Bacterial Pathogenesis

Size: px
Start display at page:

Download "Bacterial Pathogenesis"

Transcription

1 FMM/RAS/298: Strengthening capacities, policies and national action plans on prudent and responsible use of antimicrobials in fisheries Bacterial Pathogenesis Larry A. Hanson Aquatic AMR Workshop 1: April 2017, Mangalore, India

2 Host-Parasite Relationships: Pathogenesis of Infections In any host-pathogen encounter, there are two determinants of the outcome: 1. Virulence of the parasite 2. Resistance of the host

3 In some cases, the host-pathogen relationship is very complex: -Commensal but opportunistic will take advantage of weakened host and invade tissues setting up a potentially lifethreatening infection Examples include motile Aeromonads- natural inhabitants of intestine but cause septicemia when fish is immune suppressed

4 o Bacteria cause disease by 2 basic mechanisms: 1-Direct damage of host cells 2-Indirectly by stimulating exaggerated host inflammatory/immune response

5 Virulence factors are molecular components expressed by a pathogen that increases its ability to cause disease Virulence factors can be divided into two categories: 1. Those that cause damage to the host (toxins) 2. Those that do not directly damage the host but promote colonization and survival of infecting bacteria

6 A. Bacterial toxins 1. Exotoxin: protein molecule liberated from intact living bacterium. a. They are antigenic and can elicit protective antitoxic antibodies. Many of these toxins can be converted to nontoxic immunizing agents termed toxoids. b. Three roles of exotoxins in disease: i. Ingestion of preformed toxin (botulism) ii. Colonization of wound or surface followed by toxin production (cholera and diphtheria toxins) iii. Exotoxin produced by bacteria in tissues to aid growth and spread (Clostridium perfringens alpha-toxin)

7 d. Types of exotoxins: i. A-B toxins (intracellular acting) 1) Composed of two parts: A and B portions 2) The B portion mediates binding to a specific host cell receptor. 3) After binding to the host cell, the A portion is translocated into host cells and has biological activity against an intracellular target or

8 4) Examples: a) Diphtheria toxin: ADP-ribosylation of host EF-2; host cells are killed by blocking translation. b) Cholera toxin: ADP-ribosylation of a camp regulatory protein, which causes loss of ion regulation, water loss, diarrhea. c) Shiga toxin cleaves host rrna, which blocks translation and kills the host cell. d) Clostridium botulinum- large subunit targets neurons, small subunit cleave snare proteins inhibiting neurotransmitter release from neurons- causes paralysis BoNT- E in fish (most toxic substance known)

9 ii. Membrane disrupting (surface damaging) 1) Cause damage or disruption of plasma membranes, which leads to osmotic lysis and cell death. Many were originally termed hemolysins because they lyse RBCs. 2) Three types of membrane disrupting toxins: a) Enzymes that hydrolyze phospholipids: phospholipase, sphingomyelinase b) Toxins with detergent-like surfactant activity that disrupt by membrane solubilization c) Pore forming toxins (the most common): proteins that insert in the host membrane and form a hydrophilic pore Aeromonas produces up to 4 hemolysins- aerolysin A (AeroA) and Heat labile hemolysin AHH1- work synergistically, also some aeromonads produce the pore forming toxin RtxA Staphylococcus aureus alpha hemolysin, looking down the central pore

10 iii. Superantigens 1) Toxins that bind directly to MHC II on macrophages (without being processed) and form a crosslink with T cell receptors. 2) Crosslinking causes stimulation of up to 1 in 5 T cells in the body (normal antigens cause stimulation of 1 in 10,000). 3) Excessive IL-2 production results from the massive stimulation of T helper cells, 4) Stimulation of other cytokines by IL-2 lead to shock. Example: staphylococcal toxic-shock syndrome

11 iv. Extracellular enzymes: break down host macromolecules. play an important role in disease development by providing a nutrients or aiding in dissemination. Can cause extensive tissue damage Examples: a) Coagulase clots fibrin, thus protecting the bacteria. b) Hyaluronidases and proteases aid in the spread of bacteria by degrading extracellular matrix. c) Collagenase aids in dissemination d) DNase reduces viscosity of debris from dead cells (may help escape DNA net by neutrophil). A. hydrophila - Express diverse extracellular enzymes can contribute to virulence including collagenase, elastase, enolase, lipases (heat stable lipase, pla and Plc), metallo protease, and serine protease, Rnase R.

12 2. Endotoxin- released when cells die: lipopolysaccharide (LPS) produced by gramnegative bacteria. In gram-positive bacteria peptidoglycan and teichoic acids. a. LPS is bound by LPS binding proteins in plasma, which then binds CD14. This complex binds Toll-like receptor 4 (TLR4) on macrophages and monocytes. TLR2 binds teichoic acids. TLR1 binds peptidoglycan. b. Macrophages and monocytes release cytokines (IL-1, IL-6, IL-8, TNF alpha, Platelet Activating Factor), which subsequently trigger prostaglandin and leukotriene release c. The complement and coagulation cascades are activated. e. endotoxic shock occurs when bacterial products reach high enough levels in the blood to trigger complement activation, cytokine release, and coagulation cascade activation in many parts of the body. Circulatory system collapse followed by multiple organ system failure occurs.

13 B. Bacterial invasion of host tissues 1. Host damage is caused during invasion by either: a. direct disruption of function b. an exaggerated immune response that compromises tissue function. 2. The invasive bacteria are classified as: a. Facultative Intracellular Parasites i. FIPs are not confined to cells ii. Some can multiply in professional phagocytic cells. iii. When a balance is established between the bacterium and phagocyte, the bacteria may survive in this intracellular state for months or years (example: Mycobacterium). b. Obligate Intracellular Parasites; can only propagate inside host cells. Examples include chlamydia and rickettsia c. Extracellular parasites, which cause tissue damage while they are outside phagocytes and other cells and do not have the ability to survive long periods in cells.

14 3. Steps in bacterial invasion: a. Motility i. Flagella are the best characterized; adapted for low viscosity fluids. ii. iii. Other types of motility: corkscrew type (Spirochetes--best in viscous solutions), gliding motility (Flavobacterium columnare and cytophagas, myxobacteria--movement over solid surfaces). Chemotaxis is directional swimming using a gradient (especially nutrients). A. hydrophila produce lateral flagella for surface movement and polar flagella for movement in suspension. Glycosylation of polar flagella involved in biofilm formation, binding to cells and mucosal adherence

15 b. Adherence i. Two common strategies: fimbriae and monomeric protein adhesins. ii. iii. Fimbriae (pili): receptors are usually carbohydrate residues of glycoproteins or glycolipids. Attachment is more fragile. Highly specific binding, often mediated by adhesins, can be blocked by antibodies, often specific for host tissue type/location. Monomeric protein adhesins: mediated by cell surface proteins, tighter binding to host cell, may recognize proteins on host cell surface, may follow looser fimbrial attachment. Aeromonas-bundle-forming pilus (encoded by bfp) is a critical internal colonizing factor

16 c. Invasion of host cells (intracellular pathogens) i. Some invasive bacteria have mechanisms for entering host cells that are not naturally phagocytic. ii. iii. Two types of bacterial-mediated invasion: a. Zippering: bacteria present ligands on their surface allowing them to bind to host cells and initiate the entry process. It is similar to FcR- and CR3- mediated phagocytosis, which is characterized by the formation of inclusion shaped by the bacteria they ingest (Yersinia pestis Ail). b. Triggering: bacteria inject effectors into host cells via T3SS to regulate phagocytosis (Salmonella). Following attachment to host cells, pathogens cause changes in host cell cytoskeleton (actin) that cause the pathogen to be internalized.

17 iv. Some pathogens can utilize actin fibers intracellularly to move through host cells (transcytosis). v. Invasins may also mediate uptake of bacteria into professional phagocytic cells in a way that bypasses normal phagosome formation.

18 d. Manipulation of host cell functions i. Bacterial pathogens are often very manipulative of host cell functions; both extracellular and intracellular pathogens will cause host cells to perform functions favorable to the pathogen. a. For example, leukotoxin produced by Mannheimia haemolytica (extracellular pathogen) induces cytokine secretion. b. Listeria monocytogenes (intracellular pathogen) produces a protein that mobilizes actin to propel bacteria through the cell and into neighboring cells.

19 ii. Some bacterial pathogens have a specialized type III secretion system (TTSS) that forms a needle-like structure that injects effector proteins directly into the host cell cytoplasm. a. In some cases, these effector proteins serve as receptors in the host membrane for bacterial attachment. b. In some cases, these effector proteins can mobilize cytoskeleton to cause phagocytosis. c. In some cases, effector proteins can induce or prevent apoptosis. Aeromonas express type II, III and VI secretion systems III and VI can inject effector proteins into host cells (II is for extracellular release of proteins).

20 4. Obtaining nutrients a. Pathogenic bacteria have intricate methods to obtain all essential nutrients. b. Obligate intracellular bacteria have complex nutrient requirements and parasitize the living cell for an extended period. c. Host cytoplasm is a very nutrient rich environment. i. Extracellular pathogens often lyse cells to obtain nutrients. ii. Intracellular pathogens will either escape from phagosomes to enter the nutrient rich cytoplasm or modify the vacuole so they can get nutrients from the cytoplasm (example: E. ictaluri).

21 d. Iron i. Host tissues are very low in iron because it is bound to transferrin, lactoferrin, ferritin, and heme. ii. Bacterial strategies for obtaining iron (often induced by low iron conditions): 1) Siderophores--low MW compounds that chelate iron with very high affinity; secreted and taken up by bacterial surface receptors 2) Direct binding of host transferrin, lactoferrin, ferritin, or heme by bacterial surface receptors. 3) Exotoxins that lyse host cells (can be used to obtain other nutrients as well).

22 5. Evasion of host immune response a. Serum resistance i. Serum resistance is defined as the ability to prevent bacterial lysis by the C5b-C9 ii. membrane attack complex (MAC). Capsule mediates resistance to complement by: 1) preventing C3b binding 2) promoting C3bH complex formation instead of C3bBb (mediated by sialic acid in capsule-this inhibits complement cascade). iii. Lipopolysaccharide--binds C3b and C5b. However, O polysaccharide can mediate resistance to complement by: 1) having sialic acid attached to promote C3bH formation 2) having long O polysaccharide side chains that prevent MAC killing after C5b binds (possibly too far from bacterial outer membrane). iv. S-layer or outer membrane proteins Aeromonas encodes an S-layer also and capsule, TagA cleaves C1-esterase inhibitor imparting serum resistance

23 b. Resistance to opsonization/phagocytosis i. Capsule: 1) prevents C3b-mediated opsonization (by the same mechanism used to avoid complement-mediated killing) 2) prevents antibody-mediated opsonization by masking (hyaluronic acid, sialic acid). Aeromonas- capsule have anti-phagocytic activity, provide increased resistance to the complement system, and increased adherence

24 b. Resistance to opsonization/phagocytosis ii. iii. iv. LPS O polysaccharide can prevent opsonization if it has sialic acid S-layer Extracellular products: enzymes that inactivate C5a chemoattractant (S. pyogenes), toxins that kill phagocytes (leukotoxins) (Mannheimia haemolytica), inhibit migration, or reduce oxidative burst.

25 c. Strategies for surviving phagocytosis: i. Escape from phagosome before fusion with lysosome (example: Listeria monocytogenes, mediated by listeriolysin) ii. iii. Prevent phagosome-lysosome fusion-use type 3 secretion system to influence trafficking Express factors that allow survival in harsh phagolysosome conditions (catalase, superoxide dismutase, surface polysaccharides, cell wall)

26 d. Evading antibody i. Ig proteases ii. Antigenic switching or phase variation iii. Masking (sialic acid, hyaluronic acid, coating with host proteins such as fibronectin).

27 6. Virulence factors expression and release are coordinated by intricate gene regulation and regulated protein function a. Regulon-coordinated control of group of virulence factors that are activated or deactivated in response to environmental signal. b. Allows bacterial pathogens to adapt to varying host conditions. c. Virulence gene expression can be triggered when a pathogen senses environmental cues from the host environment (examples: ph, iron concentration).

28 d. Virulence gene expression is sometimes triggered when a pathogen detects sufficient bacterial numbers are present: quorum sensing i. Bacteria with quorum sensing capability secrete a small molecule (for example, homoserine lactone) ii. When the quorum sensing molecule reaches a critical concentration, gene expression is stimulated. iii. Sometimes quorum sensing regulates virulence genes. Aeromonads have elaborate quorum sensing system that regulated biofilm formation and virulence genes advancedhealing.com

29 Biofilm Definition: a structured community of bacteria enclosed in a self-produced polymeric matrix and adherent to an inert or living surface. Can provide resistance to damage outside of host, can protect against immune processes inside the host and can provide transient antibiotic resistance Resistance is due to: a. Slower growth rates of bacteria within biofilms b. Decreased diffusion of antibiotics through the biofilm (protective matrix) c. Accumulation of enzymes that contribute to resistance Scanning electron micrograph of E. coli O157:H7 biofilm bacteria

30 Persistence in the presence of antibiotics- regulated phenotypes Persisters are non- or slow-growing reversible phenotypic variants of the wild type, tolerant to bactericidal antibiotics. i. tolerance is due to inhibition of essential cell functions during antibiotic stress, resulting in inactivity of the antibiotic target. ii. iii. Persistence occurs in E. coli, Pseudomonas aeruginosa, Mycobacterium tuberculosis, and Staphylococcus aureus. Persistence requires coordinated metabolic changes; entry and exit from the persister state is regulated by signal molecules (such as guanosine pentaphosphate or ppgpp).

31 Summary o Bacterial pathogens are highly adapted and specialized. o Infection constitutes an organized, orchestrated attack. o Toxins manipulate the host to the bacteria s advantage. o Specialized mechanisms are required to invade the host, obtain nutrients, and avoid the immune response.

32 Thank you

BACTERIAL PATHOGENESIS

BACTERIAL PATHOGENESIS BACTERIAL PATHOGENESIS A pathogen is a microorganism that is able to cause disease. Pathogenicity is the ability to produce disease in a host organism. Virulence a term which refers to the degree of pathogenicity

More information

Bacterial Diseases IMMUNITY TO BACTERIAL INFECTIONS. Gram Positive Bacteria. Gram Negative Bacteria. Many Infectious agents and many diseases

Bacterial Diseases IMMUNITY TO BACTERIAL INFECTIONS. Gram Positive Bacteria. Gram Negative Bacteria. Many Infectious agents and many diseases IMMUNITY TO BACTERIAL INFECTIONS Chapter 18 Bacterial Diseases Many Infectious agents and many diseases Bacteria can Infect any part of the body Cause disease due to Growth of the microbe in a tissue Produce

More information

Microbial Mechanisms of Pathogenicity

Microbial Mechanisms of Pathogenicity Microbial Mechanisms of Pathogenicity Portals of Entry Mucous membranes Conjunctiva Respiratory tract: Droplet inhalation of moisture and dust particles. Most common portal of entry. GI tract: food, water,

More information

Chapter 29 Lecture Notes: Parasitism, pathogenicity and resistance

Chapter 29 Lecture Notes: Parasitism, pathogenicity and resistance Chapter 29 Lecture Notes: Parasitism, pathogenicity and resistance I. Symbiosis relationship in which 2 organisms spend a portion or all of their lifecycles associated with one another A. Commensalism

More information

PATHOGENICITY OF MICROORGANISMS

PATHOGENICITY OF MICROORGANISMS PATHOGENICITY OF MICROORGANISMS Some microorganisms are : 1- Harmless microorganism, as normal flora 2- Harmfull microorganism, as pathogenic. A pathogenic microorganism is defined as one that causes or

More information

Unit One Pathogenesis of Bacterial Infection Pathogenesis of bacterial infection includes the mechanisms that lead to the development of signs and

Unit One Pathogenesis of Bacterial Infection Pathogenesis of bacterial infection includes the mechanisms that lead to the development of signs and Unit One Pathogenesis of Bacterial Infection Pathogenesis of bacterial infection includes the mechanisms that lead to the development of signs and symptoms of disease. Characteristics of bacteria that

More information

Mechanisms of Pathogenicity

Mechanisms of Pathogenicity Mechanisms of Pathogenicity The Microbes Fight Back Medically important bacteria Salmonella Bacillus anthracis Shigella dysenteriae Campylobacter Shigella sonnei Clostridium botulinum Staphylococcus aureus

More information

Ch 15. Microbial Mechanisms of Pathogenicity

Ch 15. Microbial Mechanisms of Pathogenicity Ch 15 Microbial Mechanisms of Pathogenicity Student Learning Outcomes Identify the principal portals of entry and exit. Using examples, explain how microbes adhere to host cells. Explain how capsules and

More information

Bio Microbiology - Spring 2010 Study Guide 21

Bio Microbiology - Spring 2010 Study Guide 21 Bio 230 - Microbiology - Spring 2010 Study Guide 21 Factors in Microbial Disease Host Parasite Interactions are Dynamic Evolution effects both Parasite and Host Pathogenic Properties of Bacteria Microorganisms

More information

MICROBIOLOGY ROBERT W. BAUMAN. Chapter 14. Pathogenicity

MICROBIOLOGY ROBERT W. BAUMAN. Chapter 14. Pathogenicity MICROBIOLOGY ROBERT W. BAUMAN Chapter 14 Pathogenicity Microbial Mechanisms of Pathogenicity Pathogenicity -The ability to cause disease Virulence - The extent of pathogenicity Virulence Factors Adhesion

More information

Microbial Pathogenesis. How do bacteria cause disease? How do E.coli become pathogens? Commensal flora

Microbial Pathogenesis. How do bacteria cause disease? How do E.coli become pathogens? Commensal flora Microbial Pathogenesis How do E.coli become pathogens? Commensal flora Acquire genes that cause disease How do bacteria cause disease? 1- Direct toxic effects proteases flesh eating bacteria 2- Activation

More information

Module 10 Innate Immunity

Module 10 Innate Immunity Module 10 Innate Immunity Chapter 16 Innate Immunity Lectures Lectures prepared prepared by by Christine HelmutL.Kae Case The Concept of Immunity Immunity: ability to protect against disease from microbes

More information

Overview of the immune system

Overview of the immune system Overview of the immune system Immune system Innate (nonspecific) 1 st line of defense Adaptive (specific) 2 nd line of defense Cellular components Humoral components Cellular components Humoral components

More information

Burton's Microbiology for the Health Sciences

Burton's Microbiology for the Health Sciences Burton's Microbiology for the Health Sciences Section VII. Pathogenesis and Host Defense Mechanisms Burton's Microbiology for the Health Sciences Chapter 14. Pathogenesis of Infectious Diseases 1 Chapter

More information

Time course of immune response

Time course of immune response Time course of immune response Route of entry Route of entry (cont.) Steps in infection Barriers to infection Mf receptors Facilitate engulfment Glucan, mannose Scavenger CD11b/CD18 Allows immediate response

More information

Chapter 15. Microbial Mechanisms of Pathogenicity

Chapter 15. Microbial Mechanisms of Pathogenicity Chapter 15 Microbial Mechanisms of Pathogenicity I. Entry of a Microorganism into the Host A. Portals of Entry 1. Mucous Membranes Conjunctiva, respiratory, gastrointestinal, and genitourinary tracts Important

More information

Veterinary Bacteriology and Mycology

Veterinary Bacteriology and Mycology Veterinary Bacteriology and Mycology PJL:2011 Bacterial Overview: Morphology, Structure, Jargon General Features Domain Bacteria Proteobacteria Spirochaetes Firmicutes Actinobacteria No nuclear membrane

More information

محاضرة مناعت مدرس المادة :ا.م. هدى عبدالهادي علي النصراوي Immunity to Infectious Diseases

محاضرة مناعت مدرس المادة :ا.م. هدى عبدالهادي علي النصراوي Immunity to Infectious Diseases محاضرة مناعت مدرس المادة :ا.م. هدى عبدالهادي علي النصراوي Immunity to Infectious Diseases Immunity to infection depends on a combination of innate mechanisms (phagocytosis, complement, etc.) and antigen

More information

Microbial Pathogenesis

Microbial Pathogenesis Microbial Pathogenesis September 15, 2008 by David E. Briles dbriles@uab.edu 934-6595 Whether a pathogen is able to cause symptoms (disease) is dependent on the interaction of the pathogen with the host.

More information

Disease causing organisms Resistance Immunity

Disease causing organisms Resistance Immunity Part 1 Disease causing organisms Resistance Immunity Bacteria Most common pathogens Anthrax Cholera Staphylococcus epidermidis bacteria Bacterial diseases Tuberculosis Cholera Bubonic Plague Tetanus Effects

More information

Pathogenesis of Infectious Diseases. CLS 212: Medical Microbiology

Pathogenesis of Infectious Diseases. CLS 212: Medical Microbiology Pathogenesis of Infectious Diseases CLS 212: Medical Microbiology Definitions Path- means disease. Pathogenesis The steps or mechanisms involved in the development of a disease. Infection The presence

More information

TEMA 11. INMUNIDAD FRENTE A MICROORGANISMOS

TEMA 11. INMUNIDAD FRENTE A MICROORGANISMOS TEMA 11. INMUNIDAD FRENTE A MICROORGANISMOS Viruses must infect a host cell before they can replicate. Viruses attach to cells via specific receptors and this partly determines which cell types become

More information

Microbial Mechanisms of Pathogenicity & Innate Immunity: Nonspecific Defenses of the Host

Microbial Mechanisms of Pathogenicity & Innate Immunity: Nonspecific Defenses of the Host Microbial Mechanisms of Pathogenicity & Innate Immunity: Nonspecific Defenses of the Host Microbial Mechanisms of Pathogenicity Pathogenicity: Virulence: The extent of pathogenicity. - function of: - infectivity

More information

History. Chapter 13. Complement Components. Complement Pathways

History. Chapter 13. Complement Components. Complement Pathways History Chapter 13 Complement Jules Border in 1890 s discovered complement Paul Ehrlich coined the term complement The activity of blood serum that completes the action of antibody Now: Set of serum proteins

More information

Lines of defense. Innate Immunity. Immunity. First line of defense: Skin and mucous membranes 11/20/2016. Chapter 16 BIO 220

Lines of defense. Innate Immunity. Immunity. First line of defense: Skin and mucous membranes 11/20/2016. Chapter 16 BIO 220 Lines of defense Innate Immunity Chapter 16 BIO 220 Immunity The ability to ward off disease caused by microbes or their products and to protect against environmental agents such as pollen, chemicals,

More information

Streptococcus pyogenes

Streptococcus pyogenes Streptococcus pyogenes From Wikipedia, the free encyclopedia Streptococcus pyogenes S. pyogenes bacteria at 900x magnification. Scientific classification Kingdom: Eubacteria Phylum: Firmicutes Class: Cocci

More information

Complement. History. Chapter 7. Complement Components. Complement Pathways. Pathways of complement activation

Complement. History. Chapter 7. Complement Components. Complement Pathways. Pathways of complement activation History Chapter 7 Complement Jules Border in 1890 s discovered complement Paul Ehrlich coined the term complement The activity of blood serum that completes the action of antibody Now: Set of serum proteins

More information

4b. Innate (nonspecific) Immunity

4b. Innate (nonspecific) Immunity 4b. Innate (nonspecific) Immunity Chapter 16: Innate (nonspecific) Immunity! Some terms:! Susceptibility: Lack of immunity to a disease.! Immunity: Ability to ward off disease.! Innate immunity: Defenses

More information

Innate Immunity. Lines of defense. Immunity. Innate vs. adaptive immunity 11/24/2017

Innate Immunity. Lines of defense. Immunity. Innate vs. adaptive immunity 11/24/2017 Immunity Innate Immunity Chapter 16 BIO 220 The ability to ward off disease caused by microbes or their products and to protect against environmental agents such as pollen, chemicals, and pet dander Innate

More information

Host Parasite Relationship. Prof. Hanan Habib Department of Pathology, College of Medicine,KSU

Host Parasite Relationship. Prof. Hanan Habib Department of Pathology, College of Medicine,KSU Host Parasite Relationship Prof. Hanan Habib Department of Pathology, College of Medicine,KSU OBJECTIVES Define core terms important in host-parasite relationship. Know host response to parasite invasion

More information

Phagocytosis MHCII. Macrophage (APC) Phagocytosis MHCII. Macrophage (APC) Destruction

Phagocytosis MHCII. Macrophage (APC) Phagocytosis MHCII. Macrophage (APC) Destruction 1. Phagocytosis MHCII Macrophage (APC) 1. Phagocytosis 2. Destruction MHCII Macrophage (APC) 1 Infection, Cytokines (e.g. TNF, IFN) APC Activation 1. Phagocytosis 2. Destruction MHCII Macrophage (APC)

More information

Pathogenicity and Infection. Copyright McGraw-Hill Global Education Holdings, LLC. Permission required for reproduction or display.

Pathogenicity and Infection. Copyright McGraw-Hill Global Education Holdings, LLC. Permission required for reproduction or display. 35 Pathogenicity and Infection Copyright McGraw-Hill Global Education Holdings, LLC. Permission required for reproduction or display. 1 35.1 Pathogenicity and Infectious Disease 1. Compare and contrast

More information

Cell Structure. Morphology of Prokaryotic Cell. Cytoplasmic Membrane 4/6/2011. Chapter 3. Cytoplasmic membrane

Cell Structure. Morphology of Prokaryotic Cell. Cytoplasmic Membrane 4/6/2011. Chapter 3. Cytoplasmic membrane Cell Structure Chapter 3 Morphology of Prokaryotic Cell Cytoplasmic membrane Delicate thin fluid structure Surrounds cytoplasm of cell Defines boundary Defines boundary Serves as a selectively permeable

More information

Anti-infectious Immunity

Anti-infectious Immunity Anti-infectious Immunity innate immunity barrier structures Secretory molecules Phagocytes NK cells Anatomical barriers 1. Skin and mucosa barrier 2.hemo-Spinal Fluid barrier 3. placental barrier Phagocytic

More information

Mechanisms of Bacterial Pathogenesis

Mechanisms of Bacterial Pathogenesis Mechanisms of Bacterial Pathogenesis Pin Ling ( 凌斌 ), Ph.D. Department of Microbiology & Immunology, NCKU ext 5632 lingpin@mail.ncku.edu.tw References: 1. Chapter 19 in Medical Microbiology (Murray, P.

More information

Microbes as Agents of Infectious Disease

Microbes as Agents of Infectious Disease Microbes as Agents of Infectious Disease Normal Flora Virulence and Pathogenicity Toxicity vs. Invasiveness WE ARE NOT ALONE! We are outnumbered. The average human contains about 10 trillion cells. On

More information

1. Which of the following statements concerning Plasmodium vivax is TRUE?

1. Which of the following statements concerning Plasmodium vivax is TRUE? 1 Microm 301 Final Exam 2012 Practice Questions and Key 1. Which of the following statements concerning Plasmodium vivax is TRUE? A. It infects all stages of erythrocytes (immature, mature, and senescent).

More information

16 Innate Immunity: M I C R O B I O L O G Y. Nonspecific Defenses of the Host. a n i n t r o d u c t i o n

16 Innate Immunity: M I C R O B I O L O G Y. Nonspecific Defenses of the Host. a n i n t r o d u c t i o n ninth edition TORTORA FUNKE CASE M I C R O B I O L O G Y a n i n t r o d u c t i o n 16 Innate Immunity: Nonspecific Defenses of the Host PowerPoint Lecture Slide Presentation prepared by Christine L.

More information

Gram-Negative rods Introduction to

Gram-Negative rods Introduction to Lec 5 Oral Microbiology Dr. Chatin Gram-Negative rods Introduction to Enterobacteriaceae Characteristics: جامعة تكريت كلية طب االسنان Small gram-negative rods (2-5 by 0.5 microns) Most motile with peritrichous

More information

History. Chapter 13. Complement Components. Complement Pathways

History. Chapter 13. Complement Components. Complement Pathways History Chapter 13 Complement Jules Border in 1890 s discovered complement Paul Ehrlich coined the term complement The activity of blood serum that completes the action of antibody Now: Set of serum proteins

More information

Where are we heading?

Where are we heading? Unit 4: Where are we heading? Unit 4: Introduction Unit 1: Why should we care about infectious diseases? Unit 2: What does it mean to have an infectious disease? Unit 3: When does a microbe become a pathogen?

More information

ACTIVATION OF T LYMPHOCYTES AND CELL MEDIATED IMMUNITY

ACTIVATION OF T LYMPHOCYTES AND CELL MEDIATED IMMUNITY ACTIVATION OF T LYMPHOCYTES AND CELL MEDIATED IMMUNITY The recognition of specific antigen by naïve T cell induces its own activation and effector phases. T helper cells recognize peptide antigens through

More information

Innate Immunity. Natural or native immunity

Innate Immunity. Natural or native immunity Innate Immunity 1 Innate Immunity Natural or native immunity 2 When microbes enter in the body 3 Secondly, it also stimulates the adaptive immune system 4 Immunologic memory 5 Components of Innate Immunity

More information

Lecture 17: Attack by Complement and Counterattack by Microbes

Lecture 17: Attack by Complement and Counterattack by Microbes Lecture 17: Attack by Complement and Counterattack by Microbes 2 Review Concepts of Complement Complement was addressed in Lecture 3 Major first line of defense (innate immunity) Major functions: Opsonization

More information

Secretory antibodies in the upper respiratory tract

Secretory antibodies in the upper respiratory tract Secretory antibodies in the upper respiratory tract B lymphocytes IgM (pneumococcus) Dimeric IgA J chain Polymeric immunoglobulin receptor (PigR) Polysaccharide capsule Epithelial cell Basolateral Secretory

More information

Defense mechanism against pathogens

Defense mechanism against pathogens Defense mechanism against pathogens Immune System What is immune system? Cells and organs within an animal s body that contribute to immune defenses against pathogens ( ) Bacteria -Major entry points ;open

More information

Nonspecific Host Resistance. Counter attack (Specific Host Resistance) A. Nonspecific (Innate) Resistance (Page 362)

Nonspecific Host Resistance. Counter attack (Specific Host Resistance) A. Nonspecific (Innate) Resistance (Page 362) Pages 361-382 Nonspecific Host Resistance 1. Introduction A. Resistance i. Resistance by defense Resistance by alliance Counter attack (Specific Host Resistance) B. Susceptibility 2. Resistance A. Nonspecific

More information

Gram Positive Coccus Staphylococci Dr. Hala Al Daghistani

Gram Positive Coccus Staphylococci Dr. Hala Al Daghistani Medical bacteriology Gram Positive Coccus Staphylococci Dr. Hala Al Daghistani The Staphylococci are gram-positive spherical cells, nonmotile, usually arranged in grapelike irregular clusters. Some are

More information

Innate Immunity: Nonspecific Defenses of the Host

Innate Immunity: Nonspecific Defenses of the Host PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R 16 Innate Immunity: Nonspecific Defenses of the Host Host Response to Disease Resistance- ability

More information

ANATOMY OF THE IMMUNE SYSTEM

ANATOMY OF THE IMMUNE SYSTEM Immunity Learning objectives Explain what triggers an immune response and where in the body the immune response occurs. Understand how the immune system handles exogenous and endogenous antigen differently.

More information

Innate Immunity. Natural or native immunity

Innate Immunity. Natural or native immunity Innate Immunity 1 Innate Immunity Natural or native immunity 2 When microbes enter in the body 3 Secondly, it also stimulates the adaptive immune system 4 Immunologic memory 5 Components of Innate Immunity

More information

Channarong Rodkhum D.V.M., Ph.D. Department of Veterinary Microbiology Faculty of Veterinary Science Chulalongkorn University

Channarong Rodkhum D.V.M., Ph.D. Department of Veterinary Microbiology Faculty of Veterinary Science Chulalongkorn University Course : Host-pathogen interactions (3110756) Channarong Rodkhum D.V.M., Ph.D. Department of Veterinary Microbiology Faculty of Veterinary Science Chulalongkorn University Outline Introduction Bacterial

More information

MONTGOMERY COUNTY COMMUNITY COLLEGE Department of Science LECTURE OUTLINE CHAPTERS 16, 17, 18 AND 19

MONTGOMERY COUNTY COMMUNITY COLLEGE Department of Science LECTURE OUTLINE CHAPTERS 16, 17, 18 AND 19 MONTGOMERY COUNTY COMMUNITY COLLEGE Department of Science LECTURE OUTLINE CHAPTERS 16, 17, 18 AND 19 CHAPTER 16: NONSPECIFIC DEFENSES OF THE HOST I. THE FIRST LINE OF DEFENSE A. Mechanical Barriers (Physical

More information

Resisting infection. Cellular Defenses: Leukocytes. Chapter 16: Innate host defenses Phagocytosis Lymph Inflammation Complement

Resisting infection. Cellular Defenses: Leukocytes. Chapter 16: Innate host defenses Phagocytosis Lymph Inflammation Complement Resisting infection Chapter 16: Innate host defenses Lymph Inflammation Complement Bio 139 Dr. Amy Rogers Innate defenses (ch. 16) Physical & chemical barriers; cellular defenses; inflammation, fever;

More information

Innate Immunity. By Dr. Gouse Mohiddin Shaik

Innate Immunity. By Dr. Gouse Mohiddin Shaik Innate Immunity By Dr. Gouse Mohiddin Shaik Types of immunity Immunity Innate / inborn Non-specific Acquired / adaptive Specific 3rd line of defense Physical barriers Skin, Saliva, Mucous, Stomach acid,

More information

Structure and Function of Antigen Recognition Molecules

Structure and Function of Antigen Recognition Molecules MICR2209 Structure and Function of Antigen Recognition Molecules Dr Allison Imrie allison.imrie@uwa.edu.au 1 Synopsis: In this lecture we will examine the major receptors used by cells of the innate and

More information

1. Overview of Innate Immunity

1. Overview of Innate Immunity Chapter 15: Innate Immunity 1. Overview of Innate Immunity 2. Inflammation & Phagocytosis 3. Antimicrobial Substances 1. Overview of Innate Immunity Chapter Reading pp. 449-456 The Body s Defenses The

More information

Topics. Humoral Immune Response Part II Accessory cells Fc Receptors Opsonization and killing mechanisms of phagocytes NK, mast, eosynophils

Topics. Humoral Immune Response Part II Accessory cells Fc Receptors Opsonization and killing mechanisms of phagocytes NK, mast, eosynophils Topics Humoral Immune Response Part II Accessory cells Fc Receptors Opsonization and killing mechanisms of phagocytes NK, mast, eosynophils Immune regulation Idiotypic network 2/15/2005 MICR 415 / 515

More information

May 14, Review for final exam (May 21, 2011, 8 AM)

May 14, Review for final exam (May 21, 2011, 8 AM) May 14, 2011 Review for final exam (May 21, 2011, 8 AM) The final exam is comprehensive. Two thirds of the test will cover material from the last one third of the class. The remaining one third of the

More information

The term complement refers to the ability of a system of some nonspecific proteins in normal human serum to complement, i.e., augment the effects of

The term complement refers to the ability of a system of some nonspecific proteins in normal human serum to complement, i.e., augment the effects of COMPLEMENT SYSTEM The term complement refers to the ability of a system of some nonspecific proteins in normal human serum to complement, i.e., augment the effects of other components of immune system,

More information

Topic 03 Prokaryotes (3.3)

Topic 03 Prokaryotes (3.3) Topic 03 Prokaryotes (3.3) Topics Characteristics (comparison) External Structures Cell Envelope Internal Structures Cell Shapes, Arrangement, and Sizes Classification 1 Relative size of bacterial cell

More information

Cell Mediated Immunity CELL MEDIATED IMMUNITY. Basic Elements of Cell Mediated Immunity (CMI) Antibody-dependent cell-mediated cytotoxicity (ADCC)

Cell Mediated Immunity CELL MEDIATED IMMUNITY. Basic Elements of Cell Mediated Immunity (CMI) Antibody-dependent cell-mediated cytotoxicity (ADCC) Chapter 16 CELL MEDIATED IMMUNITY Cell Mediated Immunity Also known as Cellular Immunity or CMI The effector phase T cells Specificity for immune recognition reactions TH provide cytokines CTLs do the

More information

Innate Immunity: Nonspecific Defenses of the Host

Innate Immunity: Nonspecific Defenses of the Host PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R 16 Innate Immunity: Nonspecific Defenses of the Host Big Picture: Immunity Big Picture: Immunity

More information

Adaptive Immunity to Bacteria. T cell subsets

Adaptive Immunity to Bacteria. T cell subsets Adaptive Immunity to Bacteria Role of T cells in anti-bacterial host responses. Dr. C. Piccirillo Department of Microbiology & Immunology McGill University T cell subsets MHC I and II -restricted cells

More information

Pre-Lec. + Questions

Pre-Lec. + Questions Sheet 14 (part 2) made by : Majd abu-fares corrected by: Shatha khtoum date:8/11/2016 Pre-Lec. + Questions *Pus: secretion of {WBCs + product of WBCs + product of M.O} *WBCs can produce enzymes cytokines

More information

Chapter 4 Prokaryotic Profiles

Chapter 4 Prokaryotic Profiles Chapter 4 Prokaryotic Profiles Topics: External Structures Cell Envelope Internal Structures Cell Shapes, Arrangement, and Sizes Prokaryotes are unicellular organisms Prokaryotes include two small groups

More information

Prokaryotic Cell Structure

Prokaryotic Cell Structure Prokaryotic Cell Structure Chapter 3 Prokaryotes vs Eukaryotes DNA Prokaryotes Eukaryotes Organelles Size & Organization Kingdoms 1 Where do viruses fit in? Acellular microorganisms Cannot reproduce outside

More information

Prokaryotic Cell Structure

Prokaryotic Cell Structure Prokaryotic Cell Structure Chapter 3 Prokaryotes vs Eukaryotes DNA Prokaryotes Eukaryotes Organelles Size & Organization Kingdoms Where do viruses fit in? Acellular microorganisms Cannot reproduce outside

More information

االستاذ المساعد الدكتور خالد ياسين الزاملي \مناعة \المرحلة الثانية \ التحليالت المرضية \ المعهد التقني كوت

االستاذ المساعد الدكتور خالد ياسين الزاملي \مناعة \المرحلة الثانية \ التحليالت المرضية \ المعهد التقني كوت Complement System The term complement refers to the ability of a system of some nonspecific proteins in normal human serum to complement, i.e., augment the effects of other components of immune system,

More information

Bacterial Structures. Capsule or Glycocalyx TYPES OF FLAGELLA FLAGELLA. Average size: µm 2-8 µm Basic shapes:

Bacterial Structures. Capsule or Glycocalyx TYPES OF FLAGELLA FLAGELLA. Average size: µm 2-8 µm Basic shapes: PROKARYOTIC One circular chromosome, not in a membrane No histones No organelles Peptidoglycan cell walls Binary fission EUKARYOTIC Paired chromosomes, in nuclear membrane Histones Organelles Polysaccharide

More information

CELL BIOLOGY - CLUTCH CH THE IMMUNE SYSTEM.

CELL BIOLOGY - CLUTCH CH THE IMMUNE SYSTEM. !! www.clutchprep.com CONCEPT: OVERVIEW OF HOST DEFENSES The human body contains three lines of against infectious agents (pathogens) 1. Mechanical and chemical boundaries (part of the innate immune system)

More information

Microbes as Agents of Infectious Disease

Microbes as Agents of Infectious Disease Microbes as Agents of Infectious Disease Normal Flora Virulence and Pathogenicity Toxicity vs. Invasiveness WE ARE NOT ALONE! We are outnumbered. The average human contains about 10 trillion cells. On

More information

CH 11. Interaction between Microbes and Humans

CH 11. Interaction between Microbes and Humans CH 11 Interaction between Microbes and Humans SLOs 1. Differentiate among the terms colonization, infection, and disease. 2. Enumerate the sites where normal biota is found in humans. 3. Discuss how the

More information

Independent Study Guide The Innate Immune Response (Chapter 15)

Independent Study Guide The Innate Immune Response (Chapter 15) Independent Study Guide The Innate Immune Response (Chapter 15) I. General types of immunity (Chapter 15 introduction) a. Innate i. inborn ii. pattern recognition b. Adaptive i. "learned" through exposure

More information

Chapter 16 Innate Immunity: Nonspecific Defenses of the Host

Chapter 16 Innate Immunity: Nonspecific Defenses of the Host Module 10 Chapter 16 Innate Immunity: Nonspecific Defenses of the Host The concept of immunity Immunity: ability to protect against from microbes and their o Aka, Susceptibility: vulnerability or lack

More information

Adaptive Immunity: Humoral Immune Responses

Adaptive Immunity: Humoral Immune Responses MICR2209 Adaptive Immunity: Humoral Immune Responses Dr Allison Imrie 1 Synopsis: In this lecture we will review the different mechanisms which constitute the humoral immune response, and examine the antibody

More information

True Pathogens of the Enterobacteriaceae: Salmonella, Shigella & Yersinia Salmonella

True Pathogens of the Enterobacteriaceae: Salmonella, Shigella & Yersinia Salmonella Lec. 6 Oral Microbiology Dr. Chatin True Pathogens of the Enterobacteriaceae: Salmonella, Shigella & Yersinia Salmonella General Characteristics of Salmonella جامعة تكريت كلية طب االسنان Coliform bacilli

More information

Complement. Definition : series of heat-labile serum proteins. : serum and all tissue fluids except urine and CSF

Complement. Definition : series of heat-labile serum proteins. : serum and all tissue fluids except urine and CSF Complement Complement Definition : series of heat-labile serum proteins Site : serum and all tissue fluids except urine and CSF Synthesis : in liver appear in fetal circulation during 1 st 13 W Function

More information

Chapter 17B: Adaptive Immunity Part II

Chapter 17B: Adaptive Immunity Part II Chapter 17B: Adaptive Immunity Part II 1. Cell-Mediated Immune Response 2. Humoral Immune Response 3. Antibodies 1. The Cell-Mediated Immune Response Basic Steps of Cell-Mediated IR 1 2a CD4 + MHC cl.

More information

BIOH111. o Cell Biology Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system

BIOH111. o Cell Biology Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system BIOH111 o Cell Biology Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system Endeavour College of Natural Health endeavour.edu.au 1 Textbook

More information

Medical Bacteriology- Lecture: 6

Medical Bacteriology- Lecture: 6 Medical Bacteriology- Lecture: 6 Gram Positive Cocci Streptococcal Disease Streptococcus pyogenes Classification of Streptococci based on (1- Hemolysis reactions on blood agar) (Brown in 1903) The type

More information

Endeavour College of Natural Health endeavour.edu.au

Endeavour College of Natural Health endeavour.edu.au Endeavour College of Natural Health endeavour.edu.au BIOH122 Human Biological Science 2 Session 8 Immune System 1 Bioscience Department Endeavour College of Natural Health endeavour.edu.au Session Plan

More information

Target cell lysis Opsonization Activation of the inflammatory response (e.g. degranulation, extravasation) Clearance of immune complexes

Target cell lysis Opsonization Activation of the inflammatory response (e.g. degranulation, extravasation) Clearance of immune complexes Immunology Dr. John J. Haddad Chapter 13 Complement Major roles of complement (Figure 13-1): Target cell lysis Opsonization Activation of the inflammatory response (e.g. degranulation, extravasation) Clearance

More information

IMMUNE RESPONSE TO INFECTIOUS DISEASES

IMMUNE RESPONSE TO INFECTIOUS DISEASES IMMUNE RESPONSE TO INFECTIOUS DISEASES Immune Response to Bacterial Infection Characteris*cs of Bacteria 1 X 2 X 3 X 4 X 5 X 6 X 7 X Bacterial Diseases Any part of the body can be infected by many Infec;ous

More information

Molecular and Cellular Basis of Immune Protection of Mucosal Surfaces

Molecular and Cellular Basis of Immune Protection of Mucosal Surfaces Molecular and Cellular Basis of Immune Protection of Mucosal Surfaces Department of Biologic & Materials Sciences School of Dentistry University of Michigan Ann Arbor, Michigan 48109-1078 1 Image quality

More information

Acquired Immunity Cells are initially and require before they can work Responds to individual microbes

Acquired Immunity Cells are initially and require before they can work Responds to individual microbes 1 of 10 THE IMMUNE SYSTEM CHAPTER 43; PAGES 898 921 WHY DO WE NEED AN IMMUNE SYSTEM? It s a dirty, dirty world out there and we are vastly outnumbered Bacteria and parasites are everywhere The body has

More information

Immune System AP SBI4UP

Immune System AP SBI4UP Immune System AP SBI4UP TYPES OF IMMUNITY INNATE IMMUNITY ACQUIRED IMMUNITY EXTERNAL DEFENCES INTERNAL DEFENCES HUMORAL RESPONSE Skin Phagocytic Cells CELL- MEDIATED RESPONSE Mucus layer Antimicrobial

More information

Cutaneous Immunology: Innate Immune Responses. Skin Biology Lecture Series

Cutaneous Immunology: Innate Immune Responses. Skin Biology Lecture Series Cutaneous Immunology: Innate Immune Responses Skin Biology Lecture Series The Immune Response: Innate and Adaptive Components Source: Wolff, Goldsmith, Katz, Gilchrest, Paller, Leffell. Fitzpatrick s Dermatology

More information

Topic (6): The Complement System

Topic (6): The Complement System Topic (6): The Complement System Introduction The complement system is a complex system of many different glycoproteins. It comprises several plasma proteins that sequentially activate each other by proteolytic

More information

Third line of Defense

Third line of Defense Chapter 15 Specific Immunity and Immunization Topics -3 rd of Defense - B cells - T cells - Specific Immunities Third line of Defense Specific immunity is a complex interaction of immune cells (leukocytes)

More information

INFLAMMATION & REPAIR

INFLAMMATION & REPAIR INFLAMMATION & REPAIR Lecture 7 Chemical Mediators of Inflammation Winter 2013 Chelsea Martin Special thanks to Drs. Hanna and Forzan Course Outline i. Inflammation: Introduction and generalities (lecture

More information

Global Burden of Infectious Disease. Immune Response to Infectious Diseases Lecture 21 April 12 and Lecture 22 April 17

Global Burden of Infectious Disease. Immune Response to Infectious Diseases Lecture 21 April 12 and Lecture 22 April 17 Immune Response to Infectious Diseases Lecture 21 April 12 and Lecture 22 April 17 Global Burden of Infectious Disease Robert Beatty MCB150 Infection versus disease Immuncompetent vs Immunocompromised

More information

Overview of the Immune System

Overview of the Immune System Overview of the Immune System Immune System Innate (Nonspecific) Adaptive (Specific) Cellular Components Humoral Components Cell-Mediated Humoral (Ab) Antigens Definitions Immunogen Antigen (Ag) Hapten

More information

Immunology Lecture- 1

Immunology Lecture- 1 Immunology Lecture- 1 Immunology and Immune System Immunology: Study of the components and function of the immune system Immune System a network collected from cells, tissues organs and soluble factors

More information

MICR2209. Innate Immunity. Dr Allison Imrie

MICR2209. Innate Immunity. Dr Allison Imrie MICR2209 Innate Immunity Dr Allison Imrie allison.imrie@uwa.edu.au Synopsis: In this lecture we will review the different mechanisms which consbtute the innate immune response, and examine the major cells

More information

INFLAMMATION: Cellular Functions

INFLAMMATION: Cellular Functions INFLAMMATION: Cellular Functions Sequence of Vascular Events 1. Vasodilation (increased blood flow) CALOR & RUBOR 2. Increased microvascular permeability: fluids into tissues TUMOR 3. Blood flow slows

More information

Ch 4. Functional Anatomy of Prokaryotic and Eukaryotic Cells

Ch 4. Functional Anatomy of Prokaryotic and Eukaryotic Cells Ch 4 Functional Anatomy of Prokaryotic and Eukaryotic Cells Objectives Compare and contrast the overall cell structure of prokaryotes and eukaryotes. Identify the three basic shapes of bacteria. Describe

More information

Nonspecific Host Resistance. Counter attack (Specific Host Resistance)

Nonspecific Host Resistance. Counter attack (Specific Host Resistance) Nonspecific Host Resistance Chapter 16 1. Introduction A. Resistance i. Resistance by defense ii. iii. Resistance by alliance Counter attack (Specific Host Resistance) B. Susceptibility 2. Resistance A.

More information

IMMUNITY AND ANTIBODIES

IMMUNITY AND ANTIBODIES IMMUNITY AND ANTIBODIES Stem cells in bone marrow differentiate into various blood cells Phagocytes attack alien cells A non-specific reaction Mast cells release histamine Histamine dilates capillaries,

More information