ORIGINAL INVESTIGATION. Natural History of Knee Cartilage Defects and Factors Affecting Change

Size: px
Start display at page:

Download "ORIGINAL INVESTIGATION. Natural History of Knee Cartilage Defects and Factors Affecting Change"

Transcription

1 ORIGINAL INVESTIGATION Natural History of Knee Cartilage Defects and Factors Affecting Change Changhai Ding, MD; Flavia Cicuttini, PhD; Fiona Scott, MS; Helen Cooley, MD; Catrina oon, RN; Graeme Jones, MD ackground: Knee cartilage defects may play an important role in early osteoarthritis, but little is known about their natural history. Methods: Knee cartilage defect score (range, 0-4), cartilage volume, and bone surface area were determined using T1-weighted fat-saturated magnetic resonance imaging in 325 subjects (mean age, 45 years) at baseline and 2 years later. Results: Thirty-three percent of the subjects had a worsening ( 1-point increase) and 37% of the subjects had an improvement ( 1-point decrease) in cartilage defect score in any knee compartment during 2.3 years. A worsening in cartilage defect score was significantly associated with female sex (odds ratio [OR], 3.09 and 3.64 in the medial and lateral tibiofemoral compartments) and baseline factors, including age (OR, 1.05 per year in the medial tibiofemoral compartment), body mass index (OR, 1.08 in the lateral tibiofemoral compartment), tibiofemoral osteophytes (OR, 6.22 and 6.04 per grade), tibial bone area (OR, 1.24 and 2.07 per square centimeter), and cartilage volume (OR, 2.91 and 1.71 per milliliter in the medial tibiofemoral and patellar compartments). An improvement in cartilage defect score had similar but reversed associations with these factors (except for sex), including a decrease in body mass index (OR, 1.23 in the medial tibiofemoral compartment). Conclusions: Knee cartilage defects are variable, and changes are associated with female sex, age, and body mass index. Increases are associated with baseline cartilage volume, bone size, and osteophytes, suggesting a role for these in the pathogenesis of cartilage defects. Interventions such as weight loss may improve knee cartilage defects. Arch Intern Med. 2006;166: Author Affiliations: Menzies Research Institute, University of Tasmania, Hobart, Tasmania (Drs Ding, Cooley, and Jones and Mss Scott and oon), and Department of Epidemiology and Preventive Medicine, Monash University Medical School, Melbourne, Victoria (Dr Cicuttini), Australia. KNEE CARTILAGE DEFECTS are commonly found by magnetic resonance imaging (MR imaging) in healthy subjects 1 and by arthroscopy in symptomatic subjects, 2 in whom they are thought to be largely traumatic, 3 but little is known about their natural history. They lead to osteoarthritis (OA) in a surgical model of articular condylar defects in rabbits, 4 but there are limited human data to support this. Investigators in preliminary studies have reported that knee cartilage defects are associated with the Kellgren-Lawrence score in patients with advanced OA 5 and with osteophytes in subjects with chronic knee pain. 6 It is uncertain whether these are precursors of OA or a result of OA. It was reported in 2005 that the prevalence and severity of knee cartilage defects increase with increasing age 7 and body mass index (MI, calculated as weight in kilograms divided by the square of height in meters) 8 in healthy younger subjects. Furthermore, their severity and prevalence were associated with tibiofemoral osteophytes, increased tibial bone area, decreased knee cartilage volume, and increased type II collagen breakdown. 1 Knee cartilage defects were predictive of knee cartilage loss at the medial tibia 9 during 2 years, suggesting an important role for knee cartilage defects in early knee OA. So far, there are few longitudinal data to describe the changes in knee cartilage defects. Results of a retrospective cohort MR imaging based study 10 in 43 patients during 1.8 years suggest that 38% of grade 1 knee cartilage lesions progressed to highergrade lesions, while 23% of grade 1 knee cartilage lesions reverted to grade 0. The presence of meniscal and anterior cruciate ligament tears was associated with more rapid progression of cartilage lesions. However, there are no reports about the effects of sex, age, MI, cartilage volume, and subchondral bone on knee cartilage defect changes, to our knowledge. The objective of this longitudinal study was to describe the natural history of knee carti- 651

2 A aseline Follow-up aseline Follow-up Figure 1. Sagittal T1-weighted fat-saturated 3-dimensional magnetic resonance images showing changes in knee cartilage defects (arrows). A, Increase of tibial cartilage defect from grade 1 at baseline to grade 3 at follow-up., Decrease of tibial cartilage defect from grade 3 adjacent to bone surface at baseline to grade 1 at follow-up. lage defects and the factors associated with change in a convenience sample of adults. METHODS SUJECTS The study was carried out in Southern Tasmania from June 26, 2000, until December 1, 2001, and the follow-up study was conducted approximately 2 years later. Subjects were selected from 2 sources. Half the subjects were the adult children of subjects (offspring) who had a knee replacement performed for primary knee OA in 1996 through This diagnosis was confirmed by reference to the medical records of the orthopedic surgeon and to the original radiograph, where possible. The other half were randomly selected control subjects without this history, chosen by computer-generated random numbers from the electoral roll. Subjects from either group were excluded on the basis of contraindication to MR imaging (including metal sutures, the presence of shrapnel, iron filing in the eye, and claustrophobia). The study was approved by the Southern Tasmanian Health and Medical Human Research Ethics Committee, Hobart, and all subjects provided informed written consent. ANTHROPOMETRICS Height and weight were measured as previously described. 1,7,8 ody mass index was calculated. Knee pain at baseline was assessed by questionnaire and was defined as pain lasting longer than 24 hours in the past 12 months or daily pain lasting longer than 30 days in the past year. 1 KNEE CARTILAGE DEFECT ASSESSMENT Magnetic resonance imaging of the right knee was performed on 2 occasions, at baseline and at follow-up. Knees were imaged in the sagittal plane using a 1.5-T whole-body MR unit (Picker International, Cleveland, Ohio) with use of a commercial transmit/ receive extremity coil. The image data were transferred to a workstation using the software program Osiris (University of Geneva, Geneva, Switzerland). The cartilage defects (score range, 0-4) were graded by 1 of us (C.D.) at baseline and at follow-up (Figure 1) at medial tibiofemoral, lateral tibiofemoral, and patellar sites as previously described 1,7-9 as follows: grade 0, normal cartilage; grade 1, focal blistering and intracartilaginous lowsignal intensity area with an intact surface and bottom; grade 2, irregularities on the surface or bottom and less than 50% loss of thickness; grade 3, deep ulceration with 50% loss of thickness or greater; and grade 4, full-thickness chondral wear with exposure of subchondral bone. The reader was unaware of the initial result at the time of the second reading. A cartilage defect also had to be present in at least 2 consecutive sections. If multiple defects existed at 1 site (uncommon in this sample), we selected the highest grade to represent the cartilage defect score at that site. This type of defect evaluation is correlated with histological 11 and arthroscopic 12 findings. The cartilage defects were regraded 1 month later, and the mean cartilage defect scores at the medial tibiofemoral (range, 0-8), lateral tibiofemoral (range, 0-8), patellar (range, 0-4), and whole (range, 0-20) compartments were used in the study. Intraobserver reliability (expressed as intraclass correlation coefficient) was 0.89 to 0.94, and interobserver reliability (assessed in 50 images by 2 of us [C.D. and H.C.]) was 0.85 to ,7-9 Changes in cartilage defects were calculated by subtracting the cartilage defect scores at baseline from the cartilage defect scores at follow-up. An increase in cartilage defect score of 1 or more was defined as an increase in cartilage defects, and a decrease in cartilage defect score of 1 or more was defined as a decrease in cartilage defects. These changes were in excess of the less significant change in an individual as calculated by a standard formula. 13 All increases and decreases in knee cartilage defect scores were confirmed by paired reading in 150 subjects by 1 of us (C.D.) who was unaware of the subject s score at the time of reading. X-RAY FILMS Radiography (a standing anteroposterior semiflexed view of the right knee) was performed in all subjects. This method has been previously described

3 A ROI-1 Figure 2. Sagittal T1-weighted fat-saturated 3-dimensional magnetic resonance images showing measurements of knee cartilage volume, determined by summing all the pertinent voxels within the resultant binary volume. A, Lateral tibial cartilage., Patellar cartilage. ROI indicates region of interest. ROI-1 A ROI-1 ROI-2 ROI-1 ROI-2 Figure 3. Axial T1-weighted fat-saturated 3-dimensional magnetic resonance images showing measurements of tibial plateau bone area. The mean area of medial (region of interest [ROI]-1) and lateral (ROI-2) tibial plateau bone is measured manually on the 3 reformatted images closest to tibial cartilage. A, The first image., The second image. KNEE CARTILAGE VOLUME MEASUREMENT Knee cartilage volume was determined (Figure 2) by means of image processing on an independent workstation by 1 of us (C.D.) as previously described. 1,7-9,13-16 The volumes of individual cartilage plates (medial tibial, lateral tibial, and patella) were isolated from the total volume by manually drawing disarticulation contours around the cartilage boundaries on a section-by-section basis. These data were then resampled by means of bilinear and cubic interpolation (continuous sections with µm area and 1.5-mm thickness) for the final 3-dimensional rendering. The coefficients of variation for cartilage volume measures were 2.1% to 2.6%. 16 KNEE ONE SIZE MEASUREMENT Knee tibial plateau bone area (Figure 3) and patellar bone volume were determined as previously described. 1,7-9,14-16 The area of medial and lateral tibial plateau bone is measured manually on the 3 reformatted images closest to tibial cartilage. The mean of these 3 areas is used as an estimate of the tibial plateau bone area. The coefficients of variation for these measures were 2.2% to 2.6%. 16 STATISTICAL ANALYSIS Paired t tests were used to compare means. Logistic regression analysis was used to examine the associations between individual knee cartilage defect increase (increase vs stable and decrease) or decrease (decrease vs stable and increase) and other variables. Higher baseline cartilage defect scores were considered less likely to progress than lower baseline cartilage defect scores; therefore, we adjusted all associations for baseline cartilage defect scores in logistic regression analyses. Although associations did not differ in offspring and controls, we adjusted all associations for offspring and control status because of the convenience nature of the sample. P.05 (2-tailed) was regarded as statistically significant. All statistical analyses were performed using SPSS version 10.0 for Windows (SPSS Inc, Chicago, Ill). RESULTS Three hundred twenty-five subjects (190 women and 135 men, 87% of those originally studied) completed the study. The reasons for loss to follow-up were as follows: 2 died, 5 moved out of state, 3 were claustrophobic, 4 dropped out because of illness, and others gave no reason for their 653

4 A Cartilage Defect Score Rate, % P =.24 P =.36 P =.005 Medial Lateral Patellar Total aseline Follow-up P =.91 Medial Lateral Patellar Total Increase Stable Decrease Figure 4. Changes in knee cartilage defect scores (A) and percentage changes in knee cartilage defects () during 2.3 years. discontinuation. This was a young sample, with a mean age of 45 years (age range, years) at baseline. Although radiographic OA was uncommon (17%) and was predominantly grade 1, knee cartilage defects were common, varying from grade 1 to grade 4, but grade 1 defects were the most common at each knee compartment site. After a mean of 2.3 years (range, years), the patellar cartilage defect score increased significantly, whereas there were no significant changes in cartilage defect scores in other compartments (Figure 4A). However, 21%, 21%, 22%, and 33% of subjects had increases and 27%, 26%, 13%, and 37% of subjects had decreases in cartilage defect scores in the medial tibiofemoral compartment, lateral tibiofemoral compartment, patellar compartment, and any knee compartment, respectively (Figure 4). Subjects with an increase in knee cartilage defects in any compartment had increased height, weight, change in weight, osteophytes, cartilage volume, and bone size compared with subjects who had a decrease in knee cartilage defects in any compartment (Table 1). There was no significant difference in chronic knee pain or past knee injury between those who had increases and those who had decreases. Women had smaller increases in tibiofemoral cartilage defect scores than men before (Table 2) and after adjustment for age, MI, and radiographic OA (data not shown); however, increases in knee cartilage defect scores became larger in women after further adjustment for baseline cartilage volume and tibial bone area. Decreases in knee cartilage defects did not differ between women and men in multivariate analyses (Table 3). The associations between sex and an increase (odds ratio [OR], 1.18; P=.69) or a decrease (OR, 1.24; P=.70) in patellar cartilage defects were also not significant. The rate of increase in knee cartilage defects at any site was higher in subjects 40 years and older (37%) than in subjects younger than 40 years (19%) (P=.003), while the rate of decrease in knee cartilage defects at any site was not different between the groups (Figure 5A). Age was positively associated with increases in tibiofemoral defects (Table 2) and was negatively associated with decreases in tibiofemoral defects (Table 3). No significant associations were found between age and an increase (OR, 1.00 per year; P=.75) or a decrease (OR, 1.00 per year; P=.87) in patellar cartilage defects. The rate of increase in knee cartilage defects at any site was higher in subjects with a MI of 25 or higher (38%) than in subjects with a MI less than 25 (25%) (P=.02) (Figure 5). ody mass index was positively associated with an increase in lateral tibiofemoral cartilage defects (Table 2) and was negatively associated with a decrease in medial cartilage defects (Table 3). Furthermore, MI loss was associated with a decrease in medial cartilage defects. No significant associations were detected between MI and an increase (OR, 1.03; P=.38) or a decrease (OR, 0.99; P=.72) in patellar cartilage defects. aseline knee cartilage defect scores were negatively associated with increases in tibiofemoral (Table 2) and patellar (OR, 0.53 per grade; P.001) cartilage defects and were positively associated with decreases in tibiofemoral (Table 3) and patellar (OR, 1.66 per grade; P=.02) cartilage defects. aseline knee cartilage volume was positively associated with increases in medial tibiofemoral (Table 2) and patellar (OR=1.71 per milliliter, P=.02) cartilage defects and was negatively associated with decreases in medial tibiofemoral cartilage defects (Table 3). Joint space narrowing was not associated with changes in knee cartilage defects (Tables 2 and 3). aseline tibial bone area was positively associated with increases in tibiofemoral cartilage defects (Table 2). aseline lateral tibial bone area was negatively associated with decreases in lateral tibiofemoral cartilage defects (Table 3). aseline osteophytes were strongly positively associated with increases in knee cartilage defects in tibiofemoral compartments (Table 2) and were negatively associated with decreases in knee cartilage defects in medial tibiofemoral compartments (Table 3). The association between baseline osteophytes and decreases in knee cartilage defects in lateral tibiofemoral compartments was not quantifiable, as there were no subjects with baseline osteophytes and a decrease in knee cartilage defects in a lateral tibiofemoral compartment. Women vs men and offspring vs controls were analyzed separately. Similar results were obtained (data not shown). 654

5 Table 1. Characteristics of Participants* Characteristic Decrease (n = 119) Knee Cartilage Defects Stable (n = 96) Increase (n = 110) P Value Female sex, % Age, y 45.4 ± ± ± Height, cm ± ± ± Weight, kg 74.9 ± ± ± MI 26.8 ± ± ± Change in weight, kg 0.4 ± ± ± Change in MI 0.4 ± ± ± Chronic knee pain, % Past knee injury, % Any joint space narrowing, % Any osteophytes, % Cartilage volume, ml Medial 2.0 ± ± ± Lateral 2.4 ± ± ± Patellar 3.2 ± ± ± Tibial bone area, cm 2 Medial 16.9 ± ± ± Lateral 11.5 ± ± ± Patellar bone volume, ml 13.5 ± ± ± Abbreviation: MI, body mass index (calculated as weight in kilograms divided by the square of height in meters). *Data are given as mean ± SD unless otherwise indicated. 2 Test; analysis of variance for all other comparisons. Table 2. Factors Associated With Increases in Tibiofemoral Cartilage Defects During 2.3 Years* Factor Multivariate OR (95% CI) Multivariate OR (95% CI) P Value Medial cartilage defects increase Sex, female vs male 0.55 ( ) 3.09 ( ).03 Age, per y 1.06 ( ) 1.05 ( ).03 MI 1.04 ( ) 1.01 ( ).87 MI increase 1.06 ( ) 1.15 ( ).47 Medial cartilage defects, per grade 0.79 ( ) 0.41 ( ).002 Medial cartilage volume, per ml 3.27 ( ) 2.91 ( ).01 Medial tibial bone area, per cm ( ) 1.24 ( ).04 Medial joint space narrowing, per grade 1.27 ( ) 0.95 ( ).93 Medial osteophytes, per grade 8.74 ( ) 6.22 ( ).003 Lateral cartilage defects increase Sex, female vs male 0.54 ( ) 3.64 ( ).02 Age, per y 1.07 ( ) 1.05 ( ).06 MI 1.08 ( ) 1.08 ( ).03 MI increase 1.09 ( ) 1.11 ( ).34 Lateral cartilage defects, per grade 0.38 ( ) 0.15 ( ).001 Lateral cartilage volume, per ml 1.86 ( ) 0.94 ( ).86 Lateral tibial bone area, per cm ( ) 2.07 ( ).001 Lateral joint space narrowing, per grade 1.56 ( ) 0.73 ( ).77 Lateral osteophytes, per grade ( ) 6.04 ( ).03 Abbreviations: MI, body mass index (calculated as weight in kilograms divided by the square of height in meters); CI, confidence interval; OR, odds ratio. *oldface denotes statistically significant result. Adjusted for offspring-control status and for baseline cartilage defects. Further adjusted for other factors listed in the table. COMMENT To our knowledge, this is the largest study to describe the natural history of knee cartilage defects and factors affecting change. In this young sample, a substantial proportion had an increase or a decrease in knee cartilage defects that was greater than that expected because of measurement error. The risk factors for OA (age, MI, and female sex) were associated with increases in knee cartilage defect scores; conversely, weight loss was associated with decreases in knee cartilage defect scores during 2.3 years. Increased baseline cartilage volume, tibial 655

6 Table 3. Factors Associated With Decreases in Knee Cartilage Defects During 2.3 Years* Factor Multivariate OR (95% CI) Multivariate OR (95% CI) P Value Medial cartilage defects decrease Sex, female vs male 2.38 ( ) 1.71 ( ).27 Age, per y 0.94 ( ) 0.94 ( ).005 MI 0.91 ( ) 0.88 ( ).001 MI decrease 1.18 ( ) 1.23 ( ).03 Medial cartilage defects, per grade 2.12 ( ) 6.04 ( ).001 Medial cartilage volume, per ml 0.32 ( ) 0.27 ( ).006 Medial tibial bone area, per cm ( ) 1.13 ( ).22 Medial joint space narrowing, per grade 0.60 ( ) 0.61 ( ).30 Medial osteophytes, per grade ( ) ( ).001 Lateral cartilage defects decrease Sex, female vs male 2.49 ( ) 1.08 ( ).88 Age, per y 0.96 ( ) 0.94 ( ).008 MI 0.98 ( ) 0.99 ( ).81 MI decrease 1.05 ( ) 1.10 ( ).30 Lateral cartilage defects, per grade 2.65 ( ) 7.57 ( ).001 Lateral cartilage volume, per ml 0.49 ( ) 0.80 ( ).54 Lateral tibial bone area, per cm ( ) 0.71 ( ).02 Lateral joint space narrowing, per grade 1.36 ( ) 1.88 ( ).40 Abbreviations: MI, body mass index (calculated as weight in kilograms divided by the square of height in meters); CI, confidence interval; OR, odds ratio. *oldface denotes statistically significant result. Adjusted for offspring-control status and for baseline cartilage defects. Further adjusted for other factors listed in the table. bone area, and osteophytes predicted increases in knee cartilage defects and vice versa, suggesting that increasing cartilage volume and subchondral bone expansion play roles in the pathogenesis of knee cartilage defects. Our cross-sectional study showed that knee cartilage defects were common, with 44% of subjects having cartilage defects of grade 2 or higher at any site in the knee, while grade 1 defects are predominant at each site. 1 Prevalent knee cartilage defects predict knee cartilage loss during 2 years in healthy adults, 9 indicating the clinical importance of knee cartilage defects. Consistent with a previous report, 10 the results of the present longitudinal study suggest that cartilage defects are not static. This may be due to measurement issues; however, a 1-U increase or decrease is greater than that expected because of measurement error, suggesting that these are real changes. The decrease in cartilage defects may represent cartilage repair and healing. This suggests that knee cartilage defects are reversible and may represent an intermediate factor to study early in the natural history of knee OA. It is well recognized that age, MI, and female sex are risk factors for knee OA. 17 While women are more often affected with knee OA after about age 50 years, the incidence of knee OA is the same or even higher in men before age 50 years. 17 Incident knee joint space narrowing was inconsistently associated with age and MI. 18,19 Although increases in tibiofemoral cartilage defects were 3.1- to 3.6-fold higher in women, age and MI were associated with increases in knee cartilage defects in the young sample. These are consistent with other crosssectional results, 1,7,8,20 suggesting that age, MI, and female sex are risk factors for knee cartilage degeneration. The rate of increase in knee cartilage defects in subjects 40 years and older was higher than that in subjects younger than 40 years, suggesting that knee cartilage defects are more likely to progress after this age. Moreover, age was negatively associated with decreases in knee cartilage defects in tibiofemoral compartments, and MI loss was positively associated with decreases in knee cartilage defects in medial tibiofemoral compartment. Although an increase in knee cartilage defects with age may be inevitable, weight loss can be an important strategy to decrease knee cartilage defect progression. We failed to find significant associations between patellar cartilage defect changes and age or MI, possibly because the higher baseline patellar cartilage defect scores may result in less change at this site. The underlying structural mechanisms associated with progression of knee cartilage defects are obscure. Although joint space narrowing was unassociated with knee cartilage defect changes, baseline cartilage volume was positively associated with increases in medial tibiofemoral and patellar cartilage defects and was negatively associated with decreases in medial tibiofemoral cartilage defects. Combined with previous findings that there was a trend to higher cartilage volume in the offspring of subjects who had severe knee OA than in controls 15 and that initial cartilage volume was associated with tibial cartilage volume loss, 21 these results suggest that higher knee cartilage volume, possibly due to swelling at an early stage of disease, increases the risk of cartilage defects or imply that they are part of the same pathogenetic mechanism. This is consistent with an experimental observation that tibial cartilage swelling (expressed as greater cartilage volume) occurs in early OA, followed by cartilage fragmentation and degeneration. 22 Furthermore, subjects with lower baseline knee cartilage defect scores were more likely to have increases in cartilage defects, and subjects with higher baseline knee cartilage defect scores were more likely to have decreases in cartilage defects. This 656

7 A Rate, % Age, y <40 (n = 65) 40 to 49 (n = 185) 50 (n = 75) Decrease Stable Increase MI <25 (n = 121) 25 to 29 (n = 138) 30 (n = 66) probably reflects that subjects with lower baseline scores have more scope for progression than subjects with higher baseline scores and vice versa for regression. Moreover, previous studies showed that knee cartilage defects detected on MR imaging were significantly associated with osteophytes 6 and that the presence of subchondral bone marrow edema on MR imaging at baseline predicted worsening of cartilage defects after 1 year. 23 Results of an earlier cross-sectional study 1 suggest that osteophytes and increased knee bone size may be causally related to knee cartilage defects. The present longitudinal study confirms these results with strong associations for both factors, supporting a role for subchondral bone expansion in the origin of tibiofemoral cartilage defects. The results of this study suggest that decreases in knee cartilage defects or healing is more likely in subjects with younger age, lower body weight, higher weight loss, and no radiographic OA. Decreased joint surface area and lower cartilage volume also appear to be protective. These associations may be causal, because they are prospective predictors, but the mechanism is unclear, and this work should stimulate research on cartilage healing. This study has several potential limitations. First, the study was primarily designed to evaluate genetic mechanisms of knee OA and used a matched design. The matching was broken for the present study, but adjustment for family history did not alter the results. Although the sample is a convenience sample, Miettinen 24 states that for associations to be generalizable to other populations 3 key criteria need to be met regarding selection, sample size, and adequate distribution of study factors, all of which are met in the present study. Nevertheless, these data need to be confirmed in other populations. Second, the semiquantitative method used to assess knee cartilage defects may result in a ceiling effect because of severe cartilage defects or a floor effect because of no cartilage defects. However, no subjects had a minimal score of 0 or a maximal score of 8 in tibiofemoral compartment defects at baseline in this study, so ceiling or floor effects had little effect on the results. Third, although medication use was uncommon in this sample, we cannot comment on the effect of agents such as glucosamine hydrochloride, which may affect cartilage repair. CONCLUSIONS Rate, % Decrease Stable Increase Figure 5. Associations between age, body mass index (MI, calculated as weight in kilograms divided by the square of height in meters), and change in total knee cartilage defects. The increase in total knee cartilage defects was higher in subjects 40 years and older (A) and in subjects with MI of 25 or higher (). The results of this longitudinal study suggest that knee cartilage defects are variable and that changes are associated with female sex, age, and MI. In addition, increases in knee cartilage defects are associated with knee structural alteration such as increased cartilage volume, subchondral bone size, and osteophytes, suggesting a role for these in the pathogenesis of cartilage defects. Finally, interventions such as weight loss may improve knee cartilage defects. Accepted for Publication: October 13, Correspondence: Changhai Ding, MD, Menzies Research Institute, University of Tasmania, Private ag 23, Hobart, Tasmania 7000, Australia (changhai.ding@utas.edu.au). Author Contributions: Dr Ding had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Financial Disclosure: None. Funding/Support: This study was supported by the National Health and Medical Research Council of Australia, Canberra, and by the Tasmanian Masonic Centenary Medical Research Foundation, Hobart. Acknowledgment: We thank the subjects and orthopedic surgeons who made this study possible, Martin Rush, a member of the Australian Institute of Radiography, who performed the MR imaging, and Kevin Morris, PhD, for technical support. REFERENCES 1. Ding C, Garnero P, Cicuttini F, Scott F, Cooley H, Jones G. Knee cartilage defects: association with early radiographic osteoarthritis, decreased cartilage volume, increased joint surface area and type II collagen breakdown. Osteoarthritis Cartilage. 2005;13: Hjelle K, Solheim E, Strand T, Muri R, rittberg M. Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy. 2002;18: Shelbourne KD, Jari S, Gray T. Outcome of untreated traumatic articular cartilage defects of the knee: a natural history study. J one Joint Surg Am. 2003; 85(suppl 2): Lefkoe TP, Trafton PG, Ehrlich MG, et al. An experimental model of femoral condylar defect leading to osteoarthrosis. J Orthop Trauma. 1993;7:

8 5. Link TM, Steinbach LS, Ghosh S, et al. Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings. Radiology. 2003; 226: oegard T, Rudling O, Petersson IF, Jonsson K. Correlation between radiographically diagnosed osteophytes and magnetic resonance detected cartilage defects in the tibiofemoral joint. Ann Rheum Dis. 1998;57: Ding C, Cicuttini F, Scott F, Cooley H, Jones G. Association between age and knee structural change: a cross sectional MRI based study. Ann Rheum Dis. 2005; 64: Ding C, Cicuttini F, Scott F, Cooley H, Jones G. Knee structural alteration and MI: a cross-sectional study. Obes Res. 2005;13: Cicuttini F, Ding C, Wluka A, Davis S, Ebeling PR, Jones G. Association of cartilage defects with loss of knee cartilage in healthy, middle-age adults: a prospective study. Arthritis Rheum. 2005;52: iswal S, Hastie T, Andriacchi TP, ergman GA, Dillingham MF, Lang P. Risk factors for progressive cartilage loss in the knee: a longitudinal magnetic resonance imaging study in forty-three patients. Arthritis Rheum. 2002;46: McGibbon CA, Trahan CA. Measurement accuracy of focal cartilage defects from MRI and correlation of MRI graded lesions with histology: a preliminary study. Osteoarthritis Cartilage. 2003;11: Potter HG, Linklater JM, Allen AA, Hannafin JA, Haas S. Magnetic resonance imaging of articular cartilage in the knee: an evaluation with use of fast-spinecho imaging. J one Joint Surg Am. 1998;80: Jones G, Ding C, Glisson M, Ma D, Cicuttini F. Knee articular cartilage development in children: a longitudinal study of the effect of gender, growth, body composition and physical activity. Pediatr Res. 2003;54: Jones G, Ding C, Scott F, Glisson M, Cicuttini F. Early radiographic osteoarthritis is associated with substantial changes in cartilage volume and tibial bone surface area in both males and females. Osteoarthritis Cartilage. 2004;12: Jones G, Ding C, Scott F, Cicuttini F. Genetic mechanisms of knee osteoarthritis: a population-based case control study. Ann Rheum Dis. 2004;63: Jones G, Glisson M, Hynes K, Cicuttini F. Sex and site differences in cartilage development: a possible explanation for variations in knee osteoarthritis in later life. Arthritis Rheum. 2000;43: Oliveria SA, Felson DT, Reed JI, Cirillo PA, Walker AM. Incidence of symptomatic hand, hip, and knee osteoarthritis among patients in a health maintenance organization. Arthritis Rheum. 1995;38: Hart DJ, Doyle DV, Spector TD. Incidence and risk factors for radiographic knee osteoarthritis in middle-aged women: the Chingford Study. Arthritis Rheum. 1999; 42: Schouten JS, van den Ouweland FA, Valkenburg HA. A 12 year follow up study in the general population on prognostic factors of cartilage loss in osteoarthritis of the knee. Ann Rheum Dis. 1992;51: Ding C, Cicuttini F, Scott F, Glisson M, Jones G. Sex differences in knee cartilage volume in adults: role of body and bone size, age and physical activity. Rheumatology (Oxford). 2003;42: Wluka AE, Stuckey S, Snaddon J, Cicuttini FM. The determinants of change in tibial cartilage volume in osteoarthritic knees. Arthritis Rheum. 2002;46: Tessier JJ, owyer J, rownrigg NJ, et al. Characterisation of the guinea pig model of osteoarthritis by in vivo three-dimensional magnetic resonance imaging. Osteoarthritis Cartilage. 2003;11: Pessis E, Drape JL, Ravaud P, Chevrot A, Dougados M, Ayral X. Assessment of progression in knee osteoarthritis: results ofa1yearstudycomparing arthroscopy and MRI. Osteoarthritis Cartilage. 2003;11: Miettinen OS. Theoretical Epidemiology: Principles of Occurrence Research in Medicine. New York, NY: John Wiley & Sons Inc; Clinical Trial Registration Announcement In concert with the International Committee of Medical Journal Editors (ICMJE), Archives of Internal Medicine will require, as a condition of consideration for publication, registration of clinical trials in a public trials registry (such as or -trials.com). Trials must be registered at or before the onset of patient enrollment. This policy applies to any clinical trial starting enrollment after March 1, For trials that began enrollment before this date, registration will be required by June 1, The trial registration number should be supplied at the time of submission. For details about this new policy see the editorials by DeAngelis et al in the September 8, 2004 (2004;292: ) and June 15, 2005 (2005;293: ) issues of JAMA. 658

D. Doré 1, C. Ding 1,2, J.P. Pelletier 3, J. Martel-Pelletier 3, F. Cicuttini 2, G. Jones 1.

D. Doré 1, C. Ding 1,2, J.P. Pelletier 3, J. Martel-Pelletier 3, F. Cicuttini 2, G. Jones 1. Responsiveness of qualitative and quantitative MRI measures over 2.7 years D. Doré 1, C. Ding 1,2, J.P. Pelletier 3, J. Martel-Pelletier 3, F. Cicuttini 2, G. Jones 1. 1 Menzies Research Institute Tasmania,

More information

International Cartilage Repair Society

International Cartilage Repair Society Osteoarthritis and Cartilage (2008) 16, 1539e1544 ª 2008 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved. doi:10.1016/j.joca.2008.04.012 A pilot study of the

More information

Key Indexing Terms: KNEE ALIGNMENT OSTEOARTHRITIS CARTILAGE VOLUME CHONDRAL DEFECTS

Key Indexing Terms: KNEE ALIGNMENT OSTEOARTHRITIS CARTILAGE VOLUME CHONDRAL DEFECTS A Longitudinal Study of the Association Between Knee Alignment and Change in Cartilage Volume and Chondral Defects in a Largely Non-Osteoarthritic Population GUANGJU ZHAI, CHANGHAI DING, FLAVIA CICUTTINI,

More information

Radiographic Osteoarthritis and Serum Triglycerides

Radiographic Osteoarthritis and Serum Triglycerides Bahrain Medical Bulletin, Vol. 25, No. 2, June 2003 Radiographic Osteoarthritis and Serum Triglycerides Abdurhman S Al-Arfaj, FRCPC, MRCP(UK), FACP, FACR* Objectives: In view of the many studies linking

More information

Smoking is associated with increased cartilage loss and persistence of bone marrow lesions over 2 years in community-based individuals

Smoking is associated with increased cartilage loss and persistence of bone marrow lesions over 2 years in community-based individuals Rheumatology 2009;48:1227 1231 Advance Access publication 20 August 2009 doi:10.1093/rheumatology/kep211 Smoking is associated with increased cartilage loss and persistence of bone marrow lesions over

More information

The Relationship Between Cartilage Loss on Magnetic Resonance Imaging and Radiographic Progression in Men and Women With Knee Osteoarthritis

The Relationship Between Cartilage Loss on Magnetic Resonance Imaging and Radiographic Progression in Men and Women With Knee Osteoarthritis ARTHRITIS & RHEUMATISM Vol. 52, No. 10, October 2005, pp 3152 3159 DOI 10.1002/art.21296 2005, American College of Rheumatology The Relationship Between Cartilage Loss on Magnetic Resonance Imaging and

More information

CLINICAL PRESENTATION AND RADIOLOGY QUIZ QUESTION

CLINICAL PRESENTATION AND RADIOLOGY QUIZ QUESTION Donald L. Renfrew, MD Radiology Associates of the Fox Valley, 333 N. Commercial Street, Suite 100, Neenah, WI 54956 12/01/2012 Radiology Quiz of the Week # 101 Page 1 CLINICAL PRESENTATION AND RADIOLOGY

More information

Medial Knee Osteoarthritis Precedes Medial Meniscal Posterior Root Tear with an Event of Painful Popping

Medial Knee Osteoarthritis Precedes Medial Meniscal Posterior Root Tear with an Event of Painful Popping Medial Knee Osteoarthritis Precedes Medial Meniscal Posterior Root Tear with an Event of Painful Popping Dhong Won Lee, M.D, Ji Nam Kim, M.D., Jin Goo Kim, M.D., Ph.D. KonKuk University Medical Center

More information

RECENT ADVANCES IN CLINICAL MR OF ARTICULAR CARTILAGE

RECENT ADVANCES IN CLINICAL MR OF ARTICULAR CARTILAGE In Practice RECENT ADVANCES IN CLINICAL MR OF ARTICULAR CARTILAGE By Atsuya Watanabe, MD, PhD, Director, Advanced Diagnostic Imaging Center and Associate Professor, Department of Orthopedic Surgery, Teikyo

More information

Summary. Introduction

Summary. Introduction Osteoarthritis and Cartilage (1999) 7, 526 532 1999 OsteoArthritis Research Society International 1063 4584/99/060526+07 $12.00/0 Article No. joca.1999.0256, available online at http://www.idealibrary.com

More information

Effects of body mass index, infrapatellar fat pad volume and age on patellar cartilage defect

Effects of body mass index, infrapatellar fat pad volume and age on patellar cartilage defect Acta Orthop. Belg., 2015, 81, 41-46 ORIGINAL STUDY Effects of body mass index, infrapatellar fat pad volume and age on patellar cartilage defect Semra Duran, Ertugrul Aksahin, Onur Kocadal, Cem Nuri Aktekin,

More information

DOI /acr.22715

DOI /acr.22715 Original Article Body composition, hormonal and inflammatory factors are associated with tibial cartilage volume in young adults and contribute to the sex difference in cartilage volume DOI 10.1002/acr.22715

More information

Life. Uncompromised. The KineSpring Knee Implant System Surgeon Handout

Life. Uncompromised. The KineSpring Knee Implant System Surgeon Handout Life Uncompromised The KineSpring Knee Implant System Surgeon Handout 2 Patient Selection Criteria Patient Selection Criteria Medial compartment degeneration must be confirmed radiographically or arthroscopically

More information

Distribution of MR-detected cartilage defects of the patellofemoral joint in chronic knee pain

Distribution of MR-detected cartilage defects of the patellofemoral joint in chronic knee pain OsteoArthritis and Cartilage (2003) 11, 494 498 Crown Copyright 2003 Published by Elsevier Science Ltd on behalf of OsteoArthritis Research Society International. All rights reserved. doi:10.1016/s1063-4584(03)00084-0

More information

Arthritis & Rheumatism

Arthritis & Rheumatism ~ Arthritis & Rheumatism Official Journal of the American College of Rheumatology RELATIONSHIP BETWEEN ARTHROSCOPIC EVIDENCE OF CARTILAGE DAMAGE AND RADIOGRAPHIC EVIDENCE OF JOINT SPACE NARROWING IN EARLY

More information

Original Report. The Reverse Segond Fracture: Association with a Tear of the Posterior Cruciate Ligament and Medial Meniscus

Original Report. The Reverse Segond Fracture: Association with a Tear of the Posterior Cruciate Ligament and Medial Meniscus Eva M. Escobedo 1 William J. Mills 2 John. Hunter 1 Received July 10, 2001; accepted after revision October 1, 2001. 1 Department of Radiology, University of Washington Harborview Medical enter, 325 Ninth

More information

The Association of Meniscal Pathologic Changes With Cartilage Loss in Symptomatic Knee Osteoarthritis

The Association of Meniscal Pathologic Changes With Cartilage Loss in Symptomatic Knee Osteoarthritis ARTHRITIS & RHEUMATISM Vol. 54, No. 3, March 2006, pp 795 801 DOI 10.1002/art.21724 2006, American College of Rheumatology The Association of Meniscal Pathologic Changes With Cartilage Loss in Symptomatic

More information

Intraosseous Bio Filler. Surgical Technique

Intraosseous Bio Filler. Surgical Technique Intraosseous Bio Filler Surgical Technique Intraosseous Bio Filler Surgical Technique Introduction The Intraosseous Bio Filler technique is the treatment of bone pathologies resulting from acute or chronic

More information

Stability of Post Traumatic Osteochondritis Dissecans of the Knee: MR Imaging Findings

Stability of Post Traumatic Osteochondritis Dissecans of the Knee: MR Imaging Findings Chin J Radiol 2005; 30: 199-204 199 Stability of Post Traumatic Osteochondritis Dissecans of the Knee: MR Imaging Findings YU-CHUNG HUNG 1 JON-KWAY HUANG 1,2 Department of Radiology 1, Mackay Memorial

More information

CLINICAL PRESENTATION AND RADIOLOGY QUIZ QUESTION

CLINICAL PRESENTATION AND RADIOLOGY QUIZ QUESTION Donald L. Renfrew, MD Radiology Associates of the Fox Valley, 333 N. Commercial Street, Suite 100, Neenah, WI 54956 11/24/2012 Radiology Quiz of the Week # 100 Page 1 CLINICAL PRESENTATION AND RADIOLOGY

More information

BRIEF REPORT. KENNETH D. BRANDT, ROSE S. FIFE, ETHAN M. BRAUNSTEIN, and BARRY KATZ. From the Department of Medicine, the Department of

BRIEF REPORT. KENNETH D. BRANDT, ROSE S. FIFE, ETHAN M. BRAUNSTEIN, and BARRY KATZ. From the Department of Medicine, the Department of 1381 BRIEF REPORT RADIOGRAPHIC GRADING OF THE SEVERITY OF KNEE OSTEOARTHRITIS: RELATION OF THE KELLGREN AND LAWRENCE GRADE TO A GRADE BASED ON JOINT SPACE NARROWING, AND CORRELATION WITH ARTHROSCOPIC EVIDENCE

More information

International Cartilage Repair Society

International Cartilage Repair Society OsteoArthritis and Cartilage (2006) 14, 1081e1085 ª 2006 OsteoArthritis Research Society International. Published by Elsevier Ltd. All rights reserved. doi:10.1016/j.joca.2006.05.011 MRI of bone marrow

More information

What is the most effective MRI specific findings for lateral meniscus posterior root tear in ACL injuries

What is the most effective MRI specific findings for lateral meniscus posterior root tear in ACL injuries What is the most effective MRI specific findings for lateral meniscus posterior root tear in ACL injuries Kazuki Asai 1), Junsuke Nakase 1), Kengo Shimozaki 1), Kazu Toyooka 1), Hiroyuki Tsuchiya 1) 1)

More information

The factors which affect the cartilage thickness of ankle joint

The factors which affect the cartilage thickness of ankle joint The factors which affect the cartilage thickness of ankle joint Fei Chang, YunLong Jia, Yao Fu, HanYang Zhang, Zhuan Zhong,QuanYu Dong The Second Hospital of Jilin University, Changchun, China Declaration

More information

Osteoarthritis and Cartilage (1995) 3, Osteoarthritis Research Society /95/ $08.00/0

Osteoarthritis and Cartilage (1995) 3, Osteoarthritis Research Society /95/ $08.00/0 Osteoarthritis and Cartilage (1995) 3, 205-209 1995 Osteoarthritis Research Society 1063-4584/95/030205 + 05 $08.00/0 OSTEOARTHRITIS and CARTILAGE Increased rate of hysterectomy in women undergoing surgery

More information

New Directions in Osteoarthritis Research

New Directions in Osteoarthritis Research New Directions in Osteoarthritis Research Kananaskis October 22, 2015 Nick Mohtadi MD MSc FRCSC No conflicts of interest related to this presentation 1 Osteoarthritis: Disease? Fact of Life? Strong family

More information

Central Reading of Knee X-rays for Kellgren & Lawrence Grade and Individual Radiographic Features of Tibiofemoral Knee OA

Central Reading of Knee X-rays for Kellgren & Lawrence Grade and Individual Radiographic Features of Tibiofemoral Knee OA Central Reading of Knee X-rays for Kellgren & Lawrence Grade and Individual Radiographic Features of Tibiofemoral Knee OA 1. Overview... 1 1.1 SAS dataset... 1 1.2 Contents of dataset... 1 1.3 Merging

More information

T he goals of medical management of patients with

T he goals of medical management of patients with 1061 EXTENDED REPORT Development of radiographic changes of osteoarthritis in the Chingford knee reflects progression of disease or non-standardised positioning of the joint rather than incident disease

More information

Save the meniscus Mais pourquoi?

Save the meniscus Mais pourquoi? Save the meniscus Mais pourquoi? #$%&' ()"*+!," Philippe Neyret E Servien S Lustig P Verdonk One or more of the authors of the next presentation have identified no potential conflicts of interest 2 Consequences

More information

Disclosures. Background. Background

Disclosures. Background. Background Kinematic and Quantitative MR Imaging Evaluation of ACL Reconstructions Using the Mini-Two Incision Method Compared to the Anteromedial Portal Technique Drew A. Lansdown, MD Christina Allen, MD Samuel

More information

Classification of Acetabular Cartilage Lesions. Claudio Mella, MD

Classification of Acetabular Cartilage Lesions. Claudio Mella, MD Classification of Acetabular Cartilage Lesions Claudio Mella, MD Acetabular cartilage lesions are frequently found during hip arthroscopy. The arthroscopic view offers an exceptional perspective to assess

More information

Outcome of Treatment of Osteoarthritis with Arthroscopic Debridement and Autologous Conditioned Plasma

Outcome of Treatment of Osteoarthritis with Arthroscopic Debridement and Autologous Conditioned Plasma Doi: http://dx.doi.org/10.5704/moj.1703.008 Outcome of Treatment of Osteoarthritis with Arthroscopic Debridement and Autologous Conditioned Plasma King CKK, FRCS, Yung A, FRCS Department of Orthopaedics,

More information

Non-Surgical vs. Surgical Treatment of Meniscus Tears of the Knee

Non-Surgical vs. Surgical Treatment of Meniscus Tears of the Knee Non-Surgical vs. Surgical Treatment of Meniscus Tears of the Knee Greg I. Nakamoto, MD FACP Section of Orthopedics and Sports Medicine Virginia Mason Medical Center CASE 1 45 y/o construction worker sent

More information

ORIGINAL ARTICLE. ROLE OF MRI IN EVALUATION OF TRAUMATIC KNEE INJURIES Saurabh Chaudhuri, Priscilla Joshi, Mohit Goel

ORIGINAL ARTICLE. ROLE OF MRI IN EVALUATION OF TRAUMATIC KNEE INJURIES Saurabh Chaudhuri, Priscilla Joshi, Mohit Goel ROLE OF MRI IN EVALUATION OF TRAUMATIC KNEE INJURIES Saurabh Chaudhuri, Priscilla Joshi, Mohit Goel 1. Associate Professor, Department of Radiodiagnosis & imaging, Bharati Vidyapeeth Medical College and

More information

Xingzhong (Jason) Jin

Xingzhong (Jason) Jin Effect of Vitamin D Supplementation on Tibial Cartilage Volume and Knee Pain among Patients with Symptomatic Knee Osteoarthritis: a Randomized Controlled Trial Xingzhong (Jason) Jin Research Fellow, NDARC,

More information

Change in knee structure and change in tibiofemoral joint space width: a five year longitudinal population based study

Change in knee structure and change in tibiofemoral joint space width: a five year longitudinal population based study Hall et al. BMC Musculoskeletal Disorders (2016) 17:25 DOI 10.1186/s12891-016-0879-0 RESEARCH ARTICLE Open Access Change in knee structure and change in tibiofemoral joint space width: a five year longitudinal

More information

MRI KNEE WHAT TO SEE. Dr. SHEKHAR SRIVASTAV. Sr.Consultant KNEE & SHOULDER ARTHROSCOPY

MRI KNEE WHAT TO SEE. Dr. SHEKHAR SRIVASTAV. Sr.Consultant KNEE & SHOULDER ARTHROSCOPY MRI KNEE WHAT TO SEE Dr. SHEKHAR SRIVASTAV Sr.Consultant KNEE & SHOULDER ARTHROSCOPY MRI KNEE - WHAT TO SEE MRI is the most accurate and frequently used diagnostic tool for evaluation of internal derangement

More information

When (How) MRI Became the Gold Standard Hollis G. Potter, MD

When (How) MRI Became the Gold Standard Hollis G. Potter, MD When (How) MRI Became the Gold Standard Hollis G. Potter, MD potterh@hss.edu Target audience: Radiologists and imaging scientists interested in assessing MRI of cartilage Outcome/Objectives: 1. To become

More information

Conservative surgical treatments for osteoarthritis: A Finite Element Study

Conservative surgical treatments for osteoarthritis: A Finite Element Study Conservative surgical treatments for osteoarthritis: A Finite Element Study Diagarajen Carpanen, BEng (Hons), Franziska Reisse, BEng(Hons), Howard Hillstrom, PhD, Kevin Cheah, FRCS, Rob Walker, PhD, Rajshree

More information

Osteoarthritis. Dr Anthony Feher. With special thanks to Dr. Tim Williams and Dr. Bhatia for allowing me to use some of their slides

Osteoarthritis. Dr Anthony Feher. With special thanks to Dr. Tim Williams and Dr. Bhatia for allowing me to use some of their slides Osteoarthritis Dr Anthony Feher With special thanks to Dr. Tim Williams and Dr. Bhatia for allowing me to use some of their slides No Financial Disclosures Number one chronic disability in the United States

More information

Meniscus T2 Relaxation Time at Various Stages of Knee Joint Degeneration

Meniscus T2 Relaxation Time at Various Stages of Knee Joint Degeneration Meniscus T2 Relaxation Time at Various Stages of Knee Joint Degeneration Richard Kijowski, Michael Fazio, Benjamin Beduhn, and Fang Liu Department of Radiology University of Wisconsin School of Medicine

More information

Rehabilitation Guidelines for Knee Arthroscopy

Rehabilitation Guidelines for Knee Arthroscopy Rehabilitation Guidelines for Knee Arthroscopy The knee is the body's largest joint, and the place where the femur, tibia, and patella meet to form a hinge-like joint. These bones are supported by a large

More information

Priorities Forum Statement GUIDANCE

Priorities Forum Statement GUIDANCE Priorities Forum Statement Number 21 Subject Knee Arthroscopy including arthroscopic knee washouts Date of decision November 2016 Date refreshed March 2017 Date of review November 2018 Osteoarthritis of

More information

Coronal Tibiofemoral Subluxation in Knee Osteoarthritis

Coronal Tibiofemoral Subluxation in Knee Osteoarthritis Coronal Tibiofemoral Subluxation in Knee Osteoarthritis Saker Khamaisy, MD 1,2 * ; Hendrik A. Zuiderbaan, MD 1 ; Meir Liebergall, MD 2; Andrew D. Pearle, MD 1 1Hospital for Special Surgery, Weill Medical

More information

Radiographic assessment of symptomatic knee osteoarthritis in the community: definitions and normal joint space

Radiographic assessment of symptomatic knee osteoarthritis in the community: definitions and normal joint space Ann Rheum Dis 99;:9 9 Rheumatology Unit, City Hospital, Hucknall Road, Nottingham NG PB Correspondence to: Dr P Lanyon. Accepted for publication August 99 Radiographic assessment of symptomatic knee osteoarthritis

More information

MY PATIENT HAS KNEE PAIN. David Levi, MD Chief, Division of Musculoskeletal l limaging Atlantic Medical Imaging

MY PATIENT HAS KNEE PAIN. David Levi, MD Chief, Division of Musculoskeletal l limaging Atlantic Medical Imaging MY PATIENT HAS KNEE PAIN David Levi, MD Chief, Division of Musculoskeletal l limaging Atlantic Medical Imaging Causes of knee pain Non traumatic Trauma Osteoarthritis Patellofemoral pain Menisci or ligaments

More information

A Comparative Study of Ultrasonographic Findings with Clinical and Radiological Findings of Painful Osteoarthritis of the Knee Joint

A Comparative Study of Ultrasonographic Findings with Clinical and Radiological Findings of Painful Osteoarthritis of the Knee Joint Med. J. Cairo Univ., Vol. 84, No. 3, December: 97-, www.medicaljournalofcairouniversity.net A Comparative Study of Ultrasonographic Findings with Clinical and Radiological Findings of Painful Osteoarthritis

More information

Meniscal Tears with Fragments Displaced: What you need to know.

Meniscal Tears with Fragments Displaced: What you need to know. Meniscal Tears with Fragments Displaced: What you need to know. Poster No.: C-1339 Congress: ECR 2015 Type: Authors: Keywords: DOI: Educational Exhibit M. V. Ferrufino, A. Stroe, E. Cordoba, A. Dehesa,

More information

Survivorship After Meniscal Allograft Transplantation According To Articular Cartilage Status

Survivorship After Meniscal Allograft Transplantation According To Articular Cartilage Status # 154134 Survivorship After Meniscal Allograft Transplantation According To Articular Cartilage Status Jun-Gu Park, Seong-Il Bin, Jong-Min Kim, Bum Sik Lee Department of Orthopaedic Surgery, Asan Medical

More information

2003 OsteoArthritis Research Society International. Published by Elsevier Science Ltd. All rights reserved. International Cartilage Repair Society

2003 OsteoArthritis Research Society International. Published by Elsevier Science Ltd. All rights reserved. International Cartilage Repair Society OsteoArthritis and Cartilage (2003) 11, 361 369 2003 OsteoArthritis Research Society International. Published by Elsevier Science Ltd. All rights reserved. doi:10.1016/s1063-4584(03)00049-9 Assessment

More information

Assessment of primary hip osteoarthritis: comparison of radiographic methods using colon radiographs

Assessment of primary hip osteoarthritis: comparison of radiographic methods using colon radiographs Assessment of primary hip osteoarthritis: comparison of radiographic methods using colon radiographs comparison of radiographic methods using colon radiographs Ingvarsson, T; Hägglund, Gunnar; Lindberg,

More information

International Cartilage Repair Society

International Cartilage Repair Society OsteoArthritis and Cartilage (2005) 13, 1029e1036 ª 2005 OsteoArthritis Research Society International. Published by Elsevier Ltd. All rights reserved. doi:10.1016/j.joca.2005.07.004 Brief report Second-look

More information

Knee Contusions and Stress Injuries. Laura W. Bancroft, M.D.

Knee Contusions and Stress Injuries. Laura W. Bancroft, M.D. Knee Contusions and Stress Injuries Laura W. Bancroft, M.D. Objectives Review 5 types of contusion patterns Pivot shift Dashboard Hyperextension Clip Lateral patellar dislocation Demonstrate various stress

More information

Correspondence should be addressed to Thomas Kurien;

Correspondence should be addressed to Thomas Kurien; Case Reports in Orthopedics Volume 2016, Article ID 6043497, 5 pages http://dx.doi.org/10.1155/2016/6043497 Case Report Resection and Resolution of Bone Marrow Lesions Associated with an Improvement of

More information

Arthrographic study of the rheumatoid knee.

Arthrographic study of the rheumatoid knee. Annals of the Rheumatic Diseases, 1981, 40, 344-349 Arthrographic study of the rheumatoid knee. Part 2. Articular cartilage and menisci KYOSUKE FUJIKAWA, YOSHINORI TANAKA, TSUNEYO MATSUBAYASHI, AND FUJIO

More information

Dimensions of the intercondylar notch and the distal femur throughout life

Dimensions of the intercondylar notch and the distal femur throughout life Dimensions of the intercondylar notch and the distal femur throughout life Poster No.: P-0089 Congress: ESSR 2013 Type: Scientific Exhibit Authors: L. Hirtler, S. Röhrich, F. Kainberger; Vienna/AT Keywords:

More information

Osteoarthritis and Cartilage 18 (2010) 1402e1407

Osteoarthritis and Cartilage 18 (2010) 1402e1407 Osteoarthritis and Cartilage 18 (2010) 1402e1407 Comparison of BLOKS and WORMS scoring systems part II. Longitudinal assessment of knee MRIs for osteoarthritis and suggested approach based on their performance:

More information

Infrapatellar fat pad in the knee: is local fat good or bad for knee osteoarthritis?

Infrapatellar fat pad in the knee: is local fat good or bad for knee osteoarthritis? Han et al. Arthritis Research & Therapy 2014, 16:R145 RESEARCH ARTICLE Open Access Infrapatellar fat pad in the knee: is local fat good or bad for knee osteoarthritis? Weiyu Han 1,2, Shiji Cai 1, Zhenhua

More information

Medical Practice for Sports Injuries and Disorders of the Knee

Medical Practice for Sports Injuries and Disorders of the Knee Sports-Related Injuries and Disorders Medical Practice for Sports Injuries and Disorders of the Knee JMAJ 48(1): 20 24, 2005 Hirotsugu MURATSU*, Masahiro KUROSAKA**, Tetsuji YAMAMOTO***, and Shinichi YOSHIDA****

More information

Considerations 3/9/2018. Asheesh Bedi, MD. I have no disclosures or conflicts of interest related to the content of this presentation.

Considerations 3/9/2018. Asheesh Bedi, MD. I have no disclosures or conflicts of interest related to the content of this presentation. Radiological Assessment of the Rotator Cuff What predicts outcomes? Asheesh Bedi, MD Harold and Helen W. Gehring Professor Chief, Sports Medicine & Shoulder Surgery MedSport, Department of Orthopedic Surgery

More information

WORKSHOP. Organizers: Oran D. Kennedy, PhD Tamara Alliston, PhD

WORKSHOP. Organizers: Oran D. Kennedy, PhD Tamara Alliston, PhD WORKSHOP Bone Marrow Lesions - What Lies Beneath? A workshop based on the ORS/AAOS symposium: Tackling Joint Disease by Understanding Crosstalk between Cartilage and Bone, April 2016 Organizers: Oran D.

More information

Correlation between radiographically diagnosed osteophytes and magnetic resonance detected cartilage defects in the patellofemoral joint

Correlation between radiographically diagnosed osteophytes and magnetic resonance detected cartilage defects in the patellofemoral joint Ann Rheum Dis 1998;57:395 400 395 EXTENDED REPORTS Department of Diagnostic Radiology, County Hospital, Helsingborg, Sweden T Boegård O Rudling Department of Diagnostic Radiology, University Hospital,

More information

JMSCR Vol 05 Issue 01 Page January

JMSCR Vol 05 Issue 01 Page January www.jmscr.igmpublication.org Impact Factor 5.244 Index Copernicus Value: 83.27 ISSN (e)-2347-176x ISSN (p) 2455-0450 DOI: https://dx.doi.org/10.18535/jmscr/v5i1.28 Diagnostic Accuracy of Magnetic Resonance

More information

BASELINE QUESTIONNAIRE (SURGEON)

BASELINE QUESTIONNAIRE (SURGEON) SECTION A: STUDY INFORMATION Subject ID: - - Study Visit: Baseline Site Number: Date: / / Surgeon ID: SECTION B: INITIAL SURGEON HISTORY B1. Previous Knee Surgery: Yes No Not recorded B2. Number of Previous

More information

International Cartilage Repair Society

International Cartilage Repair Society Osteoarthritis and Cartilage (2002) 10, 849 854 2002 OsteoArthritis Research Society International. Published by Elsevier Science Ltd. All rights reserved. 1063 4584/02/$35.00/0 doi:10.1053/joca.2002.0840,

More information

O steoarthritis (OA) is the most prevalent form of

O steoarthritis (OA) is the most prevalent form of 319 EXTENDED REPORT Characterisation of size and direction of in knee osteoarthritis: a radiographic study Y Nagaosa, P Lanyon, M Doherty... See end of article for authors affiliations... Correspondence

More information

Andrew J Teichtahl 1,2, Sam Smith 1, Yuanyuan Wang 1, Anita E Wluka 1, Richard O Sullivan 3,4, Graham G Giles 1,5,6 and Flavia M Cicuttini 1*

Andrew J Teichtahl 1,2, Sam Smith 1, Yuanyuan Wang 1, Anita E Wluka 1, Richard O Sullivan 3,4, Graham G Giles 1,5,6 and Flavia M Cicuttini 1* Teichtahl et al. Arthritis Research & Therapy (2015) 17:19 DOI 10.1186/s13075-015-0535-3 RESEARCH ARTICLE Open Access Occupational risk factors for hip osteoarthritis are associated with early hip structural

More information

Cartilage Repair Center Brigham and Women s Hospital Harvard Medical School

Cartilage Repair Center Brigham and Women s Hospital Harvard Medical School Brigham and Women s Hospital Harvard Medical School Safety, feasibility, and radiographic outcomes of the anterior meniscal takedown technique to approach chondral defects on the tibia and posterior femoral

More information

The Impact of Age on Knee Injury Treatment

The Impact of Age on Knee Injury Treatment The Impact of Age on Knee Injury Treatment Focus on the Meniscus Dr. Alvin J. Detterline, MD Sports Medicine and Orthopaedic Surgery Towson Orthopaedic Associates University of Maryland St. Joseph Medical

More information

Table of Contents. Overview Introduction Variables Missing Data Image Type Time Points Reading Methods...

Table of Contents. Overview Introduction Variables Missing Data Image Type Time Points Reading Methods... MULTICENTER OSTEOARTHRITIS STUDY LONGITUDINAL KNEE RADIOGRAPH ASSESSMENTS (BASELINE TO 15-MONTH, 30-MONTH, 60-MONTH AND 84-MONTH FOLLOW-UP) AND MEASUREMENTS FROM BASELINE FULL LIMB RADIOGRAPHS DATASET

More information

Post-injury painful and locked knee

Post-injury painful and locked knee H R J Post-injury painful and locked knee, p. 54-59 Clinical Case - Test Yourself Musculoskeletal Imaging Post-injury painful and locked knee Ioannis I. Daskalakis 1, 2, Apostolos H. Karantanas 1, 2 1

More information

Sasaki E 1,2, Otsuka H 2, Sasaki N 2, and Ishibashi Y 1

Sasaki E 1,2, Otsuka H 2, Sasaki N 2, and Ishibashi Y 1 Influence of osteophyte resection of the posterior femoral condyle on extension range of motion and gap balance in cruciate retaining type total knee arthroplasty. - Intraoperative evaluation using navigation

More information

BIOMECHANICAL MECHANISMS FOR DAMAGE: RETRIEVAL ANALYSIS AND COMPUTATIONAL WEAR PREDICTIONS IN TOTAL KNEE REPLACEMENTS

BIOMECHANICAL MECHANISMS FOR DAMAGE: RETRIEVAL ANALYSIS AND COMPUTATIONAL WEAR PREDICTIONS IN TOTAL KNEE REPLACEMENTS Journal of Mechanics in Medicine and Biology Vol. 5, No. 3 (2005) 469 475 c World Scientific Publishing Company BIOMECHANICAL MECHANISMS FOR DAMAGE: RETRIEVAL ANALYSIS AND COMPUTATIONAL WEAR PREDICTIONS

More information

Anterior Tibial Translation Sign: Factors Affecting Interpretation of Anterior Cruciate Ligament Tear

Anterior Tibial Translation Sign: Factors Affecting Interpretation of Anterior Cruciate Ligament Tear Anterior Tibial Translation Sign: Factors Affecting Interpretation of Anterior Cruciate Ligament Tear J Med Assoc Thai 2015; 98 (Suppl. 1): S57-S62 Full text. e-journal: http://www.jmatonline.com Numphung

More information

OSTEOCHONDRAL ALLOGRAFTS AND AUTOGRAFTS IN THE TREATMENT OF FOCAL ARTICULAR CARTILAGE LESIONS

OSTEOCHONDRAL ALLOGRAFTS AND AUTOGRAFTS IN THE TREATMENT OF FOCAL ARTICULAR CARTILAGE LESIONS Status Active Medical and Behavioral Health Policy Section: Surgery Policy Number: IV-115 Effective Date: 10/22/2014 Blue Cross and Blue Shield of Minnesota medical policies do not imply that members should

More information

Concentrations of serum cartilage oligomeric matrix protein after anterior cruciate ligament injury.

Concentrations of serum cartilage oligomeric matrix protein after anterior cruciate ligament injury. Concentrations of serum cartilage oligomeric matrix protein after anterior cruciate ligament injury. -Comparing with MRI T2 mapping technique- Yohei Nishida, M.D. 1) Yusuke Hashimoto, M.D. Ph.D. 1), Shinya

More information

Osteoarthritis. RA Hughes

Osteoarthritis. RA Hughes Osteoarthritis RA Hughes Osteoarthritis (OA) OA is the most common form of arthritis and the most common joint disease Most of the people who have OA are older than age 45, and women are more commonly

More information

ARD Online First, published on January 7, 2005 as /ard

ARD Online First, published on January 7, 2005 as /ard ARD Online First, published on January 7, 2005 as 10.1136/ard.2004.029355 Factors influencing longitudinal change in knee cartilage in healthy men Fahad Hanna, Peter Ebeling, Yuanyuan Wang, Richard O Sullivan,

More information

In vivo diffusion tensor imaging (DTI) of articular cartilage as a biomarker for osteoarthritis

In vivo diffusion tensor imaging (DTI) of articular cartilage as a biomarker for osteoarthritis In vivo diffusion tensor imaging (DTI) of articular cartilage as a biomarker for osteoarthritis Jose G. Raya 1, Annie Horng 2, Olaf Dietrich 2, Svetlana Krasnokutsky 3, Luis S. Beltran 1, Maximilian F.

More information

CLINICAL PRESENTATION AND RADIOLOGY QUIZ QUESTION

CLINICAL PRESENTATION AND RADIOLOGY QUIZ QUESTION Donald L. Renfrew, MD Radiology Associates of the Fox Valley, 333 N. Commercial Street, Suite 100, Neenah, WI 54956 7/28/2012 Radiology Quiz of the Week # 83 Page 1 CLINICAL PRESENTATION AND RADIOLOGY

More information

Treatment of meniscal lesions and isolated lesions of the anterior cruciate ligament of the knee in adults

Treatment of meniscal lesions and isolated lesions of the anterior cruciate ligament of the knee in adults QUICK REFERENCE GUIDE Treatment of meniscal s and isolated s of the anterior cruciate ligament of the knee in adults June 2008 AIM OF THE GUIDELINES To encourage good practices in the areas of meniscal

More information

Evaluation and Treatment of Knee Arthritis Classification of Knee Arthritis Osteoarthritis Osteoarthritis Osteoarthritis of Knee

Evaluation and Treatment of Knee Arthritis Classification of Knee Arthritis Osteoarthritis Osteoarthritis Osteoarthritis of Knee 1 2 Evaluation and Treatment of Knee Arthritis John Zebrack, MD Reno Orthopaedic Clinic Classification of Knee Arthritis Non-inflammatory Osteoarthritis Primary Secondary Post-traumatic, dysplasia, neuropathic,

More information

Are radiographs needed when MR imaging is performed for non-acute knee symptoms in patients younger than 45 years of age?

Are radiographs needed when MR imaging is performed for non-acute knee symptoms in patients younger than 45 years of age? Skeletal Radiol (2007) 36:1129 1139 DOI 10.1007/s00256-007-0384-5 SCIENTIFIC ARTICLE Are radiographs needed when MR imaging is performed for non-acute knee symptoms in patients younger than 45 years of

More information

Pre-operative clinical and radiological

Pre-operative clinical and radiological Pre-operative clinical and radiological assessment of the patellofemoral joint in unicompartmental knee replacement and its influence on outcome D. J. Beard, H. Pandit, S. Ostlere, C. Jenkins, C. A. F.

More information

Prevalence of Meniscal Radial Tears of the Knee Revealed by MRI After Surgery

Prevalence of Meniscal Radial Tears of the Knee Revealed by MRI After Surgery Downloaded from www.ajronline.org by 46.3.207.114 on 12/22/17 from IP address 46.3.207.114. Copyright RRS. For personal use only; all rights reserved Thomas Magee 1 Marc Shapiro David Williams Received

More information

Fracture risk in unicameral bone cyst. Is magnetic resonance imaging a better predictor than plain radiography?

Fracture risk in unicameral bone cyst. Is magnetic resonance imaging a better predictor than plain radiography? Acta Orthop. Belg., 2011, 77, 230-238 ORIGINAL STUDY Fracture risk in unicameral bone cyst. Is magnetic resonance imaging a better predictor than plain radiography? Nathalie PiREAU, Antoine DE GHELDERE,

More information

MR imaging of the knee in marathon runners before and after competition

MR imaging of the knee in marathon runners before and after competition Skeletal Radiol (2001) 30:72 76 International Skeletal Society 2001 ARTICLE W. Krampla R. Mayrhofer J. Malcher K.H. Kristen M. Urban W. Hruby MR imaging of the knee in marathon runners before and after

More information

In the Treatment of Patients With Knee Joint Osteoarthritis, Are Platelet Rich Plasma Injections More Effective Than Hyaluronic Acid Injections?

In the Treatment of Patients With Knee Joint Osteoarthritis, Are Platelet Rich Plasma Injections More Effective Than Hyaluronic Acid Injections? Philadelphia College of Osteopathic Medicine DigitalCommons@PCOM PCOM Physician Assistant Studies Student Scholarship Student Dissertations, Theses and Papers 2015 In the Treatment of Patients With Knee

More information

Why the dog? Analogy of the anatomy

Why the dog? Analogy of the anatomy Why the dog? Analogy of the anatomy Surgically Induced canine OA models: Anterior (cranial) cruciate ligament transection model Pond MJ, Nuki G. Ann Rheum Dis 1973 (and > 100 others) Meniscal disruption

More information

International Cartilage Repair Society

International Cartilage Repair Society Osteoarthritis and Cartilage (2002) 10, 542 546 2002 OsteoArthritis Research Society International. Published by Elsevier Science Ltd. All rights reserved. 1063 4584/02/$35.00/0 doi:10.1053/joca.2002.0809,

More information

MRI of Cartilage. D. BENDAHAN (PhD)

MRI of Cartilage. D. BENDAHAN (PhD) MRI of Cartilage D. BENDAHAN (PhD) Centre de Résonance Magnétique Biologique et Médicale UMR CNRS 7339 Faculté de Médecine de la Timone 27, Bd J. Moulin 13005 Marseille France david.bendahan@univ-amu.fr

More information

Evidence Process for Knee Pain Guideline Research 3/27/3018

Evidence Process for Knee Pain Guideline Research 3/27/3018 Evidence Process for Knee Pain Guideline Research 3/27/3018 Guideline Review using ADAPTE method and AGREE II instrument 41 Potentially relevant guidelines identified in various resources* Searches done

More information

Posttraumatic subchondral bone contusions and fractures of the talotibial joint: Occurrence of kissing lesions

Posttraumatic subchondral bone contusions and fractures of the talotibial joint: Occurrence of kissing lesions KISSING CONTUSIONS CHAPTER 7 Posttraumatic subchondral bone contusions and fractures of the talotibial joint: Occurrence of kissing lesions Elizabeth S. Sijbrandij 1, Ad P.G. van Gils 1, Jan Willem K.

More information

ORIGINAL INVESTIGATION. C-Reactive Protein Concentration and Incident Hypertension in Young Adults

ORIGINAL INVESTIGATION. C-Reactive Protein Concentration and Incident Hypertension in Young Adults ORIGINAL INVESTIGATION C-Reactive Protein Concentration and Incident Hypertension in Young Adults The CARDIA Study Susan G. Lakoski, MD, MS; David M. Herrington, MD, MHS; David M. Siscovick, MD, MPH; Stephen

More information

Role of magnetic resonance imaging in the evaluation of traumatic knee joint injuries

Role of magnetic resonance imaging in the evaluation of traumatic knee joint injuries Original Research Article Role of magnetic resonance imaging in the evaluation of traumatic knee joint injuries Dudhe Mahesh 1*, Rathi Varsha 2 1 Resident, 2 Professor, Department of Radio-Diagnosis, Grant

More information

Studies of high or moderate quality used for results and conclusions in the present report

Studies of high or moderate quality used for results and conclusions in the present report Studies of high or moderate quality used for results and conclusions in the present report 1 First author Pub. Year Reference Country Allen et al 2010 [1] USA Design Time to follow-up Setting Performed

More information

FAI syndrome with or without labral tear.

FAI syndrome with or without labral tear. Case This 16-year-old female, soccer athlete was treated for pain in the right groin previously. Now has acute onset of pain in the left hip. The pain was in the groin that was worse with activities. Diagnosis

More information

Unicompartmental Knee Replacement

Unicompartmental Knee Replacement Unicompartmental Knee Replacement Results and Techniques Alexander P. Sah, MD California Orthopaedic Association Meeting Laguna Niguel, CA May 20th, 2011 Overview Why partial knee replacement? - versus

More information

Genetic and systemic factors in knee osteoarthritis and its symptoms

Genetic and systemic factors in knee osteoarthritis and its symptoms Genetic and systemic factors in knee osteoarthritis and its symptoms Feng Pan, BMed, MMed Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy (Medical Research) Menzies Institute

More information

CASE REPORT GIANT OSTEOCHONDRAL LOOSE BODY OF THE KNEE JOINT

CASE REPORT GIANT OSTEOCHONDRAL LOOSE BODY OF THE KNEE JOINT Journal of Musculoskeletal Research, Vol. 4, No. 2 (2000) 145 149 World Scientific Publishing Company ORIGINAL CASE REPORT ARTICLES GIANT OSTEOCHONDRAL LOOSE BODY OF THE KNEE JOINT Mustafa Yel *,, Mustafa

More information