase Complex verall Reaction Pyruvate + AD + + CoA-S Acetyl-CoA + C 2 + AD + + (ΔG o = kj mol -1 ) TPP FAD Five Co-factors: E1 E3 S S AD + Coenzyme A E2 TPP Lipoic Acid FAD cwx.prenhall.com p. 43

38 p. 43

39 C. Mechanism of Pyruvate Dehydrogenase (E1) R 1 "Business end" of TPP is thioazolium ring C 3 C C C S R2 R 1 C 3 C C C S Carbanion R2 - C C C 3 R 1 3 C C 3 C C C S R2 C 2 R 1 3 C Intermediates common to both PDC and PD enzymes C 3 C C R 2 C S C - p. 44

40 R 1 3 C C 3 C C R 2 C S C 2 R 1 3 C Intermediates common to both PDC and PD enzymes C 3 C C R 2 C S C - S S (C 2 ) 4 Lipoamide C Enzyme (E2) C 3 C 3 C C R2 R 1 + C S C S S (C 2 ) 4 C Enzyme (E2) CoenzymeA (CoA or CoAS) 3 C C ScoA + S S (C 2 ) 4 E2 FAD 2 C FAD AD + Acetyl-CoA AD + + p. 44

41 Glucose 2AD + Cytosol 2 2 2ATP 2AD + + Glycolysis 2 Pyruvate 2 Pyruvate 2AD + 2CoA-S Mitochondria 2C 2 2AD + + PD Complex 2 Acetyl~CoA

Midterm 1 (in class) February 1 (next Thur) (bring calculator, log functions) Review Sessions

Midterm 1 (in class) February 1 (next Thur) (bring calculator, log functions) Review Sessions Midterm 1 (in class) February 1 (next Thur) (bring calculator, log functions) Review Sessions MN (1/29): WED (1/31): 212 Veihmeyer, 4-6 p.m. 198 Young, 6-8 p.m. Lecture 7 Pyruvate Dehydrogenase (PD)) omplex

More information

III. Metabolism Glucose Catabolism Part II

III. Metabolism Glucose Catabolism Part II Department of Chemistry and Biochemistry University of Lethbridge III. Metabolism Glucose Catabolism Part II Slide 1 Metabolic Fates of NADH and Pyruvate Cartoon: Fate of pyruvate, the product of glycolysis.

More information

Gluconeogenesis. Gluconeogenesis / TCA 11/12/2009. Free energy changes in glycolysis 11/13/2009

Gluconeogenesis. Gluconeogenesis / TCA 11/12/2009. Free energy changes in glycolysis 11/13/2009 Gluconeogenesis Gluconeogenesis / TCA 11/12/2009 Gluconeogenesis is the process whereby precursors such as lactate, pyruvate, glycerol, and amino acids are converted to glucose. Fasting requires all the

More information

Comparison of catabolic and anabolic pathways

Comparison of catabolic and anabolic pathways Comparison of catabolic and anabolic pathways Three stages of catabolism Glucose Synthesis of compounds e.g. lactose glycolipids Glucose-6-P Pentosephosphate Pathway Glycolysis Glycogenesis Acetyl-CoA

More information

Glycogen Metabolism. BCH 340 lecture 9

Glycogen Metabolism. BCH 340 lecture 9 Glycogen Metabolism BC 340 lecture 9 Structure of glycogen Glycogen is homopolysaccharide formed of branched D-glucose units The primary glycosidic bond is 1-4-linkage Each branch is made of 6-12 glucose

More information

Major Pathways in Carbohydrate Metabolism

Major Pathways in Carbohydrate Metabolism Major Pathways in Carbohydrate Metabolism 70 Stage 1: Digestion of Carbohydrates In Stage 1, the digestion of carbohydrates Begins in the mouth where salivary amylase breaks down polysaccharides to smaller

More information

Pathway overview. Glucose + 2NAD + + 2ADP +2Pi 2NADH + 2pyruvate + 2ATP + 2H 2 O + 4H +

Pathway overview. Glucose + 2NAD + + 2ADP +2Pi 2NADH + 2pyruvate + 2ATP + 2H 2 O + 4H + Glycolysis Glycolysis The conversion of glucose to pyruvate to yield 2ATP molecules 10 enzymatic steps Chemical interconversion steps Mechanisms of enzyme conversion and intermediates Energetics of conversions

More information

Carbohydrate. Metabolism

Carbohydrate. Metabolism Carbohydrate Metabolism Dietary carbohydrates (starch, glycogen, sucrose, lactose Mouth salivary amylase Summary of Carbohydrate Utilization Utilization for energy (glycolysis) ligosaccharides and disaccharides

More information

Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004

Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004 Name Write your name on the back of the exam Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004 This examination consists of forty-four questions, each having 2 points. The remaining

More information

Biochemistry - I SPRING Mondays and Wednesdays 9:30-10:45 AM (MR-1307) Lecture 16. Based on Profs. Kevin Gardner & Reza Khayat

Biochemistry - I SPRING Mondays and Wednesdays 9:30-10:45 AM (MR-1307) Lecture 16. Based on Profs. Kevin Gardner & Reza Khayat Biochemistry - I Mondays and Wednesdays 9:30-10:45 AM (MR-1307) SPRING 2017 Lecture 16 Based on Profs. Kevin Gardner & Reza Khayat 1 Catabolism of Di- and Polysaccharides Catabolism (digestion) begins

More information

Introduction to Carbohydrate metabolism

Introduction to Carbohydrate metabolism Introduction to Carbohydrate metabolism Some metabolic pathways of carbohydrates 1- Glycolysis 2- Krebs cycle 3- Glycogenesis 4- Glycogenolysis 5- Glyconeogenesis - Pentose Phosphate Pathway (PPP) - Curi

More information

GLYCOLYSIS Generation of ATP from Metabolic Fuels

GLYCOLYSIS Generation of ATP from Metabolic Fuels GLYCOLYSIS Generation of ATP from Metabolic Fuels - Catabolic process degradative pathway - Energy stored in sugars (carbohydrates) released to perform biological work - Transforms GLUCOSE to PYRUVATE

More information

Medical Biochemistry Metabolism with Clinical Correlations CARBOHYDRATE METABOLISM

Medical Biochemistry Metabolism with Clinical Correlations CARBOHYDRATE METABOLISM Medical Biochemistry Metabolism with Clinical Correlations CARBOHYDRATE METABOLISM DIGESTIVE MECHANISM FOR CARBOHYDRATES 1. In the oral cavity - the salivary α-amylase - a single polypeptide chain, stabilized

More information

CHY2026: General Biochemistry UNIT 7& 8: CARBOHYDRATE METABOLISM

CHY2026: General Biochemistry UNIT 7& 8: CARBOHYDRATE METABOLISM CHY2026: General Biochemistry UNIT 7& 8: CARBOHYDRATE METABOLISM Metabolism Bioenergetics is the transfer and utilization of energy in biological systems The direction and extent to which a chemical reaction

More information

METABOLISM Sri Widia A Jusman Department of Biochemistry & Molecular Biology FMUI

METABOLISM Sri Widia A Jusman Department of Biochemistry & Molecular Biology FMUI METABOLISM Sri Widia A Jusman Department of Biochemistry & Molecular Biology FMUI 1 METABOLISM Process of how cells acquire, transform, store and use energy Study of the chemistry, regulation and energetics

More information

Lecture 16. Finish lipid metabolism (Triglycerides, Isoprenoids/Steroids, Glyoxylate cycle) Amino acid metabolism (Urea cycle) Google Man III

Lecture 16. Finish lipid metabolism (Triglycerides, Isoprenoids/Steroids, Glyoxylate cycle) Amino acid metabolism (Urea cycle) Google Man III Lecture 16 Finish lipid metabolism (Triglycerides, Isoprenoids/Steroids, Glyoxylate cycle) Amino acid metabolism (Urea cycle) Google Man III The Powertrain of Human Metabolism (verview) CARBHYDRATES PRTEINS

More information

Triose-P isomerase Enolase

Triose-P isomerase Enolase Select the single best answer. 1 onsider the catabolism of glucose to carbon dioxide and water. In this metabolic direction, which of these enzymes catalyzes a reaction where the PRUTS have one more "high-energy"

More information

Chapter 13 Carbohydrate Metabolism

Chapter 13 Carbohydrate Metabolism Chapter 13 Carbohydrate Metabolism Chapter bjectives: Learn about Blood glucose. Learn about the glycolysis reaction pathways and the regulation of glycolysis. Learn about the fates of pyruvate under various

More information

ATP. Principles of Energy Harvest. Chapter 9~ The point is to make ATP! Cellular Respiration: Harvesting Chemical Energy. What s the point?

ATP. Principles of Energy Harvest. Chapter 9~ The point is to make ATP! Cellular Respiration: Harvesting Chemical Energy. What s the point? Chapter 9~ Cellular Respiration: Harvesting Chemical Energy What s the point? The point is to make! 2006-2007 Principles of Energy Harvest Catabolic pathway Fermentation Cellular Respiration C6H126 + 62

More information

Chapter 24 Lecture Outline

Chapter 24 Lecture Outline Chapter 24 Lecture Outline Carbohydrate Lipid and Protein! Metabolism! In the catabolism of carbohydrates, glycolysis converts glucose into pyruvate, which is then metabolized into acetyl CoA. Prepared

More information

Lecture 34. Carbohydrate Metabolism 2. Glycogen. Key Concepts. Biochemistry and regulation of glycogen degradation

Lecture 34. Carbohydrate Metabolism 2. Glycogen. Key Concepts. Biochemistry and regulation of glycogen degradation Lecture 34 Carbohydrate Metabolism 2 Glycogen Key Concepts Overview of Glycogen Metabolism Biochemistry and regulation of glycogen degradation Biochemistry and regulation of glycogen synthesis What mechanisms

More information

Chemistry 1120 Exam 4 Study Guide

Chemistry 1120 Exam 4 Study Guide Chemistry 1120 Exam 4 Study Guide Chapter 12 12.1 Identify and differentiate between macronutrients (lipids, amino acids and saccharides) and micronutrients (vitamins and minerals). Master Tutor Section

More information

Link download full of Test Bank for Fundamentals of Biochemistry 4th Edition by Voet

Link download full of Test Bank for Fundamentals of Biochemistry 4th Edition by Voet Link download full of Test Bank for Fundamentals of Biochemistry 4th Edition by Voet http://testbankair.com/download/test-bank-for-fundamentals-ofbiochemistry-4th-edition-by-voet/ Chapter 16: Glycogen

More information

This is an example outline of 3 lectures in BSC (Thanks to Dr. Ellington for sharing this information.)

This is an example outline of 3 lectures in BSC (Thanks to Dr. Ellington for sharing this information.) This is an example outline of 3 lectures in BSC 2010. (Thanks to Dr. Ellington for sharing this information.) Topic 10: CELLULAR RESPIRATION (lectures 14-16) OBJECTIVES: 1. Know the basic reactions that

More information

CHE 242 Exam 3 Practice Questions

CHE 242 Exam 3 Practice Questions CHE 242 Exam 3 Practice Questions Glucose metabolism 1. Below is depicted glucose catabolism. Indicate on the pathways the following: A) which reaction(s) of glycolysis are irreversible B) where energy

More information

Glycogen Metabolism Dr. Mohammad Saadeh

Glycogen Metabolism Dr. Mohammad Saadeh Glycogen Metabolism Presented by Dr. Mohammad Saadeh The requirements for the Pharmaceutical Biochemistry II Philadelphia University Faculty of pharmacy I. overview Glucose is energy source for Brain.

More information

2. What is molecular oxygen directly converted into? a. Carbon Dioxide b. Water c. Glucose d. None of the Above

2. What is molecular oxygen directly converted into? a. Carbon Dioxide b. Water c. Glucose d. None of the Above Biochem 1 Mock Exam 3 Chapter 11: 1. What is glucose completely oxidized into? a. Carbon Dioxide and Water b. Carbon Dioxide and Oxygen c. Oxygen and Water d. Water and Glycogen 2. What is molecular oxygen

More information

Chemical Energy. Valencia College

Chemical Energy. Valencia College 9 Pathways that Harvest Chemical Energy Valencia College 9 Pathways that Harvest Chemical Energy Chapter objectives: How Does Glucose Oxidation Release Chemical Energy? What Are the Aerobic Pathways of

More information

BCH 4054 Chapter 19 Lecture Notes

BCH 4054 Chapter 19 Lecture Notes BCH 4054 Chapter 19 Lecture Notes 1 Chapter 19 Glycolysis 2 aka = also known as verview of Glycolysis aka The Embden-Meyerhoff Pathway First pathway discovered Common to almost all living cells ccurs in

More information

Energy Transformation: Cellular Respiration Outline 1. Sources of cellular ATP 2. Turning chemical energy of covalent bonds between C-C into energy

Energy Transformation: Cellular Respiration Outline 1. Sources of cellular ATP 2. Turning chemical energy of covalent bonds between C-C into energy Energy Transformation: Cellular Respiration Outline 1. Sources of cellular ATP 2. Turning chemical energy of covalent bonds between C-C into energy for cellular work (ATP) 3. Importance of electrons and

More information

How Cells Release Chemical Energy. Chapter 7

How Cells Release Chemical Energy. Chapter 7 How Cells Release Chemical Energy Chapter 7 7.1 Overview of Carbohydrate Breakdown Pathways All organisms (including photoautotrophs) convert chemical energy of organic compounds to chemical energy of

More information

A cell has enough ATP to last for about three seconds.

A cell has enough ATP to last for about three seconds. Energy Transformation: Cellular Respiration Outline 1. Energy and carbon sources in living cells 2. Sources of cellular ATP 3. Turning chemical energy of covalent bonds between C-C into energy for cellular

More information

BIO16 Mapua Institute of Technology

BIO16 Mapua Institute of Technology BIO16 Mapua Institute of Technology The Marathon If somebody challenged you to a run a race, how should you prepare to win? 1. Practice 2. Eat the right foods 3. Drink the right liquids Energy All living

More information

NBCE Mock Board Questions Biochemistry

NBCE Mock Board Questions Biochemistry 1. Fluid mosaic describes. A. Tertiary structure of proteins B. Ribosomal subunits C. DNA structure D. Plasma membrane structure NBCE Mock Board Questions Biochemistry 2. Where in the cell does beta oxidation

More information

Biol 219 Lec 7 Fall 2016

Biol 219 Lec 7 Fall 2016 Cellular Respiration: Harvesting Energy to form ATP Cellular Respiration and Metabolism Glucose ATP Pyruvate Lactate Acetyl CoA NAD + Introducing The Players primary substrate for cellular respiration

More information

Chapter 13 - TCA Cycle

Chapter 13 - TCA Cycle Chapter 13 TCA Cycle The third fate of glucose/pyruvate is complete oxidation to C 2 + H 2 in the matrix of the mitochondrion. The 1 st step is the oxidation and decarboxylation of pyruvate to AcetylCoA,

More information

Chapter 22. Before the class. 10 Steps of glycolysis. Outline. Can you tell the ten steps of glycolysis? Do you know how glucoses are

Chapter 22. Before the class. 10 Steps of glycolysis. Outline. Can you tell the ten steps of glycolysis? Do you know how glucoses are Chapter 22 Gluconeogenesis, Glycogen metabolism, and the Pentose Phosphate Pathway Reginald H. Garrett Charles M. Grisham 1 Before the class Can you tell the ten steps of glycolysis? Do you know how glucoses

More information

CHAPTER 24: Carbohydrate, Lipid, & Protein Metabolism. General, Organic, & Biological Chemistry Janice Gorzynski Smith

CHAPTER 24: Carbohydrate, Lipid, & Protein Metabolism. General, Organic, & Biological Chemistry Janice Gorzynski Smith CHAPTER 24: Carbohydrate, Lipid, & Protein Metabolism General, Organic, & Biological Chemistry Janice Gorzynski Smith CHAPTER 24: Carbohydrate, Lipid, & Protein Metabolism Learning Objectives: q Role in

More information

METABOLISM Biosynthetic Pathways

METABOLISM Biosynthetic Pathways METABOLISM Biosynthetic Pathways Metabolism Metabolism involves : Catabolic reactions that break down large, complex molecules to provide energy and smaller molecules. Anabolic reactions that use ATP energy

More information

CARBOHYDRATE METABOLISM

CARBOHYDRATE METABOLISM Note (Study Glycolysis, fermentation and their regulation, Gluconeogenesis and glycogenolysis, Metabolism of galactose, TCA cycle and Amphibolic role of the cycle, and Glyoxalic acid cycle, HMP shunt in

More information

I tried to put as many questions as possible, but unfortunately only answers were found without the questions.

I tried to put as many questions as possible, but unfortunately only answers were found without the questions. I tried to put as many questions as possible, but unfortunately only answers were found without the questions. These are some questions from doctor2015 med exam : 1. One of them isn t acute phase protein

More information

I tried to put as many questions as possible, but unfortunately only answers were found without the questions.

I tried to put as many questions as possible, but unfortunately only answers were found without the questions. I tried to put as many questions as possible, but unfortunately only answers were found without the questions. These are some questions from doctor2015 med exam : 1. One of them isn t acute phase protein

More information

PRINT your Name Student (FAMILY, first name) Midterm 7:00 P.M.

PRINT your Name Student (FAMILY, first name) Midterm 7:00 P.M. PRINT your Name Student No. (FAMILY, first name) BIOCHEMISTRY 311A VERSION 1 (ONE) Midterm 7:00 P.M. Examiners: Dr. R. E. MacKenzie (69%) Dr. A. Storer (18%) Dr. W. Mushynski (13%) READ THE QUESTIONS CAREFULLY!!

More information

Lecture 16. Finish lipid metabolism (Triglycerides, Isoprenoids/Steroids, Glyoxylate cycle) Amino acid metabolism (Urea cycle) Google Man III

Lecture 16. Finish lipid metabolism (Triglycerides, Isoprenoids/Steroids, Glyoxylate cycle) Amino acid metabolism (Urea cycle) Google Man III Lecture 16 Finish lipid metabolism (Triglycerides, Isoprenoids/Steroids, Glyoxylate cycle) Amino acid metabolism (Urea cycle) Google Man III The Powertrain of Human Metabolism (verview) CARBHYDRATES PRTEINS

More information

Final Review Sessions. 3/16 (FRI) 126 Wellman (4-6 6 pm) 3/19 (MON) 1309 Surge 3 (4-6 6 pm) Office Hours

Final Review Sessions. 3/16 (FRI) 126 Wellman (4-6 6 pm) 3/19 (MON) 1309 Surge 3 (4-6 6 pm) Office Hours Final Review Sessions 3/16 (FRI) 126 Wellman (4-6 6 pm) 3/19 (MON) 1309 Surge 3 (4-6 6 pm) Office ours 3/14 (WED) 9:30 11:30 am (Rebecca) 3/16 (FRI) 9-11 am (Abel) Final ESSENTIALS Posted Lecture 20 ormonal

More information

Lecture 3 Topics. Review of ATP, enzymes and co-factors. Esssentials of enzyme regulation. Carbohydrate Catabolism. Brief carbohydrate review

Lecture 3 Topics. Review of ATP, enzymes and co-factors. Esssentials of enzyme regulation. Carbohydrate Catabolism. Brief carbohydrate review Lecture 3 Topics Review of ATP, enzymes and co-factors Esssentials of enzyme regulation arbohydrate atabolism Brief carbohydrate review First pathway Electrostatic bond strain Ionization of ADP product

More information

Carbohydrates Dr. Ameerah M. Zarzoor

Carbohydrates Dr. Ameerah M. Zarzoor Carbohydrates Dr. Ameerah M. Zarzoor What Are Carbohydrates? Carbohydrates are the most abundant biomolecules on Earth Produced by plants during photosynthesis Carbohydrates are polyhydroxyl aldehydes

More information

Chemistry 1506: Allied Health Chemistry 2. Section 11: Bioenergetics. Energy Generation in the Cell. Outline

Chemistry 1506: Allied Health Chemistry 2. Section 11: Bioenergetics. Energy Generation in the Cell. Outline Chemistry 1506 Dr. unter s Class Section 11 Notes - Page 1/17 Chemistry 1506: Allied ealth Chemistry 2 Section 11: Bioenergetics Energy Generation in the Cell utline SECTIN 11.1 INTRDUCTIN & MITCNDRIA...2

More information

Chemistry B11 Chapter 17 Metabolic pathways & Energy production

Chemistry B11 Chapter 17 Metabolic pathways & Energy production Chapter 17 Metabolic pathways & Energy production Metabolism: all the chemical reactions that take place in living cells to break down or build molecules are known as metabolism. The term metabolism refers

More information

7.05 Spring 2004 April 9, Recitation #7

7.05 Spring 2004 April 9, Recitation #7 7.0 Spring 00 April 9, 00 Recitation #7 ontact Information TA: Victor Sai Recitation: Friday, -pm, - -mail: sai@mit.edu ffice ours: Friday, -pm, - Unit Schedule Recitation/xam Date Topics Recitation #7

More information

III. 6. Test. Respiració cel lular

III. 6. Test. Respiració cel lular III. 6. Test. Respiració cel lular Chapter Questions 1) What is the term for metabolic pathways that release stored energy by breaking down complex molecules? A) anabolic pathways B) catabolic pathways

More information

Citric Acid Cycle: Central Role in Catabolism. Entry of Pyruvate into the TCA cycle

Citric Acid Cycle: Central Role in Catabolism. Entry of Pyruvate into the TCA cycle Citric Acid Cycle: Central Role in Catabolism Stage II of catabolism involves the conversion of carbohydrates, fats and aminoacids into acetylcoa In aerobic organisms, citric acid cycle makes up the final

More information

CELLULAR RESPIRATION SUMMARY EQUATION. C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION

CELLULAR RESPIRATION SUMMARY EQUATION. C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION Oxidation: partial or complete loss of electrons Reduction: partial or complete gain of electrons

More information

Ch 9: Cellular Respiration

Ch 9: Cellular Respiration Ch 9: Cellular Respiration Cellular Respiration An overview Exergonic reactions and catabolic pathway Energy stored in bonds of food molecules is transferred to ATP Cellular respiration provides the energy

More information

What s the point? The point is to make ATP! ATP

What s the point? The point is to make ATP! ATP 2006-2007 What s the point? The point is to make ATP! ATP Glycolysis 2 ATP Kreb s cycle 2 ATP Life takes a lot of energy to run, need to extract more energy than 4 ATP! There s got to be a better way!

More information

respiration mitochondria mitochondria metabolic pathways reproduction can fuse or split DRP1 interacts with ER tubules chapter DRP1 ER tubule

respiration mitochondria mitochondria metabolic pathways reproduction can fuse or split DRP1 interacts with ER tubules chapter DRP1 ER tubule mitochondria respiration chapter 3-4 shape highly variable can fuse or split structure outer membrane inner membrane cristae intermembrane space mitochondrial matrix free ribosomes respiratory enzymes

More information

Lecture 3 Topics. Role of co-factors. Esssentials of enzyme regulation. Carbohydrate Catabolism. Brief carbohydrate review.

Lecture 3 Topics. Role of co-factors. Esssentials of enzyme regulation. Carbohydrate Catabolism. Brief carbohydrate review. Lecture 3 Topics Role of co-factors in catalysis Esssentials of enzyme regulation arbohydrate atabolism Brief carbohydrate review First pathway ATP as universial carrier of chemical energy Role of enzymes

More information

ANSC 619 PHYSIOLOGICAL CHEMISTRY OF LIVESTOCK SPECIES. Carbohydrate Metabolism

ANSC 619 PHYSIOLOGICAL CHEMISTRY OF LIVESTOCK SPECIES. Carbohydrate Metabolism ANSC 619 PHYSIOLOGICAL CHEMISTRY OF LIVESTOCK SPECIES I. Glycolysis A. Pathway Regulation of glycolysis Hexokinase: Activated by glucose. Inhibited by G6P. 6-Phosphofructokinase: Inhibited by ATP, especially

More information

CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM /19 BY: MOHAMAD FAHRURRAZI TOMPANG

CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM /19 BY: MOHAMAD FAHRURRAZI TOMPANG CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM 1 2018/19 BY: MOHAMAD FAHRURRAZI TOMPANG Chapter Outline (19-1) The central role of the citric acid cycle in metabolism (19-2) The overall pathway of the citric

More information

Chapter 9. Cellular Respiration and Fermentation

Chapter 9. Cellular Respiration and Fermentation Chapter 9 Cellular Respiration and Fermentation Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates O 2 and organic molecules, which are used in cellular respiration

More information

Ch. 9 Cell Respiration. Title: Oct 15 3:24 PM (1 of 53)

Ch. 9 Cell Respiration. Title: Oct 15 3:24 PM (1 of 53) Ch. 9 Cell Respiration Title: Oct 15 3:24 PM (1 of 53) Essential question: How do cells use stored chemical energy in organic molecules and to generate ATP? Title: Oct 15 3:28 PM (2 of 53) Title: Oct 19

More information

We must be able to make glucose

We must be able to make glucose Biosynthesis of Carbohydrates Synthesis of glucose (gluconeogenesis) Glycogen Formation of pentoses and NADPH Photosynthesis We must be able to make glucose Compulsory need for glucose (above all the brain)

More information

Integration of Metabolism

Integration of Metabolism Integration of Metabolism Metabolism is a continuous process. Thousands of reactions occur simultaneously in order to maintain homeostasis. It ensures a supply of fuel, to tissues at all times, in fed

More information

Cellular Respiration Harvesting Chemical Energy ATP

Cellular Respiration Harvesting Chemical Energy ATP Cellular Respiration Harvesting Chemical Energy ATP 2006-2007 What s the point? The point is to make ATP! ATP 2006-2007 Harvesting stored energy Energy is stored in organic molecules carbohydrates, fats,

More information

CLASS 11 th. Respiration in Plants

CLASS 11 th. Respiration in Plants CLASS 11 th 01. Introduction All living cells require continuous supply of energy to perform various vital activities. This energy is released in controlled manner for cellular use via the process of respiration.

More information

Moh Tarek. Razi Kittaneh. Jaqen H ghar

Moh Tarek. Razi Kittaneh. Jaqen H ghar 14 Moh Tarek Razi Kittaneh Jaqen H ghar Naif Karadsheh Gluconeogenesis is making glucose from non-carbohydrates precursors. Although Gluconeogenesis looks like Glycolysis in many steps, it is not the simple

More information

Chemistry 506: Allied Health Chemistry 2. Chapter 20: Bioenergetics. Energy Generation in the Cell

Chemistry 506: Allied Health Chemistry 2. Chapter 20: Bioenergetics. Energy Generation in the Cell Chemistry 506 Dr. unter s Class Chapter 20. Chemistry 506: Allied ealth Chemistry 2 1 Chapter 20: Bioenergetics Energy Generation in the Cell Introduction to General, rganic & Biochemistry, 5 th Edition

More information

7 Pathways That Harvest Chemical Energy

7 Pathways That Harvest Chemical Energy 7 Pathways That Harvest Chemical Energy Pathways That Harvest Chemical Energy How Does Glucose Oxidation Release Chemical Energy? What Are the Aerobic Pathways of Glucose Metabolism? How Is Energy Harvested

More information

NAME KEY ID # EXAM 3a BIOC 460. Wednesday April 10, Please include your name and ID# on each page. Limit your answers to the space provided!

NAME KEY ID # EXAM 3a BIOC 460. Wednesday April 10, Please include your name and ID# on each page. Limit your answers to the space provided! EXAM 3a BIOC 460 Wednesday April 10, 2002 Please include your name and ID# on each page. Limit your answers to the space provided! 1 1. (5 pts.) Define the term energy charge: Energy charge refers to the

More information

2: Describe glycolysis in general terms, including the molecules that exist at its start and end and some intermediates

2: Describe glycolysis in general terms, including the molecules that exist at its start and end and some intermediates 1 Life 20 - Glycolysis Raven & Johnson Chapter 9 (parts) Objectives 1: Know the location of glycolysis in a eukaryotic cell 2: Describe glycolysis in general terms, including the molecules that exist at

More information

Glycolysis. Intracellular location Rate limiting steps

Glycolysis. Intracellular location Rate limiting steps Glycolysis Definition Fx Fate Site Intracellular location Rate limiting steps Regulation Consume ATP Subs level phosphoryla tion Key reactions control points Nb Oxidation of glucose to give pyruvate (

More information

Biochemistry Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology Kharagpur. Lecture - 27 Metabolism III

Biochemistry Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology Kharagpur. Lecture - 27 Metabolism III Biochemistry Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology Kharagpur Lecture - 27 Metabolism III In the last step of our metabolism of carbohydrates we are going to consider

More information

CELLULAR METABOLISM. Metabolic pathways can be linear, branched, cyclic or spiral

CELLULAR METABOLISM. Metabolic pathways can be linear, branched, cyclic or spiral CHM333 LECTURE 24 & 25: 3/27 29/13 SPRING 2013 Professor Christine Hrycyna CELLULAR METABOLISM What is metabolism? - How cells acquire, transform, store and use energy - Study reactions in a cell and how

More information

What is Respiration? The process of respiration is where organisms convert chemical energy into cellular energy, which is known as ATP. Adenine Ribose P P P Cellular Respiration high energy sugar low energy

More information

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General Cellular Pathways That Harvest Chemical Energy A. Obtaining Energy and Electrons from Glucose Lecture Series 12 Cellular Pathways That Harvest Chemical Energy B. An Overview: Releasing Energy from Glucose

More information

Glycolysis Part 2. BCH 340 lecture 4

Glycolysis Part 2. BCH 340 lecture 4 Glycolysis Part 2 BCH 340 lecture 4 Regulation of Glycolysis There are three steps in glycolysis that have enzymes which regulate the flux of glycolysis These enzymes catalyzes irreversible reactions of

More information

Metabolic Biochemistry / BIBC 102 Midterm Exam / Spring 2005

Metabolic Biochemistry / BIBC 102 Midterm Exam / Spring 2005 Metabolic Biochemistry / BIBC 102 Midterm Exam / Spring 2005 I. (20 points) Fill in all of the enzyme catalyzed reactions which convert glycogen to lactate. Draw the correct structure for each intermediate

More information

Chapter 13 Carbohydrate Metabolism

Chapter 13 Carbohydrate Metabolism Chapter 13 Carbohydrate Metabolism Metabolism of Foods Food is broken down into carbohydrates, lipids, and proteins and sent through catabolic pathways to produce energy. Glycolysis glucose 2 P i 2 ADP

More information

Metabolism. Chapter 5. Catabolism Drives Anabolism 8/29/11. Complete Catabolism of Glucose

Metabolism. Chapter 5. Catabolism Drives Anabolism 8/29/11. Complete Catabolism of Glucose 8/29/11 Metabolism Chapter 5 All of the reactions in the body that require energy transfer. Can be divided into: Cell Respiration and Metabolism Anabolism: requires the input of energy to synthesize large

More information

Chapter 9 Overview. Aerobic Metabolism I: The Citric Acid Cycle. Live processes - series of oxidation-reduction reactions. Aerobic metabolism I

Chapter 9 Overview. Aerobic Metabolism I: The Citric Acid Cycle. Live processes - series of oxidation-reduction reactions. Aerobic metabolism I n n Chapter 9 Overview Aerobic Metabolism I: The Citric Acid Cycle Live processes - series of oxidation-reduction reactions Ingestion of proteins, carbohydrates, lipids Provide basic building blocks for

More information

Vocabulary. Chapter 19: The Citric Acid Cycle

Vocabulary. Chapter 19: The Citric Acid Cycle Vocabulary Amphibolic: able to be a part of both anabolism and catabolism Anaplerotic: referring to a reaction that ensures an adequate supply of an important metabolite Citrate Synthase: the enzyme that

More information

Bio Metabolism. Metabolism Life is a bag of biochemistry. Chloroplasts and mitochondria. What is food?

Bio Metabolism. Metabolism Life is a bag of biochemistry. Chloroplasts and mitochondria. What is food? Metabolism Life is a bag of biochemistry 1 Chloroplasts and mitochondria Heat Carbohydrate O 2 CO 2 + H 2 O Heat Chloroplast Mitochondria 2 What is food? Proteins - polymers of amino acids Carbohydrates

More information

Enzymes and Metabolism

Enzymes and Metabolism PowerPoint Lecture Slides prepared by Vince Austin, University of Kentucky Enzymes and Metabolism Human Anatomy & Physiology, Sixth Edition Elaine N. Marieb 1 Protein Macromolecules composed of combinations

More information

(de novo synthesis of glucose)

(de novo synthesis of glucose) Gluconeogenesis (de novo synthesis of glucose) Gluconeogenesis Gluconeogenesis is the biosynthesis of new glucose. The main purpose of gluconeogenesis is to maintain the constant blood Glc concentration.

More information

Mitochondria and ATP Synthesis

Mitochondria and ATP Synthesis Mitochondria and ATP Synthesis Mitochondria and ATP Synthesis 1. Mitochondria are sites of ATP synthesis in cells. 2. ATP is used to do work; i.e. ATP is an energy source. 3. ATP hydrolysis releases energy

More information

INTRODUCTORY BIOCHEMISTRY. BI 28 Second Midterm Examination April 3, 2007

INTRODUCTORY BIOCHEMISTRY. BI 28 Second Midterm Examination April 3, 2007 INTRODUCTORY BIOCHEMISTRY BI 28 Second Midterm Examination April 3, 2007 Name SIS # Make sure that your name or SIS # is on every page. This is the only way we have of matching you with your exam after

More information

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5 1. Which of the following statements about NAD + is false? a. NAD + is reduced to NADH during both glycolysis and the citric acid cycle. b. NAD + has more chemical energy than NADH. c. NAD + is reduced

More information

How Did Energy-Releasing Pathways Evolve? (cont d.)

How Did Energy-Releasing Pathways Evolve? (cont d.) How Did Energy-Releasing Pathways Evolve? (cont d.) 7.1 How Do Cells Access the Chemical Energy in Sugars? In order to use the energy stored in sugars, cells must first transfer it to ATP The energy transfer

More information

number Done by Corrected by Doctor Nayef Karadsheh

number Done by Corrected by Doctor Nayef Karadsheh number 16 Done Huda shaheen by Corrected by حسام أبو عوض Doctor Nayef Karadsheh 1 In the previous lecture, we talked about glycogen metabolism and regulation. In this sheet we will talk about the metabolism

More information

In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic

In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic Glycolysis 1 In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic glycolysis. If this pyruvate is converted instead

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS MULTIPLE CHOICE QUESTIONS 1. Which of the following statements concerning anabolic reactions is FALSE? A. They are generally endergonic. B. They usually require ATP. C. They are part of metabolism. D.

More information

Yield of energy from glucose

Yield of energy from glucose Paper : Module : 05 Yield of Energy from Glucose Principal Investigator, Paper Coordinator and Content Writer Prof. Ramesh Kothari, Professor Dept. of Biosciences, Saurashtra University, Rajkot - 360005

More information

Carbohydrate metabolism 3. Atip Likidlilid

Carbohydrate metabolism 3. Atip Likidlilid Carbohydrate metabolism 3 Atip Likidlilid Glycogenolysis muscle glycogen (1-2 % by weight) liver glycogen (6-10 % by weight) Glycogen for energy storage > fat 1. Muscles cannot mobilize fat as rapid as

More information

CH 7: Cell Respiration and Fermentation Overview. Concept 7.1: Catabolic pathways yield energy by oxidizing organic fuels

CH 7: Cell Respiration and Fermentation Overview. Concept 7.1: Catabolic pathways yield energy by oxidizing organic fuels CH 7: Cell Respiration and Fermentation Overview Living cells require energy from outside sources Some animals obtain energy by eating plants, and some animals feed on other organisms Energy flows into

More information

Notes CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2. 6CO 2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION

Notes CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2. 6CO 2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION AP BIOLOGY CELLULAR ENERGETICS ACTIVITY #2 Notes NAME DATE HOUR SUMMARY EQUATION CELLULAR RESPIRATION C 6 H 12 O 6 + O 2 6CO 2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION Oxidation: partial or complete

More information

Respiration. Organisms can be classified based on how they obtain energy: Autotrophs

Respiration. Organisms can be classified based on how they obtain energy: Autotrophs Respiration rganisms can be classified based on how they obtain energy: Autotrophs Able to produce their own organic molecules through photosynthesis Heterotrophs Live on organic compounds produced by

More information

Photosynthesis in chloroplasts. Cellular respiration in mitochondria ATP. ATP powers most cellular work

Photosynthesis in chloroplasts. Cellular respiration in mitochondria ATP. ATP powers most cellular work Light energy ECOSYSTEM CO + H O Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules + O powers most cellular work Heat energy 1 becomes oxidized (loses electron) becomes

More information

A. Incorrect! No, this statement is accurate so is not the correct selection to the question.

A. Incorrect! No, this statement is accurate so is not the correct selection to the question. Biochemistry - Problem Drill 14: Glycolysis No. 1 of 10 1. Which of the following statements is incorrect with respect to glycolysis? (A) It is the conversion of glucose to pyruvate. (B) In glycolysis

More information

Biochemistry - I SPRING Mondays and Wednesdays 9:30-10:45 AM (MR-1307) Lecture 15. Based on Profs. Kevin Gardner & Reza Khayat

Biochemistry - I SPRING Mondays and Wednesdays 9:30-10:45 AM (MR-1307) Lecture 15. Based on Profs. Kevin Gardner & Reza Khayat Biochemistry - I Mondays and Wednesdays 9:0-10:4 AM (MR-107) SPRING 017 Lecture 1 Based on Profs. Kevin Gardner & Reza Khayat 1 utline Bioenergetics Fates of glucose Glycolysis Feeder pathways for glycolysis

More information

Chap 3 Metabolism and Growth

Chap 3 Metabolism and Growth Chap 3 Metabolism and Growth I. Metabolism Definitions: Metabolism includes two parts: anabolism and catabolism Catabolism: Anabolism: Aerobic metabolism: catabolism anabolis m catabolis anabolis m Anaerobic

More information