The Structure and Function of Macromolecules (Chapter Five)

Size: px
Start display at page:

Download "The Structure and Function of Macromolecules (Chapter Five)"

Transcription

1 1 Most Macromolecules are Polymers The Structure and Function of Macromolecules (Chapter Five) POLYMER PRINCIPLES The four main classes of macromolecules are carbohydrates, lipids, proteins and nucleic acids. The large molecules in carbohydrates, proteins, and nucleic acids are polymers, long molecules consisting of similar or identical building blocks linked by covalent bonds. These blocks are small molecules called monomers. Monomers are connected by a condensation reaction, also known as a dehydration reaction, where a water molecule is lost to allow the two monomers to bond together. One monomer loses a hydroxyl group (-OH), while the other loses a hydrogen (-H). Enzymes help to speed up these dehydration reactions. Hydrolysis is the process that reverses the dehydration reaction and breaks polymers back into monomers. By adding a water molecule to the bond, a hydrogen atom will attach to one monomer and the hydroxyl will attach to the other monomer. Digestion works through hydrolysis: enzymes work to speed up hydrolysis and break apart large polymers into monomers that can be absorbed into the bloodstream. An Immense Variety of Polymers Can Be Built From a Small Set of Monomers There is an amazing number of different combinations of polymers that result from the approximately 40 to 50 common monomers. The variation in the linear sequence the units follow result in unique macromolecules from small molecules common to all life. CARBOHYDRATES FUEL AND BUILDING MATERIAL Carbohydrates include both sugars and their polymers. Monosaccharides are single sugars (also known as simple sugars) and disaccharides are double sugars. Polysaccharides are carbohydrates. Sugars, the Smallest Carbohydrates, Serve as Fuel and Carbon Sources Monosaccharides generally have molecular formulas that are a multiple of CH 2 O. Glucose is the most common monosaccharide. A sugar has a carbonyl group and multiple hydroxyl groups. Depending on the location of the carbonyl group, the sugar is either an aldose or a ketose. Another criterion for grouping sugars is the size of the carbon skeleton, which can be from three to seven carbons long. Those with three carbons are trioses, five carbons are pentoses, and six carbons are hexoses.

2 2 Simple sugars can also differ in the spatial arrangement of their parts around asymmetric carbons. Glucose can be drawn in a linear carbon skeleton, but this is not really an accurate representation. In aqueous solutions, most sugars form rings. Monosaccharides are major nutrients in the cell. They fuel cellular work and the carbon skeletons work as raw material for other types of small organic molecules. A disaccharide consists of two monosaccharides joined by a glcyosidic linkage, a covalent bond formed between two monosaccharides by a dehydration reaction. Two glucoses bonded together result in maltose, while glucose and fructose bond together to create a sucrose. Lactose is created from galactose and glucose. Polysaccharides, the Polymers of Sugars, Have Storage and Structural Roles Polysaccharides charides are macromolecules, composed of a few hundred to a few thousand monosaccharides joined by glycosidic linkages. Some polysaccharides store energy for the cells, while others are building materials for structures. Storage Polysaccharides Starch is a storage polysaccharide in plants and consists entirely of alpha glucose molecules. Amylose, the simplest form of starch consists of 1-4 glycosidic linkages. Amylopectin, a more complex type of starch, is branched and has 1-6 linkages at the branch points. Starch represents stored energy which can be released by breaking the bonds between the glucose monomers. Most animals can hydrolyze plant starch. Starch is usually helical. Animals store energy in glycogen, a polymer even more branched than amylopectin. Humans and other vertebrates store glycogen mainly in liver and muscle cells. Structural Polysaccharides Cellulose is created from beta glucose molecules. Because of the slightly different ring structure in beta glucose, when they bond, every other glucose monomer is upside down in respect to the other. Cellulose are grouped into microfibrils in plant cells, which are a strong building material for plants. It is the most abundant organic compound on Earth. Most animals do not have the beta enzyme necessary to break down cellulose. Some microbes are able to break down cellulose cows have cellulose-digesting bacteria in the first compartment in its stomach. Chitin is the carbohydrate used by arthropods to build exoskeletons. While pure chitin is leathery, it becomes hardened when encrusted with calcium carbonate.

3 3 LIPIDS DIVERSE HYDROPHOBIC MOLECULES Lipids have little or no affinity for water and have no monomers. They consist mostly of hydrocarbons. Fats Store Large Amounts of Energy A fat consists of glycerol and fatty acids. Glycerol is an alcohol with three carbons, each with its own hydroxyl group. A fatty acid has a long carbon skeleton, with a carboxyl group at the end of a long hydrocarbon chain. The nonpolar carbon-hydrogen bonds in the hydrocarbon chains are the reason why fats are hydrophobic. To make a fat, three fatty acids join together and bond to the glycerol through ester linkage (bond between hydroxyl and carboxyl group). The resulting Triacylglycerol has three fatty acid tails linked to one glycerol head. The terms saturated fats and unsaturated fats refer to the nature of the bonds between the carbon and hydrogen in the fatty acid tails. If there are no double bonds, then there are as many hydrogens as possible bonded to the carbon skeleton this structure is a saturated fatty acid. An unsaturated fatty acid has one or more double bonds and will have a kink in its tail wherever there is a double bond. Most saturated fats are animal fats these are solid at room temperature. Fat from plants and fishes are generally unsaturated and are liquid at room temperature they are oils. Fats are used for energy storage. A gram of fat stores more than twice as much energy as a gram of a polysaccharide. Since animals must carry energy stores with them, it is more economic to have fat for energy storage, since it takes up less space. Phospholipids are Major Components of Cell Membranes Phospholipids are similar to fats, but they only have two fatty acids tails. The third hydroxyl group of glycerol is instead joined to a phosphate group. When phospholipids are added to water, they selfassemble into micelles: a phospholipid droplet with the hydrophobic tails inside and the hydrophilic heads facing the water. Steroids Include Cholesterol and Certain Hormones Steroids are characterized by a carbon skeleton of four fused rings. One steroid, cholesterol, is a common component of animal cell membranes. PROTEINS MANY STRUCTURES, MANY FUNCTIONS Proteins are the workhorses of the cell and are used for structural support, storage, transport of substances, signaling, movement, and defense. They are also used as enzymes. All proteins are

4 4 constructed out of the same set of 20 amino acids. Polymers of amino acids are called polypeptides eptides. Proteins consist of one or more polypeptides folded and coiled into specific shapes. A Polypeptide is a Polymer of Amino Acids Connected in a Specific Sequence Amino acids are organic molecules possessing both carboxyl and amino groups. The general formula for an amino acid: The alpha carbon is in the center, bonded to an amino group, a carboxyl group, a hydrogen atom, and a variable R group. The R group is also known as the side chain. A Protein s Function Depends on Its Specific Conformation The physical and chemical properties of the side chain determine how a particular amino acid will behave. When two amino acids are positioned so that the carboxyl group of one is adjacent to the amino group of the other, an enzyme can begin the dehydration reaction that will form the peptide bond (type of covalent bond). When this process is repeated over and over, a polypeptide will result. At one end of the chain is a free amino group, and the other end has a free carboxyl group. A polypeptide is not quite the same as a protein. A functional protein is one or more polypeptides twisted, folded, and coiled into a uniquely shaped molecule. The amino acid sequence determines what three-dimensional shape the protein will take. Some proteins are globular while others are fibrous. Four Levels of Protein Structure When a cell creates a polypeptide, the chain automatically folds to achieve the shape it needs to carry out its function. This shape is held together by a variety of different bonds between parts of the chain. Primary Structure. The primary structure of a protein is the sequence of amino acids. Even a slight change in the order of amino acids can affect the protein s ability to function. Frederick Sanger was the pioneer in determining the primary structure of proteins.

5 5 Secondary Structure. Most proteins have segments of their chain repeatedly coiled or folded these coils and folds are referred to as the secondary structure. They are the result of hydrogen bonds at regular intervals along the polypeptide backbone. This is limited to the atoms of the backbone, not the side chains. One main type of secondary structure is the α helix, a coil held together by hydrogen bonding between every fourth amino acid. The other main type of secondary structure is the β pleated sheet, where two or more regions of polypeptide chain lie parallel to each other. Hydrogen bonds between parts of the backbone in the parallel regions hold the structure together. Pleated sheets make up the inner part of many globular proteins and are seen in some fibrous proteins. Tertiary Structure. A protein s tertiary structure consists of irregular contortions because of interactions between side chains. A hydrophobic interaction occurs when amino acid with hydrophobic side chains become grouped into the core the water molecules bond to each other and to hydrophilic parts of the protein. When the nonpolar amino acid side chains are brought together, van der Waals interactions help hold them together. Strong covalent bonds called disulfide bridges form where amino acids with sulfhydryl groups are brought close together. Ionic bonds can also occur between side chains. Quaternary Structure. Proteins that consist of two or more polypeptide chains also have quaternary structure ure, where polypeptides can be coiled into a triple helix or bunched into a roughly spherical shape. Collagen is a fibrous protein while hemoglobin is a globular protein. What Determines Protein Conformation? ph, salt concentration, temperature, and other aspects of a protein s environment can affect what happens to a protein. Changes in its environment can cause a protein to become denatured and biologically inactive. Denaturation agents can disrupt the bonds that hold the protein together. Excessive heat can also overpower the weak interactions that stabilize the shape of the protein. Some proteins can return to normal after conditions are fixed.

6 6 The Protein-Folding Problem Biologists have discovered that chaperonins are protein molecules that help other proteins fold correctly. They work to keep the new polypeptide away from other influences that could affect the polypeptide s development. Determining the Structure of a Protein X-ray crystallography depends on the diffraction of an X-ray beam by the individual atoms in the crystal of the protein. A model can then be built of the protein. NUCLEIC ACIDS INFORMATIONAL POLYMERS The amino acid sequence of a polypeptide is programmed by genes. Genes consist of DNA, which is a polymer belonging to the class of compounds known as nucleic acids. Nucleic Acids Store and Transmit Hereditary Information The two types of nucleic acids are deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). They enable living organisms to reproduce their complex components from one generation to the next. DNA provides directions for its own replication. A DNA molecule consist of hundreds or thousands of genes. DNA molecules are copied and passed when cells reproduce by dividing. Genes along the length of DNA direct mrna (messenger RNA) to produce a polypeptide. A Nucleic Acid Strand is a Polymer of Nucleotides Monomers of nucleic acids are nucleotides. They are each composed of a nitrogenous base, a pentose, and phosphate group. A pyrimidine has a six-membered ring of carbon and nitrogenous atoms they are cytosine, thymine, and uracil. Purines are larger and have a six-membered ring fused to a five-membered ring adenine and guanine. The pentose connected to the nitrogenous base is ribose in the nucleotides of RNA and deoxyribose in DNA. Because deoxyribose does not have an oxygen atom on one of its carbons, it receives the name deoxyribose. A phosphate group is attached to the number five carbon of the sugar. In a nucleic acid polymer, or polynucleotide, nucleotides are joined by covalent bonds called phosphodiester linkages between the phosphate of one nucleotide and the sugar of the other.

7 7 Inheritance is Based on Replication of the DNA Double Helix The RNA molecules of cells consist of a single polynucleotide chain. However, DNA molecules have two polynucleotides that spiral around an imaginary axis to form a double helix. According to the base-pairing rules, Adenine always pairs with Thymine, and Guanine always pairs with Cytosine (ATGC). The two strands are complementary. We Can Use DNA and Proteins As Tape Measures of Evolution Genes and their products document the hereditary background of an organism. Since DNA molecules are passed through generations, related individuals have greater similarities in their DNA than unrelated individuals do. Thus, two species that appear closely related based on fossil and anatomical evidence also share a greater proportion of their DNA and protein sequences than do more distantly related species.

Biology 5A Fall 2010 Macromolecules Chapter 5

Biology 5A Fall 2010 Macromolecules Chapter 5 Learning Outcomes: Macromolecules List and describe the four major classes of molecules Describe the formation of a glycosidic linkage and distinguish between monosaccharides, disaccharides, and polysaccharides

More information

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules Chapter 5 The Structure and Function of Large Biological Molecules PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley

More information

Chapter 5 The Structure and Function of Macromolecules

Chapter 5 The Structure and Function of Macromolecules Chapter 5 The Structure and Function of Macromolecules Title: Sep 3 4:37 PM (1 of 65) macromolecules = smaller organic molecules that are joined together to make larger molecules four major classes: proteins

More information

INTRODUCTION TO ORGANIC COMPOUNDS. Copyright 2009 Pearson Education, Inc.

INTRODUCTION TO ORGANIC COMPOUNDS. Copyright 2009 Pearson Education, Inc. INTRODUCTION TO ORGANIC COMPOUNDS 3.1 I can explain why carbon is unparalleled in its ability to form large, diverse molecules. Diverse molecules found in cells are composed of carbon bonded to other elements

More information

Biology Chapter 5. Biological macromolecules

Biology Chapter 5. Biological macromolecules Biology Chapter 5 Biological macromolecules Small molecules (like water and NaCl) have certain properties that arise from the bonds which hold atoms together in a particular arrangement. Many of the molecules

More information

Biology Kevin Dees. Biology Chapter 5. Biological macromolecules

Biology Kevin Dees. Biology Chapter 5. Biological macromolecules Biology Chapter 5 Biological macromolecules Small molecules (like water and NaCl) have certain properties that arise from the bonds which hold atoms together in a particular arrangement. Many of the molecules

More information

Honors Biology Chapter 3: Macromolecules PPT Notes

Honors Biology Chapter 3: Macromolecules PPT Notes Honors Biology Chapter 3: Macromolecules PPT Notes 3.1 I can explain why carbon is unparalleled in its ability to form large, diverse molecules. Diverse molecules found in cells are composed of carbon

More information

What are the molecules of life?

What are the molecules of life? Molecules of Life What are the molecules of life? Organic Compounds Complex Carbohydrates Lipids Proteins Nucleic Acids Organic Compounds Carbon- hydrogen based molecules From Structure to Function Ø Carbon

More information

CHAPTER 3. Carbon & the Molecular Diversity of Life

CHAPTER 3. Carbon & the Molecular Diversity of Life CHAPTER 3 Carbon & the Molecular Diversity of Life Carbon: The Organic Element Compounds that are synthesized by cells and contain carbon are organic So what is inorganic? Why are carbon compounds so prevalent?

More information

Chapter 5 THE STRUCTURE AND FUNCTION OF LARGE BIOLOGICAL MOLECULES

Chapter 5 THE STRUCTURE AND FUNCTION OF LARGE BIOLOGICAL MOLECULES Chapter 5 THE STRUCTURE AND FUNCTION OF LARGE BIOLOGICAL MOLECULES You Must Know The role of dehydration synthesis in the formation of organic compounds and hydrolysis in the digestion of organic compounds.

More information

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules Chapter 5 1 The Structure and Function of Large Biological Molecules PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley

More information

Lecture Series 2 Macromolecules: Their Structure and Function

Lecture Series 2 Macromolecules: Their Structure and Function Lecture Series 2 Macromolecules: Their Structure and Function Reading Assignments Read Chapter 4 (Protein structure & Function) Biological Substances found in Living Tissues The big four in terms of macromolecules

More information

Lecture Series 2 Macromolecules: Their Structure and Function

Lecture Series 2 Macromolecules: Their Structure and Function Lecture Series 2 Macromolecules: Their Structure and Function Reading Assignments Read Chapter 4 (Protein structure & Function) Biological Substances found in Living Tissues The big four in terms of macromolecules

More information

Macro molecule = is all the reactions that take place in cells, the sum of all chemical reactions that occur within a living organism Anabolism:

Macro molecule = is all the reactions that take place in cells, the sum of all chemical reactions that occur within a living organism Anabolism: Macromolecule Macro molecule = molecule that is built up from smaller units The smaller single subunits that make up macromolecules are known as Joining two or more single units together form a M is all

More information

BIOCHEMISTRY. How Are Macromolecules Formed? Dehydration Synthesis or condensation reaction Polymers formed by combining monomers and removing water.

BIOCHEMISTRY. How Are Macromolecules Formed? Dehydration Synthesis or condensation reaction Polymers formed by combining monomers and removing water. BIOCHEMISTRY Organic compounds Compounds that contain carbon are called organic. Inorganic compounds do not contain carbon. Carbon has 4 electrons in outer shell. Carbon can form covalent bonds with as

More information

A. Lipids: Water-Insoluble Molecules

A. Lipids: Water-Insoluble Molecules Biological Substances found in Living Tissues Lecture Series 3 Macromolecules: Their Structure and Function A. Lipids: Water-Insoluble Lipids can form large biological molecules, but these aggregations

More information

Carbon. Isomers. The Chemical Building Blocks of Life

Carbon. Isomers. The Chemical Building Blocks of Life The Chemical Building Blocks of Life Carbon Chapter 3 Framework of biological molecules consists primarily of carbon bonded to Carbon O, N, S, P or H Can form up to 4 covalent bonds Hydrocarbons molecule

More information

Macromolecules. Note: If you have not taken Chemistry 11 (or if you ve forgotten some of it), read the Chemistry Review Notes on your own.

Macromolecules. Note: If you have not taken Chemistry 11 (or if you ve forgotten some of it), read the Chemistry Review Notes on your own. Macromolecules Note: If you have not taken Chemistry 11 (or if you ve forgotten some of it), read the Chemistry Review Notes on your own. Macromolecules are giant molecules made up of thousands or hundreds

More information

AP BIOLOGY: READING ASSIGNMENT FOR CHAPTER 5

AP BIOLOGY: READING ASSIGNMENT FOR CHAPTER 5 1) Complete the following table: Class Monomer Functions Carbohydrates 1. 3. Lipids 1. 3. Proteins 1. 3. 4. 5. 6. Nucleic Acids 1. 2) Circle the atoms of these two glucose molecules that will be removed

More information

Lecture Series 2 Macromolecules: Their Structure and Function

Lecture Series 2 Macromolecules: Their Structure and Function Lecture Series 2 Macromolecules: Their Structure and Function Reading Assignments Read Chapter 4 (Protein structure & Function) Biological Substances found in Living Tissues The big four in terms of macromolecules

More information

Chapter 5 Structure and Function Of Large Biomolecules

Chapter 5 Structure and Function Of Large Biomolecules Formation of Macromolecules Monomers Polymers Macromolecules Smaller larger Chapter 5 Structure and Function Of Large Biomolecules monomer: single unit dimer: two monomers polymer: three or more monomers

More information

Composed of long chains of smaller molecules Macromolecules are formed through the process of polymerization

Composed of long chains of smaller molecules Macromolecules are formed through the process of polymerization Chapter 5, Campbell Composed of long chains of smaller molecules Macromolecules are formed through the process of polymerization. Polymerization = large compounds are built by joining smaller ones together

More information

The Chemical Building Blocks of Life. Chapter 3

The Chemical Building Blocks of Life. Chapter 3 The Chemical Building Blocks of Life Chapter 3 Biological Molecules Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent

More information

Biological Molecules

Biological Molecules The Chemical Building Blocks of Life Chapter 3 Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent bonds. Carbon may

More information

Macromolecules. 3. There are several levels of protein structure, the most complex of which is A) primary B) secondary C) tertiary D) quaternary

Macromolecules. 3. There are several levels of protein structure, the most complex of which is A) primary B) secondary C) tertiary D) quaternary Macromolecules 1. If you remove all of the functional groups from an organic molecule so that it has only carbon and hydrogen atoms, the molecule become a molecule. A) carbohydrate B) carbonyl C) carboxyl

More information

The Structure and Function of Large Biological Molecules. Chapter 5

The Structure and Function of Large Biological Molecules. Chapter 5 The Structure and Function of Large Biological Molecules Chapter 5 The Molecules of Life Living things made up of 4 classes of large biological molecules (macromolecules) : 1. Carbohydrates 2. Lipids 3.

More information

Chapter 3- Organic Molecules

Chapter 3- Organic Molecules Chapter 3- Organic Molecules CHNOPS Six of the most abundant elements of life (make up 95% of the weight of all living things)! What are they used for? Structures, enzymes, energy, hormones, DNA How do

More information

Biological Molecules. Carbohydrates, Proteins, Lipids, and Nucleic Acids

Biological Molecules. Carbohydrates, Proteins, Lipids, and Nucleic Acids Biological Molecules Carbohydrates, Proteins, Lipids, and Nucleic Acids Organic Molecules Always contain Carbon (C) and Hydrogen (H) Carbon is missing four electrons Capable of forming 4 covalent bonds

More information

Macromolecules Structure and Function

Macromolecules Structure and Function Macromolecules Structure and Function Within cells, small organic molecules (monomers) are joined together to form larger molecules (polymers). Macromolecules are large molecules composed of thousands

More information

Macromolecules. copyright cmassengale

Macromolecules. copyright cmassengale Macromolecules 1 Organic Compounds Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. 2 Carbon (C) Carbon has 4 electrons in outer shell. Carbon can form covalent

More information

3.1 Carbon is Central to the Living World

3.1 Carbon is Central to the Living World BIOL 100 Ch. 3 1 3.1 Carbon is Central to the Living World Carbon Central element to life Most biological molecules are built on a carbon framework. Organic molecules Humans 18.5% Carbon Why is Carbon

More information

Organic Compounds. Compounds that contain CARBON are called organic. Macromolecules are large organic molecules.

Organic Compounds. Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. Macromolecules Organic Compounds Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. Carbon (C) Carbon has 4 electrons in outer shell. Carbon can form covalent

More information

The Structure and Function of Macromolecules

The Structure and Function of Macromolecules The Structure and Function of Macromolecules I. Polymers What is a polymer? Poly = many; mer = part. A polymer is a large molecule consisting of many smaller sub-units bonded together. What is a monomer?

More information

Biological Molecules

Biological Molecules Chemical Building Blocks of Life Chapter 3 Biological Molecules Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent

More information

Biology: Life on Earth Chapter 3 Molecules of life

Biology: Life on Earth Chapter 3 Molecules of life Biology: Life on Earth Chapter 3 Molecules of life Chapter 3 Outline 3.1 Why Is Carbon So Important in Biological Molecules? p. 38 3.2 How Are Organic Molecules Synthesized? p. 38 3.3 What Are Carbohydrates?

More information

The Building blocks of life. Macromolecules

The Building blocks of life. Macromolecules The Building blocks of life Macromolecules 1 copyright cmassengale 2 Organic Compounds Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. 3 LIFE ON EARTH IS CARBON-BASED

More information

All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds:

All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds: Biochemistry Organic Chemistry All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds: Do not contain carbon Organic

More information

Most life processes are a series of chemical reactions influenced by environmental and genetic factors.

Most life processes are a series of chemical reactions influenced by environmental and genetic factors. Biochemistry II Most life processes are a series of chemical reactions influenced by environmental and genetic factors. Metabolism the sum of all biochemical processes 2 Metabolic Processes Anabolism-

More information

Many of the compounds we are concerned with in biology are carbon-based compounds The study of carbon-based compounds is called organic chemistry

Many of the compounds we are concerned with in biology are carbon-based compounds The study of carbon-based compounds is called organic chemistry 1 2 3 4 Bio 1101 Lecture 3 Chapter 3: Molecules of Life Organic Molecules Many of the compounds we are concerned with in biology are carbon-based compounds The study of carbon-based compounds is called

More information

Structure and Function of Macromolecules Chapter 5 Macromolecules Macromolecules Multiple Units Synthesis of Dimers and Polymers

Structure and Function of Macromolecules Chapter 5 Macromolecules Macromolecules Multiple Units Synthesis of Dimers and Polymers Structure and Function of Macromolecules Chapter 5 Macromolecules Giant molecules weighing over 100,000 daltons Emergent properties not found in component parts Macromolecules Multiple Units meris = one

More information

Chapter 5: Structure and Function of Macromolecules AP Biology 2011

Chapter 5: Structure and Function of Macromolecules AP Biology 2011 Chapter 5: Structure and Function of Macromolecules AP Biology 2011 1 Macromolecules Fig. 5.1 Carbohydrates Lipids Proteins Nucleic Acids Polymer - large molecule consisting of many similar building blocks

More information

Macromolecules (Learning Objectives)

Macromolecules (Learning Objectives) Macromolecules (Learning Objectives) Recognize the role of water in synthesis and breakdown of polymers Name &recognize the monomer and the chemical bond that holds the polymeric structure of all biomolecules

More information

Details of Organic Chem! Date. Carbon & The Molecular Diversity of Life & The Structure & Function of Macromolecules

Details of Organic Chem! Date. Carbon & The Molecular Diversity of Life & The Structure & Function of Macromolecules Details of Organic Chem! Date Carbon & The Molecular Diversity of Life & The Structure & Function of Macromolecules Functional Groups, I Attachments that replace one or more of the hydrogens bonded to

More information

General Biology 1004 Chapter 3 Lecture Handout, Summer 2005 Dr. Frisby

General Biology 1004 Chapter 3 Lecture Handout, Summer 2005 Dr. Frisby Slide 1 CHAPTER 3 The Molecules of Life PowerPoint Lecture Slides for Essential Biology, Second Edition & Essential Biology with Physiology Presentation prepared by Chris C. Romero Copyright 2004 Pearson

More information

Ch. 5 The S & F of Macromolecules. They may be extremely small but they are still macro.

Ch. 5 The S & F of Macromolecules. They may be extremely small but they are still macro. Ch. 5 The S & F of Macromolecules They may be extremely small but they are still macro. Background Information Cells join small molecules together to form larger molecules. Macromolecules may be composed

More information

The Star of The Show (Ch. 3)

The Star of The Show (Ch. 3) The Star of The Show (Ch. 3) Why study Carbon? All of life is built on carbon Cells ~72% 2 O ~25% carbon compounds carbohydrates lipids proteins nucleic acids ~3% salts Na, Cl, K Chemistry of Life Organic

More information

Chapter 2. Chemical Composition of the Body

Chapter 2. Chemical Composition of the Body Chapter 2 Chemical Composition of the Body Carbohydrates Organic molecules that contain carbon, hydrogen and oxygen General formula C n H 2n O n -ose denotes a sugar molecule Supply energy Glucose Complex

More information

Organic Compounds. Compounds that contain CARBON are called organic. Macromolecules are large organic molecules.

Organic Compounds. Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. Macromolecules 1 Organic Compounds Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. 2 Carbon (C) Carbon has 4 electrons in outer shell. Carbon can form covalent

More information

Chapter 3 The Molecules of Life

Chapter 3 The Molecules of Life Chapter 3 The Molecules of Life State Standards Standard 1.h. Standard 5.a. Standard 4.e. Organic Molecules A cell is mostly water. The rest of the cell consists mostly of carbon based molecules organic

More information

CARBOHYDRATES. Produce energy for living things Atoms? Monomer Examples? Carbon, hydrogen, and oxygen in 1:2:1 ratio.

CARBOHYDRATES. Produce energy for living things Atoms? Monomer Examples? Carbon, hydrogen, and oxygen in 1:2:1 ratio. CARBOHYDRATES Produce energy for living things Atoms? Carbon, hydrogen, and oxygen in 1:2:1 ratio Monomer Examples? Sugars, starches MONOSACCHARIDES--- main source of energy for cells Glucose Know formula?

More information

Ch. 5 Macromolecules. Overview: The Molecules of Life. Macromolecules BIOL 222. Macromolecules

Ch. 5 Macromolecules. Overview: The Molecules of Life. Macromolecules BIOL 222. Macromolecules Ch. 5 Macromolecules BIOL 222 Overview: The Molecules of Life Macromolecules large molecules composed of thousands of covalently connected atoms Built from carbon backbone Also contain large numbers of

More information

Macromolecules. Chapter 4. How to build a polymer. Polymers. How to break down a polymer. Carbohydrates 8/30/2012

Macromolecules. Chapter 4. How to build a polymer. Polymers. How to break down a polymer. Carbohydrates 8/30/2012 Macromolecules Chapter 4 Macromolecules Smaller organic molecules join together to form larger molecules Macromolecules 4 major classes of macromolecules Carbohydrates Lipids Proteins Nucleic acids Polymers

More information

Unit #2: Biochemistry

Unit #2: Biochemistry Unit #2: Biochemistry STRUCTURE & FUNCTION OF FOUR MACROMOLECULES What are the four main biomolecules? How is each biomolecule structured? What are their roles in life? Where do we find them in our body?

More information

Carbon. Carbon. Carbon Skeleton 8/25/2016. The Chemical Building Blocks of Life

Carbon. Carbon. Carbon Skeleton 8/25/2016. The Chemical Building Blocks of Life The Chemical Building Blocks of Life Carbon Life as we know it is carbon-based. Biological molecules are built on a carbon skeleton. Small atom with a valence of 4. Carbon Can form up to 4 covalent bonds.

More information

Macromolecules. Ch. 5 Macromolecules BIOL 222. Overview: The Molecules of Life. Macromolecules

Macromolecules. Ch. 5 Macromolecules BIOL 222. Overview: The Molecules of Life. Macromolecules Ch. 5 Macromolecules BIOL 222 Overview: The Molecules of Life Macromolecules large molecules composed of thousands of covalently connected atoms Built from carbon backbone Also contain large numbers of

More information

Macromolecules. Polymer Overview: The 4 major classes of macromolecules also called are: 1) 2) 3) 4)

Macromolecules. Polymer Overview: The 4 major classes of macromolecules also called are: 1) 2) 3) 4) Macromolecules Polymer Overview: The 4 major classes of macromolecules also called are: 1) 2) 3) 4) Q: Which of the above are polymers? (put a star by them). Polymer literally means. Polymers are long

More information

Biomolecules. Biomolecules. Carbohydrates. Biol 219 Lec 3 Fall Polysaccharides. Function: Glucose storage Fig. 2.2

Biomolecules. Biomolecules. Carbohydrates. Biol 219 Lec 3 Fall Polysaccharides. Function: Glucose storage Fig. 2.2 Biomolecules Biomolecules Monomers Polymers Carbohydrates monosaccharides polysaccharides fatty acids triglycerides Proteins amino acids polypeptides Nucleic Acids nucleotides DNA, RNA Carbohydrates Carbohydrates

More information

Short polymer. Dehydration removes a water molecule, forming a new bond. Longer polymer (a) Dehydration reaction in the synthesis of a polymer

Short polymer. Dehydration removes a water molecule, forming a new bond. Longer polymer (a) Dehydration reaction in the synthesis of a polymer HO 1 2 3 H HO H Short polymer Dehydration removes a water molecule, forming a new bond Unlinked monomer H 2 O HO 1 2 3 4 H Longer polymer (a) Dehydration reaction in the synthesis of a polymer HO 1 2 3

More information

Lesson 2. Biological Molecules. Introduction to Life Processes - SCI 102 1

Lesson 2. Biological Molecules. Introduction to Life Processes - SCI 102 1 Lesson 2 Biological Molecules Introduction to Life Processes - SCI 102 1 Carbon in Biological Molecules Organic molecules contain carbon (C) and hydrogen (H) Example: glucose (C 6 H 12 O 6 ) Inorganic

More information

The Structure and Function of Macromolecules

The Structure and Function of Macromolecules The Structure and Function of Macromolecules Macromolecules are polymers Polymer long molecule consisting of many similar building blocks. Monomer the small building block molecules. Carbohydrates, proteins

More information

Macromolecules. Macromolecules. Polymers. How to build a polymer 9/11/2015. Building Blocks of Life

Macromolecules. Macromolecules. Polymers. How to build a polymer 9/11/2015. Building Blocks of Life Macromolecules Macromolecules Building Blocks of Life Smaller organic molecules join together to form larger molecules macromolecules 4 major classes of macromolecules: carbohydrates lipids proteins nucleic

More information

Biochemistry Macromolecules and Enzymes. Unit 02

Biochemistry Macromolecules and Enzymes. Unit 02 Biochemistry Macromolecules and Enzymes Unit 02 Organic Compounds Compounds that contain CARBON are called organic. What is Carbon? Carbon has 4 electrons in outer shell. Carbon can form covalent bonds

More information

Before studying chapter 5.. please back to chapter 3 and correct this information

Before studying chapter 5.. please back to chapter 3 and correct this information Before studying chapter 5.. please back to chapter 3 and correct this information in chapter 3 > page 11 > The solvent of life > the 2 points before the last.. we wrote : Anion surrounded by O molecules

More information

Slide 1. Slide 2. Slide 3. So far... All living things are primarily made up of four classes of Macromolecules

Slide 1. Slide 2. Slide 3. So far... All living things are primarily made up of four classes of Macromolecules Slide 1 So far... 1. Biology is the study of life - All life is based on the cell - The Earth, organisms, cells are all aqueous 2. Water s uniqueness stems from its internal polarity - Solvent, Co/Adhesion,

More information

2.2 Cell Construction

2.2 Cell Construction 2.2 Cell Construction Elemental composition of typical bacterial cell C 50%, O 20%, N 14%, H 8%, P 3%, S 1%, and others (K +, Na +, Ca 2+, Mg 2+, Cl -, vitamin) Molecular building blocks Lipids Carbohydrates

More information

Chapter 3: Carbon and the Molecular Diversity of Life

Chapter 3: Carbon and the Molecular Diversity of Life Chapter 3: Carbon and the Molecular Diversity of Life The role of carbon in the molecular diversity of life, its characteristics and its various forms of organizational structure. Introduction Although

More information

Chapter 2 pt 2. Atoms, Molecules, and Life. Gregory Ahearn. John Crocker. Including the lecture Materials of

Chapter 2 pt 2. Atoms, Molecules, and Life. Gregory Ahearn. John Crocker. Including the lecture Materials of Chapter 2 pt 2 Atoms, Molecules, and Life Including the lecture Materials of Gregory Ahearn University of North Florida with amendments and additions by John Crocker Copyright 2009 Pearson Education, Inc..

More information

1. Most macromolecules are polymers

1. Most macromolecules are polymers 1. Most macromolecules are polymers Three of the four classes of macromolecules form chainlike molecules called polymers. Polymers consist of many similar or identical building blocks linked by covalent

More information

The Atoms of Life. What are other elements would you expect to be on this list? Carbon Hydrogen Nitrogen Oxygen Phosphorous Sulfur (sometimes)

The Atoms of Life. What are other elements would you expect to be on this list? Carbon Hydrogen Nitrogen Oxygen Phosphorous Sulfur (sometimes) Macromolecules The Atoms of Life The most frequently found atoms in the body are Carbon Hydrogen Nitrogen Oxygen Phosphorous Sulfur (sometimes) What are other elements would you expect to be on this list?

More information

Chapter 5: The Structure and Function of Large Biological Molecules

Chapter 5: The Structure and Function of Large Biological Molecules Chapter 5: The Structure and Function of Large Biological Molecules 1. Name the four main classes of organic molecules found in all living things. Which of the four are classified as macromolecules. Define

More information

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules Overview: The Molecules of Life The Structure and Function of Large Biological Molecules CHAPTER 5 All living things are made up of four classes of large biological molecules: carbohydrates, lipids, proteins,

More information

Unit 3: Chemistry of Life Mr. Nagel Meade High School

Unit 3: Chemistry of Life Mr. Nagel Meade High School Unit 3: Chemistry of Life Mr. Nagel Meade High School IB Syllabus Statements 3.2.1 Distinguish between organic and inorganic compounds. 3.2.2 Identify amino acids, glucose, ribose and fatty acids from

More information

Chapter 3. The Molecules of Cells. Lecture by Richard L. Myers

Chapter 3. The Molecules of Cells. Lecture by Richard L. Myers Chapter 3 The Molecules of Cells PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Copyright 2009 Pearson Education, Inc. Lecture by Richard

More information

INTRODUCTION TO ORGANIC COMPOUNDS. Introduction: Got Lactose? The Molecules of Cells. Most of the world s population cannot digest milkbased

INTRODUCTION TO ORGANIC COMPOUNDS. Introduction: Got Lactose? The Molecules of Cells. Most of the world s population cannot digest milkbased Chapter 3 The Molecules of Cells Introduction: Got Lactose? Most of the world s population cannot digest milkbased foods They are lactose intolerant, because they lack the enzyme lactase This illustrates

More information

The Structure and Function of Large Biological Molecules Chapter 5

The Structure and Function of Large Biological Molecules Chapter 5 The Structure and Function of Large Biological Molecules Chapter 5 I. The Molecules of Life A. There are four main classes of large molecules 1. Carbohydrates 2. Proteins 3. Lipids 4. Nucleic acids B.

More information

Macromolecules. Molecules of Life

Macromolecules. Molecules of Life Macromolecules Molecules of Life Learning Objectives know the difference between a dehydration synthesis reaction and a hydrolysis reaction know the different types of biological macromolecules be able

More information

Chapter 3 The Molecules of Cells

Chapter 3 The Molecules of Cells Chapter 3 The Molecules of Cells PowerPoint Lectures for Campbell Biology: Concepts & Connections, Seventh Edition Reece, Taylor, Simon, and Dickey Lecture by Edward J. Zalisko Introduction Most of the

More information

I. Polymers & Macromolecules Figure 1: Polymers. Polymer: Macromolecule: Figure 2: Polymerization via Dehydration Synthesis

I. Polymers & Macromolecules Figure 1: Polymers. Polymer: Macromolecule: Figure 2: Polymerization via Dehydration Synthesis I. Polymers & Macromolecules Figure 1: Polymers Polymer: Macromolecule: Figure 2: Polymerization via Dehydration Synthesis 1 Dehydration Synthesis: Figure 3: Depolymerization via Hydrolysis Hydrolysis:

More information

the nature and importance of biomacromolecules in the chemistry of the cell: synthesis of biomacromolecules through the condensation reaction lipids

the nature and importance of biomacromolecules in the chemistry of the cell: synthesis of biomacromolecules through the condensation reaction lipids the nature and importance of biomacromolecules in the chemistry of the cell: synthesis of biomacromolecules through the condensation reaction lipids and their sub-units; the role of lipids in the plasma

More information

Chapter 3 Guided Reading Notes Carbon and the Molecular Diversity of Life

Chapter 3 Guided Reading Notes Carbon and the Molecular Diversity of Life AP Biology Name: Block Chapter 3 Guided Reading Notes Carbon and the Molecular Diversity of Life Most of this chapter is new material. We will discuss it all in detail. Section 1 1. Make an electron distribution

More information

The Carbon Atom (cont.)

The Carbon Atom (cont.) Organic Molecules Organic Chemistry The chemistry of the living world. Organic Molecule a molecule containing carbon and hydrogen Carbon has 4 electrons in its outer shell and can share electrons with

More information

Biological Chemistry. Is biochemistry fun? - Find it out!

Biological Chemistry. Is biochemistry fun? - Find it out! Biological Chemistry Is biochemistry fun? - Find it out! 1. Key concepts Outline 2. Condensation and Hydrolysis Reactions 3. Carbohydrates 4. Lipids 5. Proteins 6. Nucleic Acids Key Concepts: 1. Organic

More information

Molecular building blocks

Molecular building blocks 2.22 Cell Construction Elemental l composition of ftypical lbacterial cell C 50%, O 20%, N 14%, H 8%, P 3%, S 1%, and others (K +, Na +, Ca 2+, Mg 2+, Cl -, vitamin) Molecular building blocks Lipids Carbohydrates

More information

Campbell's Biology, 9e (Reece et al.) Chapter 5 The Structure and Function of Large Biological Molecules

Campbell's Biology, 9e (Reece et al.) Chapter 5 The Structure and Function of Large Biological Molecules Campbell's Biology, 9e (Reece et al.) Chapter 5 The Structure and Function of Large Biological Molecules In Chapter 5, the principles of chemistry covered in earlier chapters are applied to the understanding

More information

Good Afternoon! 11/30/18

Good Afternoon! 11/30/18 Good Afternoon! 11/30/18 1. The term polar refers to a molecule that. A. Is cold B. Has two of the same charges C. Has two opposing charges D. Contains a hydrogen bond 2. Electrons on a water molecule

More information

6/15/2015. Biological Molecules. Outline. Organic Compounds. Organic Compounds - definition Functional Groups Biological Molecules. What is organic?

6/15/2015. Biological Molecules. Outline. Organic Compounds. Organic Compounds - definition Functional Groups Biological Molecules. What is organic? Biological Molecules Biology 105 Lecture 3 Reading: Chapter 2 (pages 29 39) Outline Organic Compounds - definition Functional Groups Biological Molecules Carbohydrates Lipids Amino Acids and Proteins Nucleotides

More information

Water Carbon Macromolecules

Water Carbon Macromolecules Water Carbon Macromolecules I. CHEMISTRY: THE BASIS FOR LIFE Hydrogen bond Hydrogen bonds happen mainly between water molecules. The electrons between hydrogen and the other atoms are shared unequally

More information

Organic molecules are molecules that contain carbon and hydrogen.

Organic molecules are molecules that contain carbon and hydrogen. Organic Chemistry, Biochemistry Introduction Organic molecules are molecules that contain carbon and hydrogen. All living things contain these organic molecules: carbohydrates, lipids, proteins, and nucleic

More information

Carbon s Bonding Pattern

Carbon s Bonding Pattern Organic Compounds It used to be thought that only living things could synthesize the complicated carbon compounds found in cells German chemists in the 1800 s learned how to do this in the lab, showing

More information

Chapter 5: The Structure and Function of Large Biological Molecules

Chapter 5: The Structure and Function of Large Biological Molecules Name Period Concept 5.1 Macromolecules are polymers, built from monomers 1. The large molecules of all living things fall into just four main classes. Name them. 2. Circle the three classes that are called

More information

Macromolecules. You are what you eat! Chapter 5. AP Biology

Macromolecules. You are what you eat! Chapter 5. AP Biology Macromolecules You are what you eat! Chapter 5 AP Biology Organic Compounds Contain bonds between CARBON glycosidic bond AP Biology Carbohydrates Structure / monomer u monosaccharide Function u energy

More information

Essential Components of Food

Essential Components of Food Essential Components of Food The elements of life living things are mostly (98%) made of 6 elements: C carbon H hydrogen O oxygen P phosphorus N nitrogen S sulphur -each element makes a specific number

More information

Macromolecules. Honors Biology

Macromolecules. Honors Biology Macromolecules onors Biology 1 The building materials of the body are known as macromolecules because they can be very large There are four types of macromolecules: 1. Proteins 2. Nucleic acids 3. arbohydrates

More information

Organic Compounds. (Carbon Compounds) Carbohydrates Lipids Proteins Nucleic Acids

Organic Compounds. (Carbon Compounds) Carbohydrates Lipids Proteins Nucleic Acids Organic Compounds (Carbon Compounds) Carbohydrates Lipids Proteins Nucleic Acids Carbon s Bonding Behavior Outer shell of carbon has 4 electrons; can hold 8 Each carbon atom can form covalent bonds with

More information

Chp 2 (cont.) Organic Molecules. Spider s web and close up of capture strand - spider silk protein

Chp 2 (cont.) Organic Molecules. Spider s web and close up of capture strand - spider silk protein Chp 2 (cont.) Organic Molecules Spider s web and close up of capture strand - spider silk protein 1! Molecular Diversity is Based on Carbon An organic molecule contains both carbon and hydrogen. Ex: Methane

More information

Chapter 1. Chemistry of Life - Advanced TABLE 1.2: title

Chapter 1. Chemistry of Life - Advanced TABLE 1.2: title Condensation and Hydrolysis Condensation reactions are the chemical processes by which large organic compounds are synthesized from their monomeric units. Hydrolysis reactions are the reverse process.

More information

From Atoms to Cells: Fundamental Building Blocks. Models of atoms. A chemical connection

From Atoms to Cells: Fundamental Building Blocks. Models of atoms. A chemical connection From Atoms to Cells: A chemical connection Fundamental Building Blocks Matter - all materials that occupy space & have mass Matter is composed of atoms Atom simplest form of matter not divisible into simpler

More information

Organic Chemistry. Organic chemistry is the chemistry of carbon compounds. Biochemistry is the study of carbon compounds that crawl.

Organic Chemistry. Organic chemistry is the chemistry of carbon compounds. Biochemistry is the study of carbon compounds that crawl. Organic Chemistry Organic chemistry is the chemistry of carbon compounds. Biochemistry is the study of carbon compounds that crawl. Organic Compounds - have carbon bonded to other atoms and determine structure/function

More information

Chiral molecules. Carbon: The framework of biological molecules- Primary functional chemical groups. Chemical vs. structural formulas

Chiral molecules. Carbon: The framework of biological molecules- Primary functional chemical groups. Chemical vs. structural formulas The chemical building blocks of life Carbon: The framework of biological molecules- Biological molecules consist primarily of Carbon atoms bound to carbon atoms Carbon bound to other molecules Molecules

More information