Bulletin of the Hospital for Joint Diseases 2013;71(4):284-93

Size: px
Start display at page:

Download "Bulletin of the Hospital for Joint Diseases 2013;71(4):284-93"

Transcription

1 284 Impact of Inferior Glenoid Tilt, Humeral Retroversion, Bone Grafting, and Design Parameters on Muscle Length and Wrapping in Reverse Shoulder Arthroplasty Christopher P. Roche, M.S., M.B.A., Phong Diep, B.S., Matthew Hamilton, Ph.D., Lynn A. Crosby, M.D., Pierre-Henri Flurin, M.D., Thomas W. Wright, M.D., Joseph D. Zuckerman, M.D., and Howard D. Routman, D.O. Abstract Purpose: This study quantifies the ability of humeral retroversion, glenoid tilt, bone graft, and varying prosthesis design parameters to restore anatomic muscle length and deltoid wrapping with reverse shoulder arthroplasty. Methods: A computer model simulated abduction and internal and external rotation for a normal shoulder, the RSP reverse shoulder, the Equinoxe reverse shoulder, and the Grammont reverse shoulder when implanted using various implantation methods. The length of eight different muscles and the deltoid wrapping angle were quantified to evaluate the ability of each implantation method and design to restore anatomic muscle tensioning. Results: Each reverse shoulder shifted the center of rotation medially and inferiorly relative to the normal shoulder and caused a corresponding shift in the position of the humerus. Each reverse shoulder elongated each head of the deltoid and shortened the internal and external rotators relative to the normal shoulder. The surgical techniques and prosthesis designs, which resulted in a more lateral humeral position, were associated with more deltoid wrapping and Christopher P. Roche, M.S., M.B.A., Phong Diep, B.S., and Matthew Hamilton, Ph.D., are employed by Exactech, Inc., Gainesville, Florida. Lynn A. Crosby, M.D., is in the Department of Orthopaedic Surgery, Georgia Regents University, Augusta, Georgia. Pierre- Henri Flurin, M.D., is at the Bordeaux-Merignac Clinique du Sport, Merignac, France. Thomas W. Wright, M.D., is in the Department of Orthopaedics and Rehabilitation, University of Florida, Gainesville, Florida. Joseph D. Zuckerman, M.D., Department of Orthopaedic Surgery, Hospital for Joint Diseases, NYU Langone Medical Center, New York, New York. Howard D. Routman, D.O., is with Atlantis Orthopaedics, Palm Beach Gardens, Florida. Correspondence: Joseph D. Zuckerman, M.D., Professor and Chairman, NYU Hospital for Joint Diseases, Department of Orthopaedic Surgery, 301 East 17th Street, 14th Floor, New York, New York 10003; joseph.zuckerman@nyumc.org. better tensioning of the anterior and posterior shoulder muscles. Conclusions: Muscle tensioning and deltoid wrapping can be substantially altered by surgical implantation methods using the Grammont reverse shoulder. However, the results of this study demonstrate that more anatomic muscle tensioning and improved deltoid wrapping are achieved using alternative prosthesis designs that better restore the lateral position of the humerus. The reverse shoulder inverts the anatomic articulations making the glenoid convex and the humerus concave, creating a fixed fulcrum that prevents the humerus from migrating superiorly. Inverting the concavities shifts the center of rotation (CoR) inferiorly and medially and changes the position of the humerus. The magnitude of change in the center of rotation and position of the humerus has important implications on muscle tensioning, range of motion, and stability. 1-5 Significant efforts have been made to refine the surgical implantation method and recommend prosthesis design modifications to reduce both the type of complications and their associated rates While many of these complications are inter-related, most of the mitigating efforts have prioritized the reduction of the scapular notching rate. Some recommendations have been widely accepted, such as inferiorly shifting the glenosphere as recommended by Nyfeller and coworkers, 4 while others have been more controversial, such as increasing glenosphere thickness (independent of glenosphere diameter) to lateralize the CoR off the face of the glenoid as recommended by Frankle and associates. 3,12 Similar controversy exists regarding recommendations to reduce instability (and notching) by inferiorly tilting the glenosphere or by changing the prosthesis humeral neck angle. 1,5,16-19 Humeral orientation is also controversial; some recommend placing the humerus in 0 to ver- Roche CP, Diep P, Hamilton M, Crosby LA, Flurin PH, Wright TW, Zuckerman JD, Routman HD. Impact of inferior glenoid tilt, humeral retroversion, bone grafting, and design parameters on muscle length and deltoid wrapping in reverse shoulder arthroplasty. Bull Hosp Jt Dis. 2013;71(4):

2 285 sion ; whereas, others recommend 20 to 40 retroversion 22 to reduce impingement, facilitate (internal or external) rotation, and improve stability. Some have recommended bone grafting a worn glenoid to improve stability and have reported that bone grafting worn glenoids can reduce the scapular notching rate 23,24,27,28 with the Grammont reverse shoulder. These observations led Boileau and colleagues 29 to controversially recommend using bone graft with the Grammont reverse shoulder in non-worn glenoids to lateralize the CoR, improve muscle tension and deltoid contour, and reduce impingement. The magnitude of controversy related to such basic implantation methods and prosthesis design principles reflects the level of uncertainty and lack of consensus among orthopaedic surgeons using this type of prosthesis. To this end, a computer model quantified changes in muscle length and deltoid wrapping when implanting the Grammont reverse shoulder in each of the aforementioned surgical technique recommendations during two different motion simulations. These measures of muscle tensioning and deltoid wrapping are compared to that of the normal shoulder and two different alternative reverse shoulder designs for each type of motion to evaluate the ability of surgical technique modifications to restore the anatomic tensioning of the muscles in the shoulder using the Grammont reverse shoulder prosthesis. Methods A 3-D computer model was developed in Unigraphics (Siemens PLM; Plano, TX, USA) and used to simulate abduction in the scapular plane and internal and external rotation for the normal shoulder and three commercially-available reverse shoulder designs with more than 6 years of clinical history. The 36 mm x 18 mm Grammont (Depuy Orthopaedics, Inc; Warsaw, IN, USA) has a humeral neck angle of 155, a center of rotation 0 mm lateral to the glenoid fossa, and a humeral stem and liner medial offset of 9.8 mm. The 32 mm x 26 mm RSP (DJO Surgical; Austin, TX, USA) has a humeral neck angle of 135, a center of rotation 10 mm lateral to the fossa, and a humeral stem and liner medial offset of 10.9 mm. The 38 mm x 21 mm Equinoxe (Exactech, Inc; Gainesville, FL, USA) has a humeral neck angle of 145, a center of rotation 2 mm lateral to the fossa, and a humeral stem and liner medial offset of 20.8 mm. Each reverse shoulder was geometrically modeled and implanted in a 3-D digitized scapula and humerus; a 3-D digital clavicle and ribcage were also included (Pacific Research Laboratories, Inc; Vashon Island, WA). The digital humerus and scapula were assembled to simulate a normal shoulder, functioning as the control in this analysis; the humeral head was centered on the glenoid and offset by 4 mm from the center of the glenoid to account for the thickness of the cartilage and labrum. Eight muscles were simulated as three lines from its origin on the scapula or clavicle to its insertion on the humerus: anterior deltoid (yellow), middle deltoid (dark green), posterior deltoid (magenta), subscapularis (light green), infraspinatus (dark blue), teres major (red), teres minor (cyan), and the clavicular portion of the pectoralis major (orange) (Fig. 1). To characterize the biomechanical impact of humeral retroversion on each muscle, the Grammont was implanted according to the manufacturer s recommendations so that the glenoid baseplate aligns with the inferior glenoid rim as the humeral component was successively oriented at 0, 20, and 40 retroversion (Fig. 2). To characterize the biomechanical impact of glenosphere tilt on each muscle, the Grammont was implanted along the inferior glenoid rim at 0 and 15 inferior tilt (with 20 humeral retroversion). To characterize the biomechanical impact of bone grafting a non-worn glenoid on each muscle, the Grammont was Figure 1 Computer model of eight muscles simulated as three lines from origin to insertion, anterior (left) and posterior (right) views of the 36 mm Grammont reverse shoulder (0 tilt, 20 humeral retroversion) at 15 abduction. Color figure available online at www. nyuhjdbulletin.org.

3 286 muscle at each degree of motion; each average muscle length at each degree of motion was compared as a percentage of the corresponding muscle length of the normal shoulder. To clarify, a positive percentage indicates elongation of the muscle relative to the normal shoulder, whereas a negative percentage indicates shortening of the muscle relative to the normal shoulder. The angle of abduction in which the middle deltoid stops wrapping around the greater tuberosity was also quantified as a measure stability (e.g., less deltoid wrapping implies reduced humeral head compression into the glenoid) for the normal shoulder, and the Grammont, RSP, and Equinoxe reverse shoulders. Figure 2 Representative computer model image of scapular view of the 36 mm Grammont 0 tilt, 0 retro (top), 36 mm Grammont 0 tilt, (middle), and 36 mm Grammont 0 tilt, 40 retro (bottom) reverse shoulders at 30 abduction, scapula made transparent to permit visualization of the glenoid component. Color figure available online at implanted with a 29 mm x 10 mm cylindrical bone graft along the inferior glenoid rim at 0 and 15 inferior tilt as the humeral component was successively oriented at 0, 20, and 40 retroversion (Fig. 3). Finally, to characterize the biomechanical impact of prosthesis design on each muscle, the 32 mm RSP and 38 mm Equinoxe reverse shoulders were implanted identically to the 36 mm Grammont by positioning the glenoid baseplate along the inferior glenoid rim with 0 tilt while orienting the humeral component at version (Fig. 4). After assembly, two motions were simulated: 1. abduction and 2. internal and external rotation. To simulate abduction, the humeral component was abducted from 0 to 80 in the scapular plane relative to a fixed scapula. To simulate internal and external rotation, the humeral component was rotated 40 internally and 40 externally with the arm at 0 abduction. For each simulated motion, muscle lengths were measured as the average length of the three lines representing the Results Each reverse shoulder, regardless of design or surgical implantation method, shifted the CoR medially and inferiorly relative to the normal shoulder (Table 1). This shift in the CoR caused a medial shift of the humerus and a decrease in the middle deltoid wrapping angle for all reverse shoulder prostheses (Table 2). For each simulated motion, each reverse shoulder elongated each head of the deltoid, shortened the internal rotators (subscapularis and teres major, with the exception of the pectoralis major which was elongated), and shortened the external rotators (infraspinatus and teres minor) relative to the normal shoulder (Tables 3, 4, and 5). In general, the surgical techniques and designs which resulted in a more lateral humeral position were associated with more deltoid wrapping and better tensioning of the anterior and posterior shoulder muscles. Specifically in abduction (Table 3), the Grammont reverse shoulder with 0 tilt and 0 humeral retroversion with graft configuration had the most lateral humeral position and was associated with the most deltoid wrapping and best muscle tension compared to the other Grammont configurations analyzed. Conversely, the Grammont reverse shoulder with 15 tilt and 20 humeral retroversion without graft configuration had the most medial humeral position and was associated with the smallest deltoid wrapping and worst muscle tension. The RSP reverse shoulder shifted the humerus more lateral than all Grammont reverse shoulders except the 0 tilt and 0 retroversion with graft configuration and had more deltoid wrapping than all Grammont reverse shoulders except the 0 tilt and 0 with graft and version configurations. The Equinoxe reverse shoulder design had the most lateral humeral position, most deltoid wrapping, tensioned the three heads of the deltoid and the pectoralis more than the RSP and Grammont reverse shoulders, and better restored the anatomic tension of the subscapularis, infraspinatus, teres major, and teres minor, regardless of the surgical implantation method. Similar trends were observed in internal and external rotation (Tables 4 and 5). For both simulated motions, decreasing humeral retroversion with the Grammont increased the tension of the posterior shoulder muscles and decreased the tension of the anterior shoulder muscles. Specifically in abduction (Table 3), as

4 287 Figure 3 Representative computer model image of scapular view of the 36 mm Grammont 0 tilt, (left), 36 mm Grammont 15 tilt, (middle), and 36 mm Grammont 0 tilt, with a 29x10 mm graft (right) reverse shoulders at 0 abduction, rib cage removed to permit visualization of humeral position. Color figure available online at Figure 4 Scapular view of the Grammont (left), RSP (middle), and Equinoxe (right) reverse shoulders at 0 abduction, rib cage removed to permit visualization of humeral position. Color figure available online at the Grammont was implanted from 20 to 0 retroversion, the tension of the subscapularis, teres major, and pectoralis major decreased (by 4.1%, 1.7%, 1.1%, respectively) while the tension of the teres minor and infraspinatus increased (by 8.9% and 3.8%, respectively). As the Grammont was implanted from 20 to 40 retroversion, the tension of the subscapularis, teres major, and pectoralis major increased (by 4.0%, 2.2%, 1.5%, respectively), while the tension of the teres minor and infraspinatus decreased (by 9.3% and 4.4%, respectively). These differences are more pronounced with the arm at the side (Tables 4 and 5); most notably, the tension of the teres minor increased in internal (9.5%) and external (13.8%) rotation in 0 retroversion and decreased in internal (10.8%) and external (13.3%) rotation when implanted in 40 retroversion, respectively. Conversely, the tension of the subscapularis decreased in internal (5.6%) and external

5 288 Table 1 Change in Center of Rotation for Each Reverse Shoulder Relative to Normal Shoulder Medial Shift in Center of Rotation Inferior Shift in Center of Rotation 36 Grammont, 0 tilt, 28.3 mm 8.0 mm 36 Grammont, 15 tilt, 31.0 mm 7.7 mm 36 Grammont, 0 tilt, 0 retro 28.3 mm 8.0 mm 36 Grammont, 0 tilt, 40 retro 28.3 mm 8.0 mm 0 tilt, 0 retro 19.2 mm 8.0 mm 0 tilt, 19.2 mm 8.0 mm 0 tilt, 40 retro 19.2 mm 8.0 mm 15 tilt, 21.9 mm 10.2 mm 32 mm RSP, 0 tilt, 20.0 mm 6.9 mm 38 Equinoxe, 0 tilt, 27.1 mm 4.5 mm Table 2 Medial-Lateral Position of the Humerus and Its Impact on Wrapping Distance from Lateral Coracoid to Lateral Greater Tuberosity with Humerus Abducted at 0 Angle of Abduction which Middle Stops Wrapping Greater Tuberosity Distance from Bottom of Acromion to Top of the Greater Tuberosity Normal Shoulder 56.2 mm mm 36 Grammont, 0 tilt, 34.7 mm mm 36 Grammont, 15 tilt, 32.0 mm mm 36 Grammont, 0 tilt, 0 retro 36.3 mm mm 36 Grammont, 0 tilt, 40 retro 32.6 mm mm 0 tilt, 0 retro 45.4 mm mm 0 tilt, 43.8 mm mm 0 tilt, 40 retro 41.7 mm mm 15 tilt, 41.1 mm mm 32 mm RSP, 0 tilt, 44.5 mm mm 38 Equinoxe, 0 tilt, 47.1 mm mm (5.2%) rotation in 0 retroversion and increased in internal (6.0%) and external (4.4%) rotation when implanted in 40 retroversion, respectively. Implanting the Grammont glenosphere with 15 inferior tilt decreased the tension of each muscle by 0.1% to 3.1% relative to the normal shoulder. Specifically in abduction (Table 3), implanting the Grammont glenosphere with 15 inferior tilt decreased the tension of the anterior deltoid (0.8%), middle deltoid (1.0%), posterior deltoid (1.0%), subscapularis (2.2%), infraspinatus (2.2%), teres major (1.9%), teres minor (3.5%), and the clavicular portion of the pectoralis major (0.8%) relative to the Grammont with 0 tilt. These differences are more pronounced with the arm at the side (Tables 4 and 5); most notably, the tension of the teres minor, teres major, subscapularis, and infraspinatus decreased in internal (4.2%, 2.8%, 2.5%, and 2.2%, respectively) and external (4.9%, 2.7%, 2.3%, and 2.4%, respectively) rotation, relative to the Grammont with 0 tilt. Using bone graft with the Grammont reverse shoulder in a non-worn glenoid increased the tension of each muscle. Specifically in abduction (Table 3), the Grammont with graft increased the tension of the anterior deltoid (2.5%), middle deltoid (3.1%), posterior deltoid (3.2%), subscapularis (7.4%), infraspinatus (7.4%), teres major (6.4%), teres minor (12.1%), and the clavicular portion of the pectoralis major (2.6%) relative to the Grammont without graft. These improvements are more pronounced with the arm at the side (Tables 4 and 5); most notably, the tension of the teres minor, teres major, subscapularis, and infraspinatus increased in internal (14.0%, 9.3%, 8.2%, and 7.5%, respectively) and external (16.8%, 9.0%, 7.5%, and 8.1%, respectively) rotation, relative to the Grammont without graft. Discussion Inverting the anatomic concavities with reverse shoulder arthroplasty fundamentally changes the position of the CoR relative to the normal shoulder and causes a corresponding shift in the position of the humerus, which has implications on deltoid wrapping and muscle tensioning. Each reverse shoulder elongated each head of the deltoid, shortened the

6 289 Table 3 Average Muscle Length Relative to Normal Shoulder as Each Reverse Shoulder is Abducted in the Scapular Plane from 0 to 80 Ant. Mid Post. Subscap Infraspin Teres Major Teres Minor Pec Major 36 Grammont, 0 tilt, 4.7% 4.8% 1.7% -11.2%* -12.8%* -11.0%* -20.5% 2.2% 36 Grammont, 15 tilt, 3.9% 3.8% 0.7% -13.2%* -14.7%* -12.7%* -23.2% 1.3% 36 Grammont, 0 tilt, 0 retro 4.5% 4.9% 1.9% -14.8%* -9.5% -12.5%* -13.5%* 1.0% 36 Grammont, 0 tilt, 40 retro 5.1% 4.8% 1.5% -7.6% -16.6%* -9.1% -27.7% 3.7% 0 tilt, 0 retro 7.0% 8.5% 5.2% -8.2% -3.1% -6.8% -4.1% 3.6% 0 tilt, 7.2% 7.8% 5.0% -4.6% -6.4% -5.4% -10.9%* 4.8% 0 tilt, 40 retro 7.6% 7.7% 4.8% -1.0% -10.2%* -3.5% -18.1%* 6.3% 15 tilt, 7.3% 7.7% 4.5% -6.9% -8.9% -7.5% -14.7%* 4.7% 32 RSP, 0 tilt, % 7.0% 4.6% -3.9% -5.6% -4.5% -9.7% 3.6% retro 38 Equinoxe, 0 tilt, 7.3% 8.2% 6.3% 0.0% -1.6% -1.1% -3.5% 5.1% *Muscle shortening > 10%; Muscle shortening > 20%. Table 4 Average Muscle Length Relative to Normal Shoulder as Each Reverse Shoulder is Internally Rotated from 0 to 40 with the Arm at 0 Abduction Ant. Mid Post. Subscap Infraspin Teres Major Teres Minor Pec Major 36 Grammont, 0 tilt, 13.4% 15.6% 9.7% -18.7%* -19.7%* -22.0% -32.0% 5.6% 36 Grammont, 15 tilt, 13.3% 15.5% 9.2% -20.7% -21.5% -24.1% -34.9% 5.1% 36 Grammont, 0 tilt, 13.2% 15.7% 9.8% -23.3% -17.1%* -23.3% -25.6% 4.6% 0 retro 36 Grammont, 0 tilt, 13.6% 15.5% 9.4% -13.8%* -23.1% -19.6%* -39.4% 7.1% 40 retro 13.3% 15.7% 11.3% -16.6%* -11.1%* -15.9%* -16.1%* 6.0% 0 tilt, 0 retro 0 tilt, 13.5% 15.6% 11.2% -12.0%* -13.7%* -14.7%* -22.6% 7.2% 0 tilt, 40 retro 13.8% 15.4% 10.9% -7.1% -16.9%* -12.4%* -29.9% 8.7% 15 tilt, 14.6% 16.7% 11.7% -14.2%* -15.9%* -17.2%* -25.9% 7.8% 32 RSP, 0 tilt, 20 retro 12.4% 14.7% 10.7% -10.8%* -12.6%* -13.1%* -21.0% 5.8% 38 Equinoxe, 0 tilt, 15.4% 18.4% 14.5% -8.5% -11.7%* -10.4%* -19.1%* 7.5% *Muscle shortening > 10%; Muscle shortening > 20%; Muscle shortening > 30%.

7 290 Table 5 Average Muscle Length Relative to Normal Shoulder as Each Reverse Shoulder is Externally Rotated from 0 to 40 with the Arm at 0 Abduction Ant. Mid Post. Subscap Infraspin Teres Major Teres Minor Pec Major 36 Grammont, 0 tilt, 13.6% 15.7% 10.1% -17.3%* -21.0% -21.6% -36.9% 6.8% 36 Grammont, 15 tilt, 13.5% 15.7% 9.6% -19.1%* -22.9% -23.7% -40.0% 6.2% 36 Grammont, 0 tilt, 0 retro 13.2% 15.7% 10.4% -21.6% -15.7%* -24.4% -28.2% 5.1% 36 Grammont, 0 tilt, 13.6% 15.7% 9.7% -13.6%* -25.4% -18.5%* -45.3% 8.5% 40 retro 13.4% 15.7% 11.9% -15.4%* -10.4%* -17.3%* -17.6%* 6.6% 0 tilt, 0 retro 0 tilt, 13.8% 15.7% 11.6% -11.0%* -14.6%* -14.5%* -26.4% 8.3% 0 tilt, 40 retro 14.2% 15.6% 11.1% -7.4% -19.0%* -11.4%* -34.7% 10.0% 14.9% 16.8% 12.1% -13.0%* -16.9%* -17.0%* -30.0% 8.8% 15 tilt, 32 RSP, 0 tilt, % 14.7% 11.0% -10.1%* -13.6%* -13.2%* -24.7% 7.4% retro 38 Equinoxe, 0 tilt, 16.6% 18.3% 14.3% -8.5% -12.4%* -12.3%* -22.4% 11.4% *Muscle shortening > 10%; Muscle shortening > 20%; Muscle shortening > 30%. internal rotators (with the exception of the pectoralis major which was elongated) and shortened the external rotators relative to the normal shoulder. Surgical techniques and implant designs that lateralized the humerus closer to its anatomic position were associated with improved deltoid wrapping and more anatomic muscle tensioning of the internal and external rotators. These changes in muscle length have the potential to dramatically alter the length-tension relationship of each muscle relative to their normal physiologic function. 2,30-36 elongation between 10% and 20% has been suggested to improve its resting tone and tension, increase strength, and improve the overall stability of the joint; however, increased deltoid elongation also modifies the normal deltoid contour, decreases its wrapping angle around the greater tuberosity, and creates cosmetic concerns. 1-3,37 De Wilde and coworkers reported that the Grammont and RSP reverse shoulders elongated the deltoid when the arm was at 0 abduction by 16.4% and 13.0%, respectively. 2 Similarly, Jobin and colleagues reported that the average deltoid elongation of three different reverse shoulders was 17.0% when the arm was at 0 abduction. 33 We reported a maximum elongation of the middle head of the deltoid between 14.7% and 18.4% at 0 abduction depending upon reverse shoulder design, these results are in agreement with those presented by both De Wilde and Jobin and colleagues. 2,33 The functional effect of shortening the anterior and posterior rotator cuff is unknown. Shortening of the rotator cuff by as much as 45.3% was observed in this study. This magnitude of muscle shortening may be an explanation for the limited improvements in active internal and external rotation reported with the Grammont reverse shoulder relative to designs that lateralize the humerus more, 1,3,6,8,9,18,38 for why subscapularis repair is necessary for stability with reverse shoulder designs having a medialized humerus, 39,40 and for why patients with reverse shoulders are reported to have a different scapulo-humeral rhythms and specifically more scapular motion than in normal shoulders. 41 Implanting the Grammont in more or less humeral retroversion asymmetrically tensions the anterior and posterior shoulder muscles and slightly impacts the deltoid wrapping angle, with a few more degrees of wrapping occurring with less humeral retroversion. Impingement-free external rotation is reported to increase with more humeral retroversion and impingement-free internal rotation is reported to increase with less humeral retroversion. 15,20-22 While more passive external rotation may be achieved with the humerus oriented in more retroversion, our results demonstrate that the tension of the external rotators decreases, while the tension of the internal rotators increases, potentially negating the functional improvements. Based upon this tradeoff of impingement-free motion and muscle tensioning, we recommend implanting the humerus in version. Implanting the Grammont glenosphere with 15 inferior

8 291 tilt slightly medialized the humerus, decreased the middle deltoid wrapping angle, and decreased the tension of each muscle. Achieving inferior glenosphere tilt requires eccentric reaming of the inferior glenoid which has the advantage of removing bone that could impinge with the humeral liner but the disadvantage of removing cortical bone which may be necessary for fixation. 4,16,42 This removal of structural bone potentially reduces the glenoid baseplate contact area, decreasing the surface area available to distribute the resulting shear loads, and ultimately may increase the risk of glenoid loosening. 42 Based upon the improvements in muscle tension and conservation of bone, we recommend implanting the glenoid with 0 tilt. Implanting the Grammont with bone graft in a non-worn glenoid lateralized the humerus and improved muscle tensioning and deltoid wrapping best compared to the other Grammont configurations analyzed. Using bone graft increased the deltoid wrapping angle by an average of 17.3 and substantially increased the tension of each muscle relative to the Grammont without graft. However, using bone graft failed to restore that anatomic middle deltoid wrapping angle and the anatomic tension of the anterior and posterior shoulder muscles. Bone grafting a non-worn glenoid increases the risk of complications (e.g. graft resorption, impingement with screws in the graft, fracture of the graft, etc). 24,27-29 Because placing bone graft behind the glenoid plate lateralizes the CoR relative to the native glenoid, it subjects the bone graft-native glenoid interface to increased torque and shear that could compromise healing and slow rehabilitation, which is reported to take at least 6 months to incorporate. 12,27,43 While Boileau and coworkers 29 reported that only 2% of autografts did not fully incorporate using the Grammont in a non-worn glenoid, this follow-up was relatively short, humeral head autograft was available and used in every case, and it should be viewed relative to the historical glenoid loosening rate associated with the Grammont reverse shoulder (only 5%). 11 Hill and associates reported much higher long-term autograft resorption rates in the glenoid with total shoulder arthroplasty (5 of 17 cases). 44 Additionally, the graft resorption rate (and costs) may increase if humeral head autograft is not available, requiring iliac crest autograft, allograft, or a hybrid graft to be used as a substitute. 23,24,27,45,46 Due to these additional risks, we do not recommend bone grafting a non-worn glenoid; these risks are unnecessary given that both alternative reverse shoulder designs evaluated in this study achieved as good or better humeral lateralization, deltoid wrapping, and muscle tensioning without the use of bone graft. We only recommend grafting the glenoid with reverse shoulder arthroplasty in cases of severe glenoid wear in which it is necessary to obtain adequate fixation or lateralize the joint line to obtain stability. 26 Restoring the anatomic position of the humeral tuberosities is important to tension any remaining rotator cuff muscles in a more natural physiologic manner and offers the potential to better restore rotational strength. Without adequate tensioning, the anterior and posterior rotator cuff cease to function independently as humeral rotators and together as a transverse force couple to impart joint stability 30,31,34 ; they act instead as only a simple tether of the humerus to prevent dislocation. Future work should seek to optimize these reverse shoulder design parameters to better tension all of the muscles in the shoulder girdle as a collective unit rather than just elongating the deltoid or lengthening the humerus for stability and function. 35,36 This study has some limitations. The digital bone models are of one size and do not account for anatomic variations. We measured the length of eight muscles as the average of three lines from a fixed origin on the scapula or clavicle to its insertion on the humerus as it was abducted and internally and externally rotated. The computer model limited rotation of the scapula and did not simulate wrapping of each muscle around the humerus or scapula. While the degree of abduction where the middle deltoid stopped wrapping the greater tuberosity was quantified, it was done so visually based upon when the muscle line ceased to intersect the humeral bone. Because the wrapping of each muscle was not modeled, it is likely that the individual muscle lengths at low elevation may be slightly underestimated in each situation. Finally, it is unknown if the normal shoulder is the best reference as the collapsed condition of the glenohumeral joint resulting from the pathologies in which the reverse shoulder is indicated may result in muscle remodeling, altering the origin to insertion distance of each muscle. 47 Conclusion The reverse shoulder is geometrically and biomechanically different than the normal shoulder. Muscle tensioning and deltoid wrapping can be altered by different surgical implantation methods. While varying humeral retroversion, glenosphere tilt, and using graft behind the glenoid baseplate of a non-worn glenoid offer the potential to improve deltoid wrapping and muscle tensioning with the Grammont reverse shoulder, each is associated with tradeoffs that could adverse impact outcomes. Minor differences in prosthesis design parameters (less than 10 mm of glenoid and humeral offset and 10 of humeral neck angle) relative to the Grammont reverse shoulder were observed to dramatically improve deltoid wrapping and resulted in more anatomic tensioning of the anterior and posterior rotator cuff muscles, without requiring any compromising modification to the surgical implantation method. Disclosure Statement Christopher P. Roche, M.S., M.B.A., Phong Diep, B.S., and Matthew Hamilton, Ph.D., are employed by Exactech, Inc., Gainesville, Florida. Lynn A. Crosby, M.D., Pierre-Henri Flurin, M.D., Thomas W. Wright, M.D., Joseph D. Zuckerman, M.D., and Howard D. Routman, D.O., receive royalties from Exactech, Inc., Gainesville, Florida.

9 292 References 1. Boileau P, Watkinson DJ, Hatzidakis AM, Balg F. Grammont reverse prosthesis: Design, rationale, and biomechanics. J Shoulder Elbow Surg Jan-Feb;14(1 Suppl S):147S-61S. doi: /j.jse De Wilde LF, Audenaert EA, Berghs BM. Shoulder prostheses treating cuff tear arthropathy: A comparative biomechanical study. J Orthop Res Nov;22(6): doi: /j. orthres Frankle M, Siegal S, Pupello D, et al.the reverse shoulder prosthesis for glenohumeral arthritis associated with severe rotator cuff deficiency: A minimum two-year follow-up study of sixty patients. J Bone Joint Surg Am Aug;87(8): doi: /JBJS.D Nyffeler RW, Werner CM, Gerber C. Biomechanical relevance of glenoid component positioning in the reverse Delta III total shoulder prosthesis. J Shoulder Elbow Surg Sep- Oct;14(5): doi: /j.jse Roche C, Flurin PH, Wright T, et al. An evaluation of the relationships between reverse shoulder design parameters and range of motion, impingement, and stability. J Shoulder Elbow Surg Sep-Oct;18(5): doi: /j. jse Boileau P, Watkinson D, Hatzidakis AM, Hovorka I. Neer Award 2005: The Grammont reverse shoulder prosthesis: results in cuff tear arthritis, fracture sequelae, and revision arthroplasty. J Shoulder Elbow Surg Sep- Oct;15(5): doi: /j.jse Farshad M, Gerber C. Reverse total shoulder arthroplastyfrom the most to the least common complication. Int Orthop Dec;34(8): doi: /s Epub 2010 Sep Lévigne C, Boileau P, Favard L, et al. Scapular notching in reverse shoulder arthroplasty. J Shoulder Elbow Surg Nov-Dec;17(6): doi: /j.jse Sirveaux F, Favard L, Oudet D, et al. Grammont inverted total shoulder arthroplasty in the treatment of glenohumeral osteoarthritis with massive rupture of the cuff. Results of a multicentre study of 80 shoulders. J Bone Joint Surg Br Apr;86(3): Smithers CJ, Young AA, Walch G. Reverse shoulder arthroplasty. Curr Rev Musculoskelet Med Dec;4(4): doi: /s Zumstein MA, Pinedo M, Old J, Boileau P. Problems, complications, reoperations, and revisions in reverse total shoulder arthroplasty: a systematic review. J Shoulder Elbow Surg Jan;20(1): doi: /j.jse Henninger HB, Barg A, Anderson AE, et al. Effect of lateral offset center of rotation in reverse total shoulder arthroplasty: A biomechanical study. J Shoulder Elbow Surg Sep;21(9): doi: /j.jse Edwards TB, Trappey GJ, Riley C, et al. Inferior tilt of the glenoid component does not decrease scapular notching in reverse shoulder arthroplasty: results of a prospective randomized study. J Shoulder Elbow Surg May;21(5): doi: /j.jse Kempton LB, Balasubramaniam M, Ankerson E, Wiater JM. A radiographic analysis of the effects of glenosphere position on scapular notching following reverse total shoulder arthroplasty. J Shoulder Elbow Surg Sep;20(6): doi: /j.jse Li X, Knutson Z, Choi D, et al. Effects of glenosphere positioning on impingement-free internal and external rotation after reverse total shoulder arthroplasty. J Shoulder Elbow Surg Jun;22(6): Kempton LB, Balasubramaniam M, Ankerson E, Wiater JM. A radiographic analysis of the effects of prosthesis design on scapular notching following reverse total shoulder arthroplasty. J Shoulder Elbow Surg Jun;20(4): doi: /j.jse Roche C, Flurin PH, Wright T, et al. Geometric analysis of the Grammont reverse shoulder prosthesis: an evaluation of the relationship between prosthetic design parameters and clinical failure modes. Presented at the annual ISTA Meeting, Valenti P, Sauzières P, Katz D, et al. Do less medialized reverse shoulder prostheses increase motion and reduce notching? Clin Orthop Relat Res Sep;469(9): doi: / s Virani NA, Cabezas A, Gutiérrez S, et al. Reverse shoulder arthroplasty components and surgical techniques that restore glenohumeral motion. J Shoulder Elbow Surg Feb;22(2): doi: /j.jse Epub 2012 May Gulotta LV, Choi D, Marinello P, et al. Humeral component retroversion in reverse total shoulder arthroplasty: a biomechanical study. J Shoulder Elbow Surg Sep;21(9): doi: /j.jse Karelse AT, Bhatia DN, De Wilde LF. Prosthetic component relationship of the reverse Delta III total shoulder prosthesis in the transverse plane of the body. J Shoulder Elbow Surg Jul-Aug;17(4): doi: /j.jse Stephenson DR, Oh JH, McGarry MH, et al. Effect of humeral component version on impingement in reverse total shoulder arthroplasty. J Shoulder Elbow Surg Jun;20(4): doi: /j.jse Neyton L, Walch G, Nové-Josserand L, Edwards TB. Glenoid corticocancellous bone grafting after glenoid component removal in the treatment of glenoid loosening. J Shoulder Elbow Surg Mar-Apr;15(2): doi: /j. jse Neyton L, Boileau P, Nové-Josserand L, et al. Glenoid bone grafting with a reverse design prosthesis. J Shoulder Elbow Surg May-Jun;16(3 Suppl):S71-8. doi: /j. jse Norris TR, Kelly JD, Humphrey CS. Management of glenoid bone defects in revision shoulder arthroplasty: A new application of the reverse total shoulder prosthesis. Tech Shoulder Elbow Surg. 2007;8(1): doi: / BTE.0b013e318030d3b Roche C, Diep P, Hamilton M, et al. Biomechanical analysis of 3 commercially available reverse shoulder designs in a normal and medially eroded scapula. Presented at the 59th Annual ORS Meeting, Bateman E, Donald SM. Reconstruction of massive uncontained glenoid defects using a combined autograft-allograft construct with reverse shoulder arthroplasty: preliminary results. J Shoulder Elbow Surg Jul;21(7): Doi: /j.jse Melis B, Bonnevialle N, Neyton L, et al. Glenoid loosening

10 293 and failure in anatomical total shoulder arthroplasty: is revision with a reverse shoulder arthroplasty a reliable option? J Shoulder Elbow Surg Mar;21(3): doi: /j. jse Boileau P, Moineau G, Roussanne Y, O Shea K. Bony increased-offset reversed shoulder arthroplasty: minimizing scapular impingement while maximizing glenoid fixation. Clin Orthop Relat Res Sep;469(9): doi: /s Burkhart SS, Nottage WM, Ogilvie-Harris DJ, et al. Partial repair of irreparable rotator cuff tears. Arthroscopy Aug;10(4): Halder AM, Zhao KD, O Driscoll SW, et al. Dynamic contributions to superior shoulder stability. J Orthop Res Mar;19(2): doi: /S (00) Herrmann S, König C, Heller M, et al. Reverse shoulder arthroplasty leads to significant biomechanical changes in the remaining rotator cuff. J Orthop Surg Res Aug 16;6:42. doi: / X Jobin CM, Brown GD, Bahu MJ, et al. Reverse total shoulder arthroplasty for cuff tear arthropathy: The clinical effect of deltoid lengthening and center of rotation medialization. J Shoulder Elbow Surg Oct;21(10): doi: /j.jse Labriola JE, Lee TQ, Debski RE, McMahon PJ. Stability and instability of the glenohumeral joint: The role of shoulder muscles. J Shoulder Elbow Surg. 2005;14(1 Suppl S):32S- 38S. doi: /j.jse Lädermann A, Walch G, Lubbeke A, et al. Influence of arm lengthening in reverse shoulder arthroplasty. J Shoulder Elbow Surg Mar;21(3): doi: /j.jse Lädermann A, Williams MD, Melis B, et al. Objective evaluation of lengthening in reverse shoulder arthroplasty. J Shoulder Elbow Surg Jul-Aug;18(4): doi: /j. jse Lemieux PO, Hagemeister N, Tétreault P, Nuño N. Influence of the medial offset of the proximal humerus on the glenohumeral destabilising forces during arm elevation: A numerical sensitivity study. Comput Methods Biomech Biomed Engin. 2013;16(1): doi: / Epub 2012 Feb Flurin PH, Wright T, Zuckerman Z, et al. A correlation of five commonly used clinical metrics to measure outcomes in shoulder arthroplasty. Presented at the 58th Annual ORS Meeting, Clark JC, Ritchie J, Song FS, et al. Complication rates, dislocation, pain, and postoperative range of motion after reverse shoulder arthroplasty in patients with and without repair of the subscapularis. J Shoulder Elbow Surg Jan;21(1): doi: /j.jse Edwards TB, Williams MD, Labriola JE, et al. Subscapularis insufficiency and the risk of shoulder dislocation after reverse shoulder arthroplasty. J Shoulder Elbow Surg. 2009;18(6): doi: /j.jse Kwon YW, Pinto VJ, Yoon J, et al. Kinematic analysis of dynamic shoulder motion in patients with reverse total shoulder arthroplasty. J Shoulder Elbow Surg Sep;21(9): doi: /j.jse James J, Huffman KR, Werner FW, et al. Does glenoid baseplate geometry affect its fixation in reverse shoulder arthroplasty? J Shoulder Elbow Surg Jul;21(7): doi: /j.jse Harman M, Frankle M, Vasey M, Banks S. Initial glenoid component fixation in reverse total shoulder arthroplasty: a biomechanical evaluation. J Shoulder Elbow Surg Feb;14(1 Suppl S):162S-167S. doi: /j.jse Hill JM, Norris TR. Long-term results of total shoulder arthroplasty following bone-grafting of the glenoid. J Bone Joint Surg Am Jun;83-A(6): Antuna SA, Sperling JW, Cofield RH, Rowland CM. Glenoid revision surgery after total shoulder arthroplasty. J Shoulder Elbow Surg May-Jun;10(3): doi: / mse Scalise JJ, Iannotti JP. Bone grafting severe glenoid defects in revision shoulder arthroplasty. Clin Orthop Relat Res Jan;466(1): doi: /s Neer CS II, Craig EV, Fukuda H. Cuff-tear arthropathy. J Bone Joint Surg Am Dec;65(9):

Optimizing Deltoid Efficiency with Reverse Shoulder Arthroplasty Using a Novel Inset Center of Rotation Glenosphere Design

Optimizing Deltoid Efficiency with Reverse Shoulder Arthroplasty Using a Novel Inset Center of Rotation Glenosphere Design S37 Optimizing Deltoid Efficiency with Reverse Shoulder Arthroplasty Using a Novel Inset Center of Rotation Glenosphere Design Christopher P. Roche, M.S., M.B.A., Matthew A. Hamilton, Ph.D., Phong Diep,

More information

Biomechanical Impact of Posterior Glenoid Wear on Anatomic Total Shoulder Arthroplasty

Biomechanical Impact of Posterior Glenoid Wear on Anatomic Total Shoulder Arthroplasty S5 Biomechanical Impact of Posterior Glenoid Wear on Anatomic Total Shoulder Arthroplasty Christopher P. Roche, M.S., M.B.A., Phong Diep, B.S., Sean G. Grey, M.D., and Pierre-Henri Flurin, M.D. Abstract

More information

Effect of Prosthesis Design on Muscle Length and Moment Arms in Reverse Total Shoulder Arthroplasty

Effect of Prosthesis Design on Muscle Length and Moment Arms in Reverse Total Shoulder Arthroplasty S31 Effect of Prosthesis Design on Muscle Length and Moment Arms in Reverse Total Shoulder Arthroplasty Matthew A. Hamilton, Ph.D., Christopher P. Roche, M.S., M.B.A., Phong Diep, B.S., Pierre- Henri Flurin,

More information

Both anatomic (atsa) and reverse (rtsa) total

Both anatomic (atsa) and reverse (rtsa) total S101 Comparison of Outcomes Using Anatomic and Reverse Total Shoulder Arthroplasty Pierre-Henri Flurin, M.D., Yann Marczuk, M.D., Martin Janout, M.D., Thomas W. Wright, M.D., Joseph Zuckerman, M.D., and

More information

Reverse Total Shoulder Arthroplasty: A New Frontier (of Complications)

Reverse Total Shoulder Arthroplasty: A New Frontier (of Complications) Reverse Total Shoulder Arthroplasty: A New Frontier (of Complications) Emilie Cheung, MD Associate Professor Chief Shoulder Elbow Svc Stanford University Department of Orthopedic Surgery Procedure volumes

More information

Matthew D. Saltzman, MD a, Deana M. Mercer, MD c, Winston J. Warme, MD b, Alexander L. Bertelsen, PA-C b, Frederick A. Matsen III, MD b, *

Matthew D. Saltzman, MD a, Deana M. Mercer, MD c, Winston J. Warme, MD b, Alexander L. Bertelsen, PA-C b, Frederick A. Matsen III, MD b, * J Shoulder Elbow Surg (2010) 19, 1028-1033 www.elsevier.com/locate/ymse A method for documenting the change in center of rotation with reverse total shoulder arthroplasty and its application to a consecutive

More information

Immediate post surgical findings of soft tissue swelling, subcutaneous emphysema, and skin staples for reverse total shoulder arthroplasty.

Immediate post surgical findings of soft tissue swelling, subcutaneous emphysema, and skin staples for reverse total shoulder arthroplasty. Immediate post surgical findings of soft tissue swelling, subcutaneous emphysema, and skin staples for reverse total shoulder arthroplasty. REVERSE TOTAL SHOULDER ARTHROPLASTY WITH FRACTURED ACROMION Above:

More information

Biomechanical concepts of total shoulder replacement. «Shoulder Course» Day 1. Richard W. Nyffeler Orthopädie Sonnenhof Bern. 11. Sept.

Biomechanical concepts of total shoulder replacement. «Shoulder Course» Day 1. Richard W. Nyffeler Orthopädie Sonnenhof Bern. 11. Sept. Biomechanical concepts of total shoulder replacement Richard W. Nyffeler Orthopädie Sonnenhof Bern First total shoulder prosthesis Jules Emile Péan, 1830-1898 Monobloc prostheses Charles Neer, 1917-2011

More information

Reverse Shoulder Glenoid Loosening

Reverse Shoulder Glenoid Loosening S12 Reverse Shoulder Glenoid Loosening An Evaluation of the Initial Fixation Associated with Six Different Reverse Shoulder Designs Nick Stroud, M.S., Matthew J. DiPaola, M.D., Pierre-Henri Flurin, M.D.,

More information

"Stability and Instability of RTSA"

Stability and Instability of RTSA Orthopedics Update «Reverse Total Shoulder Arthroplasty» Stability and Instability of RTSA A. LÄDERMANN Orthopaedics and Traumatology, La Tour Hospital, Meyrin, Switzerland Orthopaedics and Traumatology,

More information

what you is back within LOVE arm s reach find out why the exactech shoulder may be right for you

what you is back within LOVE arm s reach find out why the exactech shoulder may be right for you TOTAL shoulder REPLACEMENT what you is back within LOVE arm s reach find out why the exactech shoulder may be right for you how does your shoulder work? The shoulder is the most mobile joint in the body.

More information

Radiology Case Reports. Scapular Spine Stress Fracture as a Complication of Reverse Shoulder Arthroplasty

Radiology Case Reports. Scapular Spine Stress Fracture as a Complication of Reverse Shoulder Arthroplasty Radiology Case Reports Volume 2, Issue 2, 2007 Scapular Spine Stress Fracture as a Complication of Reverse Shoulder Arthroplasty Kimberly J. Burkholz, Catherine C. Roberts, and Steven J. Hattrup We report

More information

The Role of Subscapularis Repair in Reverse Total Shoulder Arthroplasty

The Role of Subscapularis Repair in Reverse Total Shoulder Arthroplasty S108 The Role of Subscapularis Repair in Reverse Total Shoulder Arthroplasty Howard D. Routman, D.O., F.A.O.A.O. Abstract Background: Controversy surrounds the role of the subscapularis (SSC) in reverse

More information

Clinical Outcomes and Complications during the Learning Curve for Reverse Total Shoulder Arthroplasty: An Analysis of the First 40 Cases

Clinical Outcomes and Complications during the Learning Curve for Reverse Total Shoulder Arthroplasty: An Analysis of the First 40 Cases Original Article Clinics in Orthopedic Surgery 2017;9:213-217 https://doi.org/10.4055/cios.2017.9.2.213 Clinical Outcomes and Complications during the Learning Curve for Reverse Total Shoulder Arthroplasty:

More information

Augmented Glenoid Component for Bone Deficiency in Shoulder Arthroplasty

Augmented Glenoid Component for Bone Deficiency in Shoulder Arthroplasty Clin Orthop Relat Res (2008) 466:579 583 DOI 10.1007/s11999-007-0104-4 SYMPOSIUM: NEW APPROACHES TO SHOULDER SURGERY Augmented Glenoid Component for Bone Deficiency in Shoulder Arthroplasty Robert S. Rice

More information

Scapular notching in reverse shoulder arthroplasties: The influence of glenometaphyseal angle

Scapular notching in reverse shoulder arthroplasties: The influence of glenometaphyseal angle Orthopaedics & Traumatology: Surgery & Research (2011) 97S, S131 S137 ORIGINAL ARTICLE Scapular notching in reverse shoulder arthroplasties: The influence of glenometaphyseal angle V. Falaise a, C. Levigne

More information

Why are these shoulder replacements called a reverse prosthesis?

Why are these shoulder replacements called a reverse prosthesis? PATIENT GUIDE TO REVERSE PROSTHESIS Edward G. McFarland MD The Division of Sports Medicine and Shoulder Surgery The Department of Orthopaedic Surgery The Johns Hopkins University Baltimore MD Why are these

More information

Influence of Glenosphere Design on Outcomes and Complications of Reverse Arthroplasty: A Systematic Review

Influence of Glenosphere Design on Outcomes and Complications of Reverse Arthroplasty: A Systematic Review Original Article Clinics in Orthopedic Surgery 2016;8:288-297 http://dx.doi.org/10.4055/cios.2016.8.3.288 Influence of Glenosphere Design on Outcomes and Complications of Reverse Arthroplasty: A Systematic

More information

Assessment of Scapular Morphology and Surgical Technique as Predictors of Notching in Reverse Shoulder Arthroplasty

Assessment of Scapular Morphology and Surgical Technique as Predictors of Notching in Reverse Shoulder Arthroplasty An Original Study Assessment of Scapular Morphology and Surgical Technique as Predictors of Notching in Reverse Shoulder Arthroplasty Vani Sabesan, MD, Mark Callanan, MD, Vinay Sharma, BA, and J. Michael

More information

SSSR. 1. Nov Shoulder Prosthesis. Postoperative Imaging. Florian M. Buck, MD

SSSR. 1. Nov Shoulder Prosthesis. Postoperative Imaging. Florian M. Buck, MD Shoulder Prosthesis Postoperative Imaging Florian M. Buck, MD Shoulder Prosthesis Surgical Approach Findings Imaging Modalities Postoperative Problems Shoulder Prosthesis What are we talking about Anatomical

More information

Optimal Baseplate Rotational Alignment in Reverse Total Shoulder Arthroplasty: A Three-Dimensional Computer-Aided Design Study.

Optimal Baseplate Rotational Alignment in Reverse Total Shoulder Arthroplasty: A Three-Dimensional Computer-Aided Design Study. Optimal Baseplate Rotational Alignment in Reverse Total Shoulder Arthroplasty: A Three-Dimensional Computer-Aided Design Study. Byron F. Stephens, MD 1, Casey T. Hebert 2, Thomas W. Throckmorton, MD 1,

More information

Revision of the Loose Glenoid Component in Anatomic Total Shoulder Arthroplasty

Revision of the Loose Glenoid Component in Anatomic Total Shoulder Arthroplasty S68 Revision of the Loose Glenoid Component in Anatomic Total Shoulder Arthroplasty Pierre-Henri Flurin, M.D., Martin Janout, M.D., Christopher P. Roche, M.S., M.B.A., Thomas W. Wright, M.D., and Joseph

More information

Scapular Notching. Recognition and Strategies to Minimize Clinical Impact. Gregory P. Nicholson MD, Eric J. Strauss MD, Seth L.

Scapular Notching. Recognition and Strategies to Minimize Clinical Impact. Gregory P. Nicholson MD, Eric J. Strauss MD, Seth L. Clin Orthop Relat Res DOI 10.1007/s11999-010-1720-y SYMPOSIUM: REVERSE TOTAL SHOULDER ARTHROPLASTY Scapular Notching Recognition and Strategies to Minimize Clinical Impact Gregory P. Nicholson MD, Eric

More information

Prosthetic design of reverse shoulder arthroplasty contributes to scapular notching and instability

Prosthetic design of reverse shoulder arthroplasty contributes to scapular notching and instability Submit a Manuscript: http://www.wjgnet.com/esps/ Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx DOI: 10.5312/wjo.v7.i11.738 World J Orthop 2016 November 18; 7(11): 738-745 ISSN 2218-5836 (online)

More information

Advantages to medialize less

Advantages to medialize less Advantages to medialize less less RSP? Clinical and radiological results Ph Valenti, D Katz, Ph Sauzieres J Kany, K Elkolti, P Gleyze Paris, Lorient, Toulouse, Lyon, Colmar Delta RSP CTA pseudoparalytic

More information

The use of the Lima reverse shoulder arthroplasty for the treatment of fracture sequelae of the proximal humerus

The use of the Lima reverse shoulder arthroplasty for the treatment of fracture sequelae of the proximal humerus J Orthop Sci (2012) 17:141 147 DOI 10.1007/s00776-011-0185-5 ORIGINAL ARTICLE The use of the Lima reverse shoulder arthroplasty for the treatment of fracture sequelae of the proximal humerus Angel Antonio

More information

Does Humeral Component Lateralization in Reverse Shoulder Arthroplasty Affect Rotator Cuff Torque? Evaluation in a Cadaver Model

Does Humeral Component Lateralization in Reverse Shoulder Arthroplasty Affect Rotator Cuff Torque? Evaluation in a Cadaver Model Clin Orthop Relat Res (2017) 475:2564 2571 DOI 10.1007/s11999-017-5413-7 Clinical Orthopaedics and Related Research A Publication of The Association of Bone and Joint Surgeons CLINICAL RESEARCH Does Humeral

More information

Shoulder Arthroplasty. Valentin Lance 3/24/16

Shoulder Arthroplasty. Valentin Lance 3/24/16 Shoulder Arthroplasty Valentin Lance 3/24/16 Outline Background Pre-operative imaging assessment Total Shoulder Arthroplasty: Standard and Reverse Complications Other shoulder hardware Hemiarthroplasty

More information

An evaluation of the radiological changes around the Grammont reverse geometry shoulder arthroplasty after eight to 12 years

An evaluation of the radiological changes around the Grammont reverse geometry shoulder arthroplasty after eight to 12 years UPPER LIMB An evaluation of the radiological changes around the Grammont reverse geometry shoulder arthroplasty after eight to 12 years B. Melis, M. DeFranco, A. Lädermann, D. Molé, L. Favard, C. Nérot,

More information

Analysis of a retrieved Delta III total shoulder prosthesis

Analysis of a retrieved Delta III total shoulder prosthesis Analysis of a retrieved Delta III total shoulder prosthesis R. W. Nyffeler, C. M. L. Werner, B. R. Simmen, C. Gerber From the University of Zurich, Zurich, Switzerland A reversed Delta III total shoulder

More information

Massive Rotator Cuff Tears. Rafael M. Williams, MD

Massive Rotator Cuff Tears. Rafael M. Williams, MD Massive Rotator Cuff Tears Rafael M. Williams, MD Rotator Cuff MRI MRI Small / Partial Thickness Medium Tear Arthroscopic View Massive Tear Fatty Atrophy Arthroscopic View MassiveTears Tear is > 5cm

More information

Conflicts of Interest Consulting (C), Royalty (R)

Conflicts of Interest Consulting (C), Royalty (R) Principles of Anatomic Total Shoulder Arthroplasty Joseph P. Iannotti MD, PhD Maynard Madden Professor and Chairman Orthopaedic and Rheumatologic Institute Cleveland Clinic Conflicts of Interest Consulting

More information

Making sense of all our measures-inclination, version, subluxation, reaming depth & implant seating

Making sense of all our measures-inclination, version, subluxation, reaming depth & implant seating Thursday - ANATOMIC SHOULDER ARTHROPLASTY 7:00-7:15a Welcome and Introduction of Faculty Athwal, Keener, 7:15-7:22a The ABC s of the Walch Classification Walch 7:22-7:32a How I use x-rays, CT +/- MRI for

More information

Reverse Total Shoulder. Dr. Minoo Patel

Reverse Total Shoulder. Dr. Minoo Patel Reverse Total Shoulder Dr. Minoo Patel AOA VIC, Lorne, 2011 The role of the rotator cuff Depress and humeral head (against the force of the deltoid) Keep the humeral head co-apted in the glenoid Initiate

More information

)532( COPYRIGHT 2018 BY THE ARCHIVES OF BONE AND JOINT SURGERY

)532( COPYRIGHT 2018 BY THE ARCHIVES OF BONE AND JOINT SURGERY )532( COPYRIGHT 2018 BY THE ARCHIVES OF BONE AND JOINT SURGERY RESEARCH ARTICLE The Midterm Results of the Delta Xtend Reverse Shoulder System: A Five-Year Outcome Study John G. Horneff, MD; Thema A. Nicholson,

More information

Evaluating Scapular Notching after Reverse Total Shoulder Arthroplasty

Evaluating Scapular Notching after Reverse Total Shoulder Arthroplasty ORIGINAL ARTICLE Clinics in Shoulder and Elbow Vol. 18, No. 4, December, 2015 http://dx.doi.org/10.5397/cise.2015.18.4.248 CiSE Clinics in Shoulder and Elbow Evaluating Scapular Notching after Reverse

More information

P. Trouilloud M. Gonzalvez P. Martz H. Charles F. Handelberg R. W. Nyffeler E. Baulot DuocentricÒ Group

P. Trouilloud M. Gonzalvez P. Martz H. Charles F. Handelberg R. W. Nyffeler E. Baulot DuocentricÒ Group DOI 10.1007/s00590-013-1213-2 ORIGINAL ARTICLE Duocentric Ò reversed shoulder prosthesis and Personal Fit Ò templates: innovative strategies to optimize prosthesis positioning and prevent scapular notching

More information

Shoulder: Clinical Anatomy, Kinematics & Biomechanics

Shoulder: Clinical Anatomy, Kinematics & Biomechanics Shoulder: Clinical Anatomy, Kinematics & Biomechanics Dr. Alex K C Poon Department of Orthopaedics & Traumatology Pamela Youde Nethersole Eastern Hospital Clinical Anatomy the application of anatomy to

More information

Managing Glenoid Bone Deficiency The Augment Experience in Anatomic and Reverse Shoulder Arthroplasty

Managing Glenoid Bone Deficiency The Augment Experience in Anatomic and Reverse Shoulder Arthroplasty Managing Glenoid Bone Deficiency The Augment Experience in Anatomic and Reverse Shoulder Arthroplasty Publish date: March 5, 2018 Authors: Rowan J. Michael, MD Bradley S. Schoch, MD Joseph J. King, MD

More information

0 Introduction (20.9%) [7]

0 Introduction (20.9%) [7] Chinese Journal of Tissue Engineering Research www.crter.org ( 443000) DOI:10.3969/j.issn.2095-4344.0187 ORCID: 0000-0003-0005-1839() 60 120 2 60 1980 2015 443000 :R318 :A 2017-12-05 3 4 120 60 () 3 (P

More information

Reverse Total Shoulder Arthroplasty Protocol Shawn Hennigan, MD

Reverse Total Shoulder Arthroplasty Protocol Shawn Hennigan, MD General Information: Reverse Total Shoulder Arthroplasty Protocol Shawn Hennigan, MD Reverse or Inverse Total Shoulder Arthroplasty (rtsa) is designed specifically for the treatment of glenohumeral (GH)

More information

Reverse Total Shoulder Arthroplasty: Early Outcome and Complication Report

Reverse Total Shoulder Arthroplasty: Early Outcome and Complication Report ORIGINAL ARTICLE Clinics in Shoulder and Elbow Vol. 17, No. 2, June, 2014 http://dx.doi.org/10.5397/cise.2014.17.2.68 CiSE Clinics in Shoulder and Elbow Reverse Total Shoulder Arthroplasty: Early Outcome

More information

Revision of reversed total shoulder arthroplasty. Indications and outcome

Revision of reversed total shoulder arthroplasty. Indications and outcome Farshad et al. BMC Musculoskeletal Disorders 2012, 13:160 RESEARCH ARTICLE Open Access Revision of reversed total shoulder arthroplasty. Indications and outcome Mazda Farshad *, Marion Grögli, Sabrina

More information

Convertibilité. Ph. Valenti. Paris Shoulder Unit Clinique Bizet (Paris, France)

Convertibilité. Ph. Valenti. Paris Shoulder Unit Clinique Bizet (Paris, France) Convertibilité Ph. Valenti Paris Shoulder Unit Clinique Bizet (Paris, France) Disclosures Arthroplasty Consultant : FH orthopaedics receive royalties Arthroscopy Consultant : Zimmer Biomet Arthrex In Last

More information

Reversed Revised : What to do when it goes wrong?

Reversed Revised : What to do when it goes wrong? Acta Orthop. Belg., 2014, 80, 314-321 ORIGINAL STUDY Reversed Revised : What to do when it goes wrong? Bart Middernacht, Alexander Van Tongel, Lieven De Wilde From Department of Orthopaedics, University

More information

Reverse shoulder arthroplasty : Does reduced medialisation improve radiological and clinical results?

Reverse shoulder arthroplasty : Does reduced medialisation improve radiological and clinical results? Acta Orthop. Belg., 2009, 75, 158-166 ORIGINAL STUDY Reverse shoulder arthroplasty : Does reduced medialisation improve radiological and clinical results? Ibrahim KALOUCHE, Nuno SEVIVAS, Abhijeet WAHEGAONKER,

More information

ANATOMIC TOTAL SHOULDER REPLACEMENT:

ANATOMIC TOTAL SHOULDER REPLACEMENT: The Shoulder Replacement A total shoulder arthroplasty (TSA) is a surgery to replace the damaged parts of the ball and socket shoulder joint with an artificial prosthesis. The damage to the shoulder can

More information

D Degenerative joint disease, rotator cuff deficiency with, 149 Deltopectoral approach component removal with, 128

D Degenerative joint disease, rotator cuff deficiency with, 149 Deltopectoral approach component removal with, 128 Index A Abduction exercise, outpatient with, 193, 194 Acromioclavicular arthritis, with, 80 Acromiohumeral articulation, with, 149 Acromio-humeral interval (AHI), physical examination with, 9, 10 Active

More information

Reverse Total Shoulder Arthroplasty Protocol

Reverse Total Shoulder Arthroplasty Protocol General Information: Reverse Total Shoulder Arthroplasty Protocol Reverse or Inverse Total Shoulder Arthroplasty (rtsa) is designed specifically for the treatment of glenohumeral (GH) arthritis when it

More information

AJO DO NOT COPY. The low grade of the intrinsic stability of the shoulder. Total Reverse Shoulder Arthroplasty: European Lessons and Future Trends

AJO DO NOT COPY. The low grade of the intrinsic stability of the shoulder. Total Reverse Shoulder Arthroplasty: European Lessons and Future Trends A Review Paper Total Reverse Shoulder Arthroplasty: European Lessons and Future Trends Ludwig Seebauer, MD Abstract In the late 1980s, Grammont introduced a new reverse total shoulder arthroplasty (TSA),

More information

The Irreparable Rotator Cuff Tear:

The Irreparable Rotator Cuff Tear: The Irreparable Rotator Cuff Tear: Trauma 101: Shoulder Session #2 Brian Grawe, MD Assistant Professor Orthopaedics & Sports Medicine 5/10/2018 Brian Grawe, MD Assistant Professor Phone Number: 513-558-4516

More information

Anatomical. Redefined.

Anatomical. Redefined. natomical. Redefined. On two days each year, daylight equals night. Perfect balance is achieved. Such is the power of the quinoxe. Other shoulder systems have claimed anatomical. xactech is raising the

More information

Introduction: There is disagreement regarding whether, when possible, the rotator cuff should be

Introduction: There is disagreement regarding whether, when possible, the rotator cuff should be 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ABSTRACT: Introduction: There is disagreement regarding whether, when possible, the rotator cuff should be repaired in conjunction with reverse

More information

Addressing Glenoid Erosion in Anatomic Total Shoulder Arthroplasty

Addressing Glenoid Erosion in Anatomic Total Shoulder Arthroplasty S46 Addressing Glenoid Erosion in Anatomic Total Shoulder Arthroplasty Richard B. Jones, M.D. Abstract Glenoid wear is common in the setting of shoulder arthritis. Severe glenoid erosion presents a serious

More information

11/13/2017. Disclosures: The Irreparable Rotator Cuff. I am a consultant for Arhtrex, Inc and Endo Pharmaceuticals.

11/13/2017. Disclosures: The Irreparable Rotator Cuff. I am a consultant for Arhtrex, Inc and Endo Pharmaceuticals. Massive Rotator Cuff Tears without Arthritis THE CASE FOR SUPERIOR CAPSULAR RECONSTRUCTION MICHAEL GARCIA, MD NOVEMBER 4, 2017 FLORIDA ORTHOPAEDIC INSTITUTE Disclosures: I am a consultant for Arhtrex,

More information

Shoulder Biomechanics

Shoulder Biomechanics Shoulder Biomechanics Lecture originally developed by Bryan Morrison, Ph.D. candidate Arizona State University Fall 2000 1 Outline Anatomy Biomechanics Problems 2 Shoulder Complex Greatest Greatest Predisposition

More information

Shoulder and Elbow ORTHOPAEDIC SYPMPOSIUM APRIL 8, 2017 DANIEL DOTY MD

Shoulder and Elbow ORTHOPAEDIC SYPMPOSIUM APRIL 8, 2017 DANIEL DOTY MD Shoulder and Elbow ORTHOPAEDIC SYPMPOSIUM APRIL 8, 2017 DANIEL DOTY MD Shoulder Articulations Glenohumeral Joint 2/3 total arc of motion Shallow Ball and Socket Joint Allows for excellent ROM Requires

More information

Continuing Education: Shoulder Stability

Continuing Education: Shoulder Stability Continuing Education: Shoulder Stability Anatomy & Kinesiology: The GHJ consists of the articulation of three bones: the scapula, clavicle and humerus. The scapula has three protrusions: the coracoid,

More information

Anatomy of the Shoulder Girdle. Prof Oluwadiya Kehinde FMCS (Orthop)

Anatomy of the Shoulder Girdle. Prof Oluwadiya Kehinde FMCS (Orthop) Anatomy of the Shoulder Girdle Prof Oluwadiya Kehinde FMCS (Orthop) www.oluwadiya.com Bony Anatomy Shoulder Complex: Sternum(manubrium) Clavicle Scapula Proximal humerus Manubrium Sterni Upper part of

More information

Proximal Humeral Fractures RSA v HHR. Proximal Humeral Fractures RSA v HHR. Introduction

Proximal Humeral Fractures RSA v HHR. Proximal Humeral Fractures RSA v HHR. Introduction Proximal Humeral Fractures RSA v HHR Xavier A. Duralde, MD Peachtree Orthopaedic Clinic Atlanta, GA Proximal Humeral Fractures RSA v HHR Consultant: Smith+Nephew Board of Directors: CORR Introduction Incidence

More information

PROGRAM THURSDAY APRIL 5, 2018

PROGRAM THURSDAY APRIL 5, 2018 PROGRAM THURSDAY APRIL 5, 2018 Welcome Hot And Controversial Topics Anterior Shoulder Instability Invited Special Guest Lecture 07:00 Registration 07:45-08:00 Welcome 07:45 Why are we here? Scheibel Session

More information

Biomechanics of reverse total shoulder arthroplasty

Biomechanics of reverse total shoulder arthroplasty J Shoulder Elbow Surg (2015) 24, 150-160 www.elsevier.com/locate/ymse REVIEW ARTICLE Biomechanics of reverse total shoulder arthroplasty Jonathan L. Berliner, MD*, Ashton Regalado-Magdos, BS, C. Benjamin

More information

SHOULDER JOINT ANATOMY AND KINESIOLOGY

SHOULDER JOINT ANATOMY AND KINESIOLOGY SHOULDER JOINT ANATOMY AND KINESIOLOGY SHOULDER JOINT ANATOMY AND KINESIOLOGY The shoulder joint, also called the glenohumeral joint, consists of the scapula and humerus. The motions of the shoulder joint

More information

THE SHOULDER JOINT T H E G L E N O H U M E R A L ( G H ) J O I N T

THE SHOULDER JOINT T H E G L E N O H U M E R A L ( G H ) J O I N T THE SHOULDER JOINT T H E G L E N O H U M E R A L ( G H ) J O I N T CLARIFICATION OF TERMS Shoulder girdle = scapula and clavicle Shoulder joint (glenohumeral joint) = scapula and humerus Lippert, p115

More information

The Shoulder. Anatomy and Injuries PSK 4U Unit 3, Day 4

The Shoulder. Anatomy and Injuries PSK 4U Unit 3, Day 4 The Shoulder Anatomy and Injuries PSK 4U Unit 3, Day 4 Shoulder Girdle Shoulder Complex is the most mobile joint in the body. Scapula Clavicle Sternum Humerus Rib cage/thorax Shoulder Girdle It also includes

More information

Reverse Total Shoulder Arthroplasty Improves Function in Cuff Tear Arthropathy

Reverse Total Shoulder Arthroplasty Improves Function in Cuff Tear Arthropathy Clin Orthop Relat Res (2011) 469:2476 2482 DOI 10.1007/s11999-010-1683-z SYMPOSIUM: REVERSE TOTAL SHOULDER ARTHROPLASTY Reverse Total Shoulder Arthroplasty Improves Function in Cuff Tear Arthropathy Betsy

More information

Les séquelles traumatiques. Ph. Valenti, J. Kany, D. Katz

Les séquelles traumatiques. Ph. Valenti, J. Kany, D. Katz Indications et Techniques Les séquelles traumatiques Ph. Valenti, J. Kany, D. Katz Paris Shoulder Unit Clinique Bizet (Paris, France) Disclosures Arthroplasty Consultant : FH orthopaedics receive royalties

More information

Impact of Modeling Assumptions on Stability Predictions in Reverse Shoulder Arthroplasty

Impact of Modeling Assumptions on Stability Predictions in Reverse Shoulder Arthroplasty Impact of Modeling Assumptions on Stability Predictions in Reverse Shoulder Arthroplasty Mehul A Dharia*, Jeff Bischoff* *Zimmer Biomet, Warsaw, IN May 17, 2017 Total Shoulder Arthroplasty Shoulder Joint

More information

Conversion of Anatomic TSA to RSA

Conversion of Anatomic TSA to RSA Conversion of Anatomic TSA to RSA Joseph A. Abboud, M.D. Professor of Shoulder and Elbow Surgery Senior Vice-President at the Rothman Institute Philadelphia, PA Disclosures Joseph A. Abboud, MD Depuy Synthes

More information

Total Shoulder Arthroplasty

Total Shoulder Arthroplasty 1 Total Shoulder Arthroplasty Surgical indications and contraindications Anatomical Considerations: Total shoulder arthroplasty surgery involves the replacement of the humeral head and the glenoid articulating

More information

Title: Scapular Notching on Kinematic Simulated Range of Motion after Reverse Shoulder Arthroplasty is not the Result of Impingement in Adduction

Title: Scapular Notching on Kinematic Simulated Range of Motion after Reverse Shoulder Arthroplasty is not the Result of Impingement in Adduction 1 2 Title: Scapular Notching on Kinematic Simulated Range of Motion after Reverse Shoulder Arthroplasty is not the Result of Impingement in Adduction 3 4 Running title: Scapular notching in RSA 5 6 7 Alexandre

More information

Reverse Shoulder System. Abstracts

Reverse Shoulder System. Abstracts TM Reverse Shoulder System s 2 Contents Introduction 2 Reverse shoulder arthroplasty components and surgical techniques that restore glenohumeralmotion 3 Isometric strength, range of motion, and impairment

More information

S h o u l d e r Solutions by Tornier C o n v e r T i b l e S h o u l d e r S y S T e m

S h o u l d e r Solutions by Tornier C o n v e r T i b l e S h o u l d e r S y S T e m S h o u l d e r Solutions by Tornier C o n v e r t i b l e s h o u l d e r s y s t e m C o n v e r t i b l e s h o u l d e r s y s t e m A n a t o m i c Aequalis Ascend Flex - UDZF131 One System. Two Solutions.

More information

FACTORS AFFECTING THE STABILITY OF REVERSE SHOULDER ARTHROPLASTY

FACTORS AFFECTING THE STABILITY OF REVERSE SHOULDER ARTHROPLASTY FACTORS AFFECTING THE STABILITY OF REVERSE SHOULDER ARTHROPLASTY by Allison Loretta Clouthier A thesis submitted to the Department of Mechanical and Materials Engineering In conformity with the requirements

More information

7/31/2012 THE SHOULDER JOINT CLARIFICATION OF TERMS OSTEOLOGY OF THE GH JOINT(BONES)

7/31/2012 THE SHOULDER JOINT CLARIFICATION OF TERMS OSTEOLOGY OF THE GH JOINT(BONES) THE SHOULDER JOINT T H E G L E N O H U M E R AL ( G H ) J O I N T CLARIFICATION OF TERMS Shoulder girdle = scapula and clavicle Shoulder joint (glenohumerual joint) = scapula and Lippert, p115 OSTEOLOGY

More information

Not relevant to this presentation.

Not relevant to this presentation. Nolan R. May, MD Kearney, NE Heartland Surgery Center, Kearney NE Not relevant to this presentation. 1 What are the indications for total shoulder arthroplasty? What are the differences between total shoulder

More information

Instability After Reverse Total Shoulder Arthroplasty: Which Patients Dislocate?

Instability After Reverse Total Shoulder Arthroplasty: Which Patients Dislocate? An Original Study Instability After Reverse Total Shoulder Arthroplasty: Which Patients Dislocate? Eric M. Padegimas, MD, Benjamin Zmistowski, MD, Camilo Restrepo, MD, Joseph A. Abboud, MD, Mark D. Lazarus,

More information

Curriculum Vitae. Derek J. Cuff

Curriculum Vitae. Derek J. Cuff Curriculum Vitae Derek J. Cuff Suncoast Orthopaedic Surgery and Sports Medicine 836 Sunset Lake Blvd, Building A Suite 205 Venice, FL 34292 Office:941-485-1505, Email: dcuff001@hotmail.com, web:www.suncoastshoulder-elbow.com

More information

Returning the Shoulder Back to Optimal Function. Scapula. Clavicle. Humerus. Bones of the Shoulder (Osteology) Joints of the Shoulder (Arthrology)

Returning the Shoulder Back to Optimal Function. Scapula. Clavicle. Humerus. Bones of the Shoulder (Osteology) Joints of the Shoulder (Arthrology) Returning the Shoulder Back to Optimal Function Sternum Clavicle Ribs Scapula Humerus Bones of the Shoulder (Osteology) By Rick Kaselj Clavicle Scapula Medial Left Anterior Clavicle Inferior View 20 degree

More information

Musculoskeletal Ultrasound. Technical Guidelines SHOULDER

Musculoskeletal Ultrasound. Technical Guidelines SHOULDER Musculoskeletal Ultrasound Technical Guidelines SHOULDER 1 Although patient s positioning for shoulder US varies widely across different Countries and Institutions reflecting multifaceted opinions and

More information

Patient ID. Case Conference. Physical Examination. Image examination. Treatment 2011/6/16

Patient ID. Case Conference. Physical Examination. Image examination. Treatment 2011/6/16 Patient ID Case Conference R3 高逢駿 VS 徐郭堯 55 y/o female C.C.: recurrent right shoulder dislocation noted since falling down injury 2 years ago Came to ER because of dislocation for many times due to minor

More information

Rotator cuff disease is an uncommon condition in patients. Perioperative Rotator Cuff Injury and Disease With Anatomic Total Shoulder Arthroplasty

Rotator cuff disease is an uncommon condition in patients. Perioperative Rotator Cuff Injury and Disease With Anatomic Total Shoulder Arthroplasty SYMPOSIUM Perioperative Rotator Cuff Injury and Disease With Anatomic Total Shoulder Arthroplasty Benjamin W. Sears, MD Summary: Rotator cuff disease is a relatively uncommon but important complication

More information

Shoulder Arthroplasty Review. Gregory P. Nicholson, M.D.

Shoulder Arthroplasty Review. Gregory P. Nicholson, M.D. Shoulder Arthroplasty Review Gregory P. Nicholson, M.D. Midwest Orthopaedics at Rush Rush University Medical Center Chicago, Illinois Etiologies of degenerative joint disease of shoulder: Osteoarthritis

More information

Disclosures A prospective comparison between reverse and anatomic total shoulder arthroplasty

Disclosures A prospective comparison between reverse and anatomic total shoulder arthroplasty Disclosures A prospective comparison between reverse and anatomic total shoulder arthroplasty Tuyen Kiet Micah Naimark, MD Brian T. Feeley, MD Teddy T. Chung Tatiana Gajiu Sarah L. Hall, MA C. Benjamin

More information

Anatomic Total Shoulder Arthroplasty: Optimizing Outcomes and Avoiding Complications

Anatomic Total Shoulder Arthroplasty: Optimizing Outcomes and Avoiding Complications Anatomic Total Shoulder Arthroplasty: Optimizing Outcomes and Avoiding Complications Dr. Ryan T. Bicknell, MD, MSc, FRCSC Associate Professor Division of Orthopaedic Surgery, Departments of Surgery, Mechanical

More information

Scapular Notching on Kinematic Simulated Range of Motion After Reverse Shoulder Arthroplasty Is Not the Result of Impingement in Adduction

Scapular Notching on Kinematic Simulated Range of Motion After Reverse Shoulder Arthroplasty Is Not the Result of Impingement in Adduction Article Scapular Notching on Kinematic Simulated Range of Motion After Reverse Shoulder Arthroplasty Is Not the Result of Impingement in Adduction LAEDERMANN, Alexandre, et al. Abstract Impingement after

More information

Management of arthritis of the shoulder. Omar Haddo Consultant Orthopaedic Surgeon

Management of arthritis of the shoulder. Omar Haddo Consultant Orthopaedic Surgeon Management of arthritis of the shoulder Omar Haddo Consultant Orthopaedic Surgeon Diagnosis Pain - with activity initially. As disease progresses night pain is common and sleep difficult Stiffness trouble

More information

Bilateral Anatomic Total Shoulder Arthroplasty Versus Reverse Shoulder Arthroplasty

Bilateral Anatomic Total Shoulder Arthroplasty Versus Reverse Shoulder Arthroplasty Bilateral Anatomic Total Shoulder Arthroplasty Versus Reverse Shoulder Arthroplasty Vaqar Latif, MD; Patrick J. Denard, MD; Allan A. Young, MD; Jean-Pierre Liotard, MD; Gilles Walch, MD abstract Full article

More information

Zimmer Patient Specific Instruments (PSI) for Reverse Shoulder Arthroplasty

Zimmer Patient Specific Instruments (PSI) for Reverse Shoulder Arthroplasty Zimmer Patient Specific Instruments (PSI) for Reverse Shoulder Arthroplasty Ryan Krupp, M.D. Norton Orthopaedic Specialists Louisville, KY Anand Murthi, M.D. MedStar Union Memorial Hospital Baltimore,

More information

Surgical. Technique. AEQUALIS Spherical Base Glenoid. Shoulder Prosthesis.

Surgical. Technique. AEQUALIS Spherical Base Glenoid. Shoulder Prosthesis. Surgical Technique Shoulder Prosthesis AEQUALIS Spherical Base Glenoid www.tornier.com CONTENTS CONTENTS 1. Subscapularis 2. Anterior capsule 3. Humeral protector 4. Inserting retractors 1. DESIGN FEATURES

More information

Effect of baseplate size on primary glenoid stability and impingement-free range of motion in reverse shoulder arthroplasty

Effect of baseplate size on primary glenoid stability and impingement-free range of motion in reverse shoulder arthroplasty Chae et al. BMC Musculoskeletal Disorders 2014, 15:417 RESEARCH ARTICLE Open Access Effect of baseplate size on primary glenoid stability and impingement-free range of motion in reverse shoulder arthroplasty

More information

Ultrasound of the Shoulder

Ultrasound of the Shoulder Ultrasound of the Shoulder Patrick Battaglia, DC, DACBR Logan University, Department of Radiology Outline Review ultrasound appearance of NMSK tissues Present indications for ultrasound of the shoulder.

More information

Accuracy of CT-based measurements of glenoid version for total shoulder arthroplasty

Accuracy of CT-based measurements of glenoid version for total shoulder arthroplasty J Shoulder Elbow Surg (2009) -, 1-6 www.elsevier.com/locate/ymse Accuracy of CT-based measurements of glenoid version for total shoulder arthroplasty Heinz R. Hoenecke Jr., MD*, Juan C. Hermida, MD, Cesar

More information

Reverse Prostheses in Arthropathies With Cuff Tear

Reverse Prostheses in Arthropathies With Cuff Tear Clin Orthop Relat Res (2011) 469:2469 2475 DOI 10.1007/s11999-011-1833-y SYMPOSIUM: REVERSE TOTAL SHOULDER ARTHROPLASTY Reverse Prostheses in Arthropathies With Cuff Tear Are Survivorship and Function

More information

Reverse shoulder arthroplasty for the treatment of three and four part fractures of the proximal humerus in patients older than 75 years old

Reverse shoulder arthroplasty for the treatment of three and four part fractures of the proximal humerus in patients older than 75 years old Acta Orthop. Belg., 2014, 80, 99-105 ORIGINAL STUDY Reverse shoulder arthroplasty for the treatment of three and four part fractures of the proximal humerus in patients older than 75 years old Aristotelis

More information

Balgrist Shoulder Course 2017

Balgrist Shoulder Course 2017 How do we define a glenoid component at risk for clinical failure? Joseph P. Iannotti MD, PhD Maynard Madden Professor and Chairman Orthopaedic and Rheumatologic Institute Cleveland Clinic Conflict of

More information

Assessment of Approximate Glenoid Size in Thai People

Assessment of Approximate Glenoid Size in Thai People Assessment of Approximate Glenoid Size in Thai People J Med Assoc Thai 2014; 97 (Suppl. 2): S14-S18 Full text. e-journal: http://www.jmatonline.com Pason Phonphok MD*, Nattha Kulkamthorn MD* * Division

More information

TORNIER AEQUALIS FX. Shoulder System SYSTEM OVERVIEW

TORNIER AEQUALIS FX. Shoulder System SYSTEM OVERVIEW TORNIER AEQUALIS FX Shoulder System SYSTEM OVERVIEW Simple in design, but used for the most complex fractures Each year, approximately 4 million people in the United States seek medical care for shoulder

More information

Posterior Glenoid Wear in Total Shoulder Arthroplasty:

Posterior Glenoid Wear in Total Shoulder Arthroplasty: Posterior Glenoid Wear in Total Shoulder Arthroplasty: Eccentric Anterior Reaming is Superior to Posterior Augment Tim Wang MD, Geoffrey Abrams MD, Anthony Behn MS, Emilie Cheung MD Department of Orthopaedic

More information

Risks of loosening of a prosthetic glenoid implanted in retroversion

Risks of loosening of a prosthetic glenoid implanted in retroversion Risks of loosening of a prosthetic glenoid implanted in retroversion Alain Farron, MD, a Alexandre Terrier, PhD, b and Philippe Büchler, PhD, b Lausanne, Switzerland Osteoarthritis of the shoulder is frequently

More information